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Abstract. This paper addresses the problem of constructing voting protocols that are hard to manipulate. We
describe a general technique for obtaining a new protocol bycombining two or more base protocols, and study the
resulting class of (vote-once) hybrid voting protocols, which also includes most previously known manipulation-
resistant protocols. We show that for many choices of underlying base protocols, including some that are easily
manipulable, their hybrids are NP-hard to manipulate, and demonstrate that this method can be used to produce
manipulation-resistant protocols with unique combinations of useful features.

1 Introduction

In multiagent systems, the participants frequently have toagree on a joint plan of action, even though their
individual opinions about the available alternatives may vary. Voting is a general method of reconciling these
differences, and having a better understanding of what constitutes a good voting mechanism is an important
step in designing better decision-making procedures. In its most general form, a voting mechanism is a
mapping from a set of votes (i.e., voters’ valuations for allalternatives) to an ordering of the alternatives
that best represents the collective preferences. In many cases, however, the attention can be restricted to
mechanisms that interpret their inputs (votes) as total orderings of the alternatives/candidates and output a
single winner. A classical example here isPlurality voting, where only the top vote of each voter is taken
into account, and the candidate with the largest number of top votes wins.

A fundamental problem encountered by all voting mechanismsis manipulation, i.e., the situation when a
strategizing voter misrepresents his preferences in orderto obtain a more desirable outcome. One can expect
that rational agents will engage in manipulation whenever it is profitable for them to do so; as a result,
the output of the voting mechanism may grossly misrepresentthe actual preferences of the agents and be
detrimental to the system as a whole.

It is well-known [8, 11] that any nondictatorial voting mechanism for three or more candidates is sus-
ceptible to manipulation. However, while there is no information-theoretic solution to this problem, one can
try to discourage potential manipulators by making manipulation infeasible. This approach is particularly
attractive in multiagent setting, when decisions have to bemade in real time, and whether an agent can
find a beneficial manipulation quickly is more important thanwhether such a manipulation exists in princi-
ple. It turns out that some of the voting protocols that are used in practice enjoy this property: it has been
shown [1, 2] that second-order Copeland and Single Transferable Vote (STV) are NP-hard to manipulate.
Furthermore, in a recent paper [4], Conitzer and Sandholm showed that several protocols, includingBorda,
STV, Maximin andPlurality, can be modified so that manipulating them becomes computationally hard.
Their method involves prepending the original protocol by apre-round in which candidates are divided into
pairs and the voters’ preferences are used to determine the winner of each pair; the winners of the pre-
round participate in elections conducted according to the original protocol. Different methods for pairing
up the candidates and eliciting the votes give rise to different levels of complexity, such as NP-hardness,
#P-hardness, or PSPACE-hardness.

The advantage of this method of constructing manipulation-resistant protocols is in preserving some
of the properties of the original protocol: for example, if the base protocol is Condorcet-consistent (see
Section 6 for definition), then the modified protocol is Condorcet-consistent as well. However, for some



other desirable features this is not true, and, generally, eliminating half of the candidates using a set of criteria
that may be very different in spirit from those used by the original protocol, is likely to alter the outcome
considerably, so that the desiderata that motivated the original protocol may no longer be attainable.

We build upon the ideas of [4] to construct a larger family of protocols that are hard to manipulate. We
observe that their pre-round phase can be viewed as the first stage of the voting protocol known as Binary
Cup (BC) (defined in Section 2). While this protocol itself is not hard to manipulate (at least, when the
schedule is known in advance), the results of [4] can be interpreted as showing that combiningBC with
other protocols results in manipulation-resistant schemes. We generalize this idea by showing that this kind
of hardness amplification is not unique toBC.

We define the class of(vote-once) hybrid voting protocolsHyb(Xk,Y). In Hyb(Xk,Y), after the voters
have expressed their preferences,k steps of protocolX are performed to eliminate some of the candidates,
and then protocolY is run on the rest of the candidates, reusing the votes as restricted to the remaining can-
didates. In practice, such a reuse of votes is important, since it allows voters to only express their preferences
once; this feature is desirable both for actual elections, where it is difficult to get citizens to the voting booths
more than once, and for artificial agents, where round complexity of a protocol may be an issue. Clearly,
the protocols of [4] belong to this family, as doesSTV; therefore, our framework encompasses most of the
known hard-to-manipulate voting mechanisms.

We show that many other hybrid protocols are NP-hard to manipulate as well. Specifically, we consider
several well-known protocols, such asPlurality, Borda, STV, andMaximin, and prove that many hybrids
of these protocols are manipulation-resistant. We do this by formulating some fairly general conditions on
X andY under which the protocols of the formHyb(Xk,Plurality), Hyb(Xk,STV), or Hyb(STVk,Y) are
NP-hard to manipulate. Additionally, we show that a hybrid of a protocol with itself may be different from
the original protocol — and much harder to manipulate. We prove that this is, indeed, the case forBorda

protocol:Hyb(Bordak,Borda) is NP-hard to manipulate, whileBorda itself is easily manipulable.
We define a generic closure operation on protocols that makesthem closed under hybridization. Inter-

estingly, applying this operation to the easy-to-manipulate Plurality results in the hard-to-manipulateSTV.
We conjecture that for many other basic protocols, their closed versions are NP-hard to manipulate as well.
Whenever this is the case, the closed protocols provide the most faithful manipulation-resistant approxima-
tion to the underlying protocols, which makes them compelling alternatives to the original protocols.

