
Succinct NP Proofs from an Extractability Assumption

Giovanni Di Crescenzo1 and Helger Lipmaa2

1 Telcordia Technologies, Piscataway, NJ, USA, giovanni@research.telcordia.com
2 University College London, London, UK

Abstract We prove,using a non-standard complexity assumption, that any lan-
guage inNP has a1-round (that is, the verifier sends a message to the prover,
and the prover sends a message to the verifier) argument system (that is, a proof
system where soundness holds against polynomial-time provers) with communi-
cation complexityonly polylogarithmic in the size of theNP instance. We also
show formal evidence that the nature of the non-standard complexity assumption
we use is analogous to previous assumptions proposed in the cryptographic liter-
ature. The question of whether complexity assumptions of this nature can be con-
sidered acceptable or not remains of independent interest in complexity-theoretic
cryptography as well as complexity theory.

1 Introduction

A conventionalNP proof system requires a single message from prover to verifier and
communication at most polynomial in the length of the instance to theNP language.
Several variants of this proof system have been proposed in the literature, motivated
by various theoretical and practical applications. In particular, interactive proof sys-
tems [12,4] added two major ingredients: interaction between prover and verifier, and
randomization in messages exchanged, so that the traditional completeness and sound-
ness were allowed not to hold with some very small probability. In this paper we focus
on simultaneously minimizing the round complexity and the communication complex-
ity of the messages exchanged between prover and verifier.

History and previous work.In [15], the author proposed a 2-round (or, 4-message) ar-
gument system forNP with polylogarithmic communication complexity under stan-
dard intractability assumptions; here, an argument system [7] is a proof system where
soundness holds against all polynomial-time provers. (For related constructions see also
universal arguments of [5] and CS proofs of [20].) It has long been an open question
whether one can build a 1-round argument system forNP with even sublinear commu-
nication complexity. The impressive communication-efficiency property of both PCP
schemes and PIR protocols motivated the authors of [6,1] to propose some combination
of both tools to obtain such an argument system. As an example of how to combine
these two tools, define a database equal to the PCP-transformed witness for the state-
mentx ∈ L; then, the verifier’s message contains multiple PIR queries for random and
independent positions in this database, and the prover’s message contains answers to
these queries according to the PIR protocol; finally, the verifier can compute the data-
base content with respect to the queried positions, and can apply the PCP verifier to



accept or not the common input. (This is the protocol proposed in [6]; the protocol pro-
posed in [1] is a variation of it, in that it adds some randomization steps to the verifier’s
message). As described, this protocol satisfies the completeness property, and would
seem to only require a polylogarithmic (inn) number of queries to satisfy soundness,
under an appropriate assumption about the privacy property of the PIR protocol used.
(The intuition here being that the PIR privacy property implies that the prover cannot
guess the random indices queried by the verifier, and therefore can only meet the ver-
ifier’s checks with probability only slightly larger than the PCP error probability for
inputs not in the language.) Unfortunately, this protocol was proved to benot sound
in [11], one main technical reason being that a prover can use different databases to an-
swer to each query by the verifier. Furthermore, the authors in [11] suggest the intuitive
reasoning that the PIR privacy alone might be too weak to imply the soundness for a
resulting argument system along these lines.

