
A Non-Interactive Range Proof with Constant
Communication

Rafik Chaabouni1,2, Helger Lipmaa1, and Bingsheng Zhang1

1 Institute of Computer Science, University of Tartu, Estonia
2 Security and Cryptography Laboratory, EPFL, Switzerland

Abstract. In a range proof, the prover convinces the verifier in zero-
knowledge that he has encrypted or committed to a value a ∈ [0, H]
where H is a public constant. Most of the previous non-interactive range
proofs have been proven secure in the random oracle model. We show
that one of the few previous non-interactive range proofs in the common
reference string (CRS) model, proposed by Yuen et al. in COCOON
2009, is insecure. We then construct a secure non-interactive range proof
that works in the CRS model. The new range proof can have (by dif-
ferent instantiations of the parameters) either very short communication
(14 080 bits) and verifier’s computation (81 pairings), short combined
CRS length and communication (log1/2+o(1) H group elements), or very
efficient prover’s computation (Θ(logH) exponentiations).
Keywords. NIZK, pairings, progression-free sets, range proof.

1 Introduction

In a range proof, the prover convinces the verifier in zero-knowledge that he
has encrypted or committed to a value a ∈ [0, H], where H is a public con-
stant. Range proofs are needed in a wide variety of cryptographic protocols, like
e-voting (to show that a ballot corresponds to a valid candidate), e-auctions,
anonymous credentials, e-cash, or any other protocol that needs for its correct-
ness that the inputs are from a valid range. Given the need for range proofs in
a large variety of protocols, it is not surprising that there is a large amount of
research on this topic.

Most of the existing efficient range proofs fall in one of the next two cat-
egories. The first category uses a classical result of Lagrange that every non-
negative integer is a sum of four squares [13, 7, 21]. However, in this case the
underlying group has to be of unknown order which seriously limits the avail-
able cryptographic techniques. In particular, all known secure Lagrange’s the-
orem based range proofs are based on operations in Z∗n for a hard-to-factor n.
Since to achieve 128-bit security level, n must be at least 3072 bits long, arith-
metic in Z∗n is relatively slow. One also has to compute the four squares of the
Lagrange’s theorem which is inefficient by itself. Furthermore, this means that
it is not known how to instantiate such schemes with bilinear groups. (This is
exemplified by the fact that we break the range proof of [21] where the Lagrange
theorem is used in the bilinear setting with known group order.)

2 Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang

Due to such considerations, one usually considers the second approach. There,
one uses the fact that a ∈ [0, H], if and only if for some well chosen coefficients
Gi, there exist bi ∈ [0, u − 1] such that a =

∑n
i=1Gibi. Here, u � H and

n is also small. One then proves separately for every bi that bi ∈ [0, u − 1],
and uses additively homomorphic properties of the used commitment scheme to
verify that a =

∑n
i=1Gibi. The goal is to minimize the communication (which

is approximately n times the cost of a more basic proof that bi ∈ [0, u − 1]) of
that type of range proofs.

Clearly, a ∈ [0, 2d − 1] iff a =
∑d
i=1 2i−1bi and bi ∈ {0, 1}. Then one can

prove that a ∈ [0, H] for arbitrary H by showing that both a and H − a belong
to [0, 2blog2Hc+1 − 1]. Showing that bi ∈ {0, 1} is straightforward, e.g., by using
an AND of two Σ-protocols. This means that one has to execute two basic range
proofs for [0, 2d−1]. Lipmaa, Asokan and Niemi showed in [16] that by choosing
the coefficients Gi cleverly, one obtains a simpler result that a ∈ [0, H], for any

H > 1, iff a =
∑blog2Hc+1
i=1 Gibi and bi ∈ {0, 1}.

In [3], the authors considered the general case u ≥ 2, following the fact that

a ∈ [0, ud−1] iff a =
∑d
i=1 u

ibi and bi ∈ [0, u−1]. They showed that bi ∈ [0, u−1]
by letting the verifier to sign every integer in [0, u − 1], and then letting the
prover to prove that he knows the signature on committed bi. One can show
that a ∈ [0, H] for general H by using an AND of two Σ-protocols. Nontrivially
generalizing [16] (by using methods from additive combinatorics), Chaabouni,
Lipmaa and shelat [4] showed that there exist (efficiently computable) coeffi-

cients Gi such that (u − 1)a ∈ (u − 1) · [0, H] iff a =
∑dlogu((u−1)·H+1)e
i=1 Gibi

for some bi ∈ [0, u − 1]. The range proof from [4] has the communication
complexity of Θ(loguH + u) group elements, which obtains the minimal value
Θ(logH/ log logH) if u ≈ logH/ log logH. (See [9] for recent related work.)

Usually, it is desired that the range proof is non-interactive. For example,
in the e-voting scenario, range proof is a part of the vote validity proof that is
verified by various parties without any active participation of the voter. Most of
the previous non-interactive range proofs first construct a Σ-protocol which is
then made non-interactive in the random oracle model by using the Fiat-Shamir
heuristic. While the random oracle model allows to construct efficient protocols,
it is also known that there exist protocols that are secure in the random oracle
models and insecure in the plain model.

Motivated by this, [5, 21, 18] have proposed non-interactive range proofs with-
out random oracles. The range proof from [5] is of mainly theoretical value. The
range proof from [21] uses Lagrange’s theorem, but we will demonstrate an attack
on it. The range proof from [18] combines the range proof of [3] with the Groth-
Sahai non-interactive zero-knowledge (NIZK) proofs [11] and P-signatures. The
range proof from [18] is not claimed to be zero-knowledge (only NIWI, that is,
non-interactive witness-indistinguishable).

We first show that the protocol from [21] is insecure. Their protocol works in
a group of known order. In this case, using Lagrange’s theorem to prove that a
non-negative number is the sum of four squares fails. We can only conclude that
the sum of four squares is computed modulo the group order. Hence an attacker

A Non-Interactive Range Proof with Constant Communication 3

can prove that any number is “non-negative” and completely break the protocol
in [21]. See Sect. 4 for more information.

We then construct a new NIZK range proof (for an encrypted a — if one
needs a to be committed, one can use the same cryptosystem as a perfectly
binding commitment) that works in the common-reference string model. We do
this by using recent NIZK arguments by Groth and Lipmaa [8, 15]. We also
use the additive combinatorics results from [4], that is, we base a range proof
a ∈ [0, H] on the fact that (u − 1)a ∈ (u − 1) · [0, H] iff a =

∑n
i=1Gibi and

bi ∈ [0, u − 1], where Gi are as defined in [4]. However, differently from [4], we
prove that bi ∈ [0, u− 1] by proving (by a recursive use of the method from [16,
4]) that bi =

∑nv
j=0G

′
jb
′
ji with b′ji ∈ [0, 1]. Here, nv := blog2(u− 1)c.

By using the commitment scheme of [8, 15] that enables to succinctly commit
to a vector (b1, . . . , bn), and the Hadamard product argument of [8, 15], we can
do all nv + 1 small range proofs in parallel. In addition, in Sect. 5 we construct
a new non-interactive argument that a knowledge-commited value is equal to a
BBS-encrypted [2] value. (Due to the use of knowledge assumptions, this proof
is computationally more efficient than the one constructed by using Groth-Sahai
proofs [11].) The new range proof does not rely on the random oracle model or
use any proofs of knowledge of signatures.

The conceptual novelty of the new range proof as compared to all previous
range proofs of the “second approach” is that in all latter schemes, a ∈ [0, H]
is proven by executing in parallel N ≈ loguH smaller zero-knowledge proofs of
type bi ∈ [0, u − 1]. In the new range proof, N elements bi are arranged in an
nv × n matrix, where it takes only one zero-knowledge proof (the complexity of
which depends on n) to prove that all elements in one row belong to the range
[0, u−1]. By appropriately choosing the values nv and n (and u), one can achieve
different complexity trade-offs.

The complexity of the new range proof is described in Tbl. 1. Setting u = 2
results in a constant argument length (but CRS of Θ((logH)1+o(1)) group el-
ements). By using an efficient variation of Barreto-Naehrig curves (where the
group elements are either 256 or 512 bits), the communication drops to 14 080
bits. The range proof of [18] does not allow for constant communication. More-
over, if u = 2 then the communication is even smaller than that of the known
range proofs based on the Lagrange’s theorem like [13]. We note that constant
communication is achieved since the new range proof uses permutation argu-
ments only for permutations that do not depend on the statement. On the
other hand, setting u = H results in summatory CRS and argument length
of log1/2+o(1)H, and setting u = 2

√
logH results in prover’s computational com-

plexity dominated by Θ(logH) exponentiations. The previous non-interactive
range proofs did not allow for such a flexibility.

One can obtain a zap (that is, a 2-message public-coin witness-
indistinguishable proof) from the NIZK range proof by first letting the veri-
fier create and send a CRS to the prover, and then letting the prover to send
the range proof to the verifier. This zap works in the standard model (without

4 Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang

CRS length Argument length Prover comp. Verifier comp.

[18] Θ(1) Θ(h) Θ(h) Θ(h)
[18] Θ(h

log h
) Θ(h

log h
) Θ(h

log h
) Θ(h

log h
)

This paper

General n1+ε 5nv + 40 Θ(n2nv)M +Θ(n1+o(1)nv)E (9nv + 81) P

u = 2 h1+ε 40 Θ(h2)M + h1+εE 81 P

u = 2
√
h h1/2+ε ≈ 5

√
h+ 40 Θ(h3/2)M + h1+εE ≈ (9

√
h+ 81) P

u = H Θ(1) ≈ 5h+ 40 Θ(h)E ≈ (9h+ 81) P

Table 1. Comparison of NIZK arguments for range proof. Here, M/E/P means the
number of multiplications, exponentiations and pairings. Communication is given in
group elements. Here, nv = blog(u− 1)c, n ≈ logH/ log u and ε = o(1), and the basis
of all logarithms is 2. To fit in page margins, in this table only, we write h = log2 H.

needing a CRS since it is generated on run) and has the total communication

log1/2+o(1)H in the case u = H.

2 Preliminaries

Let [L,H] = {L,L + 1, . . . ,H − 1, H} and [H] = [1, H]. Let Sn be the set of
permutations from [n] to [n]. By a, we denote the vector a = (a1, . . . , an). If A
is a value, then x← A means that x is set to A. If A is a set, then x← A means
that x is picked uniformly and randomly from A. If y = hx, then let logh y := x.
Let κ be the security parameter. We abbreviate probabilistic polynomial-time as
PPT, and let negl(κ) be a negligible function. We say that Λ = (λ1, . . . , λn) ⊂ Z
is an (n, κ)-nice tuple, if 0 < λ1 < · · · < λi < · · · < λn = poly(κ).

