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Abstract. This paper addresses the problem of constructing votintpgots that are hard to manipulate. We
describe a general technique for obtaining a new protocabloybining two or more base protocols, and study the
resulting class of (vote-once) hybrid voting protocols,jiahhalso includes most previously known manipulation-
resistant protocols. We show that for many choices of ugigylbase protocols, including some that are easily
manipulable, their hybrids are NP-hard to manipulate, agmi@hstrate that this method can be used to produce
manipulation-resistant protocols with unique combinagiof useful features.

1 Introduction

In multiagent systems, the participants frequently havagi@e on a joint plan of action, even though their
individual opinions about the available alternatives manyv\Voting is a general method of reconciling these
differences, and having a better understanding of whattitotes a good voting mechanism is an important
step in designing better decision-making procedures.slmibst general form, a voting mechanism is a
mapping from a set of votes (i.e., voters’ valuations foradtérnatives) to an ordering of the alternatives
that best represents the collective preferences. In masgsc&owever, the attention can be restricted to
mechanisms that interpret their inputs (votes) as totatrimgs of the alternatives/candidates and output a
single winner. A classical example herePhirality voting, where only the top vote of each voter is taken
into account, and the candidate with the largest numbenpobédtes wins.

A fundamental problem encountered by all voting mechanismmenipulation i.e., the situation when a
strategizing voter misrepresents his preferences in dodgstain a more desirable outcome. One can expect
that rational agents will engage in manipulation whenevés profitable for them to do so; as a result,
the output of the voting mechanism may grossly misrepretbentictual preferences of the agents and be
detrimental to the system as a whole.

It is well-known [8, 11] that any nondictatorial voting mestism for three or more candidates is sus-
ceptible to manipulation. However, while there is no infation-theoretic solution to this problem, one can
try to discourage potential manipulators by making maripah infeasible. This approach is particularly
attractive in multiagent setting, when decisions have tariagle in real time, and whether an agent can
find a beneficial manipulation quickly is more important thieimether such a manipulation exists in princi-
ple. It turns out that some of the voting protocols that amdls practice enjoy this property: it has been
shown [1, 2] that second-order Copeland and Single TramisieVote 6TV) are NP-hard to manipulate.
Furthermore, in a recent paper [4], Conitzer and Sandhobwetl that several protocols, includil@grda,
STV, Maximin and Plurality, can be modified so that manipulating them becomes compnédly hard.
Their method involves prepending the original protocol yerround in which candidates are divided into
pairs and the voters’ preferences are used to determine itireemof each pair; the winners of the pre-
round participate in elections conducted according to tiigiral protocol. Different methods for pairing
up the candidates and eliciting the votes give rise to difietevels of complexity, such as NP-hardness,
#P-hardness, or PSPACE-hardness.

The advantage of this method of constructing manipulatésistant protocols is in preserving some
of the properties of the original protocol: for example, hiEtbase protocol is Condorcet-consistent (see
Section 6 for definition), then the modified protocol is Comdd-consistent as well. However, for some



other desirable features this is not true, and, generdiltyireating half of the candidates using a set of criteria
that may be very different in spirit from those used by theiogl protocol, is likely to alter the outcome
considerably, so that the desiderata that motivated tlggnatiprotocol may no longer be attainable.

We build upon the ideas of [4] to construct a larger family adtpcols that are hard to manipulate. We
observe that their pre-round phase can be viewed as thetéiga sf the voting protocol known as Binary
Cup BCQ) (defined in Section 2). While this protocol itself is not ttao manipulate (at least, when the
schedule is known in advance), the results of [4] can bepnééed as showing that combinifgC with
other protocols results in manipulation-resistant scteeé& generalize this idea by showing that this kind
of hardness amplification is not uniqueBg.

We define the class dfote-once) hybrid voting protocoldyb(Xy, Y). In Hyb(X,Y), after the voters
have expressed their preferencksteps of protocoK are performed to eliminate some of the candidates,
and then protocoY is run on the rest of the candidates, reusing the votes agtedtto the remaining can-
didates. In practice, such a reuse of votes is importardestrallows voters to only express their preferences
once; this feature is desirable both for actual electiomgre it is difficult to get citizens to the voting booths
more than once, and for artificial agents, where round caxitplef a protocol may be an issue. Clearly,
the protocols of [4] belong to this family, as dd&§V; therefore, our framework encompasses most of the
known hard-to-manipulate voting mechanisms.

We show that many other hybrid protocols are NP-hard to méaie as well. Specifically, we consider
several well-known protocols, such Bfurality, Borda, STV, andMaximin, and prove that many hybrids
of these protocols are manipulation-resistant. We do thiotmulating some fairly general conditions on
X andY under which the protocols of the forhlyb(Xy, Plurality), Hyb(Xy,STV), or Hyb(STVy,Y) are
NP-hard to manipulate. Additionally, we show that a hybric grotocol with itself may be different from
the original protocol — and much harder to manipulate. Wev@rhat this is, indeed, the case #8orda
protocol:Hyb(Borday, Borda) is NP-hard to manipulate, whilBorda itself is easily manipulable.

