Invited Presentation, Singapore, I2R, Jan 2005

An Oblivious Transfer Protocol with Log-Squared Communication

Helger Lipmaa

Helsinki University of Technology

http://www.tcs.hut.fi/~helger

Singapore, I2R, 26.01.2005

<u>Outline</u>

- Motivation
- Previous Work
- New Construction
- Conclusions

Outline

- Motivation
- Previous Work
- New Construction
- Conclusions

Comp.-Private Information Retrieval: Motivation

- Chooser wants to retrieve a single element from a database of size n.
- Every element is from \mathbb{Z}_d (with length log *d* bits).
- Database maintainer should not know which element was retrieved.
- Security + communication-efficiency.
 - * Chooser's security is computational.
 - * Information-theoretic security: communication is at least $\Omega(n)$.

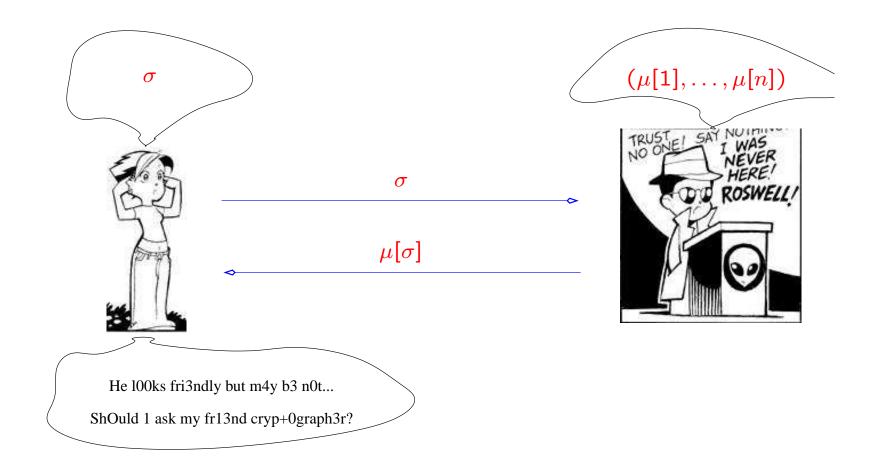
Singapore, I2R, 26.01.2005

Comp.-Private Information Retrieval: Motivation

* Parental advisory: this is not the only application of PIR-s. Stay tuned!