By using notation from additive combinatorics, if Λ1 and Λ2 are subsets of
some additive group (Z or Zp within this paper), then Λ1 +Λ2 = {λ1 +λ2 : λ1 ∈
Λ1 ∧ λ2 ∈ Λ2} is their sum set and Λ1 − Λ2 = {λ1 − λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is
their difference set. If Λ is a set, then kΛ = {λ1 + · · ·+λk : λi ∈ Λ} is an iterated
sumset, and k · Λ = {kλ : λ ∈ Λ} is a dilation of Λ. Let 2̂Λ = {λ1 + λ2 : λ1 ∈
Λ ∧ λ2 ∈ Λ ∧ λ1 6= λ2} ⊆ Λ+ Λ denote a restricted sumset [20].

A set {λ1, . . . , λn} ⊂ Z+ is progression-free, if no three of the numbers are
in arithmetic progression, so that λi + λj = 2λk only if i = j = k. Let r3(N)
denote the cardinality of the largest progression-free set that belongs to [N].

Recently, Elkin [6] showed that r3(N) = Ω((N · log
1/4
2 N)/22

√
2 log2N). It is also

known that r3(N) = O(N(log logN)5/ logN) [19]. Thus, the minimal N such
that r3(N) = n is ω(n), while according to Elkin, N = n1+o(1).

Fact 1 (Lipmaa [15]) For any fixed n > 0, there exists N = n1+o(1), such that
[N] contains a progression-free subset Λ of odd integers of cardinality n.

Bilinear Groups. Let Gbp(1κ) be a bilinear group generator that outputs a
description of a bilinear group gk := (p,G1,G2,GT , ê)← Gbp(1κ) such that p is

A Non-Interactive Range Proof with Constant Communication 5

a κ-bit prime, G1, G2 and GT are multiplicative cyclic groups of order p, ê : G1×
G2 → GT is a bilinear map (pairing) such that ∀a, b ∈ Z, t ∈ {1, 2} and gt ∈ Gt,
ê(ga1 , g

b
2) = ê(g1, g2)ab. If gt generates Gt for t ∈ {1, 2}, then ê(g1, g2) generates

GT . Moreover, it is efficient to decide the membership in G1, G2 and GT , group
operations and the pairing ê are efficiently computable, generators are efficiently
sampleable, and the descriptions of the groups and group elements each are
O(κ) bit long. One can implement an optimal (asymmetric) Ate pairing [12]
over a subclass of Barreto-Naehrig curves [1, 17] very efficiently. In that case,
at security level of 128-bits, an element of G1/G2/GT can be represented in
respectively 256/512/3072 bits.

A bilinear group generator Gbp is DLIN (decisional linear) secure [2] in group
Gt, for t ∈ {1, 2}, if for all non-uniform PPT adversaries A, the next probability
is negligible in κ:∣∣∣∣∣∣∣Pr

 gk← Gbp(1κ),

(f, h)← (G∗t)2, (σ, τ)← Z2
p :

A(gk; f, h, fσ, hτ , gσ+τ
t) = 1

− Pr

 gk← Gbp(1κ),

(f, h)← (G∗t)2, (σ, τ, z)← Z3
p :

A(gk; f, h, fσ, hτ , gzt) = 1

∣∣∣∣∣∣∣ .

Let Λ be an (n, κ)-nice tuple for some n = poly(κ). A bilinear group generator
Gbp is Λ-PSDL secure, if for any non-uniform PPT adversary A,

Pr

[
gk := (p,G1,G2,GT , ê)← Gbp(1κ), g1 ← G1 \ {1},
g2 ← G2 \ {1}, x← Zp : A(gk; (gx

s

1 , gx
s

2)s∈{0}∪Λ) = x

]
= negl(κ) .

Let Λ be an (n, κ)-nice tuple. According to [15], any successful generic adversary
for Λ-PSDL requires time Ω(

√
p/λn) where p is the group order and λn is the

largest element of Λ.
The soundness of NIZK arguments (for example, an argument that a compu-

tationally binding commitment scheme commits to 0) seems to be an unfalsifi-
able assumption in general. We will use a weaker version of soundness in the case
of subarguments, but in the case of the range proof, we will prove soundness.
Similarly to [8, 15], we will base the soundness of that argument on an explicit
knowledge assumption.

For two algorithms A and XA, we write (y; z)← (A||XA)(x) if A on input x
outputs y, and XA on the same input (including the random tape of A) outputs
z. Let Λ be an (n, κ)-nice tuple for some n = poly(κ). Consider t ∈ {1, 2}. The
bilinear group generator Gbp is Λ-PKE secure in group Gt if for any non-uniform
PPT adversary A there exists a non-uniform PPT extractor XA,

Pr

gk := (p,G1,G2,GT , ê)← Gbp(1κ), gt ← Gt \ {1},
(α̂, x)← Z2

p, crs← (gk; (gx
s

t , g
α̂xs

t)s∈{0}∪Λ),

(c, ĉ; (as)s∈{0}∪Λ)← (A||XA)(crs) : ĉ = cα̂ ∧ c 6=
∏

s∈{0}∪Λ

gasx
s

t

 = negl(κ).

Groth [8] proved that the [n]-PKE assumption holds in the generic group model;
his proof can be modified to the general case.

6 Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang

In the case of both the PSDL and PKE assumptions, we will define straight-
forward generalizations in Sect. 5.

BBS Cryptosystem. A public-key cryptosystem (Gpkc, Enc,Dec) is a triple of
efficient algorithms (key generation, encryption, and decryption), where for any
(sk, pk) ← Gpkc(1κ) and any valid m and randomizer r, Decsk(Encpk(m; r)) =
m. A cryptosystem is IND-CPA secure, if for any (sk, pk) ← Gpkc(1κ) and any
two messages m0 and m1, the distributions Encpk(m0; ·) and Encpk(m1; ·) are
computationally indistinguishable. In the lifted BBS cryptosystem [2] (in group
G1), the system parameters are equal to (gk; g1), where gk← Gbp(1κ) and g1 ←
G1 \ {1}. The secret key sk is (sk1, sk2) ← (Z∗p)2, the public key pk is (f, h) ←
(g

1/sk1
1 , g

1/sk2
1). One encrypts a ∈ Zp as Encpk(ck1; a; rf , rh) ← (cg, cf , ch) =

(g
rf+rh+a
1 , frf , hrh), where (rf , rh)← Z2

p. One decrypts (cg, cf , ch) by returning

the discrete logarithm of cg/(c
sk1
f csk2h). The BBS cryptosystem is IND-CPA secure

under the DLIN assumption.

Commitment Schemes in the CRS Model. A (batch) commitment scheme
(Gcom, Com) in a bilinear group consists of two PPT algorithms: a randomized
CRS generation algorithm Gcom, and a randomized commitment algorithm Com.
Here, Gtcom(1κ, n), t ∈ {1, 2}, produces a CRS ckt, and Comt(ckt;a; r), with
a = (a1, . . . , an), outputs a commitment value A in Gbt for b > 1 (in our case,
b = 2 or b = 3). A commitment Comt(ckt;a; r) is opened by revealing (a, r).

A commitment scheme (Gcom, Com) is computationally binding in group Gt,
if for every non-uniform PPT adversary A and positive integer n = poly(κ),

Pr

[
ckt ← Gtcom(1κ, n), (a1, r1,a2, r2)← A(ckt) :

(a1, r1) 6= (a2, r2) ∧ Comt(ckt;a1; r1) = Comt(ckt;a2; r2)

]
= negl(κ) .

A commitment scheme (Gcom, Com) is perfectly hiding in group Gt, if for any
positive integer n = poly(κ) and ckt ∈ Gtcom(1κ, n) and any two messages a1,a2,
the distributions Comt(ckt;a1; ·) and Comt(ckt;a2; ·) are equal.

A trapdoor commitment scheme has 3 additional efficient algorithms: (a) A
trapdoor CRS generation algorithm inputs t, n and 1κ, and outputs a CRS ck∗

(that has the same distribution as Gtcom(1κ, n)) and a trapdoor td, (b) a random-
ized trapdoor commitment algorithm takes ck∗ and a randomizer r as inputs,
and outputs Comt(ck∗; 0; r), and (c) a trapdoor opening algorithm takes ck∗, td,
a and r as inputs, and outputs an r′ such that Comt(ck∗; 0; r) = Comt(ck∗;a; r′).

An extractable commitment scheme is a commitment scheme (Gcom, Com)
with an additional extractor (Extr1,Extr2) such that: Extrt1(1κ) creates a CRS ck∗

(indistinguishable from the real CRS ck) and a trapdoor td, and Extr2(ck∗, td;A)
returns (a; r) such that A = Com(ck; a; r), given that A is a valid commitment.
An extractable commitment scheme can only be computationally hiding.

We use the knowledge commitment scheme, defined in [15], as follows.

A Non-Interactive Range Proof with Constant Communication 7

CRS generation: Let Λ be a (n, κ)-nice tuple with n = poly(κ). Let λ0 = 0.
Given a bilinear group generator Gbp, set gk := (p,G1,G2,GT , ê)← Gbp(1κ).
Let g1 ∈ G1 and g2 ∈ G2 be generators, and choose random α̂, x ← Zp.
Consider t ∈ {1, 2}. The CRS is ckt ← (gk; (gt,λi , ĝt,λi)i∈{0,...,n}), where

gt,λi = gx
λi

t , and ĝt,λi = gα̂x
λi

t .
Commitment: To commit to a = (a1, . . . , an) ∈ Znp , one chooses a random

r ← Zp, and computes Comt(ckt;a; r) := (grt ·
∏n
i=1 g

ai
t,λi

, ĝrt ·
∏n
i=1 ĝ

ai
t,λi

).

Let t = 1. Fix a commitment key ck1 that in particular specifies g2, ĝ2 ∈ G2. A
commitment (A, Â) ∈ G2

1 is valid, if ê(A, ĝ2) = ê(Â, g2). The case t = 2 is dual.
According to [15], the knowledge commitment scheme is statistically hiding

in group Gt, and computationally binding in group Gt under the Λ-PSDL as-
sumption in group Gt. If the Λ-PKE assumption holds in group Gt, then for
any non-uniform PPT algorithm A, that outputs some valid knowledge commit-
ments, there exists a non-uniform PPT extractor XA that, given as an input
the input of A together with A’s random coins, extracts the contents of these
commitments. The knowledge commitment scheme is also trapdoor, with the
trapdoor being td = x: after trapdoor-committing A ← Comt(ck; 0; r) = grt for
r ← Zp, the committer can open it to (a; r −

∑n
i=1 aix

λi) for any a.