We define a generic closure operation on protocols that mialees closed under hybridization. Inter-
estingly, applying this operation to the easy-to-manifRurality results in the hard-to-manipulaff'V.

We conjecture that for many other basic protocols, theseadoversions are NP-hard to manipulate as well.
Whenever this is the case, the closed protocols provide tist faithful manipulation-resistant approxima-
tion to the underlying protocols, which makes them compeglhklternatives to the original protocols.

On the flip side, we demonstrate that hybridization does hedyes result in hard-to-manipulate pro-
tocols: in particular, the hybrid protocols that uBkrality as their first component, are almost as easy to
manipulate as their second component. Finally, we dematestinat our techniques extend to voting proto-
cols that allow voters to rate the candidates rather tharojaer them.

The value of our results is not so much in constructing specdiv manipulation-resistant protocols, but
rather in providing a general method for doing that, which ba used with many basic schemes. Since a
hybrid inherits some of the properties of its ingredients,get hard-to-manipulate protocols with properties
not shared by the schemes from [1, 2, 4]. For example, $fcis not Pareto-optimal, all protocols obtained
by the method of [4] are not Pareto-optimal either, while approach allows to construct hybrids that have
this valuable feature (for definitions, see Section 6). # hlmeady been argued in [4] that it is desirable to
have manipulation-resistant protocols that can be usedfareht real-life situations; our method fits the
bill.

The use of voting and voting-related techniques is noticést to popular elections: the ideas from
this domain have been applied in rank aggregation [5, 9hmerender systems [10], multiagent decision
making in Al [7], etc. In many of these settings, the numberkérnatives is large enough to make our
results applicable, and, furthermore, the agents are hiticiently sophisticated to attempt manipulation
and may derive significant utility from doing so. Therefovee feel that it is important to have a better
understanding of what makes voting protocols hard to méaiguas this will allow us to design more
robust decision-making systems that use voting-like natho



The rest of the paper is organized as follows. In Section 2ni@duce our notation, give a precise
definition of what it means to manipulate an election, anctidies some well-known voting schemes dis-
cussed in the paper. In Section 3, we define hybrid protoauiissame related notions. In Section 4, we
show that certain hybrid protocols are NP-hard to manipuliat Section 5, we discuss hybrids obtained by
combining a protocol with itself. In Section 6, we define saresirable properties of voting protocols, show
that many of them are preserved under hybridization, ancbdstrate that our protocols can provide useful
combinations of these properties. In Section 7, we providenples of hybrids that are easy to manipulate
and discuss limitations and extensions of our approactlalliginn Section 8, we present our conclusions
and future research directions.

2 Preliminaries and Notation

We assume that there amevoters andn candidates and denote the set of all voterd’by {vy,...,v,}
and the set of all candidates By= {ci, ..., ¢, }. Most of our complexity results are in terms:afandn,
i.e., unless specified otherwise, ‘polynomial’ always nmee‘@olynomial inm andn’.

The set of all permutations @ is denoted byi7(C'); the preference of théh voter is expressed by a
list m; € II(C): the first element is the voter's most preferred candiddte,le particular, this means that
within one voter’s preference list, ties are not allowed:. &wy subse€’ C C, let | be the permutation
as restricted t@’ (i.e., elements not fror” are omitted). Note that|» corresponds to a valid preference
in an election that has the candidate Gét

When describing the preferences of a single voteve writec; -, c; to denote that prefersc; to c;.
Similarly, we writeC; -, C; to denote thav prefers all candidates in the sgf to all candidates in the set
C;, without specifying the ordering of candidates witlifhandC;. When the identity of the voter is clear
from the context, we omit the subscript and writenstead of-,,.

A voting protocolis a mappingP : (I1(C),...,II(C)) — C that selects a winner € C based on all
voters’ preference lists. In this paper, we consider thiefwhg common voting protocols (in all definitions
that mention points, the candidate with the most points wins

Plurality: A candidate receives 1 point for every voter that ranksst fir

Borda: For each voter, a candidate receives— 1 point if it is the voter’s top choicemn — 2 if it is the
second choice, ..., 0ifitis the last.

Single Transferable Vote (STV): The winner determination process proceeds in roundsat¢h eound, a
candidate’s score is the number of voters that rank it higae®ng the remaining candidates, and the
candidate with the lowest score drops out. The last remgicémdidate wins. (A vote transfers from its
top remaining candidate to the next highest remaining ciateiwhen the former drops out.)

Maximin: A candidate’s score in a pairwise election is the numbeoténs that prefer it over the opponent.
A candidate’s number of points is the lowest score it getqinmairwise election.

Binary Cup (BC): The winner determination process consistglof m| rounds. In each round, the can-
didates are paired; if there is an odd number of candidatespbthem gets a bye. The candidate that
wins the pairwise election between the two (or got a bye) acks into the next round. The schedule of
the cup (i.e., which candidates face each other in each youag be known in advance (i.e., before the
votes are elicited) or it may depend on the votes.

Voting manipulation We say that a voter; canmanipulatea protocolP if there is a permutatiom;- €
II(C) such that for some values of € II(C),i=1,...,n, we have

1. P(ry,...,mp) = ¢
2. P(T1, ey M1, Ty Tjgd, -, Tn) = € # 6



3. v; ranksc’ abovec.

