
On E-Vote Integrity in the Case of Malicious Voter
Computers

Sven Heiberg1, Helger Lipmaa1,2, and Filip van Laenen3

1 Cybernetica AS, Estonia
2 Tallinn University, Estonia

3 Computas AS, Norway

Abstract. Norway has started to implement e-voting (over the Internet, and by
using voters’ own computers) within the next few years. The vulnerability of
voter’s computers was identified as a serious threat to e-voting. In this paper, we
study the vote integrity of e-voting when the voter computers cannot be trusted.
First, we make a number of assumptions about the available infrastructure. In par-
ticular, we assume the existence of two out-of-band channels that do not depend
on the voter computers. The first channel is used to transmit integrity check codes
to the voters prior the election, and the second channel is used to transmit a check
code, that corresponds to her vote, back to a voter just after his or her e-vote vast
cast. For this we also introduce a new cryptographic protocol. We present the new
protocol with enough details to facilitate an implementation, and also present the
timings of an actual implementation.
Keywords. Implementation, integrity, malicious voter computers, nationwide e-
voting, proxy oblivious transfer, zero-knowledge proofs.

1 Introduction

The first e-voting pilot (that is, voting over the Internet by using voters’ own computers)
pilot in Norway is currently scheduled for 2011, with plans to have nation-wide e-
voting by 2017. As it should be in all democratic countries, Norway aims the electronic
elections to be both as accessible/usable and as secure as possible. It is not always easy
to reach a sensible compromise. In this paper, we describe our e-voting solution that was
proposed to the Norwegian election officials in Summer of 2009. The proposed e-voting
protocol tries to find a good compromise between various security and usability.

A nationwide implementation of e-voting has to be secure against as many attacks
as possible, and in presence of as many malicious parties as possible without seriously
hurting usability or the ease of verifiably correct implementation. Abundant research
has been done on the security of e-voting in the presence of malicious voting servers.
Thus, this part of e-voting can be considered to be solved to at least certain degree, and
thus in this paper, we will not focus on this aspect of e-voting. (The real e-voting will
implement additional means to guarantee security against malicious voting servers.)

On the other hand, it is even more difficult to guarantee security in the case when
voter computers cannot be trusted. The seeming impossibility of guaranteeing vote pri-
vacy and integrity in the presence of malicious voter computers has been one of the main

2 Sven Heiberg, Helger Lipmaa, and Filip van Laenen

obstacles that has delayed the real-world implementation of e-voting. Moreover, achiev-
ing vote privacy in the case of malicious voter computers seems to hurt usability [2],
since the value input by a voter to the computer should not reveal voter’s preferred
candidate. In practice, this amounts to inputing a pseudorandom code (or something
similar), unknown to the voter computer but yet securely delivered to the voter himself
or herself. Due to both the impossibility of implementing secure yet guaranteed code
delivery and to the usability concerns, solutions where a voter is required to enter a
random code to the computer are definitely out of the question. In Norway, solutions
where the voter could obtain the used random values, and then use her own program to
verify the correctness of ciphertexts were not even considered.

Our Contributions. We show that it is possible to guarantee e-vote integrity in the
presence of malicious voter computers without drastically changing the user experience,
and without the necessity of 100% delivery of random codes (or say, secure hardware
tokens). More precisely, we construct a cryptographic protocol at the end of which, after
she has entered her vote to the computer, the voter obtains a relatively short integrity
check code. Given this check code (and/or the absence or presence of the message
itself), the voter can verify the integrity of her vote. This easy verification is the only
change in her voting experience as compared to a similar non-secure system: she is
not required to enter long codes, nor has the user interface to be particularly clunky.
Moreover, in our case, the delivery of the check codes and the subsequent verification
is not obligatory: voters who are paranoid enough or just have a reason not to trust
either the idea of e-voting, or the security of their own computers, can take additional
measures to first obtain the codes and then to perform verification.

We first introduce some organizational assumptions that seem to be necessary and
yet practical enough to be implemented. We emphasize that these assumptions (“the
necessary evil”) have been approved by the Norwegian e-voting project officials. First,
Norway has an ongoing parallel process to implement a national public-key infrastruc-
ture. This infrastructure will make it possible for the e-voting project to use eID-cards
for the authentication of the voters, but not yet for signing the ballots digitally by 2011.
This means that for authentication, the same scheme as the one used on the eID-card has
to be used, but otherwise, the pilot project is free to use non-standard public-key cryp-
tosystems. It has to be mentioned though that there are some commercial alternatives
available that offer digital signature functionality, but it is unclear whether the public
will be willing to trust commercial vendors to sign their ballots.

Second, we require the existence of two secure and authenticated channels
prechannel and postchannel. Briefly, before the elections, every voter v gets a list
of candidates cnd together with integrity check codes Codev[cnd], where the voter-
dependent codes are random and independent. The codes are transfered to all voters
over a secure and authenticated prechannel that is unlikely to be controlled by the same
attacker that controls her computer. This is not restrictive in Norway, where voter reg-
istration cards are mailed to all voters in advance (and people trust the postal system).
Once more, the delivery of check codes to all voters is not necessary: we just assume
that a large majority of voters have access to the prechannel by default, and other voters
(who are still sufficiently interested in e-voting security) must take a special action to
obtain the codes. In principle, there are several alternative ways to build prechannel, but

On E-Vote Integrity in the Case of Malicious Voter Computers 3

the important requirement is that the check codes should not be known by the voter’s
computer. Alternatives include using secure Web pages (available only when accessed
by using say a smartphone for which the real e-voting client is not available), or SMSs
from a fixed mobile number.

Moreover, a real-time channel postchannel (say, SMS, or a Web page that can be
checked by using a smartphone) is used to inform the voter about the success of her
actions. More precisely, every time she has voted, an integrity check code is sent to her
by using postchannel. Note that in Norway, virtually every voter has a mobile phone
with the mobile number known to the government—namely, they are extensively used
for tax payment—, and thus there exists an efficient postchannel. Those voters whose
mobiles have not been registered yet, but who are interested in e-voting security, have
to take additional action. However, voters can choose not to do it. Also, a message from
postchannel makes sense even if the voter has not received the original codes from the
prechannel: in this case, she at least knows that her vote has been recorded.