Non-Interactive Zero-Knowledge. Let R = {(C,w)} be an efficiently com-
putable binary relation such that |w| = poly(|C|). Here, C is a statement, and
w is a witness. Let L = {C : ∃w, (C,w) ∈ R} be an NP-language. Let n = |C|
be a fixed input length. For fixed n, we have a relation Rn and a language
Ln. A non-interactive argument for R consists of the next PPT algorithms: a
common reference string (CRS) generator Gcrs, a prover P, and a verifier V. For
crs← Gcrs(1κ, n), P(crs;C,w) produces an argument ψ. The verifier V(crs;C,ψ)
outputs either 1 (accept) or 0 (reject).

A non-interactive argument (Gcrs,P,V) is perfectly complete, if for all values
n = poly(κ), all crs← Gcrs(1κ, n) and all (C,w) ∈ Rn, V(crs;C,P(crs;C,w)) = 1.
A non-interactive argument (Gcrs,P,V) is computationally (adaptively) sound, if
for all non-uniform PPT adversaries A and all n = poly(κ),

Pr[crs← Gcrs(1κ, n), (C,ψ)← A(crs) : C 6∈ L ∧ V(crs;C,ψ) = 1] = negl(κ) .

A non-interactive argument (Gcrs,P,V) is perfectly witness-indistinguishable,
if (given that there are several possible witnesses) it is impossible to tell which
witness the prover used. That is, for all n = poly(κ), if crs ∈ Gcrs(1κ, n) and
((C,w0), (C,w1)) ∈ R2

n, then the distributions P(crs;C,w0) and P(crs;C,w1)
are equal. (Gcrs,P,V) is perfectly zero-knowledge, if there exists a polynomial-
time simulator S = (S1,S2), such that for all stateful interactive non-uniform
PPT adversaries A and n = poly(κ),

Pr

crs← Gcrs(1κ, n),

(C,w)← A(crs),

ψ ← P(crs;C,w) :

(C,w) ∈ Rn ∧ A(ψ) = 1

 = Pr

(crs, td)← S1(1κ, n),

(C,w)← A(crs),

ψ ← S2(crs, C, td) :

(C,w) ∈ Rn ∧ A(ψ) = 1

 .

8 Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang

System parameters: Let n = poly(κ). Let Λ = {λi : i ∈ [n]} be a progression-free
set of odd integers, such that λi+1 > λi > 0. Denote λ0 := 0. Let Λ̂ := {0}∪Λ∪2̂Λ.

CRS generation Gcrs(1κ): Let gk := (p,G1,G2,GT , ê) ← Gbp(1κ). Let α̂, x ← Zp.
Let g1 ← G1 \ {1} and g2 ← G2 \ {1}. Denote gt` ← gx

`

t and ĝt` ← gα̂x
`

t

for t ∈ {1, 2} and ` ∈ {0} ∪ Λ̂. Let D ←
∏n
i=1 g2,λi . The CRS is crs ←

(gk; (g1`, ĝ1`)`∈{0}∪Λ, (g2`, ĝ2`)`∈Λ̂, D). Let ĉk1 ← (gk; (g1`, ĝ1`)`∈{0}∪Λ).

Common inputs: (A, Â,B, B̂, B2, C, Ĉ), where (A, Â)← Com1(ĉk1;a; ra), (B, B̂)←
Com1(ĉk1; b; rb), B2 ← g

rb
2 ·

∏n
i=1 g

bi
2,λi

, (C, Ĉ)← Com1(ĉk1; c; rc), s.t. aibi = ci for
i ∈ [n].

Argument generation P×(crs; (A, Â,B, B̂, B2, C, Ĉ), (a, ra, b, rb, c, rc)): Let
I1(`) := {(i, j) : i, j ∈ [n] ∧ j 6= i ∧ λi + λj = `}. For ` ∈ 2̂Λ, the prover sets
µ` ←

∑
(i,j)∈I1(`)(aibj − ci). He sets ψ ← g

rarb
2 ·

∏n
i=1 g

rabi+rbai−rc
2,λi

·
∏
`∈2̂Λ gµ`2` ,

and ψ̂ ← ĝ
rarb
2 ·

∏n
i=1 ĝ

rabi+rbai−rc
2,λi

·
∏
`∈2̂Λ ĝµ`2` . He sends ψ× ← (ψ, ψ̂) ∈ G2

2 to
the verifier as the argument.

Verification V×(crs; (A, Â,B, B̂, B2, C, Ĉ), ψ×): accept iff ê(A,B2)/ê(C,D) =
ê(g1, ψ) and ê(g1, ψ̂) = ê(ĝ1, ψ).

Protocol 1: Hadamard product argument [[(A, Â)]] ◦ [[(B, B̂,B2)]] = [[(C, Ĉ)]]

Here, td is the simulation trapdoor. (Gcrs,P,V) is computationally zero-knowledge
if these two probabilities are computationally indistinguishable.

3 Groth-Lipmaa Arguments

In this section, we describe two of our building-blocks, an Hadamard product ar-
gument and a (known) permutation argument. In both cases, Groth [8] proposed
efficient (weakly) sound and non-interactive witness-indistinguishable (NIWI)
arguments that were further refined by Lipmaa [15], who used the theory of
progression-free sets to optimize Groth’s arguments. Since [15] is very new, we
will give here a full description of Lipmaa’s NIWI arguments. We refer to [15]
(and its full version, [14]) for details.

3.1 Hadamard Product Argument

Let (Gcom, Com) be the knowledge commitment scheme. An Hadamard product of
two vectors a and b is equal to their entrywise product vector c, that is, cj = aj ·bj
for j ∈ [n]. In an Hadamard product argument, the prover aims to convince the
verifier that for given three commitments (A, Â), (B, B̂) and (C, Ĉ), he knows
how to open them as (A, Â) = Com1(ck;a; ra), (B, B̂) = Com1(ck; b; rb), and
(C, Ĉ) = Com1(ck; c; rc), such that cj = aj · bj for j ∈ [n]. Prot. 1 has a full

description of Lipmaa’s Hadamard product argument [[(A, Â)]] ◦ [[(B, B̂,B2)]] =
[[(C, Ĉ)]], where B2 is the equivalent of B in G2: B2 ← grb2 ·

∏n
i=1 g

bi
2,λi

.

Fact 2 (Lipmaa [15]) The above Hadamard product argument is perfectly
complete and perfectly witness-indistinguishable. If the bilinear group generator

A Non-Interactive Range Proof with Constant Communication 9

Gbp is Λ̂-PSDL secure, then a non-uniform PPT adversary has negligible chance

of outputting inp× ← (A, Â,B, B̂, B2, C, Ĉ) and an accepting argument ψ× ←
(ψ, ψ̂) together with an opening witness w× ← (a, ra, b, rb, c, rc, (f

′
s)s∈Λ̂), such

that (A, Â) = Com1(ĉk1;a; ra), (B, B̂) = Com1(ĉk1; b; rb), B2 = grb2 ·
∏n
i=1 g

bi
2i,

(C, Ĉ) = Com1(ĉk1; c; rc), (ψ, ψ̂) = (g
∑
s∈Λ̂ f

′
sx
s

2 , ĝ
∑
s∈Λ̂ f

′
sx
s

2), and for some
i ∈ [n], aibi 6= ci.

For the product argument to be useful in more complex arguments, we must
also assume that the verifier there additionally verifies that ê(A, ĝ2) = ê(Â, g2),
ê(B, ĝ2) = ê(B̂, g2), ê(g1, B2) = ê(B, g2), and ê(C, ĝ2) = ê(Ĉ, g2). Note that

(f ′s)s∈Λ̂ is the opening of (ψ, ψ̂).

Fact 3 (Lipmaa [15]) For any n > 0 and y = n1+o(1), let Λ ⊂ [y] be a
progression-free set of odd integers from Fact 1, such that |Λ| = n. The com-
munication (argument size) of the Hadamard product argument is 2 elements
from G2. The prover’s computational complexity is Θ(n2) scalar multiplications
in Zp and n1+o(1) exponentiations in G2. The verifier’s computational complexity
is dominated by 5 bilinear pairings. The CRS consists of n1+o(1) group elements.

Finally, if a, b and c are Boolean vectors then the prover’s computational com-
plexity is Θ(n2) scalar additions in Zp and n1+o(1) exponentiations in G [15].

3.2 Permutation Argument

In a permutation argument, the prover aims to convince the verifier that for
given permutation % ∈ Sn and two commitments (A, Ã) and (B, B̃), he knows
how to open them as (A, Ã) = Com1(ck;a; ra) and (B, B̃) = Com1(ck; b; rb),
such that bj = a%(j) for j ∈ [n]. We denote this non-interactive argument by

%([[(A, Ã)]]) = [[(B, B̃,B2)]], where B2 is again the equivalent of B in G2. As
in the case of the Hadamard product argument, we describe a version of the
argument due to [15]. See Prot. 2.

Let TΛ(i, %) := |{j ∈ [n] : 2λ%(i) +λj = 2λ%(j) +λi}|, clearly TΛ(i, %) ≥ 1. One
proves that a%(i) = bi for i ∈ [n] by using a subargument that shows that for
separately committed a∗i , a

∗
%(i) = TΛ(i, %) ·bi for i ∈ [n]. Showing in addition that

a∗i = TΛ(%−1(i), %) ·ai (which is equivalent to a∗%(i) = TΛ(i, %) ·a%(i)), one obtains

that a%(i) = bi for i ∈ [n]. We only consider the case where % is fixed and thus the

element E% can be put to the CRS. We also use the fact that Λ̂ ∪ Λ̃ = {0} ∪ Λ̃,

where Λ̃ is defined in Prot. 2.

We denote the full permutation argument by %([[(A, Ã)]]) = [[(B, B̂, B̃)]].

Fact 4 (Lipmaa [15]) The above permutation argument is perfectly complete
and perfectly witness-indistinguishable. If the bilinear group generator Gbp is

Λ̃-PSDL secure, then a non-uniform PPT adversary has negligible chance of

10 Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang

System parameters: Same as in Prot. 1, but let Λ̃ := Λ∪ {2λk − λj}i,k∈[n] ∪ 2̂Λ∪
({2λk + λi − λj}i,j,k∈[n]∧i 6=j \ 2 · Λ).