On the flip side, we demonstrate that hybridization does not always result in hard-to-manipulate pro-
tocols: in particular, the hybrid protocols that usePlurality as their first component, are almost as easy to
manipulate as their second component. Finally, we demonstrate that our techniques extend to voting proto-
cols that allow voters to rate the candidates rather than just order them.

The value of our results is not so much in constructing specific new manipulation-resistant protocols, but
rather in providing a general method for doing that, which can be used with many basic schemes. Since a
hybrid inherits some of the properties of its ingredients, we get hard-to-manipulate protocols with properties
not shared by the schemes from [1, 2, 4]. For example, sinceBC is not Pareto-optimal, all protocols obtained
by the method of [4] are not Pareto-optimal either, while ourapproach allows to construct hybrids that have
this valuable feature (for definitions, see Section 6). It has already been argued in [4] that it is desirable to
have manipulation-resistant protocols that can be used in different real-life situations; our method fits the
bill.

The use of voting and voting-related techniques is not restricted to popular elections: the ideas from
this domain have been applied in rank aggregation [5, 9], recommender systems [10], multiagent decision
making in AI [7], etc. In many of these settings, the number ofalternatives is large enough to make our
results applicable, and, furthermore, the agents are both sufficiently sophisticated to attempt manipulation
and may derive significant utility from doing so. Therefore,we feel that it is important to have a better
understanding of what makes voting protocols hard to manipulate, as this will allow us to design more
robust decision-making systems that use voting-like methods.
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The rest of the paper is organized as follows. In Section 2 we introduce our notation, give a precise
definition of what it means to manipulate an election, and describe some well-known voting schemes dis-
cussed in the paper. In Section 3, we define hybrid protocols and some related notions. In Section 4, we
show that certain hybrid protocols are NP-hard to manipulate. In Section 5, we discuss hybrids obtained by
combining a protocol with itself. In Section 6, we define somedesirable properties of voting protocols, show
that many of them are preserved under hybridization, and demonstrate that our protocols can provide useful
combinations of these properties. In Section 7, we provide examples of hybrids that are easy to manipulate
and discuss limitations and extensions of our approach. Finally, in Section 8, we present our conclusions
and future research directions.

2 Preliminaries and Notation

We assume that there aren voters andm candidates and denote the set of all voters byV = {v1, . . . , vn}
and the set of all candidates byC = {c1, . . . , cm}. Most of our complexity results are in terms ofm andn,
i.e., unless specified otherwise, ‘polynomial’ always means ‘polynomial inm andn’.

The set of all permutations ofC is denoted byΠ(C); the preference of theith voter is expressed by a
list πi ∈ Π(C): the first element is the voter’s most preferred candidate, etc. In particular, this means that
within one voter’s preference list, ties are not allowed. For any subsetC ′ ⊆ C, letπ|C′ be the permutationπ
as restricted toC ′ (i.e., elements not fromC ′ are omitted). Note thatπ|C′ corresponds to a valid preference
in an election that has the candidate setC ′.

When describing the preferences of a single voterv, we writeci �v cj to denote thatv prefersci to cj .
Similarly, we writeCi �v Cj to denote thatv prefers all candidates in the setCi to all candidates in the set
Cj, without specifying the ordering of candidates withinCi andCj . When the identity of the voter is clear
from the context, we omit the subscript and write� instead of�v.

A voting protocolis a mappingP : 〈Π(C), . . . ,Π(C)〉 7→ C that selects a winnerc ∈ C based on all
voters’ preference lists. In this paper, we consider the following common voting protocols (in all definitions
that mention points, the candidate with the most points wins):

Plurality: A candidate receives 1 point for every voter that ranks it first.
Borda: For each voter, a candidate receivesm − 1 point if it is the voter’s top choice,m − 2 if it is the

second choice, . . . , 0 if it is the last.
Single Transferable Vote (STV): The winner determination process proceeds in rounds. In each round, a

candidate’s score is the number of voters that rank it highest among the remaining candidates, and the
candidate with the lowest score drops out. The last remaining candidate wins. (A vote transfers from its
top remaining candidate to the next highest remaining candidate when the former drops out.)

Maximin: A candidate’s score in a pairwise election is the number of voters that prefer it over the opponent.
A candidate’s number of points is the lowest score it gets in any pairwise election.

Binary Cup (BC): The winner determination process consists ofdlog me rounds. In each round, the can-
didates are paired; if there is an odd number of candidates, one of them gets a bye. The candidate that
wins the pairwise election between the two (or got a bye) advances into the next round. The schedule of
the cup (i.e., which candidates face each other in each round) may be known in advance (i.e., before the
votes are elicited) or it may depend on the votes.

Voting manipulation We say that a votervj canmanipulatea protocolP if there is a permutationπ′

j ∈
Π(C) such that for some values ofπi ∈ Π(C), i = 1, . . . , n, we have

1. P (π1, . . . , πn) = c;
2. P (π1, . . . , πj−1, π

′

j , πj+1, . . . , πn) = c′ 6= c;
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3. vj ranksc′ abovec.

We say thatvj manipulatesP constructivelyif vj ranksc′ first anddestructivelyotherwise. All results in
this paper are on constructive manipulation; in what follows, we omit the word ‘constructive’. A votervj

manipulatesP efficientlyif there is a polynomial time algorithm that given preference listsπ1, . . . , πn for
which suchπ′

j exists, constructsπ′

j.