We say that; manipulatesP constructivelyif v; ranksc’ first anddestructivelyotherwise. All results in
this paper are on constructive manipulation; in what fopwe omit the word ‘constructive’. A voter;
manipulatesP efficientlyif there is a polynomial time algorithm that given preferenstsr, ..., m, for
which suchw;. exists, constructs;.

3 Hybrid Protocols

In this section, we formally defin@rote-once) hybrid protocals$ntuitively, a hybrid of two protocolX and

Y executes several stepsXto eliminate some of the candidates, and then Nim the remaining set of
candidates. To make this intuition precise, however, we hadefine how to interpret the first protocél

as a sequence of steps. While there is no obvious way to déottes arbitrary protocol, most well-known
protocols, including the ones described in Section 2, adugh an interpretation. In particular, we suggest
the following definitions:

— ForSTV, astepis a single stage of the protocol. That is, a step DY consists of eliminating a candidate
with the least number of first-place votes and transferriaghevote for this candidate to the highest
remaining candidate on that ballot.

— For Binary Cup (BC), astepis a single stage of the protocol as well, i.e., it consistpaifing up the
candidates and eliminating the ones who lose in the pairedsgparison.

— For point-based protocols, such Bhirality, Borda, or Maximin, we first compute the scores of all
candidates, order them by their scores from the lowest tdidjeest, and define stepto consist of
eliminating the first (i.e., the lowest ranked) remainingdidate in this sequence. Note that the scores
are not recomputed between the steps. (A similar approattheapplied to any voting protocol that
can be extended to a preference aggregation rule, i.e.,cidarthat maps votes to total orderings of
the candidates. In this case, the order in which the carefidat eliminated is obtained by inverting the
output of the preference aggregation rule.)

Definition 1. Ahybrid protocolHyb (X, Y) consists of tw@hasesSuppose that the voters’ preference lists
are described by the-tuple (7, ..., m,). In the first phase, the protocol executesteps ofX (7, ..., m,);
suppose thaf is the set of candidates not eliminated in the first phasehénsecond phase, the protocol
appliesY to (m|s,...,m|s), i.€., the preference lists restricted to the remaining$ef candidates.

It is straightforward to extend this definition to hybriHsb(X,gll), X,(fl), - ,X,(ft),Y) of three or more proto-
cols.

4 Hardness Results

4.1 Hardness ofSTV-based Hybrids

In this subsection, we show that hybriHgb(STVy,Y) andHyb(Xy,STV) are NP-hard to manipulate for
many “reasonable” voting protoco¥andY, including the caseX, Y € {Plurality, Borda, Maximin, BC}.

Theorem 1. A hybrid of the formHyb(STVy,Y) is NP-hard to manipulate for infinitely many valueskof
as long asy satisfies the following condition: Whenever there is a cdatdic who receivesk first-place
votes andr — K second-place votes, while all other candidates receiveaatiii — 1 first-place voteY
declaresc the winner.



Proof. Bartholdi and Orlin show in [2] th&8 TV is NP-hard to manipulate for infinitely many paifis’, C’),
whereV’, |[V'| = »n/, is the set of voters an@’, |C’| = m/, is the set of candidates. Note thet> 2. Let
p be the manipulator’s preferred candidate in this proof. &oarbitraryt > 1, we construct a new set of
candidate€” = C'U{¢y, ..., } and a new set of votefig = V' UV, U --- UV, with |V;| = n’ — 1. Define
the new set of preferences by requiring thatl- 1 honest voters iV’ rank C’ above{cy, ..., ¢ }, while
then’ — 1 votersinV;,i = 1,...,t, ranke; first andp second. Set = m’ — 1. We show that for this set of
preferences, manipulatir§TV is exactly as hard as manipulatiftyb(STVy, Y). Then, due to the results
of [2], it is NP-hard to manipulatelyb(STV,., Y) for infinitely many pairgV’, C’), and for infinitely many
values ofk.

First, suppose that a votere V' can successfully manipulagelV for the pair(V’,C") and for some
preference lists of the honest voters. Theny iéxtends his vote by ranking” above{ci,..., ¢}, this
new vote constitutes a successful manipulatioHeb(STVy, Y) with the preference lists defined in the
previous paragraph. Indeed, in tjih step of theSTV phase, there is always a candidate’inwho has at
mostn’/(m’ — j + 1) < n’/2 first-place votes, and eaehhasn’ — 1 first-place vote, so al; survive the
first phase. Hence, the set of candidates eliminated by Thephase of the new protocol coincides with the
set of candidates eliminated BY'V in the construction of [2]. Thus, aften’ — 1 rounds,p is ranked first
by all n’ voters inV’. By our condition onY, this means thatlyb(STV,, Y) declareg the winner.