In addition, the Norwegian e-voting procedure will allow the voters to revote either
electronically—such that later e-vote takes precedence over an earlier e-vote—or by
(later) participating in conventional paper voting (p-voting), which will take precedence
over e-votes. This will provide at least some (though not complete) protection against
vote buying and coercion: if either of these has happened, the voter can choose to revote
later by using either an e-vote or a p-vote. (The p-voting period will start several days
after the e-voting period has ended.) Clearly, if the voter can be both physically coerced
(to the extent where she cannot go and participate in p-voting) and she cannot trust
her computer, then she cannot be completely protected against all frauds. However,
the revoting procedure, which is already implemented in Estonian national e-voting
procedure, offers at least some protection against vote buying and coercion. Moreover,
due to the existence of the postchannel, a voter will get a timely notification when
her vote was altered by her computer. In this case, she can use a different computer
to revote, or when necessary, participate in p-voting. Therefore, the combination of a
quick-response postchannel and revoting not only guarantees fraud detection but also
allows the voters to act on it.

On the flip side, every voter can legally use the same PC to vote many times for
(not necessarily) different candidates. This limits the choice of postchannel in our case
significantly. In particular, it is not secure to use the (possibly malicious) PC itself as
the postchannel. Namely, assume that the voter votes for candidate A, then is coerced
to vote for B, and then votes again for A. The PC, already knowing the integrity check
codes of A and B, can submit a vote for B but display the integrity check code for A.

Given those organizational assumptions, we consider the next setting. Voter’s ballot
(vote) is encrypted and signed (possibly by the attacker), and then sent to the vote col-
lector. (Without loss of generality, in this paper we will assume that there is a single vote
collector. In practice, there will be more, but all our protocols will naturally generalize.
We will not mention this important point anymore.) The vote collector computes, given
an encrypted and signed vote, a ciphertext of the integrity check code Codev[cnd] and
sends it to another server (called the messenger). The messenger decrypts the code, and
then sends an SMS alert of the type “You, [name], voted at [time], the check code is
Codev[cnd] ” to the voter over postchannel. The voter verifies the correctness: she com-

4 Sven Heiberg, Helger Lipmaa, and Filip van Laenen

plains when she got a wrong message over postchannel (which say contains a wrong
check code), or did not get it all when she voted (in particular when her computer
tells her that the vote collector is unavailable), or gets a message when she did not vote.
Here, we need that the messenger, who can be behind a firewall, is unaware of the corre-
spondence between the candidates and the corresponding check codes. I.e., a malicious
messenger should not collaborate with a malicious vote collector.

In Sect. 4, we propose a cryptographic protocol by which the messenger obtains
Codev[cnd]. The basic idea of the protocol is as follows. Voter’s computer sends to
the vote collector two ciphertexts that “encrypt” cnd, one with tallier’s public key, and
another one with messenger’s public key. This is accompanied by a non-interactive
zero-knowledge (NIZK) proof of knowledge that the two encrypted values are equal
and belong to the correct range (i.e., correspond to a valid candidate). The correspond-
ing full NIZK proof of knowledge is presented in Sect. 3.2, and its full security proof is
given in an appendix. When the NIZK proof of knowledge is correct, the vote collector
cryptocomputes, based on the second ciphertext, a ciphertext of Codev[cnd] that is en-
crypted by messenger’s public key. This is done by using a “proxy oblivious transfer”
protocol [13] with the additional requirement that the proxy should not get to know the
index used by the chooser even when he knows the whole unordered database. The vote
collector then sends an encryption of cnd (under tallier’s public key) to the tallier, and an
encryption of Codev[cnd] (under messenger’s public key) to the messenger. In Sect. 4,
the new protocol is presented in sufficient details to facilitate an implementation.

We then give an informal security assessment of the full integrity check protocol,
and explain our choice of underlying cryptographic primitives and protocols. In this
paper, we are not going to discuss the operation of tallier since there is a decent amount
of literature on this part of the e-voting process. However, we stress that the full e-voting
solution in Norway must use additional cryptographic protocols to guarantee better
security against malicious voting servers (i.e., vote collectors, talliers, and messengers).

We finish the paper by describing an implementation of the new integrity check
protocol, and by giving the timings in the case where there is both a small and a large
number of voters and candidates. For example, if there are 80 candidates, the vote col-
lector’s throughput is around 2 000 votes per hour on our test machine. The throughput
can be increased dramatically by using several vote collectors, better (faster and mul-
ticore) CPUs, or even hardware acceleration. In particular, our next task consists of
implementing the described protocol in a commercial Hardware Security Module.

Risk Assessment: Avoided Attacks Versus New Attacks. Without the use of the new
protocol (or something similar), the voters will not be informed at all whether their
e-votes reached the voting servers. Thus, a malicious entity (say some foreign govern-
ment, or a terrorist organization) can mount a full-scale attack (by writing malicious
software that covertly takes over many of voter computers) on the e-voting process and
stay undetected. Alternatively, they may reveal themselves after the end of the elections
and prove that they in fact manipulated the elections — even that case would be quite
devastating. If the integrity protocol of this paper is implemented, such attacks will all
be at least detected—given that sufficiently many voters verify the codes—, and the
voters can also react by revoting on paper if necessary.

On E-Vote Integrity in the Case of Malicious Voter Computers 5

The new protocol also creates some genuinely new attacks. For example, an attacker
can take over the prechannel (for example, by distributing fake voter registration cards)
or the postchannel (by massively distributing fake SMSs). Both attacks are arguably
much more difficult to perform without detection than the takeover of voter comput-
ers, since they at least require some physical presence. Attacks on only the postchannel
basically amount to the voters receiving bogus messages with (very high probability)
wrong check codes. In this case the voters will be alerted, and can revote. Even if both
channels are successfully attacked (which is quite difficult by an outsider in the case the
prechannel is implemented by using “snail mail” and the postchannel is implemented
by using SMSs), there is no more harm done than by attacking voter computers: the at-
tacker can then both break correctness (by just reordering codes sent by the prechannel)
and anonymity, but both can done trivially by just a malicious computer.