3 Hybrid Protocols

In this section, we formally define(vote-once) hybrid protocols. Intuitively, a hybrid of two protocolsX and
Y executes several steps ofX to eliminate some of the candidates, and then runsY on the remaining set of
candidates. To make this intuition precise, however, we have to define how to interpret the first protocolX

as a sequence of steps. While there is no obvious way to do thisfor an arbitrary protocol, most well-known
protocols, including the ones described in Section 2, admitsuch an interpretation. In particular, we suggest
the following definitions:

– ForSTV, astepis a single stage of the protocol. That is, a step ofSTV consists of eliminating a candidate
with the least number of first-place votes and transferring each vote for this candidate to the highest
remaining candidate on that ballot.

– For Binary Cup (BC), a stepis a single stage of the protocol as well, i.e., it consists ofpairing up the
candidates and eliminating the ones who lose in the pairwisecomparison.

– For point-based protocols, such asPlurality, Borda, or Maximin, we first compute the scores of all
candidates, order them by their scores from the lowest to thehighest, and define astepto consist of
eliminating the first (i.e., the lowest ranked) remaining candidate in this sequence. Note that the scores
are not recomputed between the steps. (A similar approach can be applied to any voting protocol that
can be extended to a preference aggregation rule, i.e., a function that maps votes to total orderings of
the candidates. In this case, the order in which the candidates are eliminated is obtained by inverting the
output of the preference aggregation rule.)

Definition 1. A hybrid protocolHyb(Xk,Y) consists of twophases. Suppose that the voters’ preference lists
are described by then-tuple(π1, . . . , πn). In the first phase, the protocol executesk steps ofX(π1, . . . , πn);
suppose thatS is the set of candidates not eliminated in the first phase. In the second phase, the protocol
appliesY to (π1|S , . . . , πn|S), i.e., the preference lists restricted to the remaining setS of candidates.

It is straightforward to extend this definition to hybridsHyb(X
(1)
k1

,X
(2)
k1

, . . . ,X
(t)
kt

,Y) of three or more proto-
cols.

4 Hardness Results

4.1 Hardness ofSTV-based Hybrids

In this subsection, we show that hybridsHyb(STVk,Y) andHyb(Xk,STV) are NP-hard to manipulate for
many “reasonable” voting protocolsX andY, including the casesX,Y ∈ {Plurality,Borda,Maximin,BC}.

Theorem 1. A hybrid of the formHyb(STVk,Y) is NP-hard to manipulate for infinitely many values ofk
as long asY satisfies the following condition: Whenever there is a candidatec who receivesK first-place
votes andn − K second-place votes, while all other candidates receive at mostK − 1 first-place vote,Y
declaresc the winner.
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Proof. Bartholdi and Orlin show in [2] thatSTV is NP-hard to manipulate for infinitely many pairs(V ′, C ′),
whereV ′, |V ′| = n′, is the set of voters andC ′, |C ′| = m′, is the set of candidates. Note thatn′ ≥ 2. Let
p be the manipulator’s preferred candidate in this proof. Foran arbitraryt ≥ 1, we construct a new set of
candidatesC = C ′ ∪ {c1, . . . , ct} and a new set of votersV = V ′ ∪ V1 ∪ · · · ∪ Vt with |Vi| = n′ − 1. Define
the new set of preferences by requiring that alln′ − 1 honest voters inV ′ rankC ′ above{c1, . . . , ct}, while
then′ − 1 voters inVi, i = 1, . . . , t, rankci first andp second. Setk = m′ − 1. We show that for this set of
preferences, manipulatingSTV is exactly as hard as manipulatingHyb(STVk,Y). Then, due to the results
of [2], it is NP-hard to manipulateHyb(STVk,Y) for infinitely many pairs(V ′, C ′), and for infinitely many
values ofk.

First, suppose that a voterv ∈ V ′ can successfully manipulateSTV for the pair(V ′, C ′) and for some
preference lists of the honest voters. Then, ifv extends his vote by rankingC ′ above{c1, . . . , ct}, this
new vote constitutes a successful manipulation ofHyb(STVk,Y) with the preference lists defined in the
previous paragraph. Indeed, in thejth step of theSTV phase, there is always a candidate inC ′ who has at
mostn′/(m′ − j + 1) ≤ n′/2 first-place votes, and eachci hasn′ − 1 first-place vote, so allci survive the
first phase. Hence, the set of candidates eliminated by theSTV phase of the new protocol coincides with the
set of candidates eliminated bySTV in the construction of [2]. Thus, afterm′ − 1 rounds,p is ranked first
by all n′ voters inV ′. By our condition onY, this means thatHyb(STVk,Y) declaresp the winner.

For the opposite direction, suppose that a voterv can manipulateHyb(STVk,Y). This means thatp
survives theSTV phase, and we have seen that the candidates{c1, . . . , ct} do not affect the execution of the
STV phase. All that remains to show is thatv’s vote in these elections can be interpreted as a vote inSTV.
This is obviously the case if the manipulator ranksC ′ above{c1, . . . , ct}. On the other hand, if he ranks
someci above some candidates inC ′, as soon as all candidates that he ranks aboveci are eliminated, his vote
is effectively dropped from the counting process. Now, the reduction of [2] has the following property: for
any partial vote of the manipulator, i.e., a vote that only ranks a subset ofC ′ and is discarded as soon as the
last candidate fromC ′ is eliminated, there exists an equivalent regular vote, i.e., a full ordering ofC ′, that
results in the same order of elimination. Therefore, we can convert the manipulator’s vote into a successful
manipulation of the original protocol. ut

Corollary 1. The hybridsHyb(STVk,Y), whereY ∈ {Plurality,Borda,Maximin,BC,STV}, are NP-hard
to manipulate for infinitely many values ofk.