CRS generation Gcrs(1κ): Let gk := (p,G1,G2,GT , ê) ← Gbp(1κ). Let α̂, α̃, x ← Zp.
Let g1 ← G1 \ {1} and g2 ← G2 \ {1}. Let ĝt ← ĝα̂t and g̃t ← g̃α̃t for t ∈ {1, 2}.
Denote gt` ← gx

`

t , ĝt` ← ĝx
`

t , and g̃t` ← g̃x
`

t for t ∈ {1, 2} and ` ∈ {0} ∪ Λ̃. Let
(D, D̃)← (

∏n
i=1 g2,λi ,

∏n
i=1 g̃2,λi). The CRS is

crs← (gk; (g1`, ĝ1`, g̃1`)`∈{0}∪Λ, (g2`)`∈{0}∪Λ̃, (ĝ2`)`∈Λ̂, (g̃2`)`∈Λ̃, D, D̃) .

Let ĉk1 ← (gk; (g1`, ĝ1`)`∈{0}∪Λ), c̃k1 ← (gk; (g1`, g̃1`)`∈{0}∪Λ).

Common inputs: (A, Ã,B, B̂, B̃, %), where % ∈ Sn, (A, Ã) ← Com1(c̃k1;a; ra),

(B, B̂)← Com1(ĉk1; b; rb), and (B, B̃)← Com1(c̃k1; b; rb), s.t. bj = a%(j) for j ∈ [n].

Argument generation Pperm(crs; (A, Ã,B, B̂, B̃, %), (a, ra, b, rb)):

1. Let (T ∗, T̂ ∗, T ∗2)← (
∏n
i=1 g

TΛ(%−1(i),%)
1,λi

,
∏n
i=1 ĝ

TΛ(%−1(i),%)
1,λi

,
∏n
i=1 g

TΛ(%−1(i),%)
2,λi

).

2. Let ra∗ ← Zp, (A∗, Â∗) ← Com1(ĉk1;TΛ(%−1(1), %) · a1, . . . , TΛ(%−1(n), %) ·
an; ra∗). Create an argument ψ× for [[(A, Â)]] ◦ [[(T ∗, T̂ ∗, T ∗2)]] = [[(A∗, Â∗)]].

3. Let Λ̃′% := 2̂Λ∪({2λ%(j)+λi−λj : i, j ∈ [n]∧i 6= j}\2·Λ) ⊂ {−λn+1, . . . , 3λn}.
4. For ` ∈ Λ̃′%, I1(`) as in Prot. 1, and I2(`) := {(i, j) : i, j ∈ [n]∧ j 6= i∧ 2λ%(i) +

λj 6= λi+2λ%(j)∧2λ%(j)+λi−λj = `}, set µ%,` ←
∑

(i,j)∈I1(`) a
∗
i−

∑
(i,j)∈I2(`) bi.

5. Let (E%, Ẽ%)← (
∏n
i=1 g2,2λ%(i)−λi ,

∏n
i=1 g̃2,2λ%(i)−λi).

6. Let ψ% ← Dr∗a · E−rb% ·
∏
`∈Λ̃′%

g
µ%,`
2` , ψ̃% ← D̃r∗a · Ẽ−rb% ·

∏
`∈Λ̃′%

g̃
µ%,`
2` ,

Send ψperm ← (A∗, Â∗, ψ×, ψ%, ψ̃%) ∈ G2
1 ×G4

2 to the verifier as the argument.
Verification Vperm(crs; (A, Ã,B, B̂, B̃, %), ψperm): Let E% and (T ∗, T̂ ∗, T ∗2) be com-

puted as in Pperm. If ψ× verifies, ê(A∗, D)/ê(B,E%) = ê(g1, ψ
%), ê(A∗, ĝ2) =

ê(Â∗, g2), and ê(g1, ψ̃
%) = ê(g̃1, ψ

%), then Vperm accepts. Otherwise, Vperm rejects.

Protocol 2: Permutation argument %([[(A, Ã)]]) = [[(B, B̃)]] from [15]

outputting inpperm ← (A, Ã,B, B̂, B̃, %) and an accepting argument ψperm ←
(A∗, Â∗, ψ×, ψ̂×, ψ%, ψ̃%) together with an opening witness

wperm ← (a, ra, b, rb,a
∗, ra∗ , (f

′
(×,`))`∈Λ̂, (f

′
(%,`))`∈Λ̃) ,

such that (A, Ã) = Com1(c̃k1;a; ra), (B, B̂) = Com1(ĉk1; b; rb),

(B, B̃) = Com1(c̃k1; b; rb), (A∗, Â∗) = Com1(ĉk1;a∗; ra∗), (ψ×, ψ̂×) =

(g
∑
`∈Λ̂ f

′
(×,`)

2 , ĝ
∑
`∈Λ̂ f

′
(×,`)

2), (ψ%, ψ̂%) = (g
∑
`∈Λ̃ f

′
(%,`)

2 , g̃
∑
`∈Λ̃ f

′
(%,`)

2), a∗i =
TΛ(%−1(i), %) · ai (for i ∈ [n]), and for some i ∈ [n], a%(i) 6= bi.

For the permutation argument to be useful in more complex arguments, we must
also assume that the verifier there verifies that ê(Ã, g2) = ê(A, g̃2), ê(B̂, g2) =
ê(B, ĝ2), and ê(B̃, g2) = ê(B, g̃2).

Fact 5 (Lipmaa [15]) The permutation argument has a CRS of length n1+o(1)

and communication of 4 group elements. The prover’s computational complexity
is Θ(n2) scalar additions in Zp and n1+o(1) exponentiations in G. The verifier’s
computational complexity is dominated by 12 bilinear pairings.

A Non-Interactive Range Proof with Constant Communication 11

4 Breaking the COCOON 2009 Range Proof

In [21], the authors proposed a non-interactive range proof. In what follows, we
show that their argument is not secure.

Their goal is to prove that a committed secret w is in some range [a, b]. To
do so they prove that both w − a and b− w are non-negative by making use of
Lagrange theorem stating that any non-negative integer can be decomposed as
the sum of four squares. Hence,

w − a =

4∑
j=1

w2
1j and b− w =

4∑
j=1

w2
2j , (1)

for some wij . The range proof of [21] is based on (symmetric) bilinear groups of
composite order, i.e., on bilinear groups (n,G,GT , ê), where n = pq. To commit
to a message w, the committer picks a random1 r ∈ Zq and computes C = gwur,
where g is a random generator of G (of order n), and u is a random generator of
subgroup Gq (of order q). Given C, w is uniquely determined in Zp as Cq = gwq.

In their range proof, the prover finds the witnesses wij in Eq. (1) and
outputs a proof ψ = ({C1j , C2j}j∈[4], Cw, ϕ1, ϕ2), where Cw ≡ gwurw ∈ G,

Cij ≡ gwijurij ∈ G for i ∈ [2] and j ∈ [4], ϕ1 ≡ g−rw+2
∑4
j=1 r1jw1j ·u

∑4
j=1 r

2
1j ∈ G,

ϕ2 ≡ grw+2
∑4
j=1 r2jw2j · u

∑4
j=1 r

2
2j ∈ G. The verifier checks whether ê(gaC−1

w , g) ·∏4
j=1 e(C1j , C1j) = ê(u, ϕ1) and ê(Cwg

−b, g) ·
∏4
j=1 ê(C2j , C2j) = ê(u, ϕ2).

Now assume that a malicious prover P ? picks an integer w∗ ∈ {0, . . . , p− 1}\
[a, b]. We have that either w∗ − a or b − w∗ is negative as an integer. Suppose

b − w∗ < 0, then P ? chooses {w∗2j}j∈[4] such that n + (b − w∗) =
∑4
j=1(w∗2j)

2,

sets Cw ← gw
∗
urw , C2j ← gw

∗
2jur2j , ϕ1 as above, and ϕ2 ← grw+2·

∑4
j=1 r2jw

∗
2j ·

u
∑4
j=1 r

2
2j . Let u = gα for some α. It is easy to see that the second verification

equation still holds:

ê(Cwg
−b, g)·

4∏
j=1

ê(C2j , C2j) = ê(g, g)(w∗−b)+αrw+
∑4
j=1(w∗2j+αr2j)

2

=ê(g, g)(w∗−b)+αrw+
∑4
j=1(w∗2j)

2+
∑4
j=1 α

2r22j+2
∑4
j=1 αr2jw

∗
2j

=ê(g, g)α·(rw+2
∑4
j=1 r2jw

∗
2j+α·

∑4
j=1 r

2
2j) = ê(u, ϕ2) .

We have successfully constructed a polynomial time adversary who can always
break the scheme. Therefore, the NIZK range proof in [21] is not sound.

5 New Subargument for Correct Encryption

In the new range proof of Sect. 6, we need a subargument that if (Ac, Āc) is a
knowledge-commitment of some a (with n = 1 and some randomness r), and

1 In [21], the scheme uses r ∈ Zn to facilitate their security proof (crs switching).

12 Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang

(Ag, Af , Ah) is a BBS ciphertext of some a′, then a = a′. That is, Ac = gr1g
a
1,λ1

and (Ag, Af , Ah) = (g
rf+rh+a
1 , frf , hrh) for randomness (rf , rh) and public key

(f, h). (The generator g1,λ1
is required in Sect. 6.)

We will construct this argument in the current section, by combining ideas
from [11] and [8, 15]. Intuitively, for every multi-exponentiation ha11 . . . hamm = t
that we want to prove, we write down a verification equation ê(h1, Com(a1)) ·
· · · · ê(hm, Com(am)) = ê(ψ, g2)ê(t, Com(1)), where ψ “compensates” for the fact
that Com(am) are probabilistic commitments. In addition, we use knowledge
commitments (though for small values 0 or 1 of n) so that one can extract all
committed values. Since the argument uses three committed values (a, rf and
rh) and three equations, according to Fig. 6 of [10] (the full version of [11]), the
corresponding pure Groth-Sahai argument will have length of 15 group elements.
Our argument has the same length, but is computationally more efficient.

System parameters: An (n, κ)-nice tuple Λ = (λ1, . . . , λn).
Common reference string generation Gcrs(1κ): Set

gk := (p,G1,G2,Gt, ê)← Gbp(1κ) .

