8th Information Security Conference Singapore, September 2005

An Oblivious Transfer Protocol with Log-Squared Communication

Helger Lipmaa

Cybernetica AS and University of Tartu (Estonia)

http://www.cs.ut.ee/~helger

ISC 2005, 22.09.2005

<u>Outline</u>

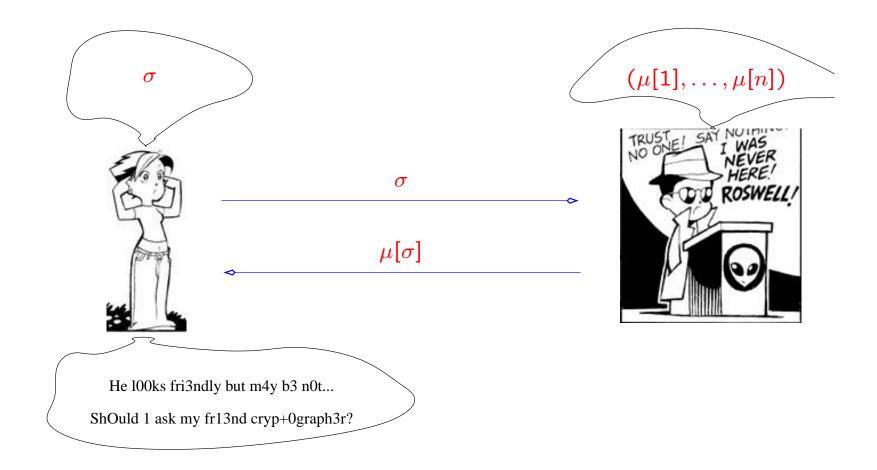
- Motivation
- Previous Work
- New Construction
- Conclusions

Outline

- Motivation
- Previous Work
- New Construction
- Conclusions

* Parental advisory: this is not the only application of PIR-s. Stay tuned!

ISC 2005, 22.09.2005



ISC 2005, 22.09.2005

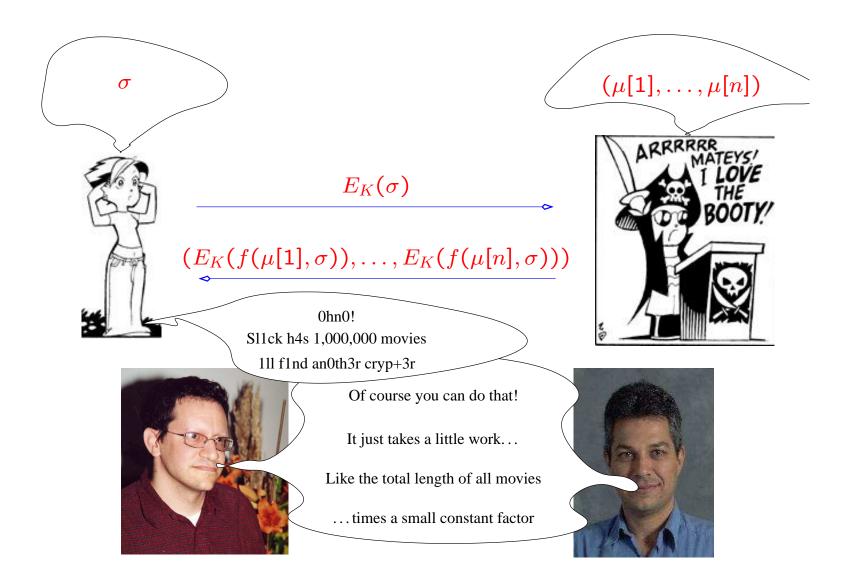
- Chooser wants to retrieve a single element from a database of size n.
 - * Every element is from $\{0,1\}^{\ell}$.
- Database maintainer should not know which element was retrieved.
- Security + communication-efficiency.
 - Chooser's security is computational (secure if Sender is computationally bounded)
 - * Information-theoretic security (secure against unbounded Sender): communication is at least $\Omega(n)$.

