
On Differential Properties of Pseudo-Hadamard
Transform and Related Mappings

(Extended Abstract)

Helger Lipmaa

Laboratory for Theoretical Computer Science
Department of Computer Science and Engineering

Helsinki University of Technology
P.O.Box 5400, FI-02015 Espoo, Finland

helger@tcs.hut.fi

Abstract. In FSE 2001, Lipmaa and Moriai proposed efficient log-time
algorithms for computing some functions that are related to the differen-
tial probability of modular addition. They posed it as an open question
whether their algorithms can be generalized to more complex functions.
In this paper, we will give a fundamentally different proof of their main
result by using a more scalable linear-algebraic approach. Our proof tech-
nique enables us to easily derive differential probabilities of some other
related mappings like the subtraction and the Pseudo-Hadamard Trans-
form. Finally, we show how to apply the derived formulas to analyse
partial round mapping of Twofish.

Keywords: differential probability, linear functions, Pseudo-Hadamard Trans-
form, Twofish.

1 Introduction

To measure the success of first-order differential cryptanalysis [BS91] against
cryptographic primitives like block ciphers, one must be able to efficiently calcu-
late the differential probability of various functions. For example, one might need
to bound the maximum differential probability, or the percentage of impossible
differentials.

Several well-known block ciphers were constructed so as their differential
probabilities are easy to compute. This has enabled to bound the relevant max-
imum differential probabilities and prove the security against the impossible
differential cryptanalysis. While this design methodology has been very produc-
tive (for example, AES and KASUMI are based on such an approach), practice
has shown that ciphers that are specifically constructed to thwart the differential
attacks are sometimes “simple enough” to be attackable by other cryptanalytic
methods [JK97].

By this reason, the majority of modern block ciphers are still designed in a
way that makes it rather difficult to estimate their security against differential

2

cryptanalysis. This difficulty is mostly caused by the hardness of computing
differential probabilities of corresponding ciphers, not even talking about the
maximum differential probabilities or many other differential properties. This
situation is may be best demonstrated by the fact that until lately it was still
not known how to efficiently compute exact differential probabilities of very
simple and widely used mappings like the addition modulo 2n.

Only recently Lipmaa and Moriai made a breakthrough in the last respect,
by showing in [LM01] how to compute the differential probability of addition
modulo 2n, for n > 1. Their algorithms are surprisingly efficient, working in
worst-case time Θ(log n) when a RAM model of computation is assumed. By
contrast, the best previous algorithms for related problems worked often in time
2Ω(n). In the same paper, Lipmaa and Moriai suggested the next “bottom-up”
cryptanalysis principle: start with exhaustive analysis of the simplest primitives
and then gradually work upwards toward the analysis of the whole ciphers.

The current paper is a further extension of the methods from [LM01]. We
compute differential probabilities of a special class of practically important
mappings. All such mappings can be represented as F (x1, x2) = (x1

�κ11 ±
x2
�κ12 , x1

�κ21 ± x2
�κ22) with κjk ≥ 0. Here, x�k denotes the left shift of x

by k bits (i.e., x�k = 2k · x mod 2n), and ± denotes either addition or subtrac-
tion in Z2n , where n ≥ 1. We call the class of such mappings Quasi-Hadamard
Transforms. We show that for all Quasi-Hadamard Transforms, the formula for
differential probability dpF of F can be transformed to a simple matrix equation
in the inputs x and the carries c that occur in additions x1

�κj1 ± x2
�κj2 .

It is valid to assume that c is a constant in the special case when κ11 = κ21,
κ12 = κ22 and κ11 ≤ κ12 + 1. This gives us a matrix equation in x, with 22n ·
dpF (∆x 7→ ∆y) being equal to the number of solutions to this matrix equation,
which can be found by using standard methods from linear algebra. This results,
in particular, in a closed form formula and log-time algorithms for the differential
probability of all functions that have the form F (x1, x2) = 2κ1x1 ± 2κ2x2. Our
formula for addition is equivalent to the formula from [LM01] but our proof
technique is very different and allows to obtain us a more general result after a
relatively compact proof.

Apart from addition and subtraction, only a few Quasi-Hadamard Trans-
forms are used in real block ciphers. The most important one, the PHT (Pseudo-
Hadamard Transform) is employed in SAFER [Mas93] and Twofish [SKW+99].
The PHT is defined as PHT(x1, x2) = (2x1 + x2, x1 + x2). Another exam-
ple is Schnorr’s FFT-hash [Sch92] that employs several functions F of type
F (x1, x2) = (4jx1 + x2, x1 + x2). The mappings of both type are invertible.

In the current paper, we present a formula for dpPHT. We show that a differ-
ential δ = (∆x1,∆x2 → ∆y1,∆y2) is PHT-possible iff corresponding projections
of δ are possible under both coordinate mappings of both PHT and PHT−1. We
also describe a log-time algorithm for dpPHT. Therefore, this paper first solves
completely the case when F (x1, x2) = x1

�κ11 ± x2
�κ12 for κ1 ≤ κ2 + 1, and

second, solves the important case of the Pseudo-Hadamard Transform.

3

We conclude the current paper with some applications of our results to
Twofish [SKW+99] that was one of the leading AES candidates. In particu-
lar, we present a short proof that certain differentials described by Robshaw and
Murphy in [MR02] (that were originally obtained by extensive computer exper-
iments) are optimal under their conditions. Our proof only needs an exhaustive
search over ≤ 210 differentials. We present a few new differentials that are opti-
mal under some more general conditions and might result in other applications
of the methods from [MR02].

Road-Map. In Section 2, we introduce preliminaries and notation that are neces-
sary for reading the rest of this paper. In Section 3, we present a linear-algebraic
framework for computing the differential probability of a large class of interesting
mappings. In particular, in Section 3.2 we derive a formula for the differential
probability of any mapping of the form F (x1, x2) = x1

�κ11 ± x2
�κ12 . In Sec-

tion 4, we present a formula for the differential probability of Pseudo-Hadamard
Transform. In Section 5, we apply our results to the partial round function of
Twofish. We end the paper with conclusions.

