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Abstract We prove,using a non-standard complexity assumptithrat any lan-
guage in\P has al-round (that is, the verifier sends a message to the prover,
and the prover sends a message to the verifier) argument system (that is, a proof
system where soundness holds against polynomial-time provers) with communi-
cation complexityonly polylogarithmic in the size of th&P instance We also

show formal evidence that the nature of the non-standard complexity assumption
we use is analogous to previous assumptions proposed in the cryptographic liter-
ature. The question of whether complexity assumptions of this nature can be con-
sidered acceptable or not remains of independent interest in complexity-theoretic
cryptography as well as complexity theory.

1 Introduction

A conventional\VP proof system requires a single message from prover to verifier and
communication at most polynomial in the length of the instance to\fiielanguage.
Several variants of this proof system have been proposed in the literature, motivated
by various theoretical and practical applications. In particular, interactive proof sys-
tems [12,4] added two major ingredients: interaction between prover and verifier, and
randomization in messages exchanged, so that the traditional completeness and sound-
ness were allowed not to hold with some very small probability. In this paper we focus
on simultaneously minimizing the round complexity and the communication complex-

ity of the messages exchanged between prover and verifier.

History and previous workn [15], the author proposed a 2-round (or, 4-message) ar-
gument system folV"P with polylogarithmic communication complexity under stan-
dard intractability assumptions; here, an argument system [7] is a proof system where
soundness holds against all polynomial-time provers. (For related constructions see also
universal arguments of [5] and CS proofs of [20].) It has long been an open question
whether one can build a 1-round argument systen\M@ with even sublinear commu-
nication complexity. The impressive communication-efficiency property of both PCP
schemes and PIR protocols motivated the authors of [6,1] to propose some combination
of both tools to obtain such an argument system. As an example of how to combine
these two tools, define a database equal to the PCP-transformed witness for the state-
mentz € L; then, the verifier's message contains multiple PIR queries for random and
independent positions in this database, and the prover's message contains answers to
these queries according to the PIR protocol; finally, the verifier can compute the data-
base content with respect to the queried positions, and can apply the PCP verifier to



accept or not the common input. (This is the protocol proposed in [6]; the protocol pro-
posed in [1] is a variation of it, in that it adds some randomization steps to the verifier’s
message). As described, this protocol satisfies the completeness property, and would
seem to only require a polylogarithmic (ir) number of queries to satisfy soundness,
under an appropriate assumption about the privacy property of the PIR protocol used.
(The intuition here being that the PIR privacy property implies that the prover cannot
guess the random indices queried by the verifier, and therefore can only meet the ver-
ifier's checks with probability only slightly larger than the PCP error probability for
inputs not in the language.) Unfortunately, this protocol was proved teobeound

in [11], one main technical reason being that a prover can use different databases to an-
swer to each query by the verifier. Furthermore, the authors in [11] suggest the intuitive
reasoning that the PIR privacy alone might be too weak to imply the soundness for a
resulting argument system along these lines.

Our result and assumptiorn this paper we break through the linear-size barrier for
1-round argument systems for NP languages, and in fact, achieve polylogarithmic com-
munication complexity. Our departure point is again the 1-round protocol from [6]
based on PIR schemes and PCP systems, but we add to it some crucial modifica-
tions based on hash function families and Merkle trees, bearing some similarities to
the 2-round (4-message) protocol from [15] and to another 2-round protocol from [17]
proposed for 2-party private computation. As we cannot use similar proofs as for 2-
round protocols, and prove the soundness of our 1-round argument system using a non-
black-box butnon-standardassumption. However, we give formal evidence that our
assumption is of similar nature to certain assumptions that were recently introduced in
the cryptographic literature. Very roughly speaking, our assumption can be described as
follows: the only way for a prover to send a ‘correct’ PIR answer to a PIR query from the
verifier, along with a compression of the database and a proof that the answer belongs
to the compressed database, is to actually know a “correct” database. Assumptions of
this nature have been used to solve various problems, including long-standing ones, in
cryptography (starting with [9]) and zero-knowledge (starting with [14]). While using
these assumptions, researchers warned that they are very strong and suggested that their
validity is further studied. Recently, in [10], these assumptions were abstracted into a
class of “extractability-assumptions”, and several variants of this class were defined,
the strongest variants being proved to be false (assuming intractability assumptions of-
ten used in the cryptography literature and believed to be true), and the weakest variants
(including the one we use here) remaining unsettled. All proofs are omitted due to space
restriction.