- Non-private version: Monique sends σ , Slick sends $\mu[\sigma]$
 - * Communication: $\log n + \ell$
- Private version: cannot do better
- Goal: to do as close to $\log n$ as possible
- Intermediate goal:
 - * Polylogarithmic: $O(\log^b n)$ for some b

<u>Outline</u>

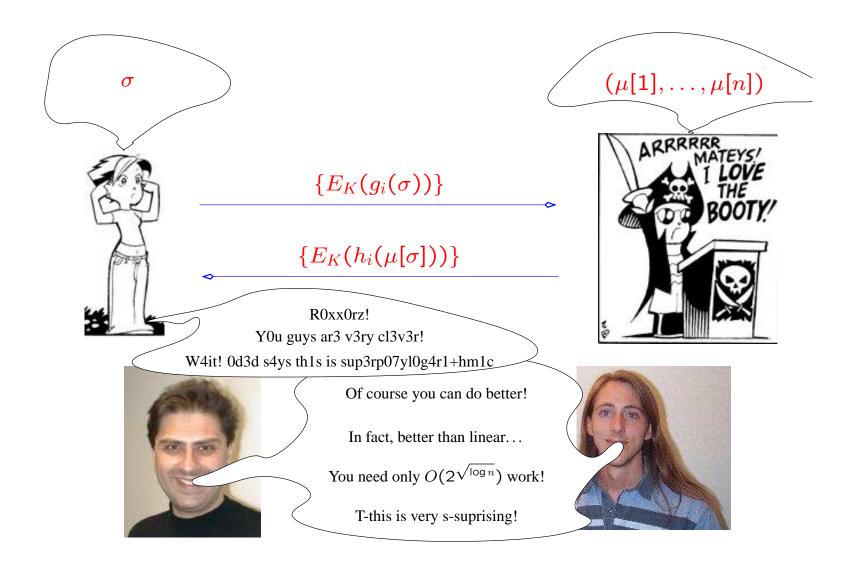
- Motivation
- Previous Work
- New Construction
- Conclusions