Generate random αg, αf , αh, ᾱ, αg/c, x ← Zp. Let g1 ← G1 \ {1} and g2 ←
G2 \ {1}. Denote g1,λ1

← gx
λ1

1 , g2,λ1
← gx

λ1

2 , g̊1 ← g
αg
1 , g̊2 ← g

αg
2 , ḡ1 ← gᾱ1 ,

ḡ1,λ1
← gᾱ1,λ1

, ḡ2 ← gᾱ2 , ḡ2,λ1
← gᾱ2,λ1

, g̊1,g/c ← g
αg/c·(1−xλ1)
1 , g̊2,g/c ←

g
αg/c·(1−xλ1)
2 , g̊1,f ← g

αf
1 , g̊2,f ← g

αf
2 , g̊1,h ← gαh1 , and g̊2,h ← gαh2 . The

common reference string is

crs←(gk; g1, g1,λ1
, g2, g2,λ1

, g̊1, g̊2, ḡ1, ḡ1,λ1
, ḡ2, ḡ2,λ1

, g̊1,g/c, g̊2,g/c, g̊1,f , g̊2,f ,

g̊1,h, g̊2,h) .

A third party also creates sk := (sk1, sk2) ← (Z∗p)2, and sets pk :=

(f, h, f̊ , h̊)← (g
1/sk1
1 , g

1/sk2
1 , g̊

1/sk1
1,f , g̊

1/sk2
1,h).

Common inputs: (crs; pk, Ag, Af , Ah, Ac), where pk = (f, h, f̊ , h̊),

(Ag, Af , Ah) = (g
rf+rh+a
1 , frf , hrh), and Ac = g

rf+rh
1 ga1,λ1

.

Argument P(crs; (pk, Ag, Af , Ah, Ac), (a, rf , rh)): let Āc ← ḡ
rf+rh
1 ḡa1,λ1

,

(Åg, Åf , Åh) ← (̊g
rf+rh+a
1 , f̊rf , h̊rh), Åg/c ← g̊a1,g/c. Let Rf , Rh ← Zp. Let

(Cf , C̄f) ← (g
Rf
2 g

rf
2,λ1

, ḡ
Rf
2 ḡ

rf
2,λ1

), (Ch, C̄h) ← (gRh2 grh2,λ1
, ḡRh2 ḡrh2,λ1

) ∈ G2
2. Let

(ψg, ψ̊g) ← (g
r+Rf+Rh
1 , g̊

r+Rf+Rh
1) ∈ G2

1, (ψf , ψ̊f) ← (fRf , f̊Rf) ∈ G2
1,

(ψh, ψ̊h)← (hRh , h̊Rh) ∈ G2
1.

Send ψce ← (Åg, Åf , Åh, Åc, ψg, ψ̊g, Cf , C̄f , ψf , ψ̊f , Ch, C̄h, ψh, ψ̊h, Åg/c) to
the verifier.

Verification V(crs; (pk, Ag, Af , Ah, Ac), ψ
ce): Verify that ê(f̊ , g2) = ê(f, g̊2,f),

ê(̊h, g2) = ê(h, g̊2,h), ê(Ag, g̊2) = ê(Åg, g2), ê(Af , g̊2,f) = ê(Åf , g2),

ê(Ah, g̊2,h) = ê(Åh, g2), ê(Ac, ḡ2) = ê(Āc, g2), ê(ψg, g̊2) = ê(ψ̊g, g2),

ê(ψf , g̊2,f) = ê(ψ̊f , g2), ê(ψh, g̊2,h) = ê(ψ̊h, g2), ê(ḡ1, Cf) = ê(g1, C̄f),

ê(ḡ1, Ch) = ê(g1, C̄h), and ê(Ag/Ac, g̊2,g/c) = ê(Åg/c, g2).

A Non-Interactive Range Proof with Constant Communication 13

Verify that ê(f, Cf) = ê(ψf , g2) · ê(Af , g2,λ1), ê(h,Ch) = ê(ψh, g2) ·
ê(Ah, g2,λ1

), and ê(g1, CfCh) = ê(ψgA
−1
c , g2) · ê(Ag, g2,λ1

).

As mentioned in Sect. 2, to prove the security of this argument, we will need
a generalization of the PSDL and PKE assumptions.

Let Φ ⊂ Z[X], with d := maxϕ∈Φ degϕ, be a set of linearly independent
polynomials, such that |Φ|, all coefficients of all ϕ ∈ Φ, and d are polynomial in
κ. Let 1 be the polynomial φ(x) = 1. We say that a bilinear group generator Gbp
is Φ-PSDL secure, if for any non-uniform PPT adversary A,

Pr

[
gk := (p,G1,G2,GT , ê)← Gbp(1κ), g1 ← G1 \ {1}, g2 ← G2 \ {1},

x← Zp : A(gk; (g
ϕ(x)
1 , g

ϕ(x)
2)ϕ∈{1}∪Φ) = x

]

is negligible in κ. By a straightforward generalization of the proof from [15], any
successful generic adversary for Φ-PSDL requires time Ω(

√
p/d), where p is the

group order.
Let Φ be as before. Consider t ∈ {1, 2}. The bilinear group generator Gbp is

Φ-PKE secure in group Gt if for any non-uniform PPT adversary A there exists
a non-uniform PPT extractor XA,

Pr

gk := (p,G1,G2,GT , ê)← Gbp(1κ), gt ← Gt \ {1}, (α̂, x)← Z2

p,

crs← (gk; (g
ϕ(x)
t , g

α̂ϕ(x)
t)ϕ∈{1}∪Φ), (c, ĉ; (aϕ)ϕ∈{0}∪Φ)← (A||XA)(crs) :

ĉ = cα̂ ∧ c 6=
∏

ϕ∈{1}∪Φ

g
aϕϕ(x)
t

is negligible in κ. Groth’s proof [8] that the [n]-PKE assumption holds in the
generic group model can be modified to the general case.

Note that Gbp is Λ-PSDL secure (resp., Λ-PKE secure) iff it is {Xλ : λ ∈ Λ}-
PSDL secure (resp., {Xλ : λ ∈ Λ}-PKE secure).

Theorem 1. The argument of this subsection is a perfectly argument for
the next claim: for some a, rf , rh ∈ Zp, Ac = gr1g

a
1,λ1

and (Ag, Af , Ah) =

(grf+rh+a, frf , hrh). If the {1 − Xλ1}-PSDL assumption and the {1 − Xλ1}-
PKE assumption (in both G1 and G2) hold, then this argument is computation-
ally sound. If the DLIN assumption holds in group G1, then this argument is
computationally zero-knowledge.

(The proof of this theorem is given in App. A.) Clearly, this argument has CRS
of length Θ(1), its argument consists of 13 elements of G1 and 2 elements of
G2. The prover’s computational complexity is dominated by 20 exponentiations.
The verifier’s computational complexity is dominated by 33 pairings.

6 New Range Proof

In the next range proof, the prover has an encrypted a ∈ Zp, and he aims to
convince the verifier that a ∈ [0, H]. We will use the lifted BBS cryptosystem

14 Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang

(Gpkc, Enc,Dec) that can be thought of as a perfectly binding commitment scheme
if decryption is not necessary. Since we are interested in obtaining a sublinear
argument, we will also use the (computationally binding) knowledge commitment
scheme (Gcom, Com). We use the following result that was stated for u = 2 in [16]
and for general u in [4].

Fact 6 Let H > 0 and u > 1. Let `(u,H) ≤ logu(H + 1) be defined as in [4].
Then a ∈ [0, H] if and only if for some bi ∈ [0, u− 1],

(u− 1)a =

`(u,(u−1)H)∑
i=1

Gibi ,

where Gi ∈ Z are values defined in [4]. That is, (u−1)·[0, H] =
∑`(u,(u−1)H)
i=1 Gi ·

[0, u− 1]. In particular, [0, H] =
∑blog2Hc
i=0 b(H + 2i)/2i+1c · [0, 1].

The precise values of `(u,H) and Gi are not important in the next description.
It suffices to know that they can be efficiently evaluated. We note that

Gi = bH/ui+1c+ b(Hi + (

i−1∑
j=0

Hj mod (u− 1)) + 1)/uc ,

where H =
∑

2iHi [4].
The basic idea of the next range proof is as follows. Choose a u > 1, and let

n = `(u, (u−1)H). According to Fact 6, a ∈ [H] iff for Gi computed as in Fact 6,
one has (u− 1)a =

∑n
i=1Gibi for some bi ∈ [u− 1]. The prover shows by using a

parallel version of range proof from [16] that for i ∈ [n], bi ∈ [0, u−1]. The latter

is done by writing bi as bi =
∑blog2(u−1)c
j=0 G′jb

′
ji (by again using Fact 6) and then

showing that b′ji ∈ [0, 1] by using an Hadamard product arguments from [15].
This will be achieved with commitments on (b′j1, . . . , b

′
jn) for j ∈ [blog2(u− 1)c].

The prover then commits to the vector (c1, . . . , cn), where cj =
∑n
i=j Gibi,

and shows that the values cj are correctly computed by using a small con-
stant number of Hadamard product and permutation arguments. More pre-
cisely, he commits to (G1b1, . . . , Gnbn) (and shows this has been done cor-
rectly), then to (c2, . . . , cn, c1) (and shows this was done correctly), then
to (c2, . . . , cn, 0) (and shows this was done correctly), and then shows that
(c1, . . . , cn) = (G1b1, . . . , Gnbn) + (c2, . . . , cn, 0). Thus, the verifier is convinced
that cj =

∑n
i=j Gibi. Then, by Fact 6, c1 =

∑n
i=1Gibi ∈ (u− 1) · [H], and thus

the prover has to show (by using a single product argument) that (Au−1
c , Âu−1

c)
commits to (c1, 0, . . . , 0), and that (Ag, Af , Ah) is a lifted BBS encryption of A
with randomizer (rf , rh) where r = rf + rh.

As in [15], in a few cases, instead of computing two different commit-

ments Comt(ĉkt;a; r) = (grt ·
∏
gait,λi , ĝ

r
t ·
∏
ĝaitλi) and Comt(c̃kt;a; r) = (grt ·∏

gait,λi , g̃
r
t ·
∏
g̃ait,λi), we compute a composed commitment Comt(ckt;a; r) =

(grt ·
∏
gait,λi , ĝ

r
t

∏
ĝait,λi , g̃

r
t ·
∏
g̃ait,λi).

A Non-Interactive Range Proof with Constant Communication 15

The common input to both parties is equal to a BBS encryption (Ag, Af , Ah)

of a, accompanied by (Ac, Âc) such that (Ac, Âc) is a knowledge commitment to
a.

Theorem 2. Let u > 1. Let H = poly(κ) and n = `(u, (u − 1)H) where ` is
defined as in Fact 6. Let Λ = {λi}i∈[n] be an (n, κ)-nice tuple. Denote λ0 := 0.