The proof of this corollary is straightforward since all these voting protocols satisfy the required property.

Theorem 2. A hybrid of the formHyb(Xk,STV) is NP-hard to manipulate for infinitely many values ofk if
X satisfies the following condition for some unbounded nondecreasing functionf(·) and infinitely manyK:
Suppose that all but one voter rank someK candidatesc1, . . . , cK after all other candidates, and all other
candidates receive at least 2 first-place votes. Then afterf(K) steps ofX, the set of eliminated candidates
is a subset of{c1, . . . , cK}.

Proof (Sketch).Setk = f(K). Denote the set of candidates in the construction of [2] byC ′; let C ′′ =
{c1, . . . , cK} andC = C ′ ∪ C ′′. Modify the votes of all honest voters in that construction so that they rank
C ′ aboveC ′′. The reduction of [2] has the property that each candidate inC ′ gets more than2 first-place
votes. Hence, the set of candidates eliminated ink rounds ofX is a subset ofC ′′; furthermore, the remaining
candidates fromC ′′ will be the first candidates eliminated bySTV. Hence, no matter how the manipulator
ranks the candidates inC ′′, it has no effect on the execution of the protocol. Therefore, his vote can be
interpreted as a vote in the originalSTV and vice versa. ut

Corollary 2. The hybrids of the formHyb(Xk,STV), whereX ∈ {Plurality,Borda,Maximin,BC}, are
NP-hard to manipulate for infinitely many values ofk.
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Proof. It is easy to see thatPlurality, Maximin andBC satisfy the condition of the theorem. ForBorda, it
is satisfied whenever the number of voters exceeds the numberof candidates; in the construction of [2], the
number of voters is larger than3|C ′|, so we can setK = |C ′|. ut

Our proofs that hybrids usingSTV as their first or second component are NP-hard to manipulate rely
on some specific properties of the reduction constructed in [2]. In the full version of the paper, we provide
black-box constructions, i.e., ones that work with any NP-hardness proof.

4.2 Hybrids of the Form Hyb(Xk, Plurality)

In this subsection, we prove thatHyb(Xk,Plurality) is hard to manipulate wheneverX satisfies Property 1.
While this property might seem artificial, we show that it is possessed by at least two well-known protocols,
namely,Borda andMaximin.

Property 1. For any setG = {g1, . . . , gN}, any collectionS = {s1, . . . , sM} of subsets ofG, and any
K ≤ M , there are somek′, k′ ≤ M , andT , T > 3N , such that it is possible to construct in polynomial
time a set ofT +N(T −2)+3N votes over the set of candidatesC ′ ∪C ′′ ∪{p}, whereC ′ = {c′

1, . . . , c
′

N},
C ′′ = {c′′

1 , . . . , c
′′

M}, so that

– there areT voters who rankp first;
– for eachi = 1, . . . , N , there areT − 2 voters who rankci first;
– for eachi = 1, . . . , N , there are3 voters who rank allc′′

j such thatgi ∈ sj aboveci, and rankci above
all other candidates;

– for any additional voteπ, when it is tallied with all other votes, the set of candidates eliminated in the
first k′ rounds is a subset ofC ′′ of sizeM − K;

– for any subsetS′ ⊆ S, |S′| = M − K, one can design in polynomial time a voteπS′ that, when
tallied with other votes, guarantees that the set of candidates eliminated in the firstk′ rounds is exactly
{c′′

i | si ∈ S′}.

Theorem 3. A hybrid of the formHyb(Xk,Plurality) is NP-hard to manipulate for infinitely many values of
k wheneverX satisfies Property 1.

Proof. We give a reduction that is based on the NP-hard problem SET COVER. Recall that SET COVER can
be stated as follows: Given a ground setG = {g1, . . . , gN}, a collectionS = {s1, . . . , sM} of subsets ofG,
and an integerK, does there exist aK-cover ofG, i.e., a subsetS′ of S, S′ = {s1, . . . , sK}, such that for
everygi ∈ G there is ansj ∈ S′ such thatgi ∈ sj?

Construct the set of votes based onG, S, andK so that it satisfies Property 1. Letk = k′, and letp be the
manipulator’s preferred candidate. We show that the manipulator can getp elected underHyb(Xk,Plurality)
if and only if he can find a set cover forG. Indeed, afterk rounds ofX, all candidates inC ′ ∪ {p} survive,
as well as exactlyK candidates fromC ′′. We show thatp wins if and only if theseK candidates correspond
to a set cover ofG. Observe that any surviving candidate fromC ′′ has at most3N < T first-place votes, so
he cannot win in the last stage. Now, consider a candidatec′

i ∈ C ′. Suppose that the corresponding element
is not covered, i.e., allc′′

j such thatgi ∈ sj are eliminated. Then after the end of the first phase,c′

i hasT + 1
first-place vote, whilep hasT first-place votes, so in this casep cannot win.

On the other hand, suppose that for anygi ∈ G there is ansj ∈ S such thatgi ∈ sj andc′′

j is not
eliminated in the first phase. Then at the beginning of the second phase eachc′

i ∈ C ′ hasT − 2 first-place
votes, whilep hasT first-place votes, so in this casep wins.