2 Preliminaries and Notation

Notation. Throughout this paper, we will denote by n the bit-length of basic
variables. We will equivalently consider these variables as bit-strings of length n,
members of group (Z2n ,+) or members of ring (Zn

2 , ·,⊕). The variables x (the
input variable) and y (the output variable) will have a special meaning.

For any bit-vector α ∈ Z2n
2 , let α1 (resp., α2) denote its least significant

(resp., most significant) half. For any bit-vector α ∈ Zm
2 , m ≥ 1, let α =

〈α〉020+· · ·+〈α〉m−12m−1 be the binary representation of corresponding integer,
with 〈α〉i ∈ {0, 1} being the ith bit of α. That is, we start counting bits from
zero. We use the special notation 〈α〉i to distinguish individual bits of α from
n-bit sub-vectors of a 2n-bit vector.We assume that 〈α〉i = 0 when i 6∈ [0,m−1].

Let wh(α) be the Hamming weight of α, that is, if α ∈ Zm
2 then wh(α) =

〈α〉0 + · · · + 〈α〉m−1. Hamming weight of an α ∈ Zm
2 can be computed in time

Θ(log m) in a RAM model. Let ntz(x) be the number of trailing zeros of x;
that is, ntz(x) = k iff 2k | x but 2k+1 - x. For example, ntz(48) = 4 and
ntz(0) = n. The function ntz can then be computed in time O(log2 n) as ntz(x) :=
wh(x− (x ∧ (x− 1))− 1).

Let α ·β denote the component-wise multiplication in Zm
2 . Let maj(α, β, γ) :=

α·β⊕α·γ⊕β ·γ be the bitwise majority function, xor(α1, . . . , αm) := α1⊕· · ·⊕αm

and eq(α, β, γ) := (1 ⊕ α ⊕ β) · (1 ⊕ α ⊕ γ) be the bitwise equality function.
(The xor function is solely introduced to make some formulas more readable.)
Clearly, 〈maj(α, β, γ)〉i = 1 iff 〈α〉i + 〈β〉i + 〈γ〉i ≥ 2 and 〈eq(α, β, γ)〉i = 1 iff
〈α〉i = 〈β〉i = 〈γ〉i. Observe that matrix indexes (denoted as Aij) start with 1,
while vector indexes (denoted as 〈α〉i) start with 0.

Differential cryptanalysis. Let ∂x = x⊕x∗ be the difference between two inputs
x, x∗ ∈ Zm1n

2 to a fixed mapping F : Zm1n
2 → Zm2n

2 . For every intermediate

4

node Q in the computation graph of F , let q (or q∗) denote the value in this
node when the input was x (or x∗). Let ∂q = q ⊕ q∗ be the corresponding
difference with concrete inputs x and x∗ usually understood from the context.
In particular, let ∂F (x) = F (x) ⊕ F (x∗) be the output difference. With ∆q we
will denote the “desired” difference in node Q. That is, this is the difference the
cryptanalyst is “aiming for”, but which is not necessarily the actual difference
for every choice of x and x∗ with ∂x = ∆x. The cryptanalyst is successful when
the probability Prx[∂F = ∆F] is high. We always assume that ∆x = ∂x since
∂x can be controlled by the adversary in all relevant attack models. The pair
(∆x,∆F) is usually denoted as (∆x→ ∆F).

For any mapping F : Zm1n
2n → Zm2n

2 , the differential probability dpF : Zm1n
2 ×

Zm2n
2 → [0, 1] of F is defined as dpF (δ) := Prx[F (x) ⊕ F (x ⊕ ∆x) = ∆y],

where x is chosen uniformly and randomly from Zm1n
2n . Equivalently, dpF (δ) =

]{x ∈ Zm1n
2 : F (x)⊕ F (x⊕∆x) = ∆y}/]Zm1n

2 . We say that δ is F -possible if
dpF (δ) 6= 0.

Linear algebra. Let Matk×`(R) be the group of k×` matrices over a commutative
ring R. Let Matk(R) := Matk×`(R) when k = `. We will mostly need n× n and
2n × 2n matrices. In the latter case, let Aij , i, j ∈ {0, 1}, denote the n × n
sub-matrix in A that starts from the row i · n + 1 and the column j · n + 1.
For any binary matrix (or vector) A, let ¬A denote the bit-inverse of A, that
is, ¬Aij = 1⊕Aij where Aij ∈ Z2. To simplify reading, we will denote matrices
with capital letters, while we denote vectors with lower-case letters.

Let J be the binary m × m Toeplitz matrix with Jij = 1 iff i = j + 1;
m is usually understood from the context. Clearly, for any k and α ∈ Zm

2 ,
〈Jk · α〉i = 〈α〉i−k. Thus, Jk · α corresponds to the shifting the bits of α to left
k times (when α is seen as a bit-string), or to the modular multiplication 2k · α
in the ring Z2n .

For any α ∈ Zm
2 , let [[α]] be the unique diagonal matrix, such that [[α]]ii =

〈α〉i−1. (Recall that by our convention, the matrix indexes start from 1 but the
vector indexes start from 0.) Note that [[α]]·β = α·β, where on the right hand side
“·” denotes component-wise multiplication in Zn

2 . That is, 〈α · β〉i = 〈α〉i · 〈β〉i.
Also, J · [[α]] · β =

∑m−1
i=1 〈α〉i−1〈β〉i = [[Jα]] · β = (Jα) · β for any α, β ∈ Zm

2 .
Now, let A · α = β be an arbitrary non-homogeneous matrix equation with

A ∈ Matm(Z2) and α, β ∈ Zm
2 . This equation has a solution in α ∈ Zm

2 iff
rank(A) = rank

(
A β

)
, where

(
A β

)
is a m× (m + 1) matrix. If there is at least

one solution, the solution space is a subspace of Zm
2 of dimension m− rank(A).

Hence, it has 2m−rank(A) elements. As an example, if A is the identity matrix
then A · α = β has a solution iff m = rank(A) = rank

(
A β

)
= m. (I.e., always.)