Previous Work



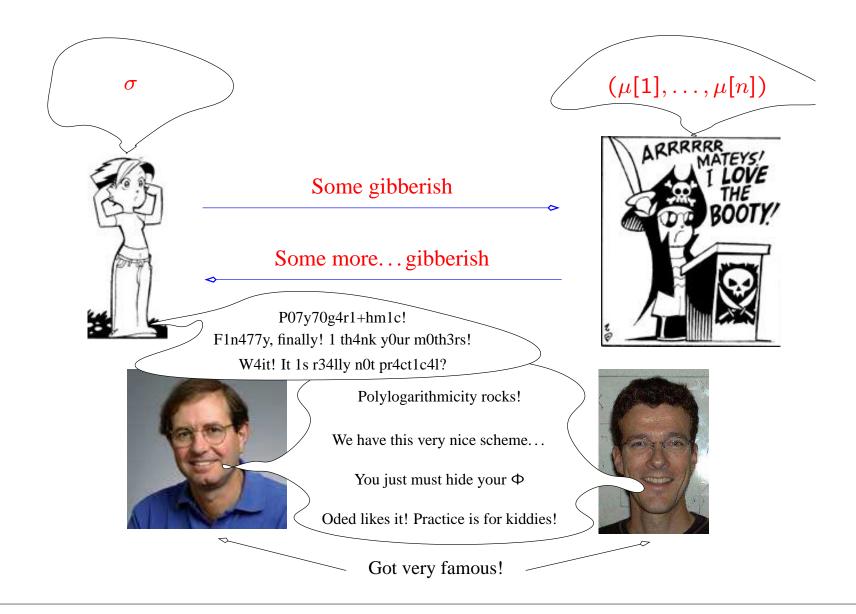
ISC 2005, 22.09.2005

Previous Work



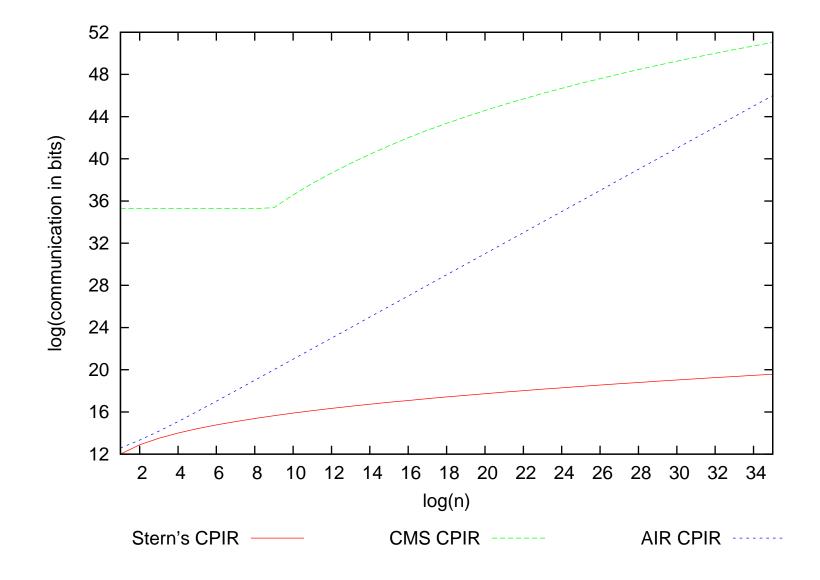
ISC 2005, 22.09.2005

Previous Work



ISC 2005, 22.09.2005

Previous Work: Overview



Previous Work: Overview

- [Aiello, Ishai, Reingold 2001][Naor, Pinkas, 2001]: 1-round, O(ℓ · n) communication. (Protects also the server.)
- [Kushilevitz, Ostrovsky, 1997][Stern, 1998]: improved communication to $O(\ell \cdot \sqrt{\log n} \cdot 2^{\sqrt{\log n}})$.
 - * Not polylogarithmic, but up to now the most practical!
- [Cachin, Micali, Stadler, 1999]: can do polylogarithmic.

* $O(\ell \cdot (\log^8 n + \log^{2f} n)), f \ge 4$ unknown (but "constant"!).

• Need: practical and polylogarithmic

Previous Work: Computation

- [Aiello, Ishai, Reingold 2001]:
 - * Good: Sender's computation $\Theta(n)$
 - \star Good: Client's workload does not depend on n
 - * Bad: Communication $\Theta(n)$
- [Stern, 1998]:
 - * Bad: Sender's computation $\Theta(2^{\sqrt{\log n}} \cdot n)$
 - * Bad: Client's computation $\Theta(\sqrt{\log n} \cdot 2^{\sqrt{\log n}})$
 - * Good: Communication $\Theta(\sqrt{\log n} \cdot 2^{\sqrt{\log n}})$
- Need: both efficient communication and computation

<u>Outline</u>

- Motivation
- Previous Work
- New Construction
- Conclusions

Generic Idea

- Consider μ as an α -dimensional database, and $\sigma = (\sigma_1, \dots, \sigma_{\alpha})$ as coordinates of the requested element
- Chooser sends encrypted coordinates to Sender
- Sender reduces recursively the dimension of the database by computing intermediate *i*-dimensional databases of ciphertexts
- The final, 1-dimensional, database is an α -times encryption of requested element. Sender returns it to Chooser

Generic Idea

- Use a length-flexible additively homomorphic public-key cryptosystem.
 - * $\forall s \geq 1$: encrypts plaintext of sk bits to a ciphertext of (s + 1)k bits.
 - * $E_K^s(m_1)E_K^s(m_2) = E_K^s(m_1 + m_2)$, thus also

$$E_K^{s+1}\left(\underbrace{m_1}_{(s+1)k}\right)^{E_K^s(\widetilde{m_2})} = \underbrace{E_K^{s+1}\left(\underbrace{m_1E_K^s(m_2)}_{(s+1)k}\right)}_{(s+1)k}$$

- Chooser knows the secret key, Sender knows the public key.
- Sender operates on ciphertexts, sent by Chooser.
- The length parameter s grows in the process.

Generic Idea (
$$\alpha = 2$$
)

 $\beta_{11} = \beta_{12} = \beta_{13} = \beta_{14} = \\ E_K^s(0) \ E_K^s(0) \ E_K^s(1) \ E_K^s(0)$

$\mu(1,1)$	$\mu(2,1)$	$\mu(3,1)$	$\mu(4,1)$	\Rightarrow	$w_{11} = \prod_{i} \beta_{1i}^{\mu(1,i)} = E_K^s(\mu(1,\sigma_1))$
$\mu(1,2)$	$\mu(2,2)$	$\mu(3,2)$	$\mu(4,2)$	\Rightarrow	$w_{12} = \prod_{i} \beta_{1i}^{\mu(2,i)} = E_K^s(\mu(2,\sigma_1))$
$\mu(1,3)$	$\mu(2,3)$	$\mu(3,3)$	$\mu(4,3)$	\Rightarrow	$w_{13} = \prod_{i} \beta_{1i}^{\mu(3,i)} = E_K^s(\mu(3,\sigma_1))$
$\mu(1,4)$	μ(2,4)	μ(3,4)	$\mu(4,4)$	\Rightarrow	$w_{14} = \prod_{i} \beta_{1i}^{\mu(1,i)} = E_K^s(\mu(1,\sigma_1))$

sk bits sk bits sk bits sk bits

(s+1)k bits

ISC 2005, 22.09.2005

Generic Idea ($\alpha = 2$)