Hence, manipulating this protocol is equivalent to finding aset cover of sizeK. ut

Corollary 3. The protocolsHyb(Bordak,Plurality) andHyb(Maximink,Plurality) are NP-hard to manip-
ulate for infinitely many values ofk.
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Proof. Let the voters who rankp first, rank the candidates inC ′ above those inC ′′, and the voters who rank
c′

i first, rank the candidates inp∪C ′ above those inC ′′. For large enoughT , this guarantees that bothBorda

andMaximin scores of the candidates inC ′ ∪ {p} are much higher than those of the candidates inC ′′, so
none of the candidates inC ′ ∪ {p} can be eliminated in the first phase. On the other hand, we still have
enough flexibility to ensure that all candidates inC ′′ have the sameBorda (or Maximin) score with respect
to the honest voters’ preferences. Then, for both protocols, the manipulator can get anyM − K candidates
from C ′′ eliminated by putting them on the bottom of his vote and ranking the remainingK candidates
above the candidates inC ′ ∪ {p}. Thus, bothBorda andMaximin satisfy all conditions in the statement of
Theorem 3. ut

Together with our results on STV and the results of [4], the constructions of this section provide a wide
choice of manipulation-resistant protocols. In the next section, we add to our repertoire two more protocols
that are hard to manipulate, namely,Hyb(Bordak,Borda) andHyb(Maximink,Borda).

5 Hybrid of a Protocol with Itself

We say that a protocol ishybrid-proof if a hybrid of several copies of this protocol is equivalent to the
original protocol. While some protocols, such asSTV or Binary Cup, have this property, for many other
protocols, especially score-based ones, this is not the case. To see this, note that in a hybrid protocol, the
scores of all surviving candidates are recomputed in the beginning of the second phase, while in the original
protocol they are computed only once. As a result, in a hybridof, say, two copies of thePlurality protocol,
one candidate may gain a lot of first-place votes from voters who rank him right after the candidates that were
dropped in the first phase, while some other candidate may getno extra votes at all; a similar phenomenon
happens inBorda andMaximin.

Nevertheless, any protocol can be modified to be hybrid-proof. For an arbitrary protocolX, define a
closed protocolX by X = Hyb(X1, . . . ,X1), where the number of copies ofX1 is such thatX selects a single
winner.

Proposition 1. For any protocolX, the closed protocolX is hybrid-proof.

We omit the proof.
Interestingly,Hyb(Plurality1, . . . ,Pluralitym) = STV: the vote transfer mechanism can be viewed as

recomputing each candidate’sPlurality score. Observe that whilePlurality has particularly bad manipulation
resistance properties (see, e.g., Section 7),STV is NP-hard to manipulate. This leads us to conjecture that for
many other base protocols, the new protocols obtained in this manner are NP-hard to manipulate. Whenever
this is the case, the closed protocols provide the most faithful manipulation-resistant approximation to the
underlying protocols, which makes them compelling alternatives to the original protocols. This conjecture is
supported by the fact that for some easy-to-manipulate protocols, a hybrid of just two copies of the protocol
is NP-hard to manipulate; increasing the number of copies should make the manipulation harder, not easier.
As an illustration, we prove that a hybrid of two instances ofBorda is NP-hard to manipulate.

Theorem 4. The hybridHyb(Bordak,Borda) is NP-hard to manipulate for infinitely many values ofk.

Proof. We give a reduction from EXACT COVER BY 3-SETS, which is stated as follows: Given a ground
setG = {g1, . . . , gN}, N = 3L, and a collectionS = {s1, . . . , sM} of 3-element subsets ofG, does there
exist an exact set cover ofG, i.e., a subsetS′ of S, S′ = {s1, . . . , sN/3} such that for everygi ∈ G there is
a uniquesj ∈ S′ such thatgi ∈ sj?

We construct two sets of votersV ′, |V ′| = 2N + 2, andV ′′, |V ′′| = (M + 1)(N + 1) and define
V = V ′ ∪ V ′′. Let Cg = {cg

1, . . . , c
g
N} andCs = {cs

1, . . . , c
s
M}, and let the set of candidates beC =

Cg ∪ Cs ∪ {c0} ∪ p, wherep is the manipulator’s preferred candidate.
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For eachi = 1, . . . , N − 1, the votersv′

2i−1, v
′

2i ∈ V ′ rank the candidates as

cg
i+1 � cg

i+2 � · · · � cg
N � p � cg

1 � . . . cg
i−1 �

� Cs
i � cg

i � Cs \ Cs
i � c0 ,

whereCs
i = {cs

j | gi ∈ sj}. The votersv′

2N−1, v
′

2N ∈ V ′ rank the candidates as

p � cg
1 � cg

2 � · · · � cg
N−1 � Cs

N � cg
N � Cs \ Cs

N � c0 ,

whereCs
N = {cs

j | gN ∈ sj}.
The remaining two voters inV ′ rank the candidates as

cg
1 � cg

2 � · · · � cg
N � c0 � p � Cs

and

cg
1 � cg

2 � · · · � cg
N � p � c0 � Cs.

Also, for eachi = 1, . . . , N − 1, there areM + 1 voters inV ′′ who rank the candidates as

cg
i+1 � cg

i+2 � · · · � cg
N � p � cg

1 � . . . cg
i � c0 � Cs ,

M + 1 voters inV ′′ who rank the candidates as

p � cg
1 � cg

2 � · · · � cg
N � c0 � Cs ,

andM + 1 voters inV ′′ rank the candidates as

cg
1 � cg

2 � · · · � cg
N � p � c0 � Cs.