Since 2m−rank(A) = 2m−m = 20 = 1, there is only one solution α← β.

Bit-level operations. Let α�k := 2kα mod 2n be the left shift of α by k bits. If
the variables are seen as bit-vectors of length m then the next operations have
natural Boolean analogues: α·β = α∧β (multiplication in Zm

2 corresponds to the
Boolean AND), Jkα = α�k (multiplication by Jk corresponds to the left shift
by k positions) and ¬α corresponds to bit-negation. While we use the algebraic

5

�
�7

S
Sw -

-

-

-

-

�
�
��

A
A
AU

��*

-

-

-

HHj

-

±

x2

x1

z1

z2

�κ2

�κ1

�κ21

�κ22

�κ12

�κ11

x1

x2

±

±
z12

z21

z11

z22

y1

y2

y1

a) b)

Fig. 1. Computational graph of a function a) F ∈ L1 with three internal nodes and of
a function b) F ∈ L2 with 6 internal nodes

notation during this paper, keeping these few equivalences in mind should make
it fairly simple to transform our formulas to efficient algorithms in any modern
computer language.

Carry and borrow. For any α, β ∈ Zn
2 , let carry(α, β) := α⊕ β ⊕ (α + β) be the

carry and borrow(α, β) := α⊕ β ⊕ (α− β) be the borrow of α and β. We often
denote carry by carry1 and borrow by carry0.

Differential Probability of Addition. Let δ = (∆x1,∆x2 → ∆y) and e =
eq(J∆x1, J∆x2, J∆y). In [LM01], Lipmaa and Moriai showed that, reformu-
lated in our notation, dp+(δ) = 0 when e · (xor(∆x1,∆x2,∆y)⊕J∆x2) 6= 0, and
dp+(δ) = 2−wh(¬e), otherwise.

3 Linear-Algebraic Viewpoint to Differential Probability

3.1 Differential Probability in Language of Matrix Equations

We proceed with computing the differential probabilities of some mappings of
form (x1

�κ11 ±x2
�κ12 , x1

�κ21 ±x2
�κ22). We call such functions Quasi-Hadamard

Transforms. In this section, we develop a general framework for handling all
mappings of form F (x1, x2) = x1

�κ1 + x2
�κ2 . In particular, we show that the

differential probability of such a mapping is equal to 2−2n times the number
of solutions to a certain matrix equation. (The next section will concentrate on
other mappings.)

For σ ∈ {0, 1}, let z1+σz2 := z1 + (−1)σz2, and ∂cσ = ∂cσ(z1, z2) :=
carryσ(z1, z2) ⊕ carryσ(z∗1 , z∗2). Consider the set A := {Jk : 0 ≤ k < n} ⊂
Matn(Z2). Let x =

(
x1 x2

)T . Let L1 ⊂ Mat1×2(Z2n) be such that F ∈ L1 iff for
some σ ∈ {0, 1}, F1 ∈ A and F2 ∈ (−1)σA. Equivalently, F (x) = 2κ1x1 ± 2κ2x2.
Such a function F can alternatively be seen as a ±-operation applied to the re-
sults of some left shift operations, with z1 = x1

�κ1 , z2 = x2
�κ2 and y = z1+σz2.

(See Fig. 1.)
With this representation in mind, we will consistently denote ∆zk := xk

�κk⊕
(x∗k)�κk and ∂y := y⊕y∗. Since the differential xk

�κk−→ zk has probability 1 then
∆zk = ∆xk

�κk and z∗k = zk ⊕ ∂zk. As usual, we denote x := (x1, x2) and

6

∆x := (∆x1,∆x2). Let F ∈ L1. By definition, dpF (δ) = Prx[(x1
�κ1+σx2

�κ2) ⊕
((x∗1)

�κ1+σ(x∗2)
�κ2) = ∆y] = Prx[(z1+σz2) ⊕ (z∗1+σz∗2) = ∆y] = Prx[∂y = ∆y].

Let σ ∈ Z2n be the vector of σ-s, that is, σi = σ, ∀i. The main result of this
subsection is the following:

Theorem 1. Fix a function F ∈ L1, and a differential δ = (∆x1,∆x2 → ∆y).
For fixed z = (z1, z2), let cσ := carryσ(z1, z2). Let ω = ω(δ), a = a(δ, x) ∈ Zn

2 ,
M = M(δ) ∈ Matn×2n(Z2) be defined as follows:

ω :=J(σ · (∆z1 ⊕∆y)⊕∆z1 ⊕ 1⊕ eq(∆z1,∆z2,∆y))⊕
xor(∆z1,∆z2,∆y) , (1)

M :=
(
J · [[∆z1 ⊕∆y]] · Jκ1 J · [[∆z2 ⊕∆y]] · Jκ2

)
,

a :=ω ⊕ J · (∆z1 ⊕∆z2) · cσ .

Then dpF (δ) = Prx[M · x = a]. Equivalently, 22n · dpF (δ) is equal to the number
of solutions to the matrix equation M · x = a in ring Z2.

Since a depends on cσ and hence in a nontrivial manner on x, we must first
get rid of the variable cσ in a to find the number of solutions to the matrix
equation M · x = a. We will deal with this in the next subsection. Rest of the
current subsection will give a proof of Theorem 1. First,

Lemma 1. Let F ∈ L1 and let x ∈ Z2n
2 be such that F (x)⊕ F (x⊕∆x) = ∆y.

Denote q(α, β, γ) := (∂β⊕∂γ)·α⊕(∂α⊕∂γ)·β⊕(∂α⊕∂β)·γ and desired(δ, x) :=
J · (¬σ · (∆z2 ⊕ ∂cσ) ⊕maj(∆z1,∆z2, ∂cσ) ⊕ q(z1, z2, c

σ)) ⊕ xor(∆z1,∆z2,∆y).
Then

desired(δ, x) = 0 . (2)

In general, let D be the event that (2) holds for an uniformly random x. Then
dpF (δ) = Pr[D].