Our result and assumption.In this paper we break through the linear-size barrier for
1-round argument systems for NP languages, and in fact, achieve polylogarithmic com-
munication complexity. Our departure point is again the 1-round protocol from [6]
based on PIR schemes and PCP systems, but we add to it some crucial modifica-
tions based on hash function families and Merkle trees, bearing some similarities to
the 2-round (4-message) protocol from [15] and to another 2-round protocol from [17]
proposed for 2-party private computation. As we cannot use similar proofs as for 2-
round protocols, and prove the soundness of our 1-round argument system using a non-
black-box butnon-standardassumption. However, we give formal evidence that our
assumption is of similar nature to certain assumptions that were recently introduced in
the cryptographic literature. Very roughly speaking, our assumption can be described as
follows: the only way for a prover to send a ‘correct’ PIR answer to a PIR query from the
verifier, along with a compression of the database and a proof that the answer belongs
to the compressed database, is to actually know a “correct” database. Assumptions of
this nature have been used to solve various problems, including long-standing ones, in
cryptography (starting with [9]) and zero-knowledge (starting with [14]). While using
these assumptions, researchers warned that they are very strong and suggested that their
validity is further studied. Recently, in [10], these assumptions were abstracted into a
class of “extractability-assumptions”, and several variants of this class were defined,
the strongest variants being proved to be false (assuming intractability assumptions of-
ten used in the cryptography literature and believed to be true), and the weakest variants
(including the one we use here) remaining unsettled. All proofs are omitted due to space
restriction.

2 Definitions and Tools

We recall formal definitions for the main tools and protocols used in our main construc-
tion: 1-round argument systems, PCP proofs, private information retrieval schemes,
collision-resistant function families, and Merkle trees. We assume some familiarity with
properties of these tools and with various other notions of proof systems forNP lan-
guages. We use the notationy←A(x) to denote the probabilistic experiment of running
(the possibly probabilistic) algorithmA on inputx, and denoting its output asy.



Definition 1 (One-round argument systems).Let L be a language inNP. Let (P, V )
be a pair whereV = (V1, V2), andP , V1, V2 are probabilistic algorithms running in
time polynomial in their first input. We say that(P, V ) is a 1-round argument system
with parameters(δc, δs) for L if the following properties hold:
Completeness.∀x ∈ L, and all witnessesw for x, it holds thatV2(x, s, vmes, pmes) =
accept with probability≥ 1−δc(n), where(vmes, s)←V1(x), pmes←P (x,w, vmes).
Soundness.∀x 6∈ L, for all probabilistic polynomial time algorithmsP ′, it holds that
V2(x, s, vmes, pmes) = accept with probability≤ δs(n), where(vmes, s)← V1(x)
andpmes←P ′(x, vmes).

(P, V ) is a 1-round argument systemfor L if there exists negligible functionsδc, δs

such that(P, V ) is a 1-round argument system with parameters(δc, δs) for L.

Probabilistically Checkable Proof (PCP) Systems.In this paper we consider PCP
systems [2,3] that are non-adaptive and have efficient generation (as essentially all such
systems in the literature). In the formal definition of PCP systems, byπi we denote the
bit at locationi of m-bit stringπ.

Definition 2. Let L be a language inNP. Let (P, V ) be a pair whereV = (V1, V2),
and P , V1, V2 are probabilistic algorithms running in time polynomial in their first
input. We say that(P, V ) is a (non-adaptive) probabilistically checkable proof system
with parameters(q, δc, δs) for L if for some polynomialp the next properties hold:
Completeness.∀x ∈ L such that|x| = n, for all witnessesw certifying thatx ∈ L,
P (x, w) returns with probability≥ 1− δc(n) a proof tapeπ = π1| · · · |πp(n) such that
V2(x, (i1, πi1), . . . , (iq, πiq

)) = accept, where(i1, . . . , iq)←V1(x).
Soundness.∀x 6∈ L, for all proof tapesπ′, V2(x, (i1, π′i1), . . . , (iq, π

′
iq

)) = accept holds
with probability≤ δs(n), where(i1, . . . , iq)←V1(x).

We say that(P, V ) is a (non-adaptive) probabilistically checkable proof systemfor L
if there exists a polynomialq and negligible functionsδc, δs such that(P, V ) is a (non-
adaptive) probabilistically checkable proof system with parameters(q, δc, δs) for L.
In this paper we use PCP systems with slightly superlogarithmic query complexity and
negligible soundess error; that is, having parameters(q, 1−o(1/poly(n)), o(1/poly(n)),
for q = (log n)1+ε, for some constantε > 0. PCP systems in the literature having such
parameters include [22].