For the opposite direction, suppose that a vetexan manipulateHyb(STVy,Y). This means thap
survives the&sTV phase, and we have seen that the candidates. . , ¢;} do not affect the execution of the
STV phase. All that remains to show is thas$ vote in these elections can be interpreted as a vosd W
This is obviously the case if the manipulator rarfksabove{cy,...,c:}. On the other hand, if he ranks
somec; above some candidatesdH, as soon as all candidates that he ranks abpare eliminated, his vote
is effectively dropped from the counting process. Now, #mduction of [2] has the following property: for
any partial vote of the manipulator, i.e., a vote that onlyksaa subset of” and is discarded as soon as the
last candidate frond” is eliminated, there exists an equivalent regular vote, a.éull ordering ofC’, that
results in the same order of elimination. Therefore, we @mvert the manipulator's vote into a successful
manipulation of the original protocol. O

Corollary 1. The hybridsHyb(STVy,Y), whereY € {Plurality, Borda, Maximin, BC, STV}, are NP-hard
to manipulate for infinitely many values bof

The proof of this corollary is straightforward since all leevoting protocols satisfy the required property.

Theorem 2. A hybrid of the fornHyb (X, STV) is NP-hard to manipulate for infinitely many valueskaf

X satisfies the following condition for some unbounded namdeing functionf(-) and infinitely manyx’:
Suppose that all but one voter rank soiecandidates:y, . . ., cx after all other candidates, and all other
candidates receive at least 2 first-place votes. Then gftéf) steps ofX, the set of eliminated candidates
is a subset ofcy, ..., cx}.

Proof (Sketch)Setk = f(K). Denote the set of candidates in the construction of [2[Bylet C" =
{c1,...,cx}andC = C" U C”. Modify the votes of all honest voters in that constructiorttgat they rank
C’ aboveC”. The reduction of [2] has the property that each candidaté’igets more thar first-place
votes. Hence, the set of candidates eliminatédriounds ofX is a subset of”’; furthermore, the remaining
candidates fron®” will be the first candidates eliminated 5yV. Hence, no matter how the manipulator
ranks the candidates ifi”, it has no effect on the execution of the protocol. Therefbis vote can be
interpreted as a vote in the origir&l'V and vice versa. O

Corollary 2. The hybrids of the fornyb(Xy,STV), whereX € {Plurality, Borda, Maximin, BC}, are
NP-hard to manipulate for infinitely many valueskof



Proof. It is easy to see tha&lurality, Maximin and BC satisfy the condition of the theorem. F8orda, it
is satisfied whenever the number of voters exceeds the nushbandidates; in the construction of [2], the
number of voters is larger thatiC’|, so we can sek = |C’|. O

Our proofs that hybrids usin§TV as their first or second component are NP-hard to maniputdye r
on some specific properties of the reduction constructed]irir the full version of the paper, we provide
black-box constructions, i.e., ones that work with any N#Pdhess proof.

4.2 Hybrids of the Form Hyb(Xg, Plurality)

In this subsection, we prove thit/b (X}, Plurality) is hard to manipulate whenevirsatisfies Property 1.
While this property might seem artificial, we show that it sspessed by at least two well-known protocols,
namely,Borda andMaximin.

Property 1. For any setG = {g1,...,gn}, any collectionS = {si,..., sy} of subsets of7, and any
K < M, there are som&’, ¥’ < M, andT, T > 3N, such that it is possible to construct in polynomial
time a set ofl' + N (T — 2) + 3N votes over the set of candidat€su C” U {p}, whereC’ = {¢},...,cy},
C" ={d,...,dy}, sothat

— there arel’ voters who rankp first;

— foreachi =1,..., N, there arél" — 2 voters who rank; first;

— foreachi = 1,..., N, there are3 voters who rank alt} such thay; € s; abovec;, and rankc; above
all other candidates;

— for any additional voter, when it is tallied with all other votes, the set of candidaédiminated in the
first ¥’ rounds is a subset ¢i” of sizeM — K;

— for any subsets” C S, |S’| = M — K, one can design in polynomial time a vatg: that, when
tallied with other votes, guarantees that the set of catedaliminated in the first’ rounds is exactly
{/'|s; €S}

Theorem 3. A hybrid of the fornrHyb (X, Plurality) is NP-hard to manipulate for infinitely many values of
k wheneverX satisfies Property 1.

Proof. We give a reduction that is based on the NP-hard problemCovER. Recall that T COVER can
be stated as follows: Given a ground 6et= {¢1,...,gn}, acollectionS = {sy,..., sy } of subsets of7,
and an integef, does there exist & -cover ofG, i.e., a subse$’ of S, S" = {s1,..., sk}, such that for
everyg; € G there is ans; € S’ such thay; € s;?

Construct the set of votes based®@nS, andK so that it satisfies Property 1. Liet= £/, and letp be the
manipulator’s preferred candidate. We show that the méatipucan gep elected undeHyb (X, Plurality)
if and only if he can find a set cover f6t. Indeed, aftek rounds ofX, all candidates i€’ U {p} survive,
as well as exactlys candidates fron”’. We show thap wins if and only if theseX candidates correspond
to a set cover ofi. Observe that any surviving candidate frarfi has at mos8 N < T first-place votes, so
he cannot win in the last stage. Now, consider a candidateC’. Suppose that the corresponding element
is not covered, i.e., aH;.’ such thaty; € s; are eliminated. Then after the end of the first phasbasT + 1
first-place vote, while hasT first-place votes, so in this cageannot win.