Proof. Let c1 = c = carry(z1, z2) and c0 = b = borrow(z1, z2). By definitions
of carry and borrow, 〈c〉i+1 = 1 iff 〈z1〉i + 〈z2〉i + 〈c〉i ≥ 2 and 〈b〉i+1 = 1
iff 〈z1〉i < 〈z2〉i + 〈b〉i. That is, c1 = c = J · maj(z1, z2, c) and c0 = b = J ·
(z2 ⊕ b ⊕ maj(z1, z2, b)). Thus, cσ = J · (¬σ · (z2 ⊕ cσ) ⊕ maj(z1, z2, c

σ)) and
∂cσ = J · (¬σ · (∆z2⊕∂cσ)⊕maj(z1, z2, c

σ)⊕maj(z1⊕∂z2, z2⊕∂z2, c
σ⊕∂cσ)) =

J · (¬σ · (∆z2 ⊕ ∂cσ) ⊕ maj(∆z1,∆z2, ∂cσ) ⊕ q(z1, z2, c
σ)). But F (x) ⊕ F (x ⊕

∆x) = ∆y iff ∂cσ = xor(∆z1,∆z2,∆y) and therefore F (x) ⊕ F (x ⊕∆x) = ∆y
iff desired(δ, x) = 0. Thus, dpF (δ) = Pr[D]. ut

Our next step is to eliminate the auxiliary variable ∂cσ = cσ ⊕ (c∗)σ that intro-
duces non-linearity to the equation (2).

Proof (Proof of Thm. 1.). Define r(δ, x) :=
∏n−1

i=0 (1 − 〈desired(δ, x)〉i). By
Lemma 1, dpF (δ) = Pr[D], or equivalently, 22n · dpF (δ) =]{x : r(δ, x) =
1}. Observe that desired(δ, x) 6= 0 iff there is a (minimal) `0, such that
〈desired(δ, x)〉`0 = 1. Hence, for any λ(δ, x), r(δ, x) =

∏n−1
i=0 (1−〈λ(δ, x)〉i), given

that λ(δ, x) ≡ desired(δ, x) (mod 2`0+1).

7

Now, r(δ, x) = 1 iff F (x)⊕F (x⊕∆x) = ∆y iff ∂cσ = xor(∆z1,∆z2,∆y). The
same holds also for word lengths n′ < n with the variables that have been reduced
modulo 2n′ . Thus, when

∏i−1
`=0(1 − 〈desired(δ, x)〉`) = 1 then desired(δ, x) ≡ 0

(mod 2i) and thus J ·∂cσ ≡ J · xor(∆z1,∆z2,∆y) (mod 2i+1). Therefore, we set
〈λ〉i to be equal to 〈desired(δ, x)〉i, except that we substitute every occurrence
of 〈J · ∂cσ〉i in 〈desired(δ, x)〉i with an occurrence of 〈J · xor(∆z1,∆z2,∆y)〉i.
Since this applies for every i, what we do is that we substitute J · ∂cσ with
J · xor(∆z1,∆z2,∆y) in desired(δ, x).

Denote α = (∆z1 ⊕ ∆y) · z1 ⊕ (∆z2 ⊕ ∆y) · z2 ⊕ (∆z1 ⊕ ∆z2) · cσ. By the
previous discussion, x is δ-possible iff ∂cσ = desired(δ, x)⊕ xor(∆z1,∆z2,∆y) =
J · (¬σ · (∆z2 ⊕ ∂cσ) ⊕ maj(∆z1,∆z2, ∂cσ) ⊕ q(z1, z2, c

σ)) = J · (σ · (∆z1 ⊕
∆y)⊕1⊕∆z1⊕ eq(∆z1,∆z2,∆y)⊕α) is equal to xor(∆z1,∆z2,∆y). Therefore,
dpF (δ) = Prx[J ·α = ω] = Prx[J ·α = ω] = Prx[J · ((∆z1⊕∆y) ·Jκ1x1⊕ (∆z2⊕
∆y) · Jκ2x2) = a]. The claim follows. ut

3.2 Algorithm for dpF for F ∈ L1

In the previous subsection we established that 22n ·dpF is equal to the number of
solutions to a certain matrix equation M · x = a. Initially, this matrix equation
depended on both ∂cσ and cσ. While we thereafter showed how to eliminate the
dependency on ∂cσ, we still have a matrix equation that depends on the carry
cσ. However, it is easy to show that this problem is not severe.

Let again σ ∈ {0, 1} and let F ∈ L1, F (x1, x2) = 2κ1x1+σ2κ2x2. As in the
proof of Thm. 1, we can consider the matrix equation M · x = a as a system of
equations in Z2, starting with bit i = 0. Now, for every i, 〈cσ〉i is already fixed
and known when we look at the row i, since it is a function of the “previous”
bits of x1 and x2. Hence, J · [[∆z1⊕∆z2]] · cσ = J · (∆z1⊕∆z2) · cσ is a constant
(although, an a priori unknown) vector and therefore, a is a constant vector.
Therefore, we have proven that

dpF (δ) =

{
0 , rank(M) 6= rank

(
M a

)
,

2− rank(M) , otherwise .
(3)

Next we will compute the ranks of associated matrices M and
(
M a

)
. (Note that

here a = a(δ) does not depend on x anymore.) For this, we must introduce an
additional assumption κ1 ≤ κ2 + 1. The reasoning behind this assumption will
become obvious from the proof of Thm. 2.

Theorem 2. Let Ek ∈ Zn
2 be the vector with 〈Ek〉i = 1 iff i ≥ k. (That is, Ek =

¬(2k−1) when seen as an element of Z2n .) Let us denote ej := J((∆zj⊕∆y)·Eκj)
and e := e1 ∨ e2. Let F (x1, x2) = z1+σz2 ∈ L1 be such that κ1 ≤ κ2 + 1. Then

dpF (δ) =

{
0 , ¬e · (J(¬σ · (∆z1 ⊕∆y)⊕∆z2)⊕ xor(∆z1,∆z2,∆y)) 6= 0 ,

2−wh(e) , otherwise.