Finally, there are some genuinely new attacks which more hinge on human psy-
chology than cryptography or computer security in general. As an example, voters can
falsely claim that they received wrong codes, and thus cause alarm and distrust in elec-
tions. Here we emphasize, that the new protocol makes it possible for voters to detect
attacks (so that they can revote) but in most of the cases, not to prove their presence.
(With some exceptions, such as when they receve incorrectly formatted SMSs from the
correct mobile number.) In our own opinion, due to this attack, voter complaints should
thus always taken with a grain of salt: if such a complaint occurs, then clearly either
there was an attack by an outsider or the voter herself. This should be explained to the
voters before the e-voting. Moreover, without such a protocol, any voter can (legiti-
mately) claim that she does not trust e-voting since she may have a virus — and that
the government has done nothing to protect her in such a case. We think that the latter
complaint is much more valid.

Due to the lack of space, many details have been omitted. They can be found in the
full version [9].

2 Cryptographic Preliminaries

Notation. All logarithms are on basis 2. k is the security parameter, we assume that
k = 80. x ← X denotes assignment; if X is a set or a randomized algorithm, then
x ← X denotes a random selection of x from the set or from the possible outputs of
X as specified by the algorithm. In the case of integer operations, we will explicitly
mention the modulus, like in z ← a + b mod q. On the other hand, we will omit
modular reduction in the case of group operations (like h ← gr), since in this case
depending on the group, reduction may or may not make sense.
Hash Functions, Random Oracle Model and Key Derivation Functions. A function
H : A → B is a hash function if |B| < |A|. Within this paper, we usually need to
assume thatH is a random oracle. I.e., the value ofH(x) is completely unpredictable if
one has not seen H(x) before. Random oracles are useful in many cryptographic appli-
cations, by making it possible to design efficient cryptographic protocols. In practice,
one would instantiate H with a strong cryptographic hash function like SHA2 or the
future winner of the SHA3 competition. While there exist schemes which are secure
in the random oracle model but which are insecure given any “real” function [5], all

6 Sven Heiberg, Helger Lipmaa, and Filip van Laenen

known examples are quite contrived. A key derivation function Kdf : A → B takes a
random element from set A and outputs a pseudorandom element in set B. If |B| < |A|
then Kdf is a pseudorandom function, but if |B| ≥ |A| then Kdf can be constructed
without any cryptographic assumptions. See, e.g., [6]. For the sake of simplicity, we
think of Kdf as a random oracle.
Signature Schemes. A signature scheme SC = (Gensc,Sign,Ver) is a triple of efficient
algorithms, where Gensc is a randomized key generation function, Sign is a (possibly
randomized) signing algorithm and Ver is a verification algorithm. A signature scheme
is EUF-CMA (existentially unforgeable against chosen message attacks) secure, if it is
computationally infeasible to generate a new signature (i.e., a signature to a message
that was not queried from the oracle), given an access to an oracle who signs messages
chosen by the adversary. For the purpose of this paper, any of the well-known EUF-
CMA secure signature schemes can be used. However, since e-voting is most probably
going to use the existing PKI infrastructure of the relevant country, the most prudent
approach is to rely on whatever signature scheme has been implemented in the corre-
sponding ID-cards.
Public-Key Cryptosystems. Let PKC = (Genpkc,Enc,Dec) be a public-key cryptosys-
tem, where Genpkc is a randomized key generation algorithm that on input (1k; r), for
some random string r, outputs a new secret/public key pair (sk, pk) ← Genpkc(1k; r),
Enc is a randomized encryption algorithm with c = Encpk(m; r′), and Dec is a de-
cryption algorithm with Decsk(c) = m′. It is required that if (sk, pk) ← Genpkc(1k; r)
then Decsk(Encpk(m; r′)) = m for all valid m, r and r′. We denote Encpk(m; r) (resp.,
Genpkc(1k; r)) for a randomly chosen r also just as Encpk(m) (resp., Genpkc(1k)).

In the case of the Elgamal cryptosystem [7], one fixes a cyclic group G of a prime
order 22k+1 > q > 22k, together with a generator g of G. Then, Genpkc(1k) generates
a random sk ← Zq , and sets pk ← gsk. On input m ∈ G, the encryption algorithm
generates a new random r ← Zq , and sets Encpk(m; r) := (m · pkr, gr). On input
c = (c1, c2) ∈ G2, the decryption algorithm outputs m′ ← c1/c

sk
2 . Elgamal is mul-

tiplicatively homomorphic. I.e., Decsk(Encpk(m1; r1) · Encpk(m2; r2)) = m1 ·m2 for
(sk, pk) ∈ Genpkc(1k). Further discussion is provided in the full version [9].
Non-Interactive Zero-Knowledge Proof of Knowledge. Let L be an arbitrary NP-
language, and let R = {(x, y)} where x ∈ L and y is the corresponding NP-witness.
A Σ-protocol (P1, V1, P2, V2) for a relation R is a three-message protocol between a
prover and a verifier (both stateful), such that (1) the prover and verifier have a com-
mon input x, and the prover has a private input y, (2) the prover sends the first (P1)
and the third (P2) message, and the verifier sends the second message V1, after which
the verifier either rejects or accepts (by using V2), (3) the protocol is public-coin: i.e.,
the verifier chooses her response V1 completely randomly from some predefined set,
(4) the protocol satisfies the security properties of correctness, special honest-verifier
zero-knowledge (SHVZK), and special soundness. We identify a protocol run with the
tuple (x; i, c, r) where (i, c, r) are the three messages of this protocol. A protocol run is
accepting, if an honest verifier accepts this run, i.e., on having input x and seeing the
messages i, c, and r.

Based on an arbitrary Σ-protocol, one can build a non-interactive zero-knowledge
(NIZK) proof of knowledge in the random oracle model, by using the Fiat-Shamir

On E-Vote Integrity in the Case of Malicious Voter Computers 7

heuristic. I.e., given (x, y) ∈ R and a random oracle H [3], the corresponding NIZK
proof of knowledge π consists of (i, c, r), where i ← P1(x, y), c ← H(param, x, i),
and r ← P2(x, y, c), where param is the set of public parameters (like the description
of the underlying group, etc).