On the other hand, suppose that for anyc G there is ans; € S such thatg; € s; andc] is not
eliminated in the first phase. Then at the beginning of thersgphase eaclf € C’ hasT — 2 first-place
votes, whilep hasT first-place votes, so in this capavins.

Hence, manipulating this protocol is equivalent to findirggacover of sizés. O

Corollary 3. The protocolsHyb(Borday, Plurality) and Hyb(Maximiny, Plurality) are NP-hard to manip-
ulate for infinitely many values @f



Proof. Let the voters who rank first, rank the candidates {#i’ above those i€, and the voters who rank
¢, first, rank the candidates U C’ above those i€ For large enougif’, this guarantees that boBorda
andMaximin scores of the candidates @ U {p} are much higher than those of the candidate§"nso
none of the candidates i@’ U {p} can be eliminated in the first phase. On the other hand, wehatie
enough flexibility to ensure that all candidate<(ifi have the samBorda (or Maximin) score with respect
to the honest voters’ preferences. Then, for both protptidsmanipulator can get ay — K candidates
from C” eliminated by putting them on the bottom of his vote and mnagkhe remainingk’ candidates
above the candidates @ U {p}. Thus, bothBorda andMaximin satisfy all conditions in the statement of
Theorem 3. O

Together with our results on STV and the results of [4], thestauctions of this section provide a wide
choice of manipulation-resistant protocols. In the nextisa, we add to our repertoire two more protocols
that are hard to manipulate, naméiyb(Borday, Borda) andHyb(Maximin, Borda).

5 Hybrid of a Protocol with Itself

We say that a protocol iBybrid-proof if a hybrid of several copies of this protocol is equivalentthe
original protocol. While some protocols, such &BV or Binary Cup, have this property, for many other
protocols, especially score-based ones, this is not the dassee this, note that in a hybrid protocol, the
scores of all surviving candidates are recomputed in thanbey of the second phase, while in the original
protocol they are computed only once. As a result, in a hybfiday, two copies of thBlurality protocol,
one candidate may gain a lot of first-place votes from votérs sank him right after the candidates that were
dropped in the first phase, while some other candidate magagextra votes at all; a similar phenomenon
happens irBorda andMaximin.

Nevertheless, any protocol can be modified to be hybridfpieor an arbitrary protocoK, define a
closed protocoX by X = Hyb(X4, ..., X;), where the number of copies Xf is such thak selects a single
winner.

Proposition 1. For any protocolX, the closed protocaoX is hybrid-proof.

We omit the proof.

Interestingly,Hyb(Plurality,, ..., Plurality,,) = STV: the vote transfer mechanism can be viewed as
recomputing each candidaté’furality score. Observe that whiRdurality has particularly bad manipulation
resistance properties (see, e.g., Sectio8TY, is NP-hard to manipulate. This leads us to conjecture that fo
many other base protocols, the new protocols obtainedsmtlinner are NP-hard to manipulate. Whenever
this is the case, the closed protocols provide the mostffdithanipulation-resistant approximation to the
underlying protocols, which makes them compelling altévea to the original protocols. This conjecture is
supported by the fact that for some easy-to-manipulateopodd, a hybrid of just two copies of the protocol
is NP-hard to manipulate; increasing the number of copiesldimake the manipulation harder, not easier.
As an illustration, we prove that a hybrid of two instance8ofda is NP-hard to manipulate.

Theorem 4. The hybridHyb(Borday, Borda) is NP-hard to manipulate for infinitely many valueskiof

Proof. We give a reduction from ¥AcT COVER BY 3-SETS, which is stated as follows: Given a ground
setG = {¢1,...,9n}, N = 3L, and a collectiorS = {s1, ..., sa} of 3-element subsets ¢, does there
exist an exact set cover 6f, i.e., a subse$’ of S, 5" = {sq,... ,SN/g} such that for every; € G there is
a uniques; € S’ such thay; € s;?

We construct two sets of votefg’, |[V/| = 2N + 2, andV”, |[V"| = (M + 1)(N + 1) and define
V=V UV LetC9 = {c],...,c%} andC® = {cf,...,c5,}, and let the set of candidates be =
CIUC%U{co} Up, wherep is the manipulator’s preferred candidate.

7



Foreach =1,..., N — 1, the votersu,_,, v}, € V' rank the candidates as
A=y mp-c . -

=Cf = - C°\Cy =

whereC; = {c} | g; € s;}. The votersuy 4, vy € V' rank the candidates as
p-cl === - O - - CON\NCY -,

whereCy; = {c] | gn € s;}.
The remaining two voters i’ rank the candidates as

=== - -p-C°

and
=== - p - CO

Also, foreachi = 1,..., N — 1, there are) + 1 voters inV” who rank the candidates as
Adoy-dy=--p-c ... == C°
M + 1 voters inV” who rank the candidates as
p-ci === o - CF
and M + 1 voters inV” rank the candidates as
A== = =p=co-C°

Setk = M — N/3. Observe that no matter how the manipulator votes, only émglidates fromC* will
be eliminated in the first phase. All candidate<’ihU {p} have the samBorda score with respect t&”.
Furthermore, since we have not yet specified the preferesfoasters inV” over the candidates ii'®, we
can set them so that they will all have the saBeeda score, in which case the manipulator can get/aoy
them eliminated in the first phase.