Equivalently, Algorithm 1 computes dpF (δ) in time O(log n), given a RAM model
of computation.

8

Algorithm 1 An O(log n)-time algorithm for computing dpF (∆x1,∆x2 → ∆y)
where F (x1, x2) = 2κ1x2+σ2κ2x2. Here we assume that κ1 ≤ κ2 + 1
INPUT: (∆x1, ∆x2 → ∆y) and F as represented by κj and σ ∈ {0, 1}
OUTPUT: dpF (∆x1, ∆x2 → ∆y)

1. Let ∆zj ← ∆xj
�κj for j ∈ {1, 2};

2. Let ej ← ((∆zj ⊕∆y) ∧ ¬(2κj − 1))�1 for j ∈ {1, 2};
3. Let e← e1 ∨ e2;
4. If ¬e ∧ (((¬σ ∧ (∆z1 ⊕∆y))⊕∆z2)

�1 ⊕∆z1 ⊕∆z2 ⊕∆y) then return 0 ;
5. Return 2−wh(e).

(Algorithm 1 works in time O(log n) since the Hamming weight wh can be com-
puted in time O(log n) when working in the RAM model [LM01].)

Proof. Recall that by Thm. 1, dpF (δ) = Prx[M ·x = a]. Therefore, dpF (δ) = 0 if
rank(M) 6= rank

(
M a

)
, and dpF (δ) = 2− rank(M), otherwise. Next, for any vector

v, (J [[v]]Jκk)ij = 〈v〉i−2 when j = i−1−κk and i > κk +1, and (J [[v]]Jκk)ij = 0,
otherwise. (Recall that the bits 〈v〉i are counted from i = 0 to i = n − 1.)
Therefore, rank(M) = rank

(
J [[∆z1 ⊕∆y]]Jκ1J [[∆z2 ⊕∆y]]Jκ2

)
=]{i ∈ [1, n] :

(J [[∆z1⊕∆y]]Jκ1)i,i−κ1−1 = 1∨(J [[∆z2⊕∆y]]Jκ2)i,i−κ2−1 = 1} =]{i ∈ [0, n−1] :
〈Eκ1 · J(∆z1 ⊕∆y)〉i = 1∨ 〈Eκ2J(∆z2 ⊕∆y)〉i = 1} = wh(Eκ1 ∨Eκ2) = wh(e).
That is, if δ is F -possible, then dpF (δ) = 2−wh(e).

Let us next establish when the equation M ·x = a does not have any solutions.
Since M is an echelon matrix up to the permutation of rows, then rank

(
M a

)
6=

rank(M) only if for some i ∈ [0, n − 1], (M1)i+1,i−κ1 = (M2)i+1,i−κ2 = 0 but
〈a〉i = 1. This happens iff for some i ∈ [0, n − 1], 〈e1〉i = 〈e2〉i = 0 (i.e.,
〈e1 ∨ e2〉i = 0) but 〈a〉i = 〈ω ⊕ J(∆z1 ⊕∆z2) · cσ〉i = 1. Thus, δ is F -impossible
iff ¬(e1 ∨ e2) · (ω⊕ J(∆z1⊕∆z2) · cσ) 6= 0. (Recall that ω = J(σ · (∆z1⊕∆y)⊕
∆z1 ⊕ 1⊕ eq(∆z1,∆z2,∆y))⊕ xor(∆z1,∆z2,∆y).)

We are only left to prove that the next two facts hold in the
case 〈e1 ∨ e2〉i = 0, or equivalently, in the case 〈e1〉i = 〈e2〉i = 0.
First, 〈J(∆z1 ⊕ 1⊕ eq(∆z1,∆z2,∆y))〉i = 〈J · xor(∆z1,∆z2,∆y)〉i. Really,
if i ≥ κ1 then 〈e1〉i = 0 ⇒ 〈∆z1〉i−1 = 〈∆y〉i−1 and therefore
〈∆z1 ⊕ 1⊕ eq(∆z1,∆z2,∆y)〉i = 〈xor(∆z1,∆z2,∆y)〉i. Otherwise, if i ≥ κ2

then 〈∆z2〉i−1 = 〈∆y〉i−1 and thus 〈∆z1 ⊕ 1⊕ eq(∆z1,∆z2,∆y)〉i = 〈∆y〉i.
(Since κ1 ≤ κ2 + 1 we can ignore this case.) Finally, let i ≤ min(κ1, κ2).
Then 〈∆z1〉i−1 = 〈∆z2〉i−1 = 0 and therefore 〈∆z1 ⊕ 1⊕ eq(∆z1,∆z2,∆y)〉i =
〈1⊕ eq(0, 0,∆y)〉i = 〈xor(∆z1,∆z2,∆y)〉i.

Second, 〈J(∆z1 ⊕∆z2) · cσ〉i = 0. Really, first assume σ = 1. If i ≤ κ1

then 〈Jκ1x1〉i−1 = 〈x1〉i−κ1−1 = 0 and hence 〈c1〉i = 0, and therefore
〈J(∆z1 ⊕∆z2) · c1〉i = 0. The case i ≤ κ2 is dual. On the other hand, when
i > max(κ1, κ2) then 〈J · (∆z1 ⊕∆z2) · cσ〉i = 〈(e1 ⊕ e2) · cσ〉i = 0.

Let us now consider the case σ = 0. If i ≤ κ2 then 〈c0〉i = 〈(1⊕ z1) · c0〉i−1,
which means that c0 ≡ 0 (mod 2κ2). Otherwise, if i ≤ κ1 then 〈c0〉i = 1 ⇐⇒
〈z2 ⊕ c0〉i−1 = 1, which means that c0 ≡ (2ntz(z2)+1 − 1) (mod 2κ1). (Since κ1 ≤

9

κ2 + 1 we can ignore this case.) If i ≥ max(κ1, κ2) then 〈J(∆z1 ⊕∆z2)c0〉i = 0
due to 〈J(e1 ⊕ e2)〉i = 0. ut

Corollary 1. Let +(x1, x2) = x1 + x2 be the Z2n-addition mapping and let
−(x1, x2) = x1 − x2 be the Z2n-subtraction mapping. Recall that α ∨ β =
α ⊕ β ⊕ α · β. First, the differential δ is +-impossible if ¬(J · (∆x1 ⊕ ∆y) ∨
J · (∆x2 ⊕ ∆y)) · (xor(∆x1,∆x2,∆y) ⊕ J · ∆x2) 6= 0. Otherwise, dp+(δ) =
2−wh(J·(∆x1⊕∆y)∨J·(∆x2⊕∆y)). Second, dp−(δ) = dp+(δ) for any δ.