We use the next common notation. A NIZK proof of knowledge PK(R(. . .)) is for
relation R, where the prover has to prove the knowledge of variables denoted by Greek
letters. All other variables are known to both the prover and the verifier. For example,
PK(y = Encpk(µ; ρ)∧µ ∈ {0, 1}) denotes a NIZK proof of knowledge that the prover
knows a Boolean µ and some ρ such that y = Encpk(µ; ρ).
NIZK Proof of Equality of Plaintexts. Let PKC = (Genpkc,Enc,Dec) be the Elgamal
cryptosystem. Fix G, g, and two key pairs (sk1, pk1) ∈ Genpkc(1k) and (sk2, pk2) ∈
Genpkc(1k). Let H be a random oracle. The NIZK proof of equality of plaintext is a
NIZK proof of knowledge PK(e1 = Encpk1(g

µ; ρ1) ∧ e2 = Encpk2(g
µ; ρ2)), that e1

and e2 encrypt the same plaintext under a different key.
Range Proof in Exponents. In the following we need a range proof in exponents, i.e.,
a NIZK proof of knowledge PK(e = Encpk(g

µ; ρ) ∧ µ ∈ [0,CC]) for some positive
integer CC. In the discrete logarithm setting the most efficient known range proof in
exponents was proposed in [12]. (Another range proof in exponents that is comparably
communication-efficient, was recently proposed in [4]. However, the latter proof uses
pairings and is thus computationally less efficient.) The communication complexity of
the range proof in exponents from [12] is logarithmic in CC. In the general case (when
assuming stronger assumptions), there exist range proofs in exponents with communi-
cation that is essentially independent of CC. However, if the value of CC is relatively
small, the latter proofs actually are less efficient than the proof of [12].

We specify this proof fully in Sect. 3.1, where we present a NIZK proof of knowl-
edge that uses this range proof in exponents as a subproof.

3 Cryptographic Tools

3.1 Strong Proxy Oblivious Transfer

In a 1-out-of-n proxy oblivious transfer protocol, (n, 1)-POT [13], for `-bit strings, the
chooser has an index x ∈ {0, . . . , n − 1} and a public key pk, the sender has pk and
a database f = (f0, . . . , fn−1) with fi ∈ {0, 1}`, and the proxy has a decryption key.
At the end of the protocol, the proxy obtains fx. A two-message (n, 1)-POT proto-
col Γ = (Gcpir,Query,Reply,Answer) is a quadruple of polynomial-time algorithms,
with Gcpir and Query being randomized, such that for any r, (sk, pk) ← Gcpir(1k; r),
x, f and r′, Answersk(x,Replypk(f,Querypk(x; r

′))) = fx. As before, we denote
Gcpir(1k) := Gcpir(1k; r) and Querypk(x) := Querypk(x; r

′) for randomly cho-
sen r and r′. Here, the proxy generates the key pair (sk, pk) and sends pk to the
chooser and to the sender. The chooser then sends Querypk(x) to the sender, who sends
Replypk(f,Querypk(x)) to the proxy. The proxy obtains fx by applying Answersk.
Semisimulatable Privacy for Strong Proxy Oblivious Transfer. Let Γ =
(Gcpir,Query,Reply,Answer) be a 2-message (n, 1)-POT protocol. Within this work
we use the convention of many previous papers on oblivious transfer protocols to only

8 Sven Heiberg, Helger Lipmaa, and Filip van Laenen

require (semisimulatable) privacy in the malicious model. I.e., chooser’s privacy is guar-
anteed in the sense of indistinguishability (CPA-security), while sender’s privacy is
guaranteed in the sense of simulatability. We note that POT’s privacy definition is a
simple modification of the standard OT’s semisimulatable privacy definition.

We give an informal definition of semisimulatable privacy. For the CPA-security
(i.e., the privacy) of the chooser, (1) no malicious nonuniform probabilistic polynomial-
time sender should be able to distinguish, with non-negligible probability, between the
distributions (pk,Querypk(x0)) and (pk,Querypk(x1)) that correspond to any two of
chooser’s inputs x0 and x1 that are chosen by the sender, and (2) no malicious nonuni-
form probabilistic polynomial-time proxy should be able to distinguish, with non-
negligible probability, between the distributions ({f}, sk, pk,Replypk(f,Querypk(x0)))
and ({f}, sk, pk,Replypk(f,Querypk(x1))) that correspond to any two of chooser’s in-
puts x0 and x1 that are chosen by the sender. (Here, {f} denotes an unordered version
of f .) For sender-privacy, we require the existence of an unbounded simulator that,
given pk, chooser’s message Q∗pk and proxy’s legitimate output corresponding to this
message, generates sender’s message that is statistically indistinguishable from honest
sender’s message Replypk in the real protocol; here Q∗pk does not have to be correctly
computed. As in earlier papers that use semisimulatable privacy, unboundedness is re-
quired mostly so that the simulator could “decrypt” chooser’s first message. A protocol
is private if it is both chooser-private and sender-private.
Instantiation. In the proposed e-voting protocol, the database size n corresponds to the
number of candidates, and therefore it is usually small (say n ≤ 64). This means that it
is sufficient to use a POT protocol with linear-in-n communication. (In the case when n
is larger, one could consider relying on an underlying oblivious transfer protocol with
small polylogarithmic communication like those of [10, 8].) On the other hand, it is
important to minimize sender’s computation. Given those considerations, we base the
new POT protocol on the AIR oblivious transfer protocol [1]. The result has (in the
case of a small n) good communication and computation, is based on a well-known
security assumption (Decisional Diffie-Hellman), and allows one to construct efficient
NIZK proofs of knowledge.

Let PKC = (Genpkc,Enc,Dec) be the Elgamal cryptosystem, and let g ∈ G be a
fixed generator of the plaintext group. Chooser’s private input is x ∈ {0, . . . , n − 1},
and sender’s private input is f = (f0, . . . , fn−1) for fi ∈ {0, 1}` with (relatively) small
`. The new (n, 1)-strong POT protocol consists of the next steps:

1. The proxy sets (sk, pk)← Genpkc(1k), and sends pk to the chooser and the sender.
2. For ρ← Zq , the chooser sets e← Encpk(g

x; ρ), and sends Querypk(x)← e to the
sender.

3. The sender does on input pk and Querypk(x) = e:
(a) For every i ∈ {0, . . . , n − 1}: generate new random values ri, r′i ← Zq , set

ei ← (Encpk(g
i; 1)/e)ri · Encpk(gfi ; r′i).

(b) Send Reply = Replypk(f, (pk, e)) ← {e0, . . . , en−1} to the proxy, where the
set elements in Reply are given in a random order.