2 Definitions and Tools

We recall formal definitions for the main tools and protocols used in our main construc-
tion: 1-round argument systems, PCP proofs, private information retrieval schemes,
collision-resistant function families, and Merkle trees. We assume some familiarity with
properties of these tools and with various other notions of proof systerig#otan-
guages. We use the notatigr— A(z) to denote the probabilistic experiment of running
(the possibly probabilistic) algorithm on inputz, and denoting its output as



Definition 1 (One-round argument systems)Let L be a language iVP. Let (P, V)
be a pair wherd” = (11, 13), and P, V4, V, are probabilistic algorithms running in
time polynomial in their first input. We say th&P, V) is a1-round argument system
with parametergd., 0,) for L if the following properties hold:

Completeness§/z € L, and all witnesses for z, it holds thatl (z, s, vmes, pmes) =
accept with probability> 1—-4.(n), where(vmes, s) — Vi (x), pmes — P(z, w, vmes).
Soundnessix ¢ L, for all probabilistic polynomial time algorithmB’, it holds that
Va(z, s,vmes, pmes) = accept with probability < d,(n), where(vmes, s) «— V()
andpmes < P'(x,vmes).

(P,V) is al-round argument systefor L if there exists negligible function&., J,
such that P, V) is a 1-round argument system with parametérsd, ) for L.

Probabilistically Checkable Proof (PCP) Systemsin this paper we consider PCP
systems [2,3] that are non-adaptive and have efficient generation (as essentially all such
systems in the literature). In the formal definition of PCP systems; oye denote the

bit at location: of m-bit string .

Definition 2. Let L be a language iWW'P. Let (P, V) be a pair wherd” = (V1,V5),
and P, V1, V;, are probabilistic algorithms running in time polynomial in their first
input. We say thatP, V) is a(non-adaptive) probabilistically checkable proof system
with parameterggq, d., d5) for L if for some polynomiap the next properties hold:
Completeness/z € L such thatz| = n, for all witnessesw certifying thatz € L,
P(z,w) returns with probability> 1 — 6.(n) a proof taper = |- - - |m,(,) Such that
VQ(IE, (ilaﬂil); ey (iq, 7T1;q)) = accept, Where<i1, - ,iq)%vl(I).

Soundnessix ¢ L, for all proof tapest’, Va(z, (i1, 77, ), - - - , (iq, wgq)) = accept holds
with probability < d,(n), where(iy, .. ., iq) < Vi (x).

We say tha( P, V) is a(non-adaptive) probabilistically checkable proof systemL

if there exists a polynomial and negligible functions,, ¢ such tha{ P, V') is a (non-
adaptive) probabilistically checkable proof system with paraméters, é,) for L.

In this paper we use PCP systems with slightly superlogarithmic query complexity and
negligible soundess error; that is, having paraméters—o(1/poly(n)), o(1/poly(n)),

for ¢ = (logn)'*¢, for some constant > 0. PCP systems in the literature having such
parameters include [22].

Private Information Retrieval (PIR) Schemes.We review the definition of PIR schemes
in the single-database model [16].

Definition 3. Let D, @, R be algorithms running in polynomial time in the length
of their first input (2, R may be probabilistic). Let be a security parameter; be

the length of the database aAdhe bit length of the database elements. We say that
(D, @, R) is a(single-database) PIR scheme with parametersn, ¢, o, 6, if:
Correctnessfor anym-element databas# of ¢-bit strings and any locatione [m],

with probability > 1 — d.(n) it holds thatR(1™,1™,1¢ i, (q,s),a) = dbli], where
(q,8)—Q(1™,1™ 1% 7), anda « D(1", 1¢,db, q).

Privacy: For any family of probabilistic circuit{ A, }, . running in timet(n) and
anyi,j € [m], it holds that|p; — p;| < é,(n), where forh = 4,7, it holds that

pp = Prob[(q, s)—Q(1™, 1™, 1, h) : A,(1",q) = 1],




PIR schemes with communication complexity only polylogarithmic in the sizef
the database, have been proposed, under hardness assumptions about number-theoretic
problems, in [8,18,13]. We can use any of these schemes in our main result.