Proof. First claim is trivial. For the proof of the second claim it is
sufficient to observe that in this case, κ1 = κ2 = 0, and that in
the third paragraph of the proof of Theorem 2, if 〈e1〉i = 〈e2〉i =
0 then 〈ω〉i = 〈J · (∆x1 ⊕ 1⊕ eq(∆x1,∆x2,∆y))⊕ xor(∆x1,∆x2,∆y)〉i =
〈J ·∆x1 ⊕ xor(∆x1,∆x2,∆y)〉i = 〈J ·∆x2 ⊕ xor(∆x1,∆x2,∆y)〉i for i >
max(κ1, κ2) = 0. ut

The formula for dp+, presented in Corollary 1, is equivalent to the formula
from [LM01]. Its complete proof is somewhat longer than the one in [LM01].
However, our proof is based on a more scalable approach, that allows us to find
similar formulas for other related mappings like subtraction, without having to
write down yet another, somewhat different, proofs.

Corollary 2. Let x,∆x,∆y ∈ Z2n . Let F = +α be the unary operation that
adds the constant α to its single argument, F (x) = x + α. Let δ = (∆x→ ∆y).
Then, by definition, dp+α(δ) = Prx[(x + α) ⊕ ((x ⊕ ∆x) + α)]. Then δ is +α-
impossible iff ¬(J ·(∆x1⊕∆y)) ·¬(J ·∆y) ·(∆x1⊕∆y) 6= 0. Otherwise, dp+(δ) =
2−wh((J·(∆x1⊕∆y)∨J·∆y)).

Proof. Straightforward from Corollary 1. ut

4 The Pseudo-Hadamard Transform

4.1 Generalization to 2 × 2 Matrices

Next, we will look at a slightly more general case. Namely, assume that L2 ⊂
Mat2(Z2n) is such that

F =
(

F11 F12

F21 F22

)
∈ L2

iff for some σ ∈ {0, 1}, Fj1 ∈ A and Fj2 ∈ (−1)σA. Then F (x) =
(2κ12x1+σ2κ12x2, 2κ22x1+σ2κ22x2), for some κjk ≥ 0. Alternatively, such map-
pings F can be described by using a computation graph with zij = xj

�κij and
yi = zi1±zi2. (See Figure 1.) We call the mappings from L2 the Quasi-Hadamard
Transforms. Next, let us state some generalizations of previous results.

10

q
q

-

- ? -

-

6

..

..

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

...........

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

............

...........

∆x1 ∂y2

∆x1

∆x2 ∂y2

∆x1

∂y2

∂y1 PHT1 : y1 = Jx1 � x2

PHT2 : y2 = x1 � x2PHT−1
2 : x2 = Jy2 � y1

PHT−1
1 : x1 = y1 � y2

Fig. 2. Propagation of differences during the Pseudo-Hadamard Transform

Lemma 2. [Generalization of Thm 1.] Let δ = (∆x→ ∆y) with ∆x,∆y ∈ Z2n
2 .

For j ∈ {1, 2}, let ωj := J · (σ · (∆zj1⊕∆yj)⊕∆zj1⊕1⊕eq(∆zj1,∆zj2,∆yj))⊕
xor(∆zj1,∆zj2,∆yj). Let

M = M(δ) :=
(

J · [[∆z11 + ∆y1]]Jκ11 J · [[∆z12 + ∆y1]]Jκ12

J · [[∆z21 + ∆y2]]Jκ21 J · [[∆z22 + ∆y2]]Jκ22

)
,

a = a(δ, x) :=
(

ω1 ⊕ J · (∆z11 ⊕∆z12) · cσ
1

ω2 ⊕ J · (∆z21 ⊕∆z22) · cσ
2

)
.

Then dpF (δ) = Prx[M · x = a].

Proof. Straightforward corollary of Theorem 1. ut

Note that Thm. 1 can additionally be generalized to more than 2-dimensional
matrices.

4.2 Analysis of PHT

While Lemma 2 is a simple generalization of our previous result for F ∈ L1,
we cannot proceed by using exactly the same methodology as in Thm. 2. The
reason is that here we cannot assume that the carries are constant so as to use
simple linear algebra to derive the number of solutions to M · x = a. However,
it comes out that at least in some special cases the value of dpF will depend on
the values of dpF ′

for some functions F ′ in class L1.
If F ∈ L2 is an invertible mapping then detF = (−1)σ2κ112κ22 −

(−1)σ2κ122κ22 6= 0 and

F−1 =
1

detF

(
(−1)σ2κ22 −(−1)σ2κ12

−2κ21 2κ11

)
,

or F−1(y1, y2) = 1
det F ((−1)σ2κ22y1−(−1)σ2κ12y2, 2κ11y2−2κ21y1). Let ∆x,∆y ∈

Z22n . Clearly, δ = (∆x → ∆y) is F -possible iff δ−1 = (∆y → ∆x) is F−1-
possible. The most important of invertible mapping F ∈ L2 from a cryptographic
viewpoint,

F = PHT =
(

2 1
1 1

)
with PHT−1 =

(
1 −1
−1 2

)
,

11

is called the Pseudo-Hadamard Transform (PHT, [Mas93]). The PHT is em-
ployed in block ciphers like SAFER [Mas93] and Twofish [SKW+99] for achieving
better diffusion. (See Figure 2.)