4. For all elements e′ in the set Reply, the proxy computes y ← Decsk(e
′). He finds

an y, such that the discrete logarithm z of y on basis g is small. He outputs z as
Answersk(x,Reply).

On E-Vote Integrity in the Case of Malicious Voter Computers 9

Note that the sender can precompute the values Encpk(g
i; 1) and Encpk(g

fi ; 1), and
therefore her online computation is dominated by 2n exponentiations in G. (Note that
in the actual implementation, this protocol will also be accompanied with a NIZK proof
that x is in the correct range.)

Computing discrete logarithm is efficient when all database elements are small, say
` ≤ 5, and can be just done by table-lookup by comparing all values y with values gi for
small i. (Discrete logarithm step could be avoided by using an additively homomorphic
cryptosystem. However, known additively homomorphic cryptosystems are otherwise
considerably less efficient than Elgamal.) Moreover, with an overwhelming probabil-
ity, there is exactly one element ej such that the discrete logarithm of Decsk(ej) is
small. Thus, the proxy can just decrypt all values e′, and then check them against a
precomputed table lookup of gi for small values of i; the comparison step will take
Θ(n · log n) elementary operations. Since n is very small, this part is considerably
faster than decrypting n different ciphertexts. When using say Lipmaa’s [10] oblivious
transfer-protocol based POT, the messenger will only have to decrypt a single element
and then make Θ(log n) comparisons by using binary search. However, the cost of
computing Answer will be higher. Our choice is supported by implementation timings
(Sect. 7) that show that proxy’s time load is much smaller than that of sender. Finally,
note that the messenger has to decrypt in average 50% of the elements, and thus his
online cost is dominated by ≈ n/2 exponentiations.

This protocol is clearly both correct and private, given that Elgamal is CPA-
secure [1].
Weak POT for Large Database Elements. We also need to use proxy oblivious trans-
fer in a situation, where the database elements are significantly longer, such that com-
puting discrete logarithm (as in the proposed strong POT protocol) will not anymore
possible. However, in our application, the proxy is allowed to know an unordered
version {f} of the database f . More precisely, the proxy knows an unordered tuple
F := {gf0 , . . . , gfn−1}, and for efficiency reasons, we assume that this tuple is sorted.
After the end of the POT protocol, he obtains gfx for some unknown x, and he can ver-
ify whether gfx is equal to some element of F by using binary search, in timeΘ(log n).
However, that does not help him in determining x since F does not contain any infor-
mation about indexes. We call this protocol a weak oblivious transfer protocol.

3.2 New NIZK Proof of Knowledge

We need a NIZK proof of knowledge PK(e = Encpkt(g
µ; ρ) ∧ e′ = Querypkm(µ; ρ

′) ∧
µ ∈ [0,CC]), where we use the Elgamal cryptosystem and the new proxy oblivious
transfer protocol. Since in the new POT protocol, the first message is just Encpkt(gµ),
we need to prove an AND of two statements, that e and e′ “encrypt” the same value gµ

(under different keys), and that e′ encrypts a value gµ where µ ∈ [0,CC]. We already
presented both proofs separately. For the sake of completeness, the full interactive
version of this zero-knowledge proof is given in Prot. 1. We need actually a NIZK
proof of knowledge version of it, which is presented later as Prot. 2.
Complexity. In Prot. 1, prover’s computation is dominated by (at most) 3λ+ 4 public-
key encryptions and λ exponentiations. Since Elgamal is used, if necessary most of the
prover’s computation can be done beforehand. However, this should not be necessary in

10 Sven Heiberg, Helger Lipmaa, and Filip van Laenen

System parameters: G, q, g.
Common inputs: CC and λ := blog2 CCc, pkt, pkm, e′.
Prover’s input: µ, ρ′.

1. Prover does:
(a) Compute the values µj ∈ {0, 1} such that µ =

∑λ
j=0 µjCCj with CCj ← b(CC +

2j)/2j+1c.
(b) For j ∈ {0, . . . , λ} do:

i. Generate random ρj , ρ
′
j ← Zq , set ej ← Encpkt(g

µj ; ρj).
ii. If µj = 0 then: Set i0,j ← Encpkt(1; ρ

′
j), c1,j ← Z2k , r1,j ← Zq , i1,j ←

Encpkt(1; r1,j) · (Encpkt(g; 0)/ej)c1,j .
iii. Else if µj = 1 then: Set i1,j ← Encpkt(1; ρ

′
j), c0,j ← Z2k , r0,j ← Zq , i0,j ←

Encpkt(1; r0,j)/e
c0,j
j .

(c) Generate random µand, ρand,1, ρand,2 ← Zq . Set i2,1 ← Encpkt(g
µand ; ρand,1), i2,2 ←

Encpkm(g
µand ; ρand,2).

Send i← (e0, . . . , eλ, (i0,0, i1,0), . . . , (i0,λ, i1,λ), i2,1, i2,2) to the verifier.
2. Verifier does: Set c← Z2k , send c to the prover.
3. Prover does for j ∈ {0, . . . , λ}:

(a) If µj = 0 then: Set c0,j ← c− c1,j mod 2k, r0,j ← ρ′j + c0,j · ρj mod q.
(b) Else if µj = 1 then: Set c1,j ← c− c0,j mod 2k, r1,j ← ρ′j + c1,j · ρj mod q.
Let ρ′ ←

∑
ρjCCj mod q (i.e., e ← Encpkt(g

µ; ρ′)). Set r3 ← µand + c · µ
mod q, r4,1 ← ρand,1 + c · ρ mod q, r4,2 ← ρand,2 + c · ρ′ mod q. Send r ←
(c0,0, . . . , c0,λ, (r0,0, r1,0), . . . , (r0,λ, r1,λ), r3, r4,1, r4,2) to the verifier.

4. Verifier does:
(a) Let e←

∏λ
j=0 e

CCj

j .
(b) For j ∈ {0, . . . , λ}:

i. Set c1,j ← c− c0,j (mod 2k).
ii. If Encpkt(1; r0,j) 6= i0,j ·e

c0,j
j or Encpkt(1; r1,j) 6= i1,j ·(ej/Encpkt(g; 0))c1,j then:

reject.
(c) If Encpkt(gr3 ; r4,1) 6= i2,1 · ec or Encpkm(gr3 ; r4,2) 6= i2,2 · (e′)c then: reject.
Otherwise: accept.