Private Information Retrieval (PIR) Schemes.We review the definition of PIR schemes
in the single-database model [16].

Definition 3. Let D, Q, R be algorithms running in polynomial time in the length
of their first input (Q,R may be probabilistic). Letn be a security parameter,m be
the length of the database and` the bit length of the database elements. We say that
(D,Q,R) is a(single-database) PIR scheme with parameters(n, m, `, δc, δp) if:
Correctness:For anym-element databasedb of `-bit strings and any locationi ∈ [m],
with probability≥ 1 − δc(n) it holds thatR(1n, 1m, 1`, i, (q, s), a) = db[i], where
(q, s)←Q(1n, 1m, 1`, i), anda←D(1n, 1`, db, q).
Privacy: For any family of probabilistic circuits{An}n∈N running in timet(n) and
any i, j ∈ [m], it holds that|pi − pj | ≤ δp(n), where forh = i, j, it holds that
ph = Prob

[
(q, s)←Q(1n, 1m, 1`, h) : An(1n, q) = 1

]
,



PIR schemes with communication complexity only polylogarithmic in the sizem of
the database, have been proposed, under hardness assumptions about number-theoretic
problems, in [8,18,13]. We can use any of these schemes in our main result.

Collision-resistant (CR) hash function families.This popular cryptographic primitive
can be informally described as a family of compression functions for which it is hard
to compute two preimages of the same output. We recall the formal definition of a
CR hash function secure against adversaries that run in time superpolynomial in the
hash function’s security parameter. This will allow us to use CR hash functions with a
security parameter polylogarithmic in another, global, security parameter.

Definition 4. LetH = {Hu} be a family of functionsHu : {0, 1}2v → {0, 1}v, where
u is a function index satisfying|u| = n. We say thatH is acollision-resistant function
family with parameters(n, 2v, v, t, ε) if for any algorithmA running in timet(n), it
holds that Prob[u←{0, 1}n; (x1, x2)←A(u) : Hu(x1) = Hu(x2) ] ≤ ε(n). We say
thatH is asuperpolynomial-time collision-resistant function familyif it is a collision-
resistant function family with parameters(n, 2v, v, t, ε), for somev polylogarithmic in
n, someε negligible inn and somet superpolynomial inn.

Merkle trees. Starting from any collision-resistant hash function family, with hash
functionsHu mapping2`-bit inputs to`-bit outputs, Merkle defined in [19] the fol-
lowing tree-like construction to compress a polynomial numberm = 2t of `-bit strings
x0, . . . , xm−1 into a singlè -bit stringy. The outputy =MTree(Hu;x0, . . . , xm−1) is
recursively defined asHu(MTree(Hu;x0, . . . , xm/2−1), MTree(Hu;xm/2, . . . , xm−1)),
where MTree(Hu;x) = x, for any`-bit stringx. In the rest of the paper, we will use
the following notation: the output computed asy =MTree(Hu;x0, . . . , xm−1) is also
denoted asroot; for any`-bit stringxi associated to thei-th leaf of the tree, we define
thei-th certification pathas the sequence of values that are necessary to certify thatxi

is a leaf of the Merkle tree with rooty. This construction has been often used in several
results in complexity theory and interactive proofs, including [15,20,5].

3 An Extractability Assumption

We now present the assumption that will be used in the rest of the paper, and prove that
it is an extractability assumption, a notion recently introduced in [10] which general-
izes assumptions studied in various papers (starting with [9]). We start by recalling
definitions from [10].