Singapore, I2R, 26.01.2005

Comp.-Private Information Retrieval: Motivation

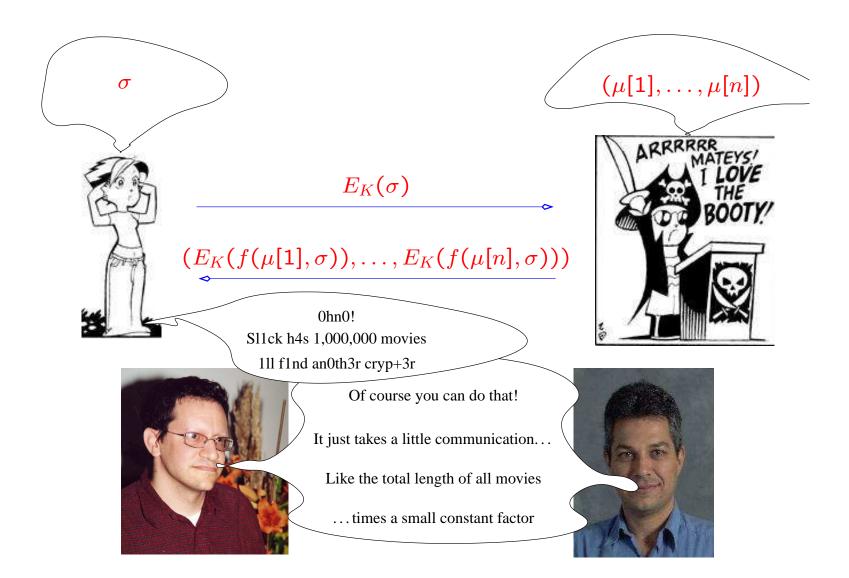


Singapore, I2R, 26.01.2005

<u>Outline</u>

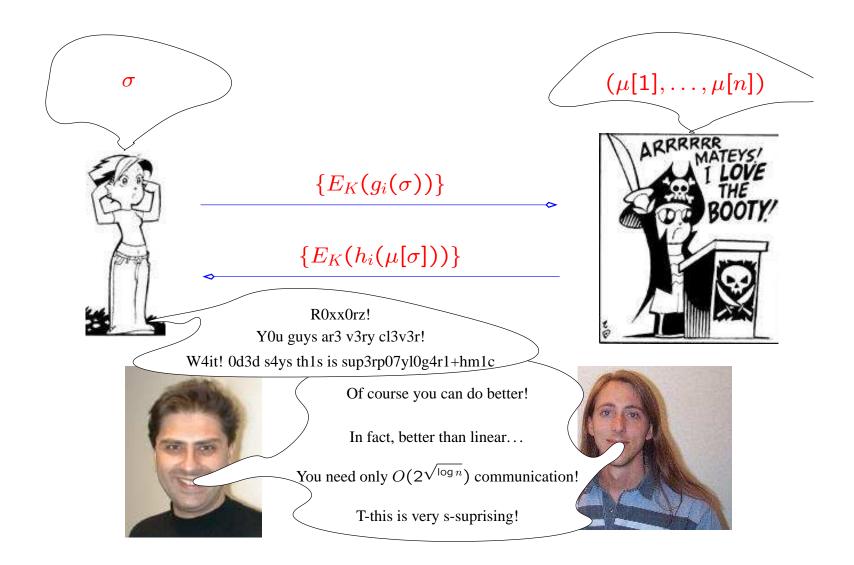
- Motivation
- Previous Work
- New Construction
- Conclusions