Protocol 1: Interactive version of the required zero-knowledge proof

On E-Vote Integrity in the Case of Malicious Voter Computers 11

1. Prover has inputs (descr(G), g,CC, pkt, pkm, e′). He computes i as in Prot. 1, but then he
sets c← H(descr(G), g,CC, pkt, pkm, e′, i), and computes r that corresponds to this value
of c. The NIZK proof of knowledge is equal to π ← (e0, . . . , eλ, c, r).

2. Verifier has inputs (descr(G), g,CC, pkt, pkm, e′, π). On input π, she computes the missing
elements of i exactly as in the proof of the SHVZK property of Prot. 1. Verifier accepts if
and only if c = H(descr(G), g,CC, pkt, pkm, e′, i).

Protocol 2: NIZK proof of knowledge version of Prot. 1

our application, where it is perfectly fine that it takes a minute for the voter’s computer
to finish computation. Verifier’s computation is dominated by 2λ+ 3 encryptions, λ of
which can be precomputed, and 2λ + 2 exponentiations. In real-world voting, we can
in most cases assume that λ ≤ 6, thus verifier’s computation is dominated by ≤ 15
encryptions and ≤ 14 exponentiations.
Security. The security of Prot. 1 is a straightforward corollary of known results. How-
ever, for the sake of completeness we provide a complete proof.

Theorem 1. Prot. 1 is a correct, specially sound and SHVZK proof of knowledge for
PK(e = Encpkt(g

µ; ρ) ∧ e′ = Encpkm(g
µ; ρ′) ∧ µ ∈ [0,CC]).

.
NIZK Proof of Knowledge Version. Since Prot. 1 is correct, specially sound and
SHVZK, we can now use the Fiat-Shamir heuristic to construct a secure NIZK proof
of knowledge. This version is depicted by Prot. 2. Note that when Elgamal in the sub-
groups of Zp is used then descr(G) = (p, q) and thus c← H(p, q, g, . . .).

4 Cryptographic Protocol for E-Vote Integrity

The voting process consists of a number of voters V , their PCs, one or more messengers
(Messenger), one or more vote collectors (VC) and one or more talliers (Tallier). A voter
enters her preferred candidate number—by using a user-friendly GUI—to her PC, that
then runs a vote registration protocol with the vote collectors. Vote collectors collect
the votes, and send their collection to the talliers after the voting period has finished.
Within this paper, we are not going to specify most of the internal working of the vote
collectors or the vote talliers since there exists already an extensive literature on that.

In this paper, we focus on the case when the voter’s PC is dishonest. Clearly, if vot-
ers would only have access to their PCs, no security could be achieved at all. Therefore,
in addition we need the presence of some independent channels accessible by the voters.
As an example, in many countries, before any elections the voters will anyway receive a
paper voter registration card. We can make use of this channel (prechannel), by adding
extra information on this acknowledgment. In addition, most of the voters have access
to more than one connected device. The second device (postchannel) may be some-
thing simple, like a mobile phone, even if it cannot perform any complex cryptographic
operations, but can still guarantee real-time reception of messages.
Description of Protocol. Assume that we have CC+ 1 > 0 candidates, and every can-
didate has been assigned a number cnd ∈ {0, . . . ,CC}. Since CC is small, we are going

12 Sven Heiberg, Helger Lipmaa, and Filip van Laenen

to use the AIR-based proxy oblivious transfer protocol (Gcpir,Query,Reply,Answer)
and the Elgamal cryptosystem (Genpkc,Enc,Dec). In particular since Elgamal is mul-
tiplicatively homomorphic, instead of the candidate cnd we encrypt gcnd, where g is a
fixed generator of Elgamal’s plaintext group. (If an additively homomorphic cryptosys-
tem were used, one could instead just encrypt cnd. However, such cryptosystems tend
to be less efficient in practice.) The protocol is depicted by Prot. 3.
Complexity. Vote collector’s computation is dominated by the verification of the NIZK
proof of knowledge (which takes at most 2λ + 3 encryptions and 2λ + 2 exponentia-
tions), and by the execution of the sender’s part in the POT protocol that is dominated
by 2(CC+1) encryptions (CC+1 of which can be precomputed) and CC+1 exponenti-
ations. On top of that, the vote collector has to verify a signature, and sign her message
to the messenger. Given say CC+ 1 = 63 candidates (then λ = 5), her computation is
thus dominated by 2λ+ 3+ 2(CC+ 1) = 139 encryptions and 2λ+ 2+ CC+ 1 = 75
exponentiations, some of which can be precomputed. Note that the bulk of vote col-
lector’s computation goes to computing her part of the POT protocol. This seems to
be inevitable since most of the known oblivious transfer protocols (the only exception
is [11]) requite linear computation. On the other hand, while the description of the NIZK
proof of knowledge is seemingly more complex, it is considerably more efficient than
the POT protocol.
Discussion. If Rv[cnd] is long (say ≥ 20 bits) then computing Answer requires the
computation of discrete logarithm with time complexity of ≥ 210 steps by using Pol-
lard’s ρ algorithm. Our solution to this is that instead of Rv[cnd], the check code is
Codev[cnd] = Kdf(gRv[cnd]). This means that the values Codev[cnd] will be sent over
prechannel, too. On the other hand, this step is done by client’s computer only once
in a while and thus is not a bottleneck, and it may even be desirable to prevent DDoS
attacks, by forcing client’s computer to perform some work per every cast vote. Also,
note that the tallier obtains a ciphertext of gcnd. Here, computing of discrete logarithm
is again simple since cnd is small (it can be done by using table-lookup).

5 Security of Integrity Protocol

We now state the security of the e-voting process, given the new integrity protocol. We
will give informal security arguments, leaving formal proofs for further work. In all
following paragraphs, we consider the case when one party is dishonest, but all other
parties are honest. This assumption is not necessary when one additionally implements
protocols that guarantee security against malicious servers. For example, one can use
standard mixnets, but as said, this is not the topic of the current paper. Note that all
parties can blindly refuse accept votes, claiming to have troubles with connection, but
this is unavoidable.
Security against Voter Computer. There are no privacy guarantees against malicious
voter’s PC. However, by doing proper checks, a voter can clearly verify that the voter’s
PC has voted for a wrong candidate, or did not vote at all. In the case the verification
fails, voters can participate in later paper voting that overrides the results of the e-voting.
Security against Vote Collector. Vote collector only sees encrypted data, and thus here
privacy is guaranteed. She cannot change votes (since they are signed).