Extractability Hardness Assumptions.Informally speaking, an extractability assump-
tion considers any probabilistic polynomial time algorithmA that, on input a security
parameter in unary and an index, returns a secret output and a public output. Then,
the assumption states that ifA satisfies certain efficiency or hardness properties (to be
defined later), then for any adversary algorithmAdv trying to simulateA, there exists
an efficient algorithmExt that, given the security parameter, the index,Adv’s public
output and random bits, can compute a matching secret output. Actually, it is more ap-
propriate to talk about a class of extractability assumptions, varying over the specific
algorithmsA, and the algorithms that generate the index taken as input byA. To-
wards formal definitions, we first note that the problem of generating an extractability



assumption may not be well-defined for all probabilistic polynomial-time algorithms
(for instance, some algorithms may not have a secret output at all), but, instead, has
to be defined for algorithms with very specific properties. This motivates the following
definition of an extractable-algorithm candidate.

Definition 5. Let Ind be a set samplable in polynomial time whose elements we also
call indices. LetA be a probabilistic polynomial time algorithm (or, alternatively,A is a
deterministic algorithm that takes as input a sufficiently long and uniformly distributed
stringR). On input a security parameter1n, random stringR and an indexind ∈ Ind,
A returns a triple(s,m, h) in time polynomial inn. Let Setup= (Sample, Verify) be
a pair of probabilistic polynomial time algorithms such that Sample, on input1n, gen-
erates pairs(ind, sind), whereind ∈ Ind, and Verify, on input(1n, ind, sind,m, h),
returnsaccept with probability 1 if∃R, s such thatA(1n, R, ind) = (s,m, h) or with
probability negligible inn otherwise. We say that(A, Ind, Setup) is anextractable-
algorithm candidateif there exists a polynomialr such that:
Efficient public output computation. There exists an efficient algorithm Eval that, on
input ind ∈ Ind ands, returns values(R,m, h) such that(s,m, h) = A(1n, R, ind)
Secret output hardness. For any efficient algorithmAdv the probabilityps that∃R′ such
thatA(1n, R′, ind) = (s′,m, h) is negligible inn. Here,R←{0, 1}r(n), (ind, sind)←
Sample(1n), (s,m, h)←A(1n, R, ind), ands′←Adv(ind, m, h).
Hard-core output hardness. For any efficient algorithmAdv, the probabilityph that
∃R′ such thatA(1n, R′, ind) = (s,m, h′) is negligible inn. Here,R ← {0, 1}r(n),
(ind, sind)←Sample(1n), (s,m, h)←A(1n, R, ind), andh′←Adv(ind, m).

Towards recalling the formal definition of the class of extractability assumptions, we
note that even if an adversaryA succeeds in generatingm without any knowledge of
s, then the hard-core output hardness requirement would make it hard for this spe-
cific adversary to generateh. The latter fact of course does not imply a proof that any
A returningm,h actually knowss, but this class of assumptions postulates that this
is indeed the case, by allowings to be efficiently extracted fromA, given the ran-
domness used in computing ‘valid’ outputsm,h (for any algorithmA that satisfies
the above three properties). In the formalization, we also need a pair of algorithms
Setup= (Sample, Verify), where Sample generates the indexind taken as input byA,
and Verify checks whether the output(m,h) returned byA has the correct form, by
returningaccept with probability 1 if ∃R, s such thatA(1n, R, ind) = (s,m, h) or
with probability negligible inn otherwise.

Assumption 1 [EA assumption].Let (A, Ind, Setup), be an extractability assumption
candidate, where Setup= (Sample, Verify) andInd is a set that is samplable in poly-
nomial time. For any polynomial-time algorithmAdv, there exists a polynomial time
algorithmExt, called theA-extractor, such that, denoting byaux a polynomial-length
auxiliary-input (modelingA’s history), the probability that Verify(1n, ind, sind,m, h) =
accept and 6 ∃R′ ∈ {0, 1}r(n) such thatA(1n, R′, ind) = (s′,m, h), is negligible inn,
whereR←{0, 1}r(n), (ind, sind)←Sample(1n), (m,h)←Adv(1n, R, ind, aux) and
s′←Ext(1n, R, ind,m, h, aux).