Previous Work



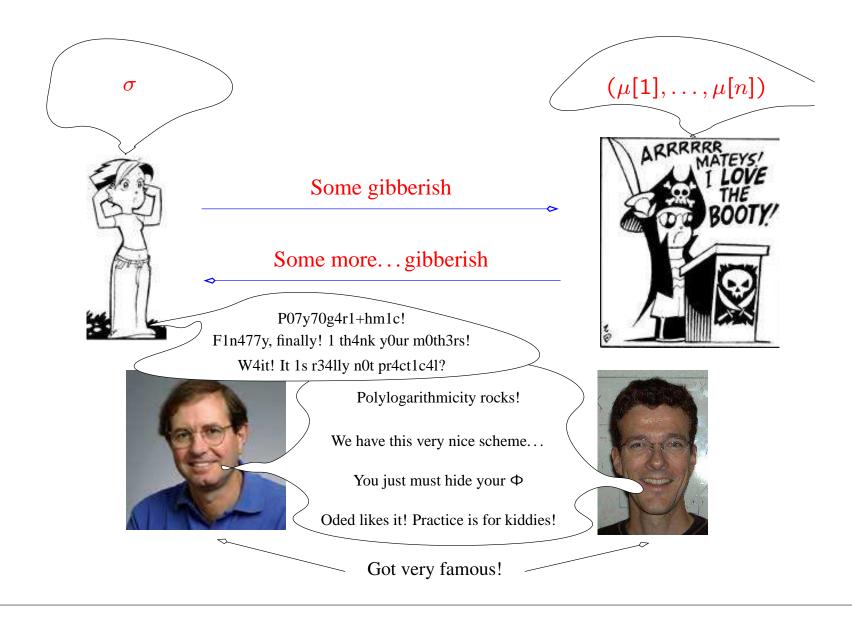
Singapore, I2R, 26.01.2005

Previous Work



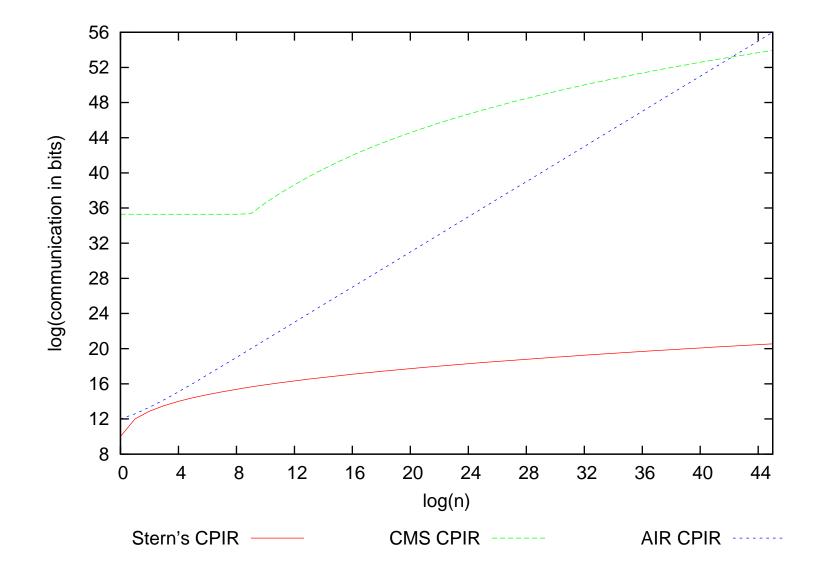
Singapore, I2R, 26.01.2005

Previous Work



Singapore, I2R, 26.01.2005

Previous Work: Overview



Singapore, I2R, 26.01.2005

Previous Work: Overview

- [Aiello, Ishai, Reingold 2001][Naor, Pinkas, 2001]: 2-round CPIR, $O(n \cdot \log d)$ communication.
- [Kushilevitz, Ostrovsky, 1997][Stern, 1998][Chang, 2004]: improved communication to $O(\sqrt{\log n} \cdot 2^{\sqrt{\log n}} \cdot \log d)$.
 - * Not polylogarithmic, but up to now the most practical!
- [Cachin, Micali, Stadler, 1999]: can do polylogarithmic.

* $O((\log^8 n + \log^{2f} n) \cdot \log d), f \ge 4$ unknown (but "constant"!).

• Need: practical <u>and</u> polylogarithmic

Singapore, I2R, 26.01.2005

<u>Outline</u>

- Motivation
- Previous Work
- New Construction
- Conclusions

Generic Idea

- Consider μ as an α -dimensional database, and $\sigma = (\sigma_1, \ldots, \sigma_{\alpha})$ as coordinates of the requested element.
- Chooser sends encrypted coordinates to Sender.
- Sender reduces recursively the dimension of the database by computing intermediate *i*-dimensional databases of ciphertexts.
- The final, 1-dimensional, database is an α -times encryption of requested element. Sender returns it to Chooser.

Generic Idea

- Use a length-flexible additively homomorphic public-key cryptosystem.
 - * $\forall s \geq 1$: encrypts plaintext of sk bits to a ciphertext of (s + 1)k bits.
 - * $E_K^s(m_1)E_K^s(m_2) = E_K^s(m_1 + m_2)$, thus also

$$E_K^{s+1}\left(\underbrace{m_1}_{(s+1)k}\right)^{E_K^s(\widetilde{m_2})} = \underbrace{E_K^{s+1}\left(\underbrace{m_1E_K^s(m_2)}_{(s+1)k}\right)}_{(s+1)k}$$

- Chooser knows the secret key, Sender knows the public key.
- Sender operates on ciphertexts, sent by Chooser.
- The length parameter s grows in the process.

Singapore, I2R, 26.01.2005

Generic Idea (
$$\alpha = 2$$
)

 $\beta_{11} = \beta_{12} = \beta_{13} = \beta_{14} = \\ E_K^s(0) \ E_K^s(0) \ E_K^s(1) \ E_K^s(0)$

$\mu(1,1)$	$\mu(2,1)$	$\mu(3,1)$	$\mu(4,1)$	\Rightarrow	$w_{11} = \prod_i \beta_{1i}^{\mu(1,i)} = E_K^s(\mu(1,\sigma_1))$
$\mu(1,2)$	$\mu(2,2)$	$\mu(3,2)$	$\mu(4,2)$	\Rightarrow	$w_{12} = \prod_{i} \beta_{1i}^{\mu(2,i)} = E_K^s(\mu(2,\sigma_1))$
$\mu(1,3)$	$\mu(2,3)$	$\mu(3,3)$	$\mu(4,3)$	\Rightarrow	$w_{13} = \prod_{i} \beta_{1i}^{\mu(3,i)} = E_K^s(\mu(3,\sigma_1))$
$\mu(1,4)$	μ(2,4)	μ(3,4)	μ(4,4)	\Rightarrow	$w_{14} = \prod_{i} \beta_{1i}^{\mu(1,i)} = E_K^s(\mu(1,\sigma_1))$

sk bits sk bits sk bits sk bits

(s+1)k bits

Singapore, I2R, 26.01.2005

Generic Idea ($\alpha = 2$)