On E-Vote Integrity in the Case of Malicious Voter Computers 13

System parameters: G, g, q,H .
Voter’s inputs: encryption keys of tallier, messenger, her own private signature key, voter collec-
tor’s signature verification key.
Vote collector’s inputs: encryption key of messenger, his own private signature key, voters’ sig-
nature verification keys.
Tallier’s inputs: his own private decryption key, vote collector’s signature verification key.
Common inputs: CC+ 1 candidates c ∈ [0,CC], λ := blog2 CCc.

1. Before elections:
(a) (G, q, g) and H are fixed and published by a trusted server.
(b) Some server (be it vote collector or a separate server) generates for every voter-

candidate pair (v, cnd) a uniformly random string Rv[cnd] ← Zq , and sets
Codev[cnd] ← Kdf(gRv [cnd]) where Kdf is a key derivation function. It sends signed
codes Codev[cnd] to corresponding voters (by using prechannel) and to the messen-
gers (in numerically sorted order), and signed values Rv[cnd] to the vote collectors. //
In practice, only the first few, say 25 bits of Codev[cnd] are sent.

2. When voter v enters a candidate number cnd (by using favorite UI) to voter’s PC:
(a) Voter’s PC does:

i. He generates the first message e′ ← Querypkm(cnd) of the new weak proxy obliv-
ious transfer protocol.

ii. He generates a non-interactive zero-knowledge proof π = PK(e =
Encpkt(g

µ; ρ) ∧ e′ = Querypkm(µ; ρ
′) ∧ µ ∈ [0,CC]) that both e and e′ corre-

spond to the same valid candidate (see Prot. 2).
iii. He signs (e′, π) by using his secret signing key skv , s← Signskv (e, e

′, π).
iv. He then sends (e′, π, s) to the vote collector. (Note that π contains the list

(e0, . . . , eλ) with ej = Encpkt(g
µj) and µj ∈ {0, 1}.)

(b) After receiving a ballot from the PC, the vote collector does:
i. He verifies both the signature and the zero-knowledge proof (as specified in

Prot. 2). If both verifications are fine, it computes the second message r ←
Replypkm(e

′,Codev) of the POT protocol. Recall here that r consists of a num-
ber of randomly-reordered ciphertexts.

ii. He sends to the voter’s PC a signed message accept or reject.
iii. He signs r and sends it to the messenger.

(c) After receiving a message from the VC, the messenger does:
– She verifies the signature on r. She complains when it does not verify.
– Otherwise, she “decrypts” gRv [cnd] ← Answerskm(cnd,Reply), where skm is mes-

senger’s secret key, and obtains Codev[cnd]← Kdf(gRv [cnd]). (The procedure for
this is specified in Sect. 3.1.) It also alerts the voter by using postchannel with the
value of Codev[cnd].

(d) When receiving a message from postchannel, the voter checks that Codev[cnd] is cor-
rect, as in Step 5 if the ideal-world vote registration protocol. The voter also checks
that her legitimate voting acts are accompanied by a postchannel message, and that she
receives no spurious messages.

3. After the election period has ended, the vote collector sends all values e =
∏
e
CCj

j , signed
with his own private key, to the tallier. The tallier operates by using a suitable e-voting
procedure to deduce the winner.

Protocol 3: The new protocol between a voter, her computer, vote collector, and mes-
senger

14 Sven Heiberg, Helger Lipmaa, and Filip van Laenen

Security against Messenger. Messenger only sees the codes, and which code the voter
is voting for right now, but nothing else. Thus, privacy is covered except in the next
sense: the messenger can test, in the case of a revote, whether this time the voter is
voting for a new or an old candidate. The messenger can also not send a postchannel
message based on such tests. The messenger can also send back a message that corre-
sponds to an earlier vote by the same candidate, but this will be detected by the voter.
Security against Tallier. Tallier only obtains a list of all encrypted ballots, signed by
the vote collector. The tallier cannot thus breach the privacy. To guarantee some robust-
ness/integrity while tallying, one can use some well-known cryptographic protocols (for
example, mixnets).

6 Discussion

While choosing the underlying primitives and protocols, we considered efficiency to
be the most important factor, closely followed by the simplicity of implementation and
standardness of security assumptions. Next we will try to motivate our choices.
Public-key Cryptosystem. While Elgamal is only multiplicatively homomorphic, it is
several times more efficient than the known additively homomorphic cryptosystems,
especially in decryption. In addition, NIZK proofs of knowledge based on known ad-
ditively homomorphic cryptosystems tend to be less efficient. Slower encryption, de-
cryption and NIZK verifications would make vote collector’s computations much more
costly. On the other hand, by using standard tricks, we were able to minimize the
drawbacks of Elgamal public-key cryptosystem, i.e., the need to compute discrete loga-
rithms. Moreover, Elgamal encryption (and in particular, Elgamal encryption based on
elliptic curves) is implemented by several commercially available Hardware Security
Modules, which cannot be said about the known additively homomorphic cryptosys-
tems.
Voter Education. For the added two channels and the new protocol to be useful in
practice, the voters must be educated. They must be told that they should never enter
the check codes to their computer, and that they should actively react to the messages
(or their absence) on the postchannel. This will add extra costs, but the costs will be
hopefully amortized over several elections. Moreover, the Internet and computers are
ubiquitous in the developed world already now, with average people performing much
more complex operations in a daily basis. Thus, after some years we can reasonably
expect the voters to know how to guarantee their own vote privacy (and security in
general case).

7 Implementation Data

We implemented a (slightly optimized) sandbox version of the new e-voting protocol.
We tested it thoroughly, and measured its efficiency by using a personal computer that
runs Linux 2.6.18-6-686, has a Pentium 4 CPU that runs at 2.80GHz and has
512 KB of cache, and has 2 GB of main memory. The code was compiled by using
gcc 4.1.2 with the option -O2. For generating the Elgamal parameters, we used

On E-Vote Integrity in the Case of Malicious Voter Computers 15

the openssl 0.9.8c library, while other number-theoretic operations were imple-
mented by using Victor Shoup’s NTL 5.5.1 library.