Collision-resistant (CR) hash function families.This popular cryptographic primitive

can be informally described as a family of compression functions for which it is hard
to compute two preimages of the same output. We recall the formal definition of a
CR hash function secure against adversaries that run in time superpolynomial in the
hash function’s security parameter. This will allow us to use CR hash functions with a
security parameter polylogarithmic in another, global, security parameter.

Definition 4. LetH = {H,} be a family of functions,, : {0,1}?* — {0,1}", where
w is a function index satisfying:| = n. We say that{ is acollision-resistant function
family with parametergn, 2v, v, t, €) if for any algorithm A running in timet(n), it
holds that Probu {0, 1}"; (1, 22) «— A(u) : Hy(x1) = Hy(z2)] < €(n). We say
thatH is asuperpolynomial-time collision-resistant function faniflit is a collision-
resistant function family with parametefs, 2v, v, ¢, €), for somev polylogarithmic in
n, somee negligible inn and some superpolynomial im.

Merkle trees. Starting from any collision-resistant hash function family, with hash
functions H,, mapping2¢-bit inputs to/-bit outputs, Merkle defined in [19] the fol-
lowing tree-like construction to compress a polynomial numhet 2! of /-bit strings

Zo, - - ., Tm—1 INtO @ singlel-bit stringy. The outputy =MTree(H,; zg, . .., Tm—1) IS
recursively defined all,(MTree(H.; 2o, . . . , T j2—1), MTIE&(Hy; Ty 2, - - o s Tin—1)),
where MTre¢H,,; x) = x, for any¢-bit stringz. In the rest of the paper, we will use
the following notation: the output computed @s=MTree(H,; xq, . . ., T;m—1) IS @ISO
denoted asoot; for any ¢-bit string z; associated to theth leaf of the tree, we define
thei-th certification pathas the sequence of values that are necessary to certify that
is a leaf of the Merkle tree with rogt This construction has been often used in several
results in complexity theory and interactive proofs, including [15,20,5].

3 An Extractability Assumption

We now present the assumption that will be used in the rest of the paper, and prove that
it is an extractability assumption, a notion recently introduced in [10] which general-
izes assumptions studied in various papers (starting with [9]). We start by recalling
definitions from [10].

Extractability Hardness Assumptions.Informally speaking, an extractability assump-

tion considers any probabilistic polynomial time algoritbirthat, on input a security
parameter in unary and an index, returns a secret output and a public output. Then,
the assumption states thatAfsatisfies certain efficiency or hardness properties (to be
defined later), then for any adversary algoritind trying to simulateA, there exists

an efficient algorithmFxt that, given the security parameter, the inddxp’s public

output and random bits, can compute a matching secret output. Actually, it is more ap-
propriate to talk about a class of extractability assumptions, varying over the specific
algorithms A, and the algorithms that generate the index taken as input.bylo-

wards formal definitions, we first note that the problem of generating an extractability



assumption may not be well-defined for all probabilistic polynomial-time algorithms
(for instance, some algorithms may not have a secret output at all), but, instead, has
to be defined for algorithms with very specific properties. This motivates the following
definition of an extractable-algorithm candidate.

Definition 5. Let Ind be a set samplable in polynomial time whose elements we also
callindices Let A be a probabilistic polynomial time algorithm (or, alternativelyis a
deterministic algorithm that takes as input a sufficiently long and uniformly distributed
string R). On input a security parameté&?, random stringk and an indexnd € Ind,

A returns a triplg(s, m, h) in time polynomial inn. Let Setup= (Sample Verify) be

a pair of probabilistic polynomial time algorithms such that Sample, on ihpugen-
erates pairgind, sind), whereind € Ind, and Verify, on input(1”, ind, sind, m, h),
returnsaccept with probability 1 if 3 R, s such thatA(1", R, ind) = (s, m, h) or with
probability negligible inn otherwise. We say thdtA, Ind, Setup is an extractable-
algorithm candidatef there exists a polynomial such that:

Efficient public output computatiorThere exists an efficient algorithm Eval that, on
inputind € Ind ands, returns value$R, m, h) such thats,m, h) = A(1", R, ind)

Secret output hardnesSor any efficient algorithmldv the probabilityp, that3R’ such
thatA(1", R',ind) = (s',m, h) is negligible inn. Here,R« {0, 1}, (ind, sind) —
Samplg1™), (s, m, h)— A(1™, R,ind), ands’ — Adv(ind, m, h).