For j ∈ {0, 1}, let Fj(x) denote the projection of F (x) to the jth coordinate.
That is, Fj(x1, x2) = 2κj1x1+σ2κj2x2. By definition, dpFj (∆x1,∆x2 → ∆y1) =
Prx[(2κj1x1+σ2κj2x2)⊕ ((2κj1x1⊕∆x1)+σ(2κj2x2⊕∆x2)) = ∆y1]. In particular,
PHT1(x1, x2) = 2x1 + x2 and PHT2(x1, x2) = x1 + x2.

Theorem 3. Let us denote ekj := J((∆zkj ⊕ ∆yk) · Eκkj
). Let ej := ej1 ∨

ej2. (1) δ is PHT-possible iff all next four differential probabilities are positive:
dpPHT1(∆x1,∆x2 → ∆y1), dpPHT2(∆x1,∆x2 → ∆y2), dpPHT−1

1 (∆y1,∆y2 →
∆x1), dpPHT−1

2 (∆y2,∆y1 → ∆x2). (2) If δ is PHT-possible, then dpPHT(δ) =
dp+(∆x1,∆x2 → ∆y2) · 2−wh(e1·J(¬(eq(∆x1,∆y1,∆y2)))·J(¬(eq(∆x2,∆y1,J∆y2)))).

Proof (Sketch.). (1,⇒) Straightforward: since PHT is invertible then δ = (∆x→
∆y) is PHT-possible iff δ−1 = (∆y → ∆x) is PHT−1-possible. Rest of the proof
is omitted from the extended abstract. ut

Equivalently, δ is PHT-possible iff 〈J∆x1 ⊕∆x2 ⊕∆y1〉i = 0 and the
next four differential probabilities are positive: dp+(∆x1,∆x2 → ∆y1),
dp+(∆x1,∆x2 → ∆y2), dp+(∆y1,∆y2 → ∆x1), dp+(J∆y2,∆y1,∆x2). (Note
that all four differential probabilities can be computed by using Algorithm 1.)
Moreover, a computationally slightly less expensive formula for dpPHT is
dpPHT(δ) = 2−wh(e2) · 2−wh(e1)·J(¬(eq(∆x1,∆y1,∆y2)))·J(¬(eq(∆x2,∆y1,J∆y2)))).

Based on Theorem 3 one can build a Θ(log n)-time algorithm for computing
the value of dpPHT in the RAM model by using the same ideas as in [LM01].

5 Application to Twofish

In their paper [MR02], Murphy and Robshaw proposed an interesting new
methodology for attacking Twofish by first finding a good characteristic and
then fixing such key-dependent S-boxes that satisfy this characteristic. However,
their concrete approach is somewhat heuristic and based on computer experi-
ments. For example, in [MR02, Section 4.1] they choose a differential (0,∆z2),
such that the differential probability of (0,∆z2 → ∆z2,∆z2) w.r.t. the PHT and
averaged sub-key additions (see Fig. 3) would be large. As they established ex-
perimentally, choosing ∆z2 = A0E080A0 results in a probability p = 2−14, where
p was determined experimentally averaged over random inputs and random ad-
ditive round keys. No motivation was given in their paper why this concrete
differential was chosen instead of some others.

Based on our formula for dpPHT we are able to determine that

Theorem 4. Let F be the part of the Twofish’s round that contains S-boxes,
MDS-s and the PHT. Let the input-to-F difference ∆x =

(
∆x1 0

)T be cho-
sen such that only one of the four S-boxes becomes active. Then dpF (0,∆z2 →

12

-

-

-

-

-

-

-

-

p

p

-

- ?

-

6

-

? -

-?

-

-

-

-

-

-

-

-

∂z1

∆x1

MDS

MDS

K2r+9

K2r+8

∆y1

∆y2

z1

z2

∂z2

y1 = 2z1 + z2

y2 = z1 + z2

∆y1

∆y2

PHT

F

x1

x2

∆x2

∆x1

S-box 3

S-box 2

S-box 1

S-box 0

S-box 2

S-box 3

S-box 1

S-box 0

Fig. 3. Propagation of differences within a partial round of Twofish

Table 1. Optimal differences for the partial Twofish round function

(∆x1, ∆x2) δ = (0, ∆z2 → ∆z2, ∆z2) dpF (δ)