 $\beta_{11} = \beta_{12} = \beta_{13} = \beta_{14} =$ Chooser sends $\{\beta_{it} = E_K^s(\sigma_i = t)\}$ to Sender $E_{V}^{s}(0) E_{V}^{s}(0) E_{V}^{s}(1) E_{V}^{s}(0)$ $|\mu(1,1)|\mu(2,1)|\mu(3,1)|\mu(4,1)| \implies |w_{11} = \prod_{i} \beta_{1i}^{\mu(1,i)} = E_K^s(\mu(1,\sigma_1)) |\beta_{21} = E_K^{s+1}(0)$ $\mu(1,2) \left| \mu(2,2) \right| \mu(3,2) \left| \mu(4,2) \right| \implies w_{12} = \prod_{i} \beta_{1i}^{\mu(2,i)} = E_K^s(\mu(2,\sigma_1))$ $\beta_{22} = E_K^{s+1}(0)$ $\mu(1,3) | \mu(2,3) | \mu(3,3) | \mu(4,3) \Rightarrow w_{13} = \prod_i \beta_{1i}^{\mu(3,i)} = E_K^s(\mu(3,\sigma_1))$ $\beta_{23} = E_{K}^{s+1}(1)$ $|\mu(1,4)|\mu(2,4)|\mu(3,4)|\mu(4,4)| \implies |w_{14} = \prod_i \beta_{1i}^{\mu(1,i)} = E_K^s(\mu(1,\sigma_1))|$ $\beta_{24} = E_K^{s+1}(0)$ \downarrow Chooser sends: $\sum_{i=1}^{\alpha} \sum_{t=1}^{n^{1/\alpha}} (s+j)k$ bits Sender sends $(s + \alpha)k$ bits $w_2 = \prod_i \beta_{2i}^{w_{1i}} = E_K^{s+1}(E_K^s(\mu(\sigma_1, \sigma_2)))$

ISC 2005, 22.09.2005

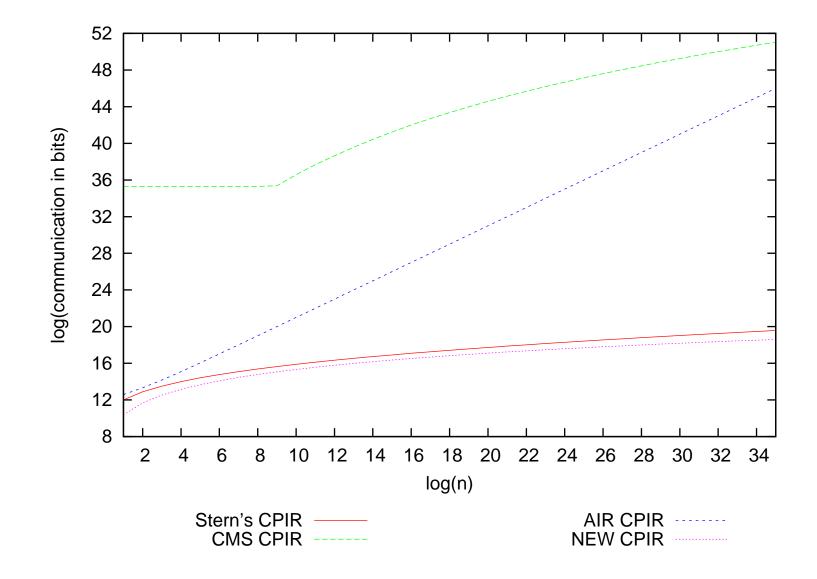
Communication

- Suitable for ℓ -bit strings.
- Chooser sends $\alpha(s + \frac{\alpha+1}{2})n^{1/\alpha}k$ bits.

* $sk \approx \ell$, thus $(\ell \alpha + \alpha \cdot \frac{\alpha+1}{2}k)n^{1/\alpha}$ bits.