Hard-core output hardnesg~or any efficient algorithmAdv, the probabilityp;, that

3R’ such thatA(1™, R',ind) = (s,m,h’) is negligible inn. Here, R — {0,1}7(™),

(ind, sind) <— Samplé1™), (s,m, h)— A(1", R,ind), andh’ — Adv(ind, m).

Towards recalling the formal definition of the class of extractability assumptions, we
note that even if an adversary succeeds in generating without any knowledge of

s, then the hard-core output hardness requirement would make it hard for this spe-
cific adversary to generate The latter fact of course does not imply a proof that any
A returningm, h actually knowss, but this class of assumptions postulates that this
is indeed the case, by allowingto be efficiently extracted fromd, given the ran-
domness used in computing ‘valid’ outputs, i (for any algorithmA that satisfies

the above three properties). In the formalization, we also need a pair of algorithms
Setup= (SampleVerify), where Sample generates the index taken as input by,

and Verify checks whether the outpit:, i) returned byA has the correct form, by
returningaccept with probability 1 if 3 R, s such thatA(1", R, ind) = (s, m,h) or

with probability negligible inn otherwise.

Assumption 1 [EA assumption].Let (A, Ind, Setup, be an extractability assumption
candidate, where Setup (SampleVerify) andInd is a set that is samplable in poly-
nomial time. For any polynomial-time algorithrdv, there exists a polynomial time
algorithm E'xt, called theA-extractor, such that, denoting byux a polynomial-length
auxiliary-input (modelingd’s history), the probability that Verifii”, ind, sind, m, h) =
accept and AR’ € {0,1}7(™ such thatA(1*, R', ind) = (s',m, ), is negligible inn,
whereR «— {0,1}"("), (ind, sind) «— Samplé1™), (m, h) < Adv(1", R, ind, aux) and
s’ — Ext(1™, R,ind, m, h, aux).



3.1 Our EA assumption

We now formally describe the EA assumption that we will use in this paper, which
is based on PIR schemes and Merkle trees based on CR hash functions. Informally
speaking, we consider an extractable-algorithm candidate that randomly chooses a large
stringr and compresses into a much shorter stringt using Merkle trees, and defines
a databaselb as follows: thei-th recorddb; is set equal to thé-th bit r; of string
r, concatenated with the logarithmic number of strings that are used to comjauate
from r; within the Merkle tree computation. The indéxd is generated as a PIR query
to arandom indey € {1,...,|r|}, and the algorithmA returns, on input the security
parametei™ andind, a main output, computed as the stringt associated with the
root of the Merkle tree, a hard-core output, computed as the PIR answeriudiag a
query andib as a database, and a secret output, computed as therstring

Before proceeding more formally, we sketch why this construction of an extractable-
algorithm candidate satisfies Definition 5. First, it satisfies the efficient output compu-
tation requirement as the efficient computability of the main output follows from the
analoguous property of the Merkle tree, and the efficient computability of the secret
and hard-core outputs follow from the analoguous property of the answers in a PIR
scheme. Second, it satisfies the secret output hardness as an adversary able to com-
pute the secret output from the main output and the index can be used to contradict
the collision-resistance property of the hash function family. Third, it satisfies the hard-
core output unpredictability requirement as it is hard to compute a valid PIR answer
only from the PIR query and the root of the Merkle tree, as for datatigghis would
imply a way to break the collision-resistance property of the hash function family used.

Formal description. We formally define sefnd, algorithm A and the pair of algo-
rithms Setup= (SampleVerify), and then prove that4, Ind, Setup) is an extractable-
algorithm candidate under appropriate assumptions. We will consider databases with
m = poly(n) records (the actual polynomial not being important for our result to hold).

Setind: This is the set of CR hash functions indices and PIR queries on databases with
m records; formally:Ind = {(u, query) | u+ {0, 1}¥; (query, s,) < Q(1™, 1™, 1¢ i)
for somei € {1,...,m} and some random string used Q.

AlgorithmSample This is the querying algorithm in the PIR scheme; formally, Safifile
randomly choosese {1,...,m},u € {0,1}*, computegquery, s,) < Q(1",1™,1¢, i)
and returnsind = (1", u, query) andsind = (3, s4).