3.1 Our EA assumption

We now formally describe the EA assumption that we will use in this paper, which
is based on PIR schemes and Merkle trees based on CR hash functions. Informally
speaking, we consider an extractable-algorithm candidate that randomly chooses a large
stringr and compresses into a much shorter stringroot using Merkle trees, and defines
a databasedb as follows: thei-th recorddbi is set equal to thei-th bit ri of string
r, concatenated with the logarithmic number of strings that are used to computeroot
from ri within the Merkle tree computation. The indexind is generated as a PIR query
to a random indexj ∈ {1, . . . , |r|}, and the algorithmA returns, on input the security
parameter1n andind, a main output, computed as the stringroot associated with the
root of the Merkle tree, a hard-core output, computed as the PIR answer usingind as a
query anddb as a database, and a secret output, computed as the stringr.

Before proceeding more formally, we sketch why this construction of an extractable-
algorithm candidate satisfies Definition 5. First, it satisfies the efficient output compu-
tation requirement as the efficient computability of the main output follows from the
analoguous property of the Merkle tree, and the efficient computability of the secret
and hard-core outputs follow from the analoguous property of the answers in a PIR
scheme. Second, it satisfies the secret output hardness as an adversary able to com-
pute the secret output from the main output and the index can be used to contradict
the collision-resistance property of the hash function family. Third, it satisfies the hard-
core output unpredictability requirement as it is hard to compute a valid PIR answer
only from the PIR query and the root of the Merkle tree, as for databasedb, this would
imply a way to break the collision-resistance property of the hash function family used.

Formal description. We formally define setInd, algorithmA and the pair of algo-
rithms Setup= (Sample, Verify), and then prove that (A, Ind, Setup) is an extractable-
algorithm candidate under appropriate assumptions. We will consider databases with
m = poly(n) records (the actual polynomial not being important for our result to hold).

SetInd: This is the set of CR hash functions indices and PIR queries on databases with
m records; formally:Ind = {(u, query) |u←{0, 1}k; (query, sq)←Q(1n, 1m, 1`, i)
for somei ∈ {1, . . . ,m} and some random string used byQ}.
AlgorithmSample: This is the querying algorithm in the PIR scheme; formally, Sample(1n)
randomly choosesi ∈ {1, . . . ,m}, u ∈ {0, 1}k, computes(query, sq)←Q(1n, 1m, 1`, i)
and returns:ind = (1m, u, query) andsind = (i, sq).

AlgorithmA: On input1n, ind, algorithmA first randomly chooses anm-bit stringr
and computes a Merkle tree compression ofr, thus obtainingroot and thei-th certifi-
cation pathpathi from thei-th bit ri in r to root, for i = 1, . . . ,m. ThenA defines
anm-record databasedb as follows: fori = 1, . . . ,m, thei-th record ofdb contains a
uniquev-bit representation of bitri, concatenated with thei-th certification pathpathi.
Then,A computes
1. the main output asmain = root;
2. the hard-core outputh equal to the PIR answer to the query fromind usingdb as a

database; that is,h = D(1n, 1m, 1`, db, query), whereind = (1m, u, query);
3. the secret outputs equal to them-bit stringr.



Algorithm Verify: This is the retrieving algorithm in the PIR scheme; formally, algo-
rithm Verify(1n, ind, sind,main, h) is defined as follows:
1. rewriteind asind = (1m, query), sind assind = (i, sq), main asmain = root;
2. computedb[i] = R(1n, 1m, 1`, i, (query, sq), h) and rewritedb[i] asri|pathi;
3. check thatpathi is a validi-th certification path fromri to root using hash function

Hu; if yes, then return:accept otherwise return:reject.

We obtain the following theorem.