- Optimal if $\alpha = \Theta(\log n)$: $\Theta(k \cdot \log^2 n + \ell \cdot \log n)$ bits.
- Very good if $\ell = \mathcal{LARGE}: \Theta(\ell \cdot \log n)$ bits.
- Paper discusses various optimisations
 - $\star\,$ For small $\ell,$ pack several database elements into one plaintext, and assume μ is a lopsided hyperrectangle.
- "Cleaner" and more efficient than previous solutions

Polylogarithmic Yet Practical



ISC 2005, 22.09.2005

- [Stern, 1998]:
 - * Bad: Sender's computation $\Theta(2^{\sqrt{\log n}} \cdot n)$
 - * Bad: Client's computation $\Theta(\sqrt{\log n} \cdot 2^{\sqrt{\log n}})$
 - * Good: Communication $\Theta(\sqrt{\log n} \cdot 2^{\sqrt{\log n}})$
- New scheme:
 - * Good: Sender's computation $\Theta(n)$
 - * Good: Client's computation $\Theta(\log^{2+o(1)} n)$
 - ★ Better: Communication $\Theta(\log^2 n)$

- Secure if based on any IND-CPA secure pkc
 - ★ Loose reduction
- Secure if based on a new IND-LFCPA assumption
 - ★ Tight reduction
- Both existing length-flexible pkc's are tightly IND-LFCPA secure
- Natural assumption!

Stronger Security Notion

- Previous security proofs guarantee security against adversary that works in time τ and has advantage ε
- Sometimes, one wants security against poly(n)-time adversary
- Then $k = \log^{b-o(1)} n$ where the underlying hard problem can be solved in time $\exp(O(1) \cdot (\log n)^{1/b} \cdot (\log \log n)^{1-1/b})$
- With DCRA, b = 3, thus our protocol has communication $\Theta(\log^{5-o(1)} n + \ell \cdot \log n)$

Log-Squared Oblivious Transfer

- In CPIR, we care only about Chooser's privacy.
- OT: also Sender's privacy is important.

* Chooser obtains no information about $\mu[i]$ for $i \neq \sigma$.

- To modify the new CPIR into an OT,
 - * Chooser must prove the correctness of public key. (done once)
 - * Sender must hide intermediate random values. (easy)
 - We must guarantee that Chooser cannot cheat by sending incorrect inputs. (complicated)

Log-Squared Oblivious Transfer: Some Attempts

- [Naor-Pinkas 1999] transformation: with log. overhead in communication, transforms our CPIR to OT.
 - ★ Bad: computational server-privacy.
- Zero-knowledge proofs: Chooser proves in ZK that her inputs are correct. Information-theoretical server-privacy.
 - * Bad: two rounds, or one round but security only in the randomoracle/common reference string model.

Log² OT with AIR OT

- [Aiello-Ishai-Reingold]: the AIR CPIR protocol is actually an OT protocol, that can be used in conjunction with any sublinear CPIR protocol to construct an OT protocol with comparable communication.
 - * Chooser only sends one ciphertext to Sender who computes ciphertexts $E_K(\nu[i])$, where $\nu[\sigma] = \mu[\sigma]$ and $\nu[i]$ is "garbage" for $i \neq \sigma$.
 - * In parallel, Chooser executes any CPIR protocol to retrieve $E_K(\nu[\sigma])$.
- In conjunction with the new CPIR, we get an OT protocol with communication $\Theta(k \cdot \log^2 n + \ell \cdot \log n)$.
- Problem: AIR OT is secure only if the DDH holds.
- Thus the resulting log-squared OT is secure only if both the pkc is IND-LFCPA secure and DDH assumption holds.

Log² OT with Laur-Lipmaa OT

• [Laur, Lipmaa, manuscript]:

A similar OT protocol that works over the known length-flexible pkc's.

- * Server-privacy is *statistical*
- Results in:

one-round information-theoretically server-private OT protocol with logsquared communication, secure if assuming that the underlying pkc is IND-LFCPA secure.

- Transformation is very efficient!
- Similar on AIR...

Conclusions

- CPIR with log-squared communication: better than "impractical" polylogarithmic CMS CPIR and "practical" superpolylogarithmic CPIR by Stern.
- Security: requires new notion if we want tight security. Purely by luck(?), existing length-flexible pkc's are tightly IND-LFCPA secure.
- Computation: near-optimal.
- Communication: $\Theta(k \cdot \log^2 n + \ell \cdot \log n)$ note that for large documents, this is $\approx \Theta(\ell \cdot \log n)$.
 - * Non-private information retrieval: $\log n + \ell$ bits close to optimal!
- Polylogarithmicity is not everything! Exact communication matters.

Any questions?

ISC 2005, 22.09.2005