Algorithm A: On input1™, ind, algorithm A first randomly chooses amn-bit string
and computes a Merkle tree compressiom,ahus obtaining-oot and thei-th certifi-
cation pathpath; from thei-th bit r; in » to root, fori = 1,...,m. Then A defines
anm-record databaséb as follows: fori = 1,...,m, thei-th record ofdb contains a
uniguev-bit representation of bit;, concatenated with theth certification pathath;.
Then, A computes

1. the main output aswain = root;

2. the hard-core outpuit equal to the PIR answer to the query fremi usingdb as a

database; that i, = D(1",1™,1¢, db, query), whereind = (1™, u, query);
3. the secret outputequal to then-bit stringr.



Algorithm Verify: This is the retrieving algorithm in the PIR scheme; formally, algo-
rithm Verify(1", ind, sind, main, h) is defined as follows:
1. rewriteind asind = (1™, query), sind assind = (i, sq), main asmain = root;
2. computedbli] = R(1",1™,1%,4, (query, s,), h) and rewritedb[i] asr; |pathi;
3. check thapath; is a validi-th certification path from; to root using hash function
H,; if yes, then returnaccept otherwise returneeject.

We obtain the following theorem.

Theorem 1. Let n be a security parameter. Assume the existence of a family of CR
hash functions with parametefs’, 2v, v, t, €), such that’, v are polylogarithmic in

n andt is superpolynomial im but subexponential in. Also, assume there exists a
(single-database) PIR scheme having paraméters, ¢, d., d,,), with communication
complexity polylogarithmic im, wherem is polynomial inn, ¢ is polylogarithmic in

n andd. is negligible inn. Then the above triple4, Ind, Setup) is an extractable-
algorithm candidate with parameters, ps, p ), where: (1)p, is negligible inn; (2) if

d, is negligible inn then so igy,; (3) if (s, h, m) denotesA’s output on inpu(1”™, ind),
then|s| + |h| + |m| is at most polylogarithmic im.

4 A Low-Communication 1-Round Argument for NP

We are now ready to present the main result of the paper.

Theorem 2. Let L be a language ioV’P and let (4, Ind, Setup) be the triple pro-
posed in Section 3, and proved to be an extractable-algorithm candidate assuming the
existence of PIR schemes and CR hash functions4Jf {©d, Setup) satisfies the EA
assumption, then there exists a 1-round argument sy&kem) for L such that: if the
assumed PIR scheme has communication complexity polylogarithmic in the database
size then(P, V') has communication complexity polylogarithmicrinthe length of the
common input to the argument system.

We once again caution the reader that this result is based on a quite non-standard hard-
ness assumption. Preliminary studies on variants of this assumption [10] indicate that
the strongest variants are actually false (under intractability assumptions that are often
used in the cryptography literature and believed to be true) no matter what is the specific
extractable-algorithm candidate. Luckily, the variant used here seems significantly dif-
ferent and itis still open whether it can be proved to be false for all extractable-algorithm
candidates (under some conventional intractability assumption) or can be considered a
reasonable assumption for at least one of them.

Informal Description of (P, V). Our argument system is obtained as an appropriate
combination of the following tools: PIR schemes with efficient communication com-
plexity, PCP systems, CR hash function families and Merkle trees. As in [1], the start-
ing point is the protocol from [6]: the verifier asks to receive some random entries in
the PCP-transformed witness through some random PIR queries; the prover computes
the PCP-transformed witness and uses it as a database from which to compute and send
the PIR answers to the verifier; finally, the latter can check that the indices retrieved
from the database corresponding to entries that would be accepted by the PCP verifier.



As this protocol was shown to be not sound from [11], we attempt to modify it so that

it achieves soundness under the EA assumption for the extractable-algorithm candidate
presented in Section 3. Consequently, we modify the prover so that for every PIR query,
it also computes a Merkle-tree compression of the PCP-transformed witness and defines
each database record to contain not only a bit of the PCP-transformed witness but also
the certification path to the Merkle-tree root. We then note that this modification, while
enabling us to use the EA assumption, may still not be very helpful as a cheating prover
might choose to apply the Merkle-tree compression algorithm to a new stfirfigr

every queryyuery’ made by the verifier. (In essence, this is a variant of the main objec-
tion raised by [11] about the protocol in [1].) In our protocol such attacks are avoided
by modifying prover and verifier so that the prover only computes a single Merkle-tree
root and the verifier can efficiently check that, for each of the verifier's PIR queries, the
prover uses certification paths that refer to the same root (and thus to the same single
database containing them).