 $\beta_{11} = \beta_{12} = \beta_{13} = \beta_{14} =$ Chooser sends $\{\beta_{it} = E_K^s(\sigma_i = t)\}$ to Sender $E_{K}^{s}(0) E_{K}^{s}(0) E_{K}^{s}(1) E_{K}^{s}(0)$ $|\mu(1,1)|\mu(2,1)|\mu(3,1)|\mu(4,1)| \implies |w_{11} = \prod_{i} \beta_{1i}^{\mu(1,i)} = E_K^s(\mu(1,\sigma_1)) |\beta_{21} = E_K^{s+1}(0)$ $\mu(1,2) \left| \mu(2,2) \right| \mu(3,2) \left| \mu(4,2) \right| \implies w_{12} = \prod_{i} \beta_{1i}^{\mu(2,i)} = E_K^s(\mu(2,\sigma_1))$ $\beta_{22} = E_K^{s+1}(0)$ $|\mu(1,3)|\mu(2,3)|\mu(3,3)|\mu(4,3)| \Rightarrow ||w_{13} = \prod_i \beta_{1i}^{\mu(3,i)} = E_K^s(\mu(3,\sigma_1))|$ $\beta_{23} = E_{K}^{s+1}(1)$ $|\mu(1,4)|\mu(2,4)|\mu(3,4)|\mu(4,4)| \implies |w_{14} = \prod_i \beta_{1i}^{\mu(1,i)} = E_K^s(\mu(1,\sigma_1))|$ $\beta_{24} = E_K^{s+1}(0)$ \downarrow Chooser sends: $\sum_{i=1}^{\alpha} \sum_{t=1}^{n^{1/\alpha}} (s+j)k$ bits Sender sends $(s + \alpha)k$ bits $w_2 = \prod_i \beta_{2i}^{w_{1i}} = E_K^{s+1}(E_K^s(\mu(\sigma_1, \sigma_2)))$

Singapore, I2R, 26.01.2005

Communication

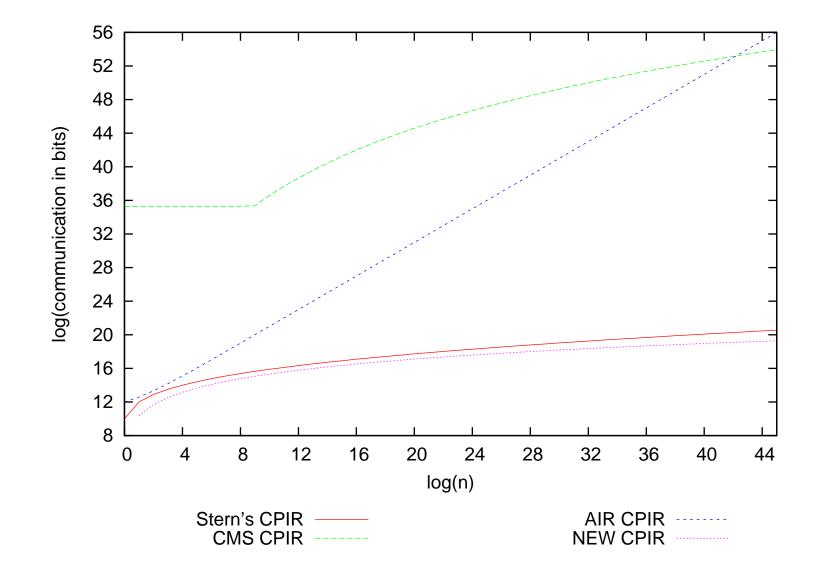
- Suitable for sending integers from \mathbb{Z}_d .
- Chooser sends $\alpha(s + \frac{\alpha+1}{2})n^{1/\alpha}k$ bits.

* $sk \approx \log d$, thus $(\alpha \log d + \alpha \cdot \frac{\alpha+1}{2}k)n^{1/\alpha}$ bits.

- Optimal if $\alpha = \Theta(\log n)$: $\Theta(\log^2 n \cdot k + \log n \cdot \log d)$ bits.
- Paper discusses various optimisations
 - \star For small *d*, pack several database elements into one plaintext, and assume μ is a lopsided hyperrectangle.

Singapore, I2R, 26.01.2005

Polylogarithmic Yet Practical