Suppose that the manipulator votes so that the set of caadiffmm C*® who survive the first phase
corresponds to an exact set covercaf Then for each candidatd and anyj = 1,..., N, there are two
voters inV’ who rank him in thejth position and two voters i’ who rank him in thg N + 2)nd position
(these two voters prefef to ¢!, wheres; is the set in the set cover that contaips Hence, théBorda score
of each candidate 6" with respect to/” is > K71 ot 4 2(m — k — N —2).

On the other hand, tHBorda score ofp with respect td/” is > 51 9t (m—k — N —1) 4 (m —

k — N — 2), and the score af) is lower that the score of any candidate(ifiU {p}, so in this case wins.

Conversely, suppose that the set of candidates ftérwho survive the first phase does not correspond
to a set cover of. Consider an element € G that is not covered. All voters i’ preferc! to all surviving
candidates it U {c }, which means that hiBorda score is higher than that of O

Using the same construction, one can show thdi(Maximing, Borda) is NP-hard to manipulate for
infinitely many values of;; we omit the details.



6 Properties of Voting Protocols

\oting protocols are evaluated based on various critetieh |s:

(1) Pareto-optimality a candidate who is ranked lower than some other candidatedry voter never wins;

(2) Condorcet-consistencyf there is a candidate who is preferred to every other catdiby a majority of
voters, this candidate should be the winner of the election;

(3) Monotonicity with the relative order of the other candidates unchangaoking a candidate higher
should never cause the candidate to lose, nor should raakiagdidate lower ever cause the candidate
to win.

In the context of this paper, a natural addition to this ks$tardness of manipulation

Most voting schemes based on pairwise comparisons, ircpktj BC and Maximin, are Condorcet-
consistent, while fo6TV, or positional methods, such Béurality or Borda, this is not the case. One can
prove thatPlurality, Borda, Maximin, andBC are monotone, whil8 TV is not. All basic voting protocols
considered in this paper excdp€ are Pareto-optimal.

To analyze whether properties (1)—(3) are preserved undwidization, we have to extend these def-
initions to multi-step protocols. We say that a multi-steptpcol is strongly Pareto-optimalf whenever
every voter ranks; below c;, ¢ is eliminated before,, and strongly monotonéf ranking a candidate
higher does not affect the relative order of elimination thfes candidates and cannot result in him being
eliminated at an earlier step; the definition of Condorcetsigsiency remains unchanged. It is easy to see
that multi-step versions of Pareto-optimal protocols thatconsider are strongly Pareto-optimal, at least
for some draw resolution rules. However, not all monotor@qmols are strongly monotone: for example,
in Borda, moving a candidate several positions up changes otherdzded' scores in a non-uniform way.

Proposition 2. For any voting protocolX andY and anyk, if both X andY are Condorcet-consistent, so is
Hyb(Xy,Y); if X is strongly Pareto-optimal (strongly monotone) arids Pareto-optimal (monotone), then
Hyb(Xy,Y) is Pareto-optimal (monotone).

We omit the proofs.

The construction proving th&C is not Pareto-optimal can be easily modified to show that aotpopol
of the formHyb(BCy, Y) is not Pareto-optimal for some whereY € {Plurality, Borda, Maximin, STV}.
Hence, prior to this work, the only Pareto-optimal mechausishat were known to be NP-hard to manipulate
wereSTV and the (rather contrived) variants of the Copeland prdtibed were described in [1]. Our results
imply thatHyb(Borday, Plurality), Hyb(Maximiny, Plurality), andHyb(Borday, Borda) also combine these
two properties.

Furthermore, except f&TV, all previous hard-to-manipulate protocols involved noehthat use pair-
wise comparisons, and such methods have been criticizeglfong too much on the number of victories
rather than their magnitude. On the other hand, bdth(Borday, Plurality) andHyb(Borday, Borda) are
based purely on positional methods, which do not suffer filmsflaw, andviaximin (and hence, hybrids of
Maximin with positional methods) also takes into account the magdeiof victories.

7 Limitations and Extensions

7.1 Hybrids That Are Easy to Manipulate

Unfortunately, our method of obtaining hard-to-manipalptotocols is not universal: if the protocol used in
the first phase does not provide the manipulator with suffttienany choices, the resulting hybrid protocol
is almost as easy to manipulate as its second componenttioupar, this applies t®lurality protocol.

9



Theorem 5. Suppose that a protocdf satisfies the following property for any candidateGiven other
voters’ preference profiles, the manipulator can in polyiaime find a beneficial manipulation that ranks
c first or infer that no such manipulation exists. Then thera {golynomial-time algorithm that can con-
structively manipulate the hybridyb(Plurality,,Y) for any .

Proof. For the first phase of the protocol, the only choice that theimdator has to make is which candidate
to rank first; the rest of his vote will have no effect on therdfiation process. Hence, he can try sall
options. Suppose that when the manipulator rapKgst, the set of candidates that survive the first phase
is C;. The manipulator can deduce the honest voters’ preferemessC;. If ¢; ¢ C;, he simply has to
construct a beneficial manipulatiorjc, of Y and, in his vote, rank; first and order the candidates @)

as suggested by|c,. If ¢; € C;, in constructing a beneficial manipulationfhe is restricted to orderings
that rankg; first. By our assumptions, he can find a solution to this prmolle polynomial time. O

Corollary 4. There are polynomial-time algorithms that can construgivmanipulateHyb(Plurality,, Y),
whereY € {Borda, Maximin, BC, Plurality} for anyk.