Let Λ̂ := {0} ∪ Λ ∪ 2̂Λ, and Λ̃ be as in Sect. 3.2. Let rot ∈ Sn be such that
rot(i) = i − 1 if i > 1, and rot(1) = n. Define Gi as in Fact 6. The argument
in Prot. 3 is perfectly complete. If Gbp is

{
1−Xλ1

}
-PKE, Λ-PKE and DLIN

secure in G1, then the argument in Prot. 3 is computationally zero-knowledge.
If Gbp is ({Xs}s∈Λ̃ ∪ {1−Xλ1})-PSDL, Λ-PKE and {1−Xλ1}-PKE secure in
both G1 and G2, then the argument in Prot. 3 is computationally sound.

This argument is computationally zero-knowledge because (Ac, Âc) was provided
by a prover and not generated during the argument. To achieve perfect zero-
knowledge, one must be able to open (Ac, Âc) given only the CRS trapdoor.
That is, one has to use an extractable commitment scheme. It is easy to see
that the knowledge commitment scheme is extractable, however, extractability
is only achieved under the PKE assumption. The use of a cryptosystem also
makes achieving perfect zero-knowledge impossible.

Proof ([Of Thm. 2). Perfect completeness: Recall that in the case of the
product arguments, the inputs of P are (A, Â,B, B̂, B2, C, Ĉ). Within this proof
we say that (B, B̂,B2) (assuming B2 is correctly defined, that is, ê(B, g2) =
ê(g1, B2)) commits to the same values as (B, B̂).

The pairing verifications (for example, that ê(K, ĝ2) = ê(K̂, g2)) hold by
construction of the protocol. Since (B′j , B̂

′
j) commits to (b′j1, . . . , b

′
jn) for binary

b′ji then the argument (ψ′j , ψ̂
′
j) verifies.

Note that (
∏nv
j=0(B′j)

G′j ,
∏nv
j=0(B̂′j)

G′j) commits to (b1, . . . , bn). Thus argu-

ment (ψ×1 , ψ̂
×
1) verifies. Since (Crot, Ĉrot) commits to a rotation of (C, Ĉ), then

(A∗, Â∗, ψ×2 , ψ̂
×
2 , ψ

rot
2 , ψ̂rot

2) verifies. Since (Crot, Ĉrot) commits to (0, c1, . . . , cn−1)

and (C/B†, Ĉ/B̂†) commits to (c1 − G1b1, c2 − G2b2, . . . , cn − Gnbn) =

(0, c1, . . . , cn−1), then (ψ×3 , ψ̂
×
3) verifies. Finally, since (u − 1)a =

∑n
i=1Gibi

and cn =
∑n
i=1Gibi, then (ψ×4 , ψ̂

×
4) verifies.

Computational soundness: let A be a non-uniform PPT adversary who
creates a statement (pk, Ag, Af , Ah, Ac, Âc) and an accepting range proof ψ.
By the DLIN assumption, the BBS cryptosystem is IND-CPA secure, and thus
the adversary obtains no information from (Ag, Af , Ah). By the Λ-PKE and the
{1−Xλ1}-PKE assumptions, there exists a non-uniform PPT extractor XA that,
running on the same inputs and seeing A’s random tape, extracts the following
openings:

– (Ac, Âc) = Com1(ĉk1;a; r), (B′j , B̂
′
j) = Com1(ĉk1; b′j ; rj) for j ∈ [0, nv],

– (B†, B̂†) = Com1(ĉk1; b†; r′0),

– (C, Ĉ) = Com1(ĉk1; c; r′1) and (Crot, Ĉrot) = Com1(ĉk1; crot; r
′
2),

16 Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang

System parameters: H,Gi, n, u, nv := blog2(u− 1)c, and G′j := b(u+ 2j)/2j+1c.
Common reference string generation Gcrs(1κ): Set gk := (p,G1,G2,GT , ê) ←
Gbp(1κ). Generate random α̂, α̃, αg, αf , αh, ᾱ, αg/c, x← Zp. Let g1 ← G1 \ {1} and

g2 ← G2 \ {1}. Denote gts ← gx
s

t , ĝts ← gα̂x
s

t , g̃ts ← gα̃x
s

t , g̊1 ← g
αg
1 , g̊2 ← g

αg
2 ,

ḡ1 ← gᾱ1 , ḡ1,λ1 ← gᾱ1,λ1
, ḡ2 ← gᾱ2 , ḡ2,λ1 ← gᾱ2,λ1

, g̊1,g/c ← g
αg/c·(1−x

λ1)

1 , g̊2,g/c ←

g
αg/c·(1−x

λ1)

2 , g̊1,f ← g
αf
1 , g̊2,f ← g

αf
2 , g̊1,h ← g

αh
1 , and g̊2,h ← g

αh
2 . Set D ←∏n

=1 g1,λi , Erot ←
∏n
i=1 g2,2λrot(i)−λi , and Ẽrot ← Eα̃rot. The common reference string

is crs← (gk; (g1,s, ĝ1,s, g̃1,s)s∈{0}∪Λ, g2, (ĝ2,s)s∈Λ̂, (g2,s, g̃2,s)s∈Λ̃, D,Erot, Ẽrot).

Set ck1 ← (gk; (g1s, ĝ1s, g̃1s)s∈{0}∪Λ), ĉk1 ← (gk; (g1s, ĝ1s)s∈{0}∪Λ) and c̃k1 ←
(gk; (g1s, g̃1s)s∈{0}∪Λ). The prover creates a secret key sk := (sk1, sk2) ← Z2

p, and

sets pk ← (f, h, f̊ , h̊) ← (g
1/sk1
1 , g

1/sk2
1 g̊

1/sk1
1,f , g̊

1/sk2
1,h). Here, Encpk(m; (rf , rh)) :=

(g
rf+rh+m

1 , frf , hrh).
Common inputs: (pk, Ag, Af , Ah, Ac, Âc), where (Ag, Af , Ah) = (gr+a1 , frf , hrh)

and (Ac, Âc) = gr1g
a
1,λ1

, ĝr1 ĝ
a
1,λ1

), for r = rf + rh.

Argument P(crs; (pk, Ag, Af , Ah, Ac, Âc), (a, rf , rh)): The prover does the following:
1. Compute (b1, . . . , bn) ∈ Znu such that (u− 1)a =

∑n
i=1 Gibi.

2. For i ∈ [n] do: compute (b′0i, . . . , b
′
nv,i) ∈ Znv+1

2 such that bi =
∑nv
j=0 G

′
j · b′ji.

3. For j ∈ [0, nv] do:

– Let rj ← Zp, (B′j , B̂
′
j)← Com1(ĉk1; b′j1, . . . , b

′
jn; rj), B

′
j2 ← g

rj
2 ·

∏n
i=1 g

b′ji
2,λi

.

– Create an argument (ψ′j , ψ̂
′
j) for [[(B′j , B̂

′
j)]] ◦ [[(B′j , B̂

′
j , B

′
j2)]] = [[(B′j , B̂

′
j)]].

4. For i ∈ [n], let ci ←
∑n
k=iGkbk.

5. Set r′0, r
′
1, r
′
2 ← Zp, (B†, B̂†) ← Com1(ĉk1;G1b1, . . . , Gnbn; r′0), (C, Ĉ, C̃) ←

Com1(ck1; c; r′1), and (Crot, Ĉrot, C̃rot)← Com1(ck1; c2, . . . , cn−1, cn, c1; r′2).

6. Create an argument (ψ×1 , ψ̂
×
1) for [[(

∏nv
j=0(B′j)

G′j ,
∏nv
j=0(B̂′j)

G′j)]] ◦
[[(Com1(ĉk1;G1, . . . , Gn; 0),

∏n
i=1 g

Gi
2,λi

)]] = [[(B†, B̂†)]].

7. Create an argument (A∗, Â∗, ψ×2 , ψ̂
×
2 , ψ

rot
2 , ψ̂rot

2) for rot([[(C, C̃)]]) =
[[(Crot, Ĉrot, C̃rot)]].

8. Create an argument (ψ×3 , ψ̂
×
3) for [[(Crot, Ĉrot)]] ◦

[[(Com1(ĉk1; 1, 1, . . . , 1, 0; 0),
∏n−1
i=1 g2,λi)]] = [[(C/B†, Ĉ/B̂†)]].

9. Create an argument (ψ×4 , ψ̂
×
4) for [[(C, Ĉ)]] ◦

[[(Com1(ĉk1; 1, 0, . . . , 0, 0; 0), g2,λ1)]] = [[(Au−1
c , Âu−1

c)]].
10. Create an argument ψce5 that Ac commits to the same value that (Ag, Af , Ah)

encrypts.
11. Send ψ ← ((B′j , B̂

′
j , B

′
j2, ψ

′
j , ψ̂
′
j)j∈[0,nv], (B

†, B̂†), (C, Ĉ, C̃), (Crot, Ĉrot, C̃rot),

(ψ×1 , ψ̂
×
1), (A∗, Â∗, ψ×2 , ψ̂

×
2 , ψ

rot
2 , ψ̂rot

2), (ψ×3 , ψ̂
×
3), (ψ×4 , ψ̂

×
4), ψce5) to V.

Verification V(crs; (pk, Ag, Af , Ah, Ac, Âc), ψ): V does the following.
1. For j ∈ [0, nv] do:

(a) Check that ê(B′j , g2) = ê(g1, B
′
j2) and ê(B′j , ĝ2) = ê(B̂′j , g2).

(b) Verify (ψ′j , ψ̂
′
j) for inputs as specified above.

2. For K ∈ {Ac, B†, C, Crot}: check that ê(K, ĝ2) = ê(K̂, g2).
3. For K ∈ {C,Crot}: check that ê(K, g̃2) = ê(K̃, g2).
4. Verify the arguments (ψ×1 , ψ̂

×
1), (A∗, Â∗, ψ×2 , ψ̂

×
2 , ψ

rot
2 , ψ̂rot

2), (ψ×3 , ψ̂
×
3),

(ψ×4 , ψ̂
×
4), ψce5 for inputs as specified above.