We measured the time that was spent during the election setup, and during the elec-
tion itself. In the tallying, one can use any of the standard mixnet-based solutions,
and thus we did not measure this part. For the time measurement, we used the stan-
dard Unix command time, and took the average over 100 different runs. The re-
sults are summarized in the next two tables, for v = {100, 1000, 10 000} voters, and
c ∈ {8, 32, 80} candidates. In all cases, |p| = 1024, |q| = 160, and k = 80. We used
SHA2-256 as the hash function. The first table contains the one-time election setup cost
(codecard generation and Elgamal system parameter value generation) which depends
linearly on the product v · c. More precisely, it is dominated by v · c random number
generations and exponentiations modulo p.

v = 100 v = 1000 v = 10 000
c = 8 c = 32 c = 80 c = 8 c = 32 c = 80 c = 8 c = 32 c = 80

Setup 3.875s 15.40s 38.48s 38.58s 2m 34s 6m 25s 6m 25s 25m 38s 1h 4m 20s

The next table summarizes the online computation time of voter’s PC, vote collector
and messenger, both with and without the zero-knowledge proofs. The costs are given
per one vote, and do not significantly depend on the number of the voters. The total row
is the sum of the time spent by voter’s PC, vote collector and messenger, and gives a
(loose) lower bound on time that must elapse before the voter receives back a message
on the postchannel.

With ZK Without ZK
c = 8 c = 32 c = 80 c = 8 c = 32 c = 80

Voter’s PC 0.21s 0.30s 0.34s 0.02s 0.02s 0.02s
Vote collector 0.40s 1.07s 2.27s 0.20s 0.78s 1.95s
Messenger 0.02s 0.08s 0.22s 0.02s 0.08s 0.20s
Total 0.63s 1.45s 2.83s 0.24s 0.88s 2.17s

We also note that a single exponentiation on this machine took about 0.0048s. More-
over, the timings of the parties include also the precomputation time. In particular, vote
collector’s online computation in the POT protocol requires twice less time than her
total computation in POT.

As seen from these tables, the computation time of the voter’s PC and messen-
ger is quite insignificant even in the case of 80 candidates. On the other hand, if there
are 80 candidates, then the vote collector spends (on average) 2.27 seconds per vote
and cannot process more than about 1 500 votes per hour even under ideal conditions.
Assuming that the vote collector precomputes in the POT protocol, the throughput in-
creases to 3 000 votes per hour. In the case of real e-voting, the cryptographic protocol
is obviously only a part of what the vote collector is busy with, and thus the maxi-
mum throughput is probably around 2 000 votes per hour. In smaller countries, this is
sufficient under normal conditions, but not during the first or the last few hours of the e-
voting. However, this can be alleviated by using either fast (and multicore) processors,
parallel processing by many vote collectors, or even by using hardware acceleration. (In
particular, we are currently considering a Hardware Security Module implementation

16 Sven Heiberg, Helger Lipmaa, and Filip van Laenen

based on elliptic curves.) The use of such (more expensive) alternatives is reasonable,
given the importance of elections in a democratic society. Moreover, in the case of most
elections, the number of candidates is not larger than 10.
Acknowledgments. We would like to thank Kristian Gjøsteen for useful comments.
The second author was supported by Estonian Science Foundation, grant #8058, and
European Union through the European Regional Development Fund.

References

1. Aiello, W., Ishai, Y., Reingold, O.: Priced Oblivious Transfer: How to Sell Digital Goods. In:
Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 119–135. Springer-Verlag,
Innsbruck, Austria (May 6–10, 2001)

2. Ansper, A., Heiberg, S., Lipmaa, H., Øverland, T.A., van Laenen, F.: Security and Trust for
the Norwegian E-voting Pilot Project E-valg 2011. In: Jøsang, A., Maseng, T., Knapskog,
S.J. (eds.): NordSec 2009, LNCS, vol. 5838, pp. 207–222. Springer-Verlag, Oslo, Norway
(2009)

3. Bellare, M., Rogaway, P.: Random Oracles are Practical: A Paradigm for Designing Efficient
Protocols. In: Ashby, V. (ed.) ACM CCS 1993. pp. 62–73. ACM Press, Fairfax, Virginia
(3–5 Nov 1993)

4. Camenisch, J., Chaabouni, R., Shelat, A.: Efficient Protocols for Set Membership and Range
Proofs. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 234–252. Springer-
Verlag, Melbourne, Australia (Dec 7–11, 2008)

5. Canetti, R., Goldreich, O., Halevi, S.: The Random Oracle Methodology, Revisited. In:
STOC 1998. pp. 209–218. New York (May 23–26, 1998)

6. Chevassut, O., Fouque, P.A., Gaudry, P., Pointcheval, D.: The Twist-AUgmented Technique
for Key Exchange. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 410–426. Springer-Verlag, New York, NY, USA (Apr 24–26, 2006)

7. Elgamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Loga-
rithms. IEEE Transactions on Information Theory 31(4), 469–472 (1985)

8. Gentry, C., Ramzan, Z.: Single-Database Private Information Retrieval with Constant Com-
munication Rate. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.)
ICALP 2005. LNCS, vol. 3580, pp. 803–815. Springer-Verlag, Lisboa, Portugal (2005)

9. Heiberg, S., Lipmaa, H., Van Laenen, F.: On E-Vote Integrity in the Case of Malicious Voter
Computers. Tech. Rep. 2010/195, International Association for Cryptologic Research (Apr 8,
2010), available at http://eprint.iacr.org/2010/195

10. Lipmaa, H.: An Oblivious Transfer Protocol with Log-Squared Communication. In: Zhou,
J., Lopez, J. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer-Verlag, Singapore
(Sep 20–23, 2005)

11. Lipmaa, H.: First CPIR Protocol with Data-Dependent Computation. In: Lee, D., Hong, S.
(eds.) ICISC 2009. LNCS, vol. 5984, pp. 193–210. Springer-Verlag, Seoul, Korea (Dec 2–4,
2009)

12. Lipmaa, H., Asokan, N., Niemi, V.: Secure Vickrey Auctions without Threshold Trust. In:
Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 87–101. Springer-Verlag, Southhampton
Beach, Bermuda (Mar 11–14, 2002)

13. Naor, M., Pinkas, B., Sumner, R.: Privacy Preserving Auctions and Mechanism Design. In:
ACM EC 1999. Denver, Colorado (Nov 1999)