1 active S-box

(00000000, 00000080) (00000000, e0e0a080→ e0e0a080, e0e0a080) 2−13

(00000000, 00000400) (00000000, 04050707→ 04050707, 04050707) 2−13

(00000000, 00008000) (00000000, 80a0e0e0→ 80a0e0e0, 80a0e0e0) 2−12

(00000000, 00008900) (00000000, 89f10101→ 89f10101, 89f10101) 2−13

(00000000, 00040000) (00000000, 07040705→ 07040705, 07040705) 2−13

(00000000, 00800000) (00000000, e080e0a0→ e080e0a0, e080e0a0) 2−13

(00000000, 04000000) (00000000, 05070405→ 05070405, 05070405) 2−13

(00000000, 80000000) (00000000, a0e080a0→ a0e080a0, a0e080a0) 2−12

Two active S-boxes

(00000000, 00040004) (00000000, 00030201→ 00030201, 00030201) 2−6

(00000000, 004e00ed) (00000000, 80004204→ 80004204, 80004204) 2−6

(00000000, 00696900) (00000000, c0400080→ c0400080, c0400080) 2−6

(00000000, 04000004) (00000000, 02000101→ 02000101, 02000101) 2−5

(00000000, 08000008) (00000000, 04000202→ 04000202, 04000202) 2−6

(00000000, 10000010) (00000000, 08000404→ 08000404, 08000404) 2−6

(00000000, 20000020) (00000000, 10000808→ 10000808, 10000808) 2−6

(00000000, 40000040) (00000000, 20001010→ 20001010, 20001010) 2−6

(00000000, 69000069) (00000000, 80004040→ 80004040, 80004040) 2−4

(00000000, 80000080) (00000000, 40002020→ 40002020, 40002020) 2−6

(00000000, 69690000) (00000000, 80c0c000→ 80c0c000, 80c0c000) 2−6

Three active S-boxes

(00000000, 0017eb43) (00000000, 80000041→ 80000041, 80000041) 2−3

(00000000, 3a00a6e8) (00000000, 80008000→ 80008000, 80008000) 2−2

(00000000, 53001d53) (00000000, 80400000→ 80400000, 80400000) 2−2

(00000000, 25a61f00) (00000000, 01800000→ 01800000, 01800000) 2−3

13

∆z2,∆z2) ≥ 2−13 only in the 8 cases, depicted in Table 1. Therefore, the differ-
ential with ∆z2 = A0E080A0 chosen in [MR02] is optimal for F under the given
constraints, and there is only one another differential with ∆z2 = 80A0E0E0
that has the same differential probability. Analogously, if two S-boxes are al-
lowed to be active then there are 11 different differentials (0,∆z2), such that
dpF (0,∆z2 → ∆z2,∆z2) ≥ 2−6. If three S-boxes are active then there are 4
differentials (0,∆z2), such that dpF (0,∆z2 → ∆z2,∆z2) ≥ 2−3.

Proof. One can prove this by doing by exhaustive search over 210 = 1024 (in
the one active S-box case), 3 · 217 (in the two active S-boxes case) or 32 · 226 (in
three active S-boxes case) differentials. ut
In all cases, one spends Θ(log n) steps for computing the corresponding differ-
ential probability. Thus, our method is still efficient with 3 active S-boxes.

One of the conclusions of this lemma is that if two active S-boxes can be
tolerated then it is possible to find a differential that is 28 times more probable—
this sharp growth might, in some situations, compensate the need for the second
active S-box, and therefore potentially lead to some attack against Twofish.

6 Conclusions

We extended the previous results of Lipmaa and Moriai [LM01] by developing a
linear-algebraic framework for proving the differential properties for addition (in
Z2n) and related functions w.r.t. the XOR (or addition in Zn

2). While [LM01] ex-
haustively analysed the addition itself but gave no guidelines for how to analyse
related functions, we were able to compute differential probabilities of differ-
ent functions like the subtraction and the Pseudo-Hadamard transformation as
the special cases of our general approach. Our proof methods might be of in-
dependent interest. For example, we showed that the differential probability of
2αx ± 2βy, α ≤ β + 1, is equal to the number of solutions to a certain matrix
equation. Due to the lack of space, this extended abstract has been shortened
by omitting the complete solution for dpF for any F ∈ L2 and several proofs.
Corresponding formulas will appear in the full version.

We ended the paper by presenting optimal differentials for the partial Twofish
round function. In particular, we were able to prove formally that a certain dif-
ferential found by Murphy and Robshaw is really optimal under given conditions.
We also presented other differentials that are optimal under somewhat general
conditions. These results show that the results of the current paper are not only
theoretical but might be directly applicable in practical cryptanalysis.

Together with [LM01], the current paper presents a positive step forward in
helping to construct ciphers that are secure against differential cryptanalysis.
While until now, the differential properties of ciphers that include both modular
addition and exclusive OR-s have only found experimentally by heuristic meth-
ods, our results make it possible to prove rigorously lower bounds on differential
attacks of at least some ciphers. As compared to [LM01], our paper stepped sig-
nificantly closer to the reality, since we were able to prove that some differentials
used in an actual attack are optimal.

14

Finally, all results of this paper have been implemented in the C language
and verified by using a computer. In particular, it took about 30 seconds for a
1.4 GHz Athlon to produce the numbers in Table 1.

Acknowledgments and Further Work

This work was partially supported by the Finnish Defense Forces Research Insti-
tute of Technology. We would like to thank Stefan Lucks, Markku-Juhani Olavi
Saarinen and anonymous referees for useful comments.

An interesting open question is whether our methods can be applied to a
more general class of mappings than L2. We hope that more applications of our
results to the real ciphers will be found in the future.

The need for partial exhaustive search in Thm. 4 was caused by the nontriv-
ial preconditions on the inputs. When there are no such preconditions (that is,
all 232 values ∆z2 are allowed), we hope that an analytic formula can be derived
for optimal differentials, akin to the ones presented in [LM01] for optimal dif-
ferentials of additions. It might even be true that there is a closed-form formula
for optimal differentials when ∆z2 is restricted.

References

[BS91] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryp-
tosystems. Journal of Cryptology, 4(1):3–72, 1991.

[JK97] Thomas Jakobsen and Lars Knudsen. The Interpolation Attack on Block
Ciphers. In Eli Biham, editor, Fast Software Encryption ’97, volume 1267
of Lecture Notes in Computer Science, pages 28–40, Haifa, Israel, January
1997. Springer-Verlag.

[LM01] Helger Lipmaa and Shiho Moriai. Efficient Algorithms for Computing Dif-
ferential Properties of Addition. In Mitsuru Matsui, editor, Fast Software
Encryption ’2001, volume 2355 of Lecture Notes in Computer Science, pages
336–350, Yokohama, Japan, 2–4 April 2001. Springer-Verlag, 2002.

[Mas93] James L. Massey. SAFER K-64: A Byte-Oriented Block-Ciphering Algo-
rithm. In Ross Anderson, editor, Fast Software Encryption ’93, volume
809 of Lecture Notes in Computer Science, pages 1–17, Cambridge, UK,
9–11 December 1993. Springer-Verlag.

[MR02] S. Murphy and M. J. B. Robshaw. Key-dependent S-boxes and Differential
Cryptanalysis. Designs, Codes and Cryptography, 27(3):229–255, 2002.

[Sch92] Claus-Peter Schnorr. FFT-Hash II, Efficient Cryptographic Hashing. In
Rainer A. Rueppel, editor, Advances in Cryptology — EUROCRYPT ’92,
volume 658 of Lecture Notes in Computer Science, pages 45–54, Bala-
tonfüred, Hungary, 24–28 May 1992. Springer-Verlag. ISBN 3-540-56413-6.

[SKW+99] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall,
and Niels Ferguson. The Twofish Encryption Algorithm: A 128-Bit Block
Cipher. John Wiley & Sons, April 1999. ISBN: 0471353817.