Protocol 3: The new range proof

A Non-Interactive Range Proof with Constant Communication 17

– (ψ×1 , ψ̂
×
1) = (

∏
s∈Λ̂ g

f ′(×1,s)

2s ,
∏
s∈Λ̂ ĝ

f ′(×1,s)

2s),

– (A∗, Â∗) = Com1(ĉk1;a∗; ra∗),

– (ψ×2 , ψ̂
×
2) = (

∏
s∈Λ̂ g

f ′(×2,s)

2s ,
∏
s∈Λ̂ ĝ

f ′(×2,s)

2s),

– (ψrot
2 , ψ̂rot

2) = (
∏
s∈Λ̃ g

f ′(rot2,s)
2s ,

∏
s∈Λ̃ g̃

f ′(rot2,s)
2s),

– (ψ×3 , ψ̂
×
3) = (

∏
s∈Λ̂ g

f ′(×3,s)

2s ,
∏
s∈Λ̂ ĝ

f ′(×3,s)

2s), and

– (ψ×4 , ψ̂
×
4) = (

∏
s∈Λ̂ g

f ′(×4,s)

2s ,
∏
s∈Λ̂ ĝ

f ′(×4,s)

2s).

It will also create the openings that correspond to ψce5 . If any of the openings
fails, we are done. Since Λ̃-PSDL and {1−Xλ1}-PSDL assumptions are supposed
to hold, all the following is true. (If it is not true, one can efficiently test it, and
thus we have broken the PSDL assumption.)

Since ê(B′j , g2) = ê(g1, B
′
j2) for j ∈ [0, nv], then (Bj1, B̂j1, Bj2) commits to

b′j . Therefore, due to the Λ̂-PSDL assumption, the fact that the adversary knows

the openings of (B′j , B̂
′
j) and (ψ′j , ψ̂

′
j), and the last statement of Fact 2, since

(ψ′j , ψ̂
′
j) verifies, then b′ji ∈ {0, 1} for all j ∈ [0, nv] and i ∈ [1, n]. Thus, by

Fact 6, b = (b1, . . . , bn) := (
∑nv
j=0G

′
jb
′
j1, . . . ,

∑nv
j=0G

′
jb
′
jn) ∈ [0, u− 1]n, and thus

(
∏nv
j=0(B′j)

G′j ,
∏nv
j=0(B̂′j)

G′j) commits to b with bi ∈ [0, u− 1].

Due to the Λ̂-PSDL assumption, the fact that the adversary knows the open-
ings of (B′j , B̂

′
j), (B†, B̂†) and (ψ×1 , ψ̂

×
1), and the last statement of Fact 2, since

(ψ×1 , ψ̂
×
1) verifies, then b†i = Gibi. Due to the Λ̃-PSDL assumption, the fact that

the adversary knows the openings of (C, C̃), (Crot, Ĉrot) and

(A∗, Â∗, ψ×2 , ψ̂
×
2 , ψ

rot
2 , ψ̂rot

2) ,

and the last statement of Fact 2, since (A∗, Â∗, ψ×2 , ψ̂
×
2 , ψ

rot
2 , ψ̂rot

2) verifies, then
crot,1 = cn and crot,i+1 = ci for i ≥ 1.

Due to the Λ̂-PSDL assumption, the fact that the adversary knows the open-
ings of (Crot, C̃rot), (C, Ĉ), (B†, B̂†), and (ψ×3 , ψ̂

×
3), and the last statement of

Fact 2, since (ψ×3 , ψ̂
×
3) verifies, then c1−G1b1 = 0 and ci−Gibi = crot,i = ci−1 for

i > 1. Therefore, c1 = G1b1, c2 = G2b2 +G1b1, and by induction ci =
∑n
j=1Gibi

for i ≥ 1. In particular, cn =
∑n
i=1Gibi for bi ∈ [0, u− 1].

Due to the Λ̂-PSDL assumption, the fact that the adversary knows the open-
ings of (C, Ĉ), (Ac, Âc), and (ψ×4 , ψ̂

×
4), and the last statement of Fact 2, since

(ψ×4 , ψ̂
×
4) verifies, then (Ac, Âc) = (gr1g

a
1,λ1

, ĝr1 ĝ
a
1,λ1

) commits to (a, 0, . . . , 0) such

that (u− 1)a =
∑n
i=1Gibi for bi ∈ [0, u− 1], and therefore by Fact 6, a ∈ [0, H].

Due to the {1 − Xλ1}-PSDL assumption and since ψce5 verifies, then
(Ag, Af , Ah) encrypts a ∈ [0, H].

Computational zero-knowledge: we construct the following simulator
S = (S1,S2). First, S1 creates a correctly formed common reference string to-
gether with a simulation trapdoor td = (α̂, α̃, . . . , x). After that, the prover
creates a statement inpr := (pk, Ag, Af , Ah, Ac, Âc) and sends it to the simula-
tor. Second, S2(crs; inpr; td) uses a knowledge extractor to extract (a, r) from

18 Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang

the prover’s random coins and (Ac, Âc). Since we are only interested in the case
of a honest prover, we have that a = (a, 0, . . . , 0) with a ∈ [0, H]. Thus, using
the fact that the knowledge commitment scheme is also trapdoor, the simulator
computes r′′ ← axλn + r; clearly A = gr

′′

1 . Since both r and r′′ are uniformly
random, r′′ does not leak any information on the prover’s input. After that, the
simulator creates all commitments (B′j , B̂

′
j , B

′
j2)j∈[0,nv], (B†, B̂†), (C, Ĉ, C̃) and

(Crot, Ĉrot, C̃rot) as in the argument, but replacing a with 0 and r with r′′. (Note
that all the mentioned commitments just commit to 0.) Thus, the simulator can
simulate all product and permutation arguments and the argument of Sect. 5.
Clearly, this simulated argument ψsim is perfectly indistinguishable from the
real argument ψ. ut

Theorem 3. Let u > 1. Let Λ be as in Fact 1 and let n = `(u, (u − 1)H) ≤
blogu((u − 1)H + 1)c ≈ logH/ log u + 1, where `(·, ·) is defined as in Fact 6.
Let nv = dlog2(u− 1)e. Assume that we use the Hadamard product argument
and the permutation argument from Sect. 3. The range proof in Prot. 3 has a
length-n1+o(1) common reference string, communication of 2nv + 25 elements
from G1 and 3nv + 15 elements from G2, the prover’s computational complexity
of Θ(n2nv) scalar multiplications in Zp and n1+o(1)nv exponentiations in G1 or
G2. The verifier’s computational complexity is dominated by 9nv + 81 pairings.

Proof. The communication complexity: nv + 1 tuples (B′j , B̂
′
j , B

′
j2, ψj) (each has

2 elements of G1 and 3 elements of G2), and then 8 extra elements from G1,
3 Hadamard product arguments (2 elements from G2 each), 1 permutation ar-
gument (2 elements from G1 and 4 elements from G2), and argument ψce (13
elements from G1 and 2 elements from G2). In total, thus 2(nv+1)+8+2+13 =
2nv + 25 elements from G1 and 3(nv + 1) + 3 · 2 + 4 + 2 = 3nv + 15 elements
from G2.

The prover’s computational complexity is dominated by (nv+1)+3 = nv+4
Hadamard product arguments and 1 permutation argument (Θ(n2) scalar mul-
tiplications and bilinear-group n1+o(1) exponentiations each), that is in total
Θ(n2 · nv) = Θ(n2 · log u) scalar multiplications and n1+o(1) log u exponentia-
tions.

The verifier’s computational complexity is dominated by verifying nv + 4
Hadamard product arguments (5 pairings each), 1 permutation argument (12
pairings), and the argument ψce (33 pairings). In addition, the verifier performs
2 · (2(nv + 1) + 6) = 4nv + 16 pairings. The total number of pairings is thus
9nv + 81. The rest follows. ut

The communication complexity is minimized when nv (and thus u) is as small as
possible, that is, u = 2. Then nv = blog2 1c = 0. In this case the communication
consists of 12 elements from G1 and 13 elements from G2. The same choice u = 2
is also optimal for verifier’s computational complexity (81 pairings). As noted
before, at the security level of 2128, elements of G1 can be represented in 256
bits, and elements of G2 in 512 bits. Thus, at this security level, if u = 2 then
the communication is 25 · 256 + 25 · 512 = 14 080 bits, that is, only about 4

A Non-Interactive Range Proof with Constant Communication 19

to 5 times longer than the current recommended length of a 2128-secure RSA
modulus. Therefore, the communication of the new range proof is even smaller
than that of Lagrange theorem based arguments like [13].

The optimal prover’s computational complexity is achieved when the number
of exponentiations, n1+o(1) ·nv = (logH/ log u)1+o(1) ·blog2(u−1)c, is minimized.
This happens if u = H, then the prover’s computation is dominated by Θ(logH)
scalar multiplications and exponentiations. Moreover, in this case the CRS length
n1+o(1) is constant. Finally, we might want the summatory length of the CRS
and the communication to be minimal, that is, n1+o(1) + Θ(nv). Considering
n ≈ loguH and nv ≈ log2 u, we get that the sum is (logH/ log u)1+o(1)+Θ(log u).

One can approximately minimize the latter by choosing u = e
√

lnH . Then the
summatory length is log1/2+o(1)H. (In this case, it would make sense to change
the role of groups G1 and G2 to get better efficiency.) The efficiency of the new
range proof in all three cases is given in Tbl. 1.

Acknowledgments. The authors were supported by Estonian Science Founda-
tion, grant #9303, and European Union through the European Regional Devel-
opment Fund. The first author was also supported by European Social Fund’s
Doctoral Studies and Internationalization Programme DoRa.