Theorem 1. Let n be a security parameter. Assume the existence of a family of CR
hash functions with parameters(n′, 2v, v, t, ε), such thatn′, v are polylogarithmic in
n andt is superpolynomial inn but subexponential inv. Also, assume there exists a
(single-database) PIR scheme having parameters(n, m, `, δc, δp), with communication
complexity polylogarithmic inn, wherem is polynomial inn, ` is polylogarithmic in
n and δc is negligible inn. Then the above triple (A, Ind, Setup) is an extractable-
algorithm candidate with parameters(n, ps, ph), where: (1)ps is negligible inn; (2) if
δp is negligible inn then so isph; (3) if (s, h, m) denotesA’s output on input(1n, ind),
then|s|+ |h|+ |m| is at most polylogarithmic inn.

4 A Low-Communication 1-Round Argument for NP

We are now ready to present the main result of the paper.

Theorem 2. Let L be a language inNP and let (A, Ind, Setup) be the triple pro-
posed in Section 3, and proved to be an extractable-algorithm candidate assuming the
existence of PIR schemes and CR hash functions. If (A, Ind, Setup) satisfies the EA
assumption, then there exists a 1-round argument system(P, V ) for L such that: if the
assumed PIR scheme has communication complexity polylogarithmic in the database
size then(P, V ) has communication complexity polylogarithmic inn, the length of the
common input to the argument system.

We once again caution the reader that this result is based on a quite non-standard hard-
ness assumption. Preliminary studies on variants of this assumption [10] indicate that
the strongest variants are actually false (under intractability assumptions that are often
used in the cryptography literature and believed to be true) no matter what is the specific
extractable-algorithm candidate. Luckily, the variant used here seems significantly dif-
ferent and it is still open whether it can be proved to be false for all extractable-algorithm
candidates (under some conventional intractability assumption) or can be considered a
reasonable assumption for at least one of them.

Informal Description of (P, V ). Our argument system is obtained as an appropriate
combination of the following tools: PIR schemes with efficient communication com-
plexity, PCP systems, CR hash function families and Merkle trees. As in [1], the start-
ing point is the protocol from [6]: the verifier asks to receive some random entries in
the PCP-transformed witness through some random PIR queries; the prover computes
the PCP-transformed witness and uses it as a database from which to compute and send
the PIR answers to the verifier; finally, the latter can check that the indices retrieved
from the database corresponding to entries that would be accepted by the PCP verifier.



As this protocol was shown to be not sound from [11], we attempt to modify it so that
it achieves soundness under the EA assumption for the extractable-algorithm candidate
presented in Section 3. Consequently, we modify the prover so that for every PIR query,
it also computes a Merkle-tree compression of the PCP-transformed witness and defines
each database record to contain not only a bit of the PCP-transformed witness but also
the certification path to the Merkle-tree root. We then note that this modification, while
enabling us to use the EA assumption, may still not be very helpful as a cheating prover
might choose to apply the Merkle-tree compression algorithm to a new stringπj for
every queryqueryj made by the verifier. (In essence, this is a variant of the main objec-
tion raised by [11] about the protocol in [1].) In our protocol such attacks are avoided
by modifying prover and verifier so that the prover only computes a single Merkle-tree
root and the verifier can efficiently check that, for each of the verifier’s PIR queries, the
prover uses certification paths that refer to the same root (and thus to the same single
database containing them).

Formal Description. By x we denote then-bit common input to our argument system
(P, V ). Protocol(P, V ), formally described in Figure 1, uses the following tools:
1. A collision-resistant hash function familyH = {Hu}, such thatHu : {0, 1}2v →
{0, 1}v, where|u|, v are polylogarithmic inn.

2. The Merkle tree constructionMtree defined in Section 2, based on the collision-
resistant hash function familyH.

3. A (non-adaptive) PCP system (pcpP,pcpV), where pcpV=(pcpV1,pcpV2), with pa-
rameters(q, δc, δs), whereq is polylogarithmic inn; δc, δs are negligible inn.

4. A (single-database) PIR scheme(D,Q,R) with parameters(n, m, `, δc, δp) with
communication complexity polylogarithmic inm, and wherem is polynomial in
n, ` is polylogarithmic inn andδc, δp are negligible inn.