Formal Description. By x we denote the,-bit common input to our argument system
(P, V). Protocol(P, V'), formally described in Figure 1, uses the following tools:
1. A collision-resistant hash function family = {H,}, such that{, : {0,1}?" —
{0,1}", where|u|, v are polylogarithmic im.
2. The Merkle tree constructiol/ tree defined in Section 2, based on the collision-
resistant hash function familit.
3. A (non-adaptive) PCP system (pcpP,pcpV), where pcpV=(pgypV-), with pa-
rameterggq, d., ds), whereg is polylogarithmic inn; 4., d; are negligible im.
4. A (single-database) PIR scherf®, ), R) with parametergn, m, ¢, d., d,,) with
communication complexity polylogarithmic im, and wheren is polynomial in
n, £ is polylogarithmic inn andé., 6, are negligible im.
We now prove thatP, V') (formally described at the end of the section) satisfies Theo-
rem 2. We start by noting thaf runs in polynomial time. This follows since algorithms
Q, R from the assumed PIR scheme and algorithm pcpV from the assumed PCP scheme
run in polynomial time; and, furthermore, since checking whether a given string is an
i-th certification path in a Merkle tree can be done in polynomial time.

Communication complexity: The communication complexity ¢, V') is polylog(n)
as: both the value and each PIR query sent By have length polylogarithmic im;
the numbey; of PIR queries sent t& is also polylogarithmic im; since the database
record lengttY is O(vlogm), andv is chosen to be polylogarithmic im, then so i
and so is the length of each of the PIR answers serit.by

CompletenessAssumer € L. Then the completeness (withnegligible inn) follows
from the correctness property of the PIR scheme used and the completeness of the PCP
proof system used.

Soundness (main ideas)Assume that: ¢ L and that there exists a cheating prover
making V" accept with non-negligible probability. Then with the same probability this
prover produces a main outputain andg corresponding hard-core outpuis, . . . , kq

of algorithm A, in correspondence of the PIR queries fréimfrom which one can ob-
tain indicesind,, . . . , ind, for A. Now, we distinguish two cases, according to whether,
after applying the EA assumption to triplénd;, main, h;) and thus extracting string
Wi, fori =1,...,¢, the extracted stringd’,, . .., W, are all equal or not.



Case (a):there existsu,b € {1,...,q} such thatW, # W,. In this case we can
derive an efficient algorithm that breaks the collision-resistance of the hash function
family H. Even in this case, as while proving the secret output hardness in the proof of
Theorem 1, we need to use the extractable algorithm assumption to extract two different
stringsW,, Wy, such thatM Tree(H,; W,) = MTree(H,; Ws).

Case (b):W; = --- = W,. In this case, we can derive an efficient algorithm that
distinguishes which among twptuples of random values ifil, ..., m} was used to
computeV'’s PIR queries (by a simple hybrid argument, this is then used to efficiently
break the privacy of the PIR scheme used). Very roughly speaking, this is done by ob-
serving the following. First, for the-tuple actually used by’s PIR queries, the prover

is able to provide entries from the PCP-transformed witness that would be accepted by
the PCP verifier. Instead, thetuple not used by’s PIR queries has distribution uni-
form and independent from the exchanged communication. Then the probability that
the stringl; used by the prover contains entries from the PCP-transformed witness
that would be accepted by the PCP verifier in correspondence with-thigde can be
showed to be negligible using the soundness of the PCP proof system used.

Common input: n-bit instancer
P’s private input: a witnessw certifying thatx € L.

V(message 1):
1. Randomly choose an indexfor a hash functiorf{,, from H;
2. forj=1,...,q,
randomly and independently choose database index{1,...,m};
compute PIR queryguery;, aux;) = Q(1™, 1™, 1 i,);
3. sendu, querys, . .., query, to P.
P(message 2):
1. Run the PCP prover on input instance and witnessw and let
m =pcpRz, w);
2. computeroot = Mtree(H,; ) and send-oot to V;
3. fori=1,...,m;
let path; be thei-th certification path for the-th bit p; of =,
define the content of thieth record of databasé as(w;|path;);
4, forj=1,...,q,
computeans; = D(1",1™, 1% db, query;) and sendins; to V.
V(decision):
1. Forj=1,...,q,
computedb;, = R(1",1™, 14,45, (query;, aux;), ans;);
rewritedb;, asdb;; = (path;, |m;,);
check thapath,, is ani;-th certification path forr;, androot;
check that pcpMx, (i1, 7, ), - - -, (iq, T, )) =accept;
3. if all verifications are satisfied then accept else reject.
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