The property oflurality that makes it an unsuitable candidate for the first phase pbachprotocol is
that by altering his vote, the manipulator can obtain at meslifferent outcomes of the first phase, so he
can go over all of them and pick the one that produces bedtsekus not clear whether any other protocol
for which changing a single vote leads to polynomially maiffeckent outcomes is just as bad: each outcome
imposes specific restrictions on the manipulator's voténédecond phase, and finding a manipulation that
satisfies them may be harder that manipulating the origir@bpol.

7.2 Other Measures of Complexity

In their paper [4], Conitzer and Sandholm prove that undenespre-round scheduling algorithms, many
protocols become #P-hard or PSPACE-hard to manipulate pemeded by 8C pre-round, and [6] shows
that one can make manipulation as hard as inverting one-wetibns. However, since other protocols that
we consider do not have the flexibility provided by tR€ scheduling step, the problem of manipulating
the hybrids whose first component is &€, but some other protocol from our list, is inherently in NP.
Consequently, a proof that these hybrids are #P-hard or ERfard to manipulate will lead to a collapse
of the polynomial hierarchy, and hence is unlikely.

For the entire class of voting protocols considered in thisgs, manipulation is easy when the number
of candidatesn is very small. This applies both to the standard protocéls3iTV and to the new hybrid
protocols. Indeed, since there are onty possible ballots for the manipulator, he can go over all efithin
order to determine which of them produces the best outcome.

7.3 Utility-Based Voting

In previous sections, we investigated voting schemes #wired each voter to submit a total ordering
of the candidates. However, in many settings a voter may benéally indifferent between some of the
alternatives, but have a strong opinion on the relative tnoéther alternatives. In this case, his preference
may be better reflected byuility vectoru = (uq, ..., u), where0 < u; < 1is theutility that this voter
assigns to candidatg. To guarantee fairness, the utility vectors are normalized we require that either
uj =0forall jor} . u; = 1. In addition, we require that all; are rational numbers whose representation
size is polynomial im andm.

The definitions of a voting protocol and manipulation can ladified in a straightforward manner. A
hybrid of two utility-based protocols is a protocol that foems % steps of the first protocol, re-normalizes
the utility vectors (restricted to the surviving candidgtand executes the second protocol on the remaining
candidates.
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Clearly, a utility vector that assigns different utilitiés all candidates can be interpreted as a total
ordering of the candidates. Therefore, if all voters ratg @vo candidates differently, we can interpret
their votes as total orderings and use any ordering-bastadgvprotocol. Converse, however, is not true:
even if we know all voters’ preference orderings, we gaireetally no information as to which candidate
maximizes the social welfare (i.e., the sum of all votergitigs).

More formally, say that a candidateis Pareto-dominatedf there is another candidaté such that all
voters rankc below ¢’. Furthermore, a utility vector isonsistenwith a preference ordering if whenever
is ranked aboves, the utility assigned te; is strictly larger than the utility assigned ¢g.

Proposition 3. For any set of preference orderings and any candidatee following two conditions are
equivalent:

— cis not Pareto-dominated according to this set;
— there is a set of utility vectors consistent with these drdgr under whicle maximizes the social welfare.

Proof. Clearly, if c is Pareto-dominated by @, all voters assigr’ a higher utility, soc cannot maximize
the sum of voters’ utilities. For the other direction, we swact the utility vectors that are consistent with
the preference orderings as follows. Given a preferencerimiglr that has: in the kth position, assign the
candidate in theéth position a utility of% + fni((ﬁ:tl)) ift <k andeni((ﬁ:tl)) otherwise. Consider any other
candidate’. If a voter ranks?’ abovec, the utility that she assigns to both alternatives diffgrabmoste.
On the other hand, if she rank'sbelowc, then the two utilities differ by at Ieasn{b(ni—_l). For small enough

€, it follows thatc has a higher total utility. O

The most natural voting protocol for the utility-based femork isHighestScore, which computes the
total score of each candidate, i.e., the sum of utilitieggassl to this candidate by all voters, and selects the
candidate with the highest total score. However, this mats not manipulation-resistant.

Proposition 4. There is a polynomial-time algorithm that can manipul#lighestScore.

Proof. Given the utility vectors of all other voters, the manipatatan compute the total scores of all
candidates according to other voters’ preferences and mbieof candidates whose score differs from the
winning score by at most 1 (these are the candidates whonvdtes can turn into winners). He can then
select his favorite candidate from this list and assign himildy of 1. Clearly, this is the best outcome that
the manipulator can hope to achieve, and, unless the matop@ctually rates all other candidates at 0, this
utility vector is not truthful. O

Fortunately, it turns out that the techniques we use forrargebased protocols are applicable in this
setting, too.