Setk = M − N/3. Observe that no matter how the manipulator votes, only the candidates fromCs will
be eliminated in the first phase. All candidates inCg ∪ {p} have the sameBorda score with respect toV ′′.
Furthermore, since we have not yet specified the preferencesof voters inV ′′ over the candidates inCs, we
can set them so that they will all have the sameBorda score, in which case the manipulator can get anyk of
them eliminated in the first phase.

Suppose that the manipulator votes so that the set of candidates fromCs who survive the first phase
corresponds to an exact set cover ofG. Then for each candidatecg

i and anyj = 1, . . . , N , there are two
voters inV ′ who rank him in thejth position and two voters inV ′ who rank him in the(N + 2)nd position
(these two voters prefercs

j to cg
i , wheresj is the set in the set cover that containsgi). Hence, theBorda score

of each candidate inCg with respect toV ′ is
∑m−k−1

t=m−k−N 2t + 2(m − k − N − 2).

On the other hand, theBorda score ofp with respect toV ′ is
∑m−k−1

t=m−k−N 2t+(m−k −N −1)+(m−
k − N − 2), and the score ofc0 is lower that the score of any candidate inCg ∪ {p}, so in this casep wins.

Conversely, suppose that the set of candidates fromCs who survive the first phase does not correspond
to a set cover ofG. Consider an elementgi ∈ G that is not covered. All voters inV ′ prefercg

i to all surviving
candidates inCs ∪ {c0}, which means that hisBorda score is higher than that ofp. ut

Using the same construction, one can show thatHyb(Maximink,Borda) is NP-hard to manipulate for
infinitely many values ofk; we omit the details.

8



6 Properties of Voting Protocols

Voting protocols are evaluated based on various criteria, such as:

(1) Pareto-optimality: a candidate who is ranked lower than some other candidate byevery voter never wins;
(2) Condorcet-consistency: if there is a candidate who is preferred to every other candidate by a majority of

voters, this candidate should be the winner of the election;
(3) Monotonicity: with the relative order of the other candidates unchanged,ranking a candidate higher

should never cause the candidate to lose, nor should rankinga candidate lower ever cause the candidate
to win.

In the context of this paper, a natural addition to this list ishardness of manipulation.
Most voting schemes based on pairwise comparisons, in particular, BC andMaximin, are Condorcet-

consistent, while forSTV, or positional methods, such asPlurality or Borda, this is not the case. One can
prove thatPlurality, Borda, Maximin, andBC are monotone, whileSTV is not. All basic voting protocols
considered in this paper exceptBC are Pareto-optimal.

To analyze whether properties (1)–(3) are preserved under hybridization, we have to extend these def-
initions to multi-step protocols. We say that a multi-step protocol isstrongly Pareto-optimalif whenever
every voter ranksc1 below c2, c1 is eliminated beforec2, andstrongly monotoneif ranking a candidate
higher does not affect the relative order of elimination of other candidates and cannot result in him being
eliminated at an earlier step; the definition of Condorcet consistency remains unchanged. It is easy to see
that multi-step versions of Pareto-optimal protocols thatwe consider are strongly Pareto-optimal, at least
for some draw resolution rules. However, not all monotone protocols are strongly monotone: for example,
in Borda, moving a candidate several positions up changes other candidates’ scores in a non-uniform way.

Proposition 2. For any voting protocolsX andY and anyk, if bothX andY are Condorcet-consistent, so is
Hyb(Xk,Y); if X is strongly Pareto-optimal (strongly monotone) andY is Pareto-optimal (monotone), then
Hyb(Xk,Y) is Pareto-optimal (monotone).

We omit the proofs.
The construction proving thatBC is not Pareto-optimal can be easily modified to show that any protocol

of the formHyb(BCk,Y) is not Pareto-optimal for somek, whereY ∈ {Plurality,Borda,Maximin,STV}.
Hence, prior to this work, the only Pareto-optimal mechanisms that were known to be NP-hard to manipulate
wereSTV and the (rather contrived) variants of the Copeland protocol that were described in [1]. Our results
imply thatHyb(Bordak,Plurality), Hyb(Maximink,Plurality), andHyb(Bordak,Borda) also combine these
two properties.

Furthermore, except forSTV, all previous hard-to-manipulate protocols involved methods that use pair-
wise comparisons, and such methods have been criticized forrelying too much on the number of victories
rather than their magnitude. On the other hand, bothHyb(Bordak,Plurality) andHyb(Bordak,Borda) are
based purely on positional methods, which do not suffer fromthis flaw, andMaximin (and hence, hybrids of
Maximin with positional methods) also takes into account the magnitude of victories.

7 Limitations and Extensions

7.1 Hybrids That Are Easy to Manipulate

Unfortunately, our method of obtaining hard-to-manipulate protocols is not universal: if the protocol used in
the first phase does not provide the manipulator with sufficiently many choices, the resulting hybrid protocol
is almost as easy to manipulate as its second component. In particular, this applies toPlurality protocol.
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Theorem 5. Suppose that a protocolY satisfies the following property for any candidatec: Given other
voters’ preference profiles, the manipulator can in polynomial time find a beneficial manipulation that ranks
c first or infer that no such manipulation exists. Then there isa polynomial-time algorithm that can con-
structively manipulate the hybridHyb(Pluralityk,Y) for anyk.