We now prove that(P, V ) (formally described at the end of the section) satisfies Theo-
rem 2. We start by noting thatV runs in polynomial time. This follows since algorithms
Q,R from the assumed PIR scheme and algorithm pcpV from the assumed PCP scheme
run in polynomial time; and, furthermore, since checking whether a given string is an
i-th certification path in a Merkle tree can be done in polynomial time.

Communication complexity: The communication complexity of(P, V ) is polylog(n)
as: both the valueu and each PIR query sent byV have length polylogarithmic inn;
the numberq of PIR queries sent toP is also polylogarithmic inn; since the database
record length̀ is O(v log m), andv is chosen to be polylogarithmic inn, then so is̀
and so is the length of each of the PIR answers sent byP .

Completeness.Assumex ∈ L. Then the completeness (withδc negligible inn) follows
from the correctness property of the PIR scheme used and the completeness of the PCP
proof system used.

Soundness (main ideas).Assume thatx 6∈ L and that there exists a cheating prover
makingV accept with non-negligible probability. Then with the same probability this
prover produces a main outputmain andq corresponding hard-core outputsh1, . . . , hq

of algorithmA, in correspondence of the PIR queries fromV , from which one can ob-
tain indicesind1, . . . , indq for A. Now, we distinguish two cases, according to whether,
after applying the EA assumption to triple(indi,main, hi) and thus extracting string
Wi, for i = 1, . . . , q, the extracted stringsW1, . . . ,Wq are all equal or not.



Case (a):there existsa, b ∈ {1, . . . , q} such thatWa 6= Wb. In this case we can
derive an efficient algorithm that breaks the collision-resistance of the hash function
familyH. Even in this case, as while proving the secret output hardness in the proof of
Theorem 1, we need to use the extractable algorithm assumption to extract two different
stringsWa,Wb such thatMTree(Hu;Wa) = MTree(Hu;Wb).
Case (b):W1 = · · · = Wq. In this case, we can derive an efficient algorithm that
distinguishes which among twoq-tuples of random values in{1, . . . ,m} was used to
computeV ’s PIR queries (by a simple hybrid argument, this is then used to efficiently
break the privacy of the PIR scheme used). Very roughly speaking, this is done by ob-
serving the following. First, for theq-tuple actually used byV ’s PIR queries, the prover
is able to provide entries from the PCP-transformed witness that would be accepted by
the PCP verifier. Instead, theq-tuple not used byV ’s PIR queries has distribution uni-
form and independent from the exchanged communication. Then the probability that
the stringW1 used by the prover contains entries from the PCP-transformed witness
that would be accepted by the PCP verifier in correspondence with thisq-tuple can be
showed to be negligible using the soundness of the PCP proof system used.

Common input: n-bit instancex
P ’s private input: a witnessw certifying thatx ∈ L.

V (message 1):
1. Randomly choose an indexu for a hash functionHu fromH;
2. for j = 1, . . . , q,

randomly and independently choose database indexij ∈ {1, . . . ,m};
compute PIR query(queryj , auxj) = Q(1n, 1m, 1`, ij);

3. sendu, query1, . . . , queryq to P .
P (message 2):

1. Run the PCP prover on input instancex and witness w and let
π =pcpP(x, w);

2. computeroot = Mtree(Hu;π) and sendroot to V ;
3. for i = 1, . . . ,m;

let pathi be thei-th certification path for thei-th bit ρi of π,
define the content of thei-th record of databasedb as(πi|pathi);

4. for j = 1, . . . , q,
computeansj = D(1n, 1m, 1`, db, queryj) and sendansj to V .

V (decision):
1. Forj = 1, . . . , q,

computedbij
= R(1n, 1m, 1`, ij , (queryj , auxj), ansj);

rewritedbij
asdbij

= (pathij
|πij

);
check thatpathij

is anij-th certification path forπij
androot;

2. check that pcpV2(x, (i1, πi1), . . . , (iq, πiq )) =accept;
3. if all verifications are satisfied then accept else reject.
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