A stepof HighestScore is naturally defined as eliminating the candidate with tiveelst score; conse-
quently, the hybrid protocoHyb(HighestScore,,, HighestScore) consists of eliminating: candidates with
the lowest score, renormalizing the utility vectors, andaging the candidate with the highest score among
the remaining candidates.

Theorem 6. Hyb(HighestScore,,, HighestScore) is NP-hard to manipulate for infinitely many valueskof

Proof. To simplify notation, we denote hy;(c;) the utility that the votew; assigns to the candidatg; we
omit the indexi when it is clear from the context. Whenewel(c;) is not specified, it is assumed to be 0.
Also, we denote byc(c;) the total score of a candidatg.

We present a reduction fromx&CT COVER BY 3-SETS. Lete be a small rational number to be specified
later. Suppose that an instance ofA€T COVER BY 3-SETS is given by a ground se&f = {g1,...,9n},
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N = 3L, and a collectionS = {s,...,sp}. LetC9 = {cf,.... &}, C° = {c],...,c};}, C¢ =
{cd,...,c4,}, and let the set of candidates be= C9 U C* U C? U {p}. Suppose that the manipula-
tor’s true utilities areu(p) = 1, u(c) = 0 for ¢ # p. For each!, we construct two voters; andv, whose
utilities areu(c) = ¢, u(cj) = (1 — €)/t for all j such thaty; € s;, wheret = |{s; | g; € s;}|, and13
voters whose utilities are(c/) = 1. Based on these voters’ utilities, the scores of all cand&anC* are
between6(1 — €)/M and6(1 — ), so for each candidat€ we additionally construct 6 more voters who
distribute their utilities betweer? andc? so that when these voters’ opinions are taken into accolet, t
scores of all candidates ifi* are exactly equal to 6. Also, for eaeﬁ e C“, we construct 7 voters whose
utilities areu(c¢) = 1. Finally, there are 14 voters whose utilities ai@) = 1, and one voter whose utility
isu(c!) =1/N forall ¢] € C9.

We can bound the total scores of all candidates as follew(g) = 14, 7 < sc(c?) < 13, sc(c) = 6,
sc(c]) =13 +2e+1/N.

Setk = 2L. Thek candidates that will be eliminated in the first phase belorg* and it depends on the
manipulator’s vote whicli of the M candidates irC*® survive the first phase. Suppose that for sefhell
c; such thay; € s; are eliminated. Then after renormalization the utilitytthaandv; assign ta-/ increases
from e to 1, and the total score gf increases by at most 1, so we will haugc!) = 15+ 1/N > sc(p).
On the other hand, if surviving candidates(ifi correspond to a set cover, the score of any candidat¥ in
will not exceed13 + 2Me + 1/N < 14 for sufficiently smalle, and the scores of all candidates other than
will be less than 14 as well. Therefore, if the manipulatar gaess a set cover and assign all corresponding
candidates irC* a utility of 1/L, he can ensure thatwins, and conversely, i wins, thek highest-rated
candidates irC’* correspond to a set cover. O

Another way to increase resistance to manipulation is téhesmethod of [4], i.e., preperdighestScore
with a pre-round. A technical difficulty that arises herehattin [4], the pre-round winners are determined
on the basis of comparisons, while in our setting, this imi@ion may not be available (utility vectors allow
for draws). This can be resolved either by requiring the ngote submit an ordering together with their
utility vector (clearly, the two should be consistent) ordstermining the winner of each pre-round pair by
comparing their scores. Both approaches result in hybotbpols that are NP-hard to manipulate.

8 Conclusions and Future Work

Our work places the results of [3, 4] within a more generabgdeym of hybrid voting schemes. The ad-
vantage of our approach is that it works for a wide range ofquals: while some voting procedures are
inherently hard to manipulate, they may not satisfy theitive criteria of a given setting. On the other
hand, a hybrid of two protocols retains many of their desirgooperties, and sometimes may combine the
best of both worlds. All of the voting protocols describedSiaction 2, as well as many others, are used in
different contexts; while it would be unreasonable to expleat all of them will be replaced, say, &V
just because it is harder to manipulate, hybrids of thestopots with similar ones or even with themselves
may be eventually preferred to the original protocols. Mweg, our results on utility-based voting suggest
that our techniques can be useful for a wider class of probland can be viewed as a contribution to the
more general task of constructing computationally stsaf@gof mechanisms.

While we proved that many specific hybrid protocols are hansh&nipulate (though some are not), our
goal is not to give a complete list of such protocols, or itigege all possible protocol combinations; indeed,
given the variety of voting algorithms used in practices tiaisk seems infeasible. Rather, our work should be
viewed as a step towards understanding what makes protoaadsto manipulate, and whether a protocol
at hand can be modified to have this property. We believe beatonditions we suggest in our hardness
reductions apply in many cases not mentioned in the papeplifying these conditions, or replacing them
with necessary and sufficient criteria is an interestinghgueblem.
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Another important issue not addressed in this paper is thdesigning protocols with high average-
case complexity. However, even asking this question phapiee., coming up with a natural distribution
of voter’s preferences with respect to which the average-tardness is computed is itself a difficult task:
clearly, in most scenarios one cannot expect preferencbs tmiformly distributed. Initial results in this
direction can be found in [6]; however, this topic should kplered further.
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