Proof. For the first phase of the protocol, the only choice that the manipulator has to make is which candidate
to rank first; the rest of his vote will have no effect on the elimination process. Hence, he can try allm
options. Suppose that when the manipulator ranksci first, the set of candidates that survive the first phase
is Ci. The manipulator can deduce the honest voters’ preferencesover Ci. If ci 6∈ Ci, he simply has to
construct a beneficial manipulationπ|Ci

of Y and, in his vote, rankci first and order the candidates inCi

as suggested byπ|Ci
. If ci ∈ Ci, in constructing a beneficial manipulation ofY he is restricted to orderings

that rankci first. By our assumptions, he can find a solution to this problem in polynomial time. ut

Corollary 4. There are polynomial-time algorithms that can constructively manipulateHyb(Pluralityk,Y),
whereY ∈ {Borda,Maximin,BC,Plurality} for anyk.

The property ofPlurality that makes it an unsuitable candidate for the first phase of a hybrid protocol is
that by altering his vote, the manipulator can obtain at mostm different outcomes of the first phase, so he
can go over all of them and pick the one that produces best results. It is not clear whether any other protocol
for which changing a single vote leads to polynomially many different outcomes is just as bad: each outcome
imposes specific restrictions on the manipulator’s vote in the second phase, and finding a manipulation that
satisfies them may be harder that manipulating the original protocol.

7.2 Other Measures of Complexity

In their paper [4], Conitzer and Sandholm prove that under some pre-round scheduling algorithms, many
protocols become #P-hard or PSPACE-hard to manipulate whenpreceded by aBC pre-round, and [6] shows
that one can make manipulation as hard as inverting one-way functions. However, since other protocols that
we consider do not have the flexibility provided by theBC scheduling step, the problem of manipulating
the hybrids whose first component is notBC, but some other protocol from our list, is inherently in NP.
Consequently, a proof that these hybrids are #P-hard or PSPACE-hard to manipulate will lead to a collapse
of the polynomial hierarchy, and hence is unlikely.

For the entire class of voting protocols considered in this paper, manipulation is easy when the number
of candidatesm is very small. This applies both to the standard protocols like STV and to the new hybrid
protocols. Indeed, since there are onlym! possible ballots for the manipulator, he can go over all of them in
order to determine which of them produces the best outcome.

7.3 Utility-Based Voting

In previous sections, we investigated voting schemes that required each voter to submit a total ordering
of the candidates. However, in many settings a voter may be essentially indifferent between some of the
alternatives, but have a strong opinion on the relative merit of other alternatives. In this case, his preference
may be better reflected by autility vectoru = (u1, . . . , um), where0 ≤ uj ≤ 1 is theutility that this voter
assigns to candidatecj . To guarantee fairness, the utility vectors are normalized, i.e., we require that either
uj = 0 for all j or

∑
j uj = 1. In addition, we require that alluj are rational numbers whose representation

size is polynomial inn andm.
The definitions of a voting protocol and manipulation can be modified in a straightforward manner. A

hybrid of two utility-based protocols is a protocol that performsk steps of the first protocol, re-normalizes
the utility vectors (restricted to the surviving candidates) and executes the second protocol on the remaining
candidates.
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Clearly, a utility vector that assigns different utilitiesto all candidates can be interpreted as a total
ordering of the candidates. Therefore, if all voters rate any two candidates differently, we can interpret
their votes as total orderings and use any ordering-based voting protocol. Converse, however, is not true:
even if we know all voters’ preference orderings, we gain essentially no information as to which candidate
maximizes the social welfare (i.e., the sum of all voters’ utilities).

More formally, say that a candidatec is Pareto-dominatedif there is another candidatec′ such that all
voters rankc belowc′. Furthermore, a utility vector isconsistentwith a preference ordering if wheneverc1

is ranked abovec2, the utility assigned toc1 is strictly larger than the utility assigned toc2.

Proposition 3. For any set of preference orderings and any candidatec the following two conditions are
equivalent:

– c is not Pareto-dominated according to this set;
– there is a set of utility vectors consistent with these orderings under whichc maximizes the social welfare.

Proof. Clearly, if c is Pareto-dominated by ac′, all voters assignc′ a higher utility, soc cannot maximize
the sum of voters’ utilities. For the other direction, we construct the utility vectors that are consistent with
the preference orderings as follows. Given a preference orderingπ that hasc in thekth position, assign the
candidate in thetth position a utility of1−ε

k + ε 2(m−t)
m(m−1) if t ≤ k andε 2(m−t)

m(m−1) otherwise. Consider any other

candidatec′. If a voter ranksc′ abovec, the utility that she assigns to both alternatives differs by at mostε.
On the other hand, if she ranksc′ belowc, then the two utilities differ by at least 1

m(m−1) . For small enough
ε, it follows thatc has a higher total utility. ut

The most natural voting protocol for the utility-based framework isHighestScore, which computes the
total score of each candidate, i.e., the sum of utilities assigned to this candidate by all voters, and selects the
candidate with the highest total score. However, this protocol is not manipulation-resistant.

Proposition 4. There is a polynomial-time algorithm that can manipulateHighestScore.

Proof. Given the utility vectors of all other voters, the manipulator can compute the total scores of all
candidates according to other voters’ preferences and makea list of candidates whose score differs from the
winning score by at most 1 (these are the candidates whom thisvoter can turn into winners). He can then
select his favorite candidate from this list and assign him autility of 1. Clearly, this is the best outcome that
the manipulator can hope to achieve, and, unless the manipulator actually rates all other candidates at 0, this
utility vector is not truthful. ut

Fortunately, it turns out that the techniques we use for ordering-based protocols are applicable in this
setting, too.