References

1. Barreto, P.S.L.M., Naehrig, M.: Pairing-Friendly Elliptic Curves of Prime Or-
der. In: Preneel, B., Tavares, S.E., eds. SAC 2005. LNCS, vol. 3897, pp. 319–331,
Kingston, ON, Canada, Springer, Heidelberg (August 11–12, 2005)

2. Boneh, D., Boyen, X., Shacham, H.: Short Group Signatures. In: Franklin, M.K.,
ed. CRYPTO 2004. LNCS, vol. 3152, pp. 41–55, Santa Barbara, USA, Springer,
Heidelberg (August 15–19, 2004)

3. Camenisch, J., Chaabouni, R., shelat, a.: Efficient Protocols for Set Membership
and Range Proofs. In: Pieprzyk, J., ed. ASIACRYPT 2008. LNCS, vol. 5350, pp.
234–252, Melbourne, Australia, Springer, Heidelberg (December 7–11, 2008)

4. Chaabouni, R., Lipmaa, H., shelat, a.: Additive Combinatorics and Discrete Log-
arithm Based Range Protocols. In: Steinfeld, R., Hawkes, P., eds. ACISP 2010.
LNCS, vol. 6168, pp. 336–351, Sydney, Australia, Springer, Heidelberg (July 5–7,
2010)

5. Crescenzo, G.D., Herranz, J., Sáez, G.: Reducing Server Trust in Private Proxy
Auctions. In: TrustBus 2004. LNCS, vol. 3184, pp. 80–89, Zaragoza, Spain,
Springer, Heidelberg (August 30 – September 1, 2004)

6. Elkin, M.: An Improved Construction of Progression-Free Sets. Israeli Journal of
Mathematics 184 (2011) pp. 93–128

7. Groth, J.: Honest Verifier Zero-Knowledge Arguments Applied. PhD thesis, Uni-
versity of Århus, Denmark (October 2004)

8. Groth, J.: Short Pairing-Based Non-interactive Zero-Knowledge Arguments. In:
Abe, M., ed. ASIACRYPT 2010. LNCS, vol. 6477, pp. 321–340, Singapore,
Springer, Heidelberg (December 5–9 2010)

9. Groth, J.: Efficient Zero-Knowledge Arguments from Two-Tiered Homomorphic
Commitments. In: Lee, D.H., Wang, X., eds. ASIACRYPT 2011. LNCS, vol. 7073,
pp. 431–448, Seoul, South Korea, Springer, Heidelberg (December 4–8, 2011)

20 Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang

10. Groth, J., Sahai, A.: Efficient Non-Interactive Proof Systems for Bilinear
Groups. Technical Report 2007/155, International Association for Cryptologic
Research (April 27, 2007) Available at http://eprint.iacr.org/2007/155 (version
20100222:192509), retrieved in December, 2011.

11. Groth, J., Sahai, A.: Efficient Non-interactive Proof Systems for Bilinear Groups.
In: Smart, N., ed. EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432, Istanbul,
Turkey, Springer, Heidelberg (April 13–17, 2008)

12. Hess, F., Smart, N.P., Vercauteren, F.: The Eta Pairing Revisited. IEEE Trans-
actions on Information Theory 52(10) (2006) pp. 4595–4602

13. Lipmaa, H.: On Diophantine Complexity and Statistical Zero-Knowledge Argu-
ments. In: Laih, C.S., ed. ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415, Taipei,
Taiwan, Springer, Heidelberg (November 30–December 4, 2003)

14. Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-
Interactive Zero-Knowledge Arguments. Technical Report 2011/009, Interna-
tional Association for Cryptologic Research (January 5, 2011) Available at
http://eprint.iacr.org/2011/009.

15. Lipmaa, H.: Progression-Free Sets and Sublinear Pairing-Based Non-Interactive
Zero-Knowledge Arguments. In: Cramer, R., ed. TCC 2012. LNCS, vol. 7194, pp.
169–189, Taormina, Italy, Springer, Heidelberg (March 18–21, 2012)

16. Lipmaa, H., Asokan, N., Niemi, V.: Secure Vickrey Auctions without Threshold
Trust. In: Blaze, M., ed. FC 2002. LNCS, vol. 2357, pp. 87–101, Southhampton
Beach, Bermuda, Springer-Verlag (March 11–14, 2002)

17. Pereira Geovandro, C.C.F., Simpĺıcio Jr., M.A., Naehrig, M., Barreto, P.S.L.M.:
A Family of Implementation-Friendly BN Elliptic Curves. Journal of Systems and
Software 84(8) (2011) pp. 1319–1326

18. Rial, A., Kohlweiss, M., Preneel, B.: Universally Composable Adaptive Priced
Oblivious Transfer. In: Shacham, H., Waters, B., eds. Pairing 2009. LNCS, vol.
5671, pp. 231–247, Palo Alto, CA, USA, Springer, Heidelberg (August 12–14, 2009)

19. Sanders, T.: On Roth’s Theorem on Progressions. Annals of Mathematics 174(1)
(July 2011) pp. 619–636

20. Tao, T., Vu, V.: Additive Combinatorics. Cambridge Studies in Advanced Math-
ematics. Cambridge University Press (2006)

21. Yuen, T.H., Huang, Q., Mu, Y., Susilo, W., Wong, D.S., Yang, G.: Efficient Non-
interactive Range Proof. In: Ngo, H.Q., ed. COCOON 2009. LNCS, vol. 5609, pp.
138–147, Niagara Falls, NY, USA, Springer, Heidelberg (July 13–15, 2009)

A Proof of Thm. 1

Proof. Perfect completeness: correctness verifications are straightforward.
Clearly,

ê(f, Cf) =ê(f, g
Rf
2 g

rf
2,λ1

) = ê(f, g
Rf
2) · ê(f, grf2,λ1

) = ê(fRf , g2) · ê(frf , g2,λ1
)

=ê(ψf , g2) · ê(Af , g2,λ1
) .

Analogously, ê(h,Ch) = ê(ψh, g2) · ê(Ah, g2,λ1
). Finally, ê(Acψ

−1
g , g2) ·

ê(g1, CfCh) = ê(gr1g
a
1,λ1
· g−r−Rf−Rh1 , g2) · ê(g1, g

Rf+Rh
2) · ê(g1, g

rf+rh
2,λ1

) = ê(ga1,λ1
·

g
−Rf−Rh
1 , g2) · ê(gRf+Rh

1 , g2) · ê(grf+rh
1 , g2,λ1) = ê(ga1 , g2,λ1) · ê(grf+rh

1 , g2,λ1) =

ê(g
rf+rh+a
1 , g2,λ1).

A Non-Interactive Range Proof with Constant Communication 21

Computational Soundness: By the {1−Xλ1}-PKE assumption in G1 and
G2, one can open the next values: (Ac, Āc) = (gr1g

a
1,λ1

, ḡr1 ḡ
a
1,λ1

), (Ag/Ac, Åg/c) =

((g1g
−1
1,λ1

)a
′
, g̊a

′

1,g/c), (Ag, Åg) = (ga
′′

1 , g̊a
′′

1), (Af , Åf) = (frf , f̊rf), (Ah, Åh) =

(hrh , h̊rh), (Cf , C̄f) = (g
Rf
2 g

r′f
2,λ1

, ḡ
Rf
2 ḡ

r′f
2,λ1

), (Ch, C̄h) = (gRh2 g
r′h
2,λ1

, ḡRh2 ḡ
r′h
2,λ1

),

(ψg, ψ̊g) = (g
r′′a
1 , g̊

r′′a
1), (ψf , ψ̊f) = (g

r′′f
1 , g̊

r′′f
1,f), and (ψh, ψ̊h) = (g

r′′h
1 , g̊

r′′h
1,h).

Since Ac = gr1g
a
1,λ1

, Ag = ga
′′

1 and Ag/Ac = (g1g
−1
1,λ1

)a
′
, we have that ga

′′

1 =

gr+a
′

1 ga−a
′

1,λ1
. Thus, if a 6= a′, one can compute xλ1 ← (a′′ − r − a′)/(a− a′), and

from this compute x and thus break the {1−Xλ1}-PSDL assumption. (To verify

whether x is the correct root, one can check whether gx
λ1

1 = g1,λ1 .) Thus a = a′,
and thus also a′′ = r + a and Ag = gr+a1 .

Due to Cf = g
Rf
2 g

r′f
2,λ1

, ψf = g
r′′f
1 , Af = frf and ê(f, Cf) = ê(ψf , g2) ·

ê(Af , g2,λ1
), we have ê(f, g

Rf
2 g

r′f
2,λ1

) = ê(g
r′′f
1 , g2)ê(frf , gx

λ1

2) for unknown x. Tak-
ing the discrete logarithm of the both sides of the last equation, we get that
Rf/sk1 + r′fx

λ1/sk1 = r′′f + rfx
λ1/sk1, or (rf − r′f)xλ1 = Rf − r′′f · sk1. Thus,

if rf 6= r′f , then we can compute xλ1 , and find from this x, and thus break the

{1 −Xλ1}-PSDL assumption. Thus, rf = r′f and therefore also Cf = g
Rf
2 g

rf
2,λ1

.

Moreover, ψf = g
r′′f
1 = fRf .

Analogously, we get that rh = r′h and therefore Ch = gRh1 grh1,λ1
and ψh = hRh .

Due to Cf = g
Rf
2 g

rf
2,λ1

, Ch = gRh1 grh1,λ1
, ψg = g

r′′a
1 , Ac =

gr1g
a
1,λ1

, Ag = gr+a1 and ê(g1, CfCh) = ê(ψgA
−1
c , g2) · ê(Ag, g2,λ1

), we

have ê(g1, g
r+Rf+Rh+(rf+rh)xλ1

2) = ê(g
r′′a
1 g−r1 g−a1,λ1

, g2) · ê(gr+a1 , g2,λ1
) =

ê(g
r′′a−r+rx

λ1

1 , g2) for unknown x. Taking the discrete logarithm of both sides
of the last equation, we get r+Rf +Rh+ (rf + rh)xλ1 = r′′a − r+ rxλ1 . Again, if
rf + rh 6= r, then one can compute xλ1 and thus also x. Thus, r = rf + rh,

and thus also r′′a = r + Rf + Rh. This means that Ac = g
rf+rh
1 ga1,λ1

and

(Ag, Af , Ah) = (g
rf+rh+a
1 , frf , hrh).

Computational Zero-knowledge: we construct the next simulator
(S1,S2). S1 creates a CRS according to the protocol together with a trapdoor
td = (αg, αf , αh, ᾱ, αg,c, x). On input td, S2 creates zf , zh ← Zp. He then sets

Cf ← g
zf
2 , ψf ← fzf /Ax

λ1

f , Ch ← gzh2 , ψh ← hzh/Ax
λ1

h , and ψg ← g
zf+zh
1 /Ax

λ1

g .

He creates the knowledge elements (Åg, Åf , Åh, Åc, ψ̊g, C̄f , ψ̊f , C̄h, ψ̊h, Åg/c) by

using the trapdoor. For example, Åg/c ← (Ag/Ac)
αg/c . One can now check that

the verification succeeds. For example, ê(ψf , g2)ê(Af , g2,λ1
) = ê(fzf /Ax

λ1

f , g2) ·
ê(Af , g2,λ1

) = ê(fzf , g2)/ê(Ax
λ1

f , g2)ê(Af , g2,λ1
) = ê(fzf , g2) = ê(f, Cf), and

finally, ê(Acψ
−1
g , g2) · ê(g1, CfCh) = ê(g

−zf−zh
1 Ax

λ1

g Ac, g2) · ê(g1, g
zf+zh
2) =

ê(Ag, g2,λ1
). If the DLIN assumption is true, then (Ag, Af , Ah) is indistinguish-

able from an encryption of 0 ∈ [0, H], and thus the whole argument is computa-
tionally zero-knowledge. ut