A stepof HighestScore is naturally defined as eliminating the candidate with the lowest score; conse-
quently, the hybrid protocolHyb(HighestScorek,HighestScore) consists of eliminatingk candidates with
the lowest score, renormalizing the utility vectors, and choosing the candidate with the highest score among
the remaining candidates.

Theorem 6. Hyb(HighestScorek,HighestScore) is NP-hard to manipulate for infinitely many values ofk.

Proof. To simplify notation, we denote byui(cj) the utility that the votervi assigns to the candidatecj ; we
omit the indexi when it is clear from the context. Wheneverui(cj) is not specified, it is assumed to be 0.
Also, we denote bysc(cj) the total score of a candidatecj .

We present a reduction from EXACT COVER BY 3-SETS. Letε be a small rational number to be specified
later. Suppose that an instance of EXACT COVER BY 3-SETS is given by a ground setG = {g1, . . . , gN},
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N = 3L, and a collectionS = {s1, . . . , sM}. Let Cg = {cg
1, . . . , c

g
N}, Cs = {cs

1, . . . , c
s
M}, Cd =

{cd
1, . . . , c

d
M}, and let the set of candidates beC = Cg ∪ Cs ∪ Cd ∪ {p}. Suppose that the manipula-

tor’s true utilities areu(p) = 1, u(c) = 0 for c 6= p. For eachcg
i , we construct two votersvi andv′

i whose
utilities areu(cg

i ) = ε, u(cs
j) = (1 − ε)/t for all j such thatgi ∈ sj, wheret = |{sj | gi ∈ sj}|, and13

voters whose utilities areu(cg
i ) = 1. Based on these voters’ utilities, the scores of all candidates inCs are

between6(1 − ε)/M and6(1 − ε), so for each candidatecs
i we additionally construct 6 more voters who

distribute their utilities betweencs
i andcd

i so that when these voters’ opinions are taken into account, the
scores of all candidates inCs are exactly equal to 6. Also, for eachcd

i ∈ Cd, we construct 7 voters whose
utilities areu(cd

i ) = 1. Finally, there are 14 voters whose utilities areu(p) = 1, and one voter whose utility
is u(cg

i ) = 1/N for all cg
i ∈ Cg.

We can bound the total scores of all candidates as follows:sc(p) = 14, 7 ≤ sc(cd
i ) ≤ 13, sc(cs

i ) = 6,
sc(cg

i ) = 13 + 2ε + 1/N .
Setk = 2L. Thek candidates that will be eliminated in the first phase belong toCs, and it depends on the

manipulator’s vote whichL of theM candidates inCs survive the first phase. Suppose that for somecg
i , all

cs
j such thatgi ∈ sj are eliminated. Then after renormalization the utility that vi andv′

i assign tocg
i increases

from ε to 1, and the total score ofp increases by at most 1, so we will havesc(cg
i ) = 15 + 1/N > sc(p).

On the other hand, if surviving candidates inCs correspond to a set cover, the score of any candidate inCg

will not exceed13 + 2Mε + 1/N < 14 for sufficiently smallε, and the scores of all candidates other thanp
will be less than 14 as well. Therefore, if the manipulator can guess a set cover and assign all corresponding
candidates inCs a utility of 1/L, he can ensure thatp wins, and conversely, ifp wins, thek highest-rated
candidates inCs correspond to a set cover. ut

Another way to increase resistance to manipulation is to usethe method of [4], i.e., prependHighestScore

with a pre-round. A technical difficulty that arises here is that in [4], the pre-round winners are determined
on the basis of comparisons, while in our setting, this information may not be available (utility vectors allow
for draws). This can be resolved either by requiring the voters to submit an ordering together with their
utility vector (clearly, the two should be consistent) or bydetermining the winner of each pre-round pair by
comparing their scores. Both approaches result in hybrid protocols that are NP-hard to manipulate.

8 Conclusions and Future Work

Our work places the results of [3, 4] within a more general paradigm of hybrid voting schemes. The ad-
vantage of our approach is that it works for a wide range of protocols: while some voting procedures are
inherently hard to manipulate, they may not satisfy the intuitive criteria of a given setting. On the other
hand, a hybrid of two protocols retains many of their desirable properties, and sometimes may combine the
best of both worlds. All of the voting protocols described inSection 2, as well as many others, are used in
different contexts; while it would be unreasonable to expect that all of them will be replaced, say, bySTV

just because it is harder to manipulate, hybrids of these protocols with similar ones or even with themselves
may be eventually preferred to the original protocols. Moreover, our results on utility-based voting suggest
that our techniques can be useful for a wider class of problems and can be viewed as a contribution to the
more general task of constructing computationally strategy-proof mechanisms.

While we proved that many specific hybrid protocols are hard to manipulate (though some are not), our
goal is not to give a complete list of such protocols, or investigate all possible protocol combinations; indeed,
given the variety of voting algorithms used in practice, this task seems infeasible. Rather, our work should be
viewed as a step towards understanding what makes protocolshard to manipulate, and whether a protocol
at hand can be modified to have this property. We believe that the conditions we suggest in our hardness
reductions apply in many cases not mentioned in the paper; simplifying these conditions, or replacing them
with necessary and sufficient criteria is an interesting open problem.
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Another important issue not addressed in this paper is that of designing protocols with high average-
case complexity. However, even asking this question properly, i.e., coming up with a natural distribution
of voter’s preferences with respect to which the average-case hardness is computed is itself a difficult task:
clearly, in most scenarios one cannot expect preferences tobe uniformly distributed. Initial results in this
direction can be found in [6]; however, this topic should be explored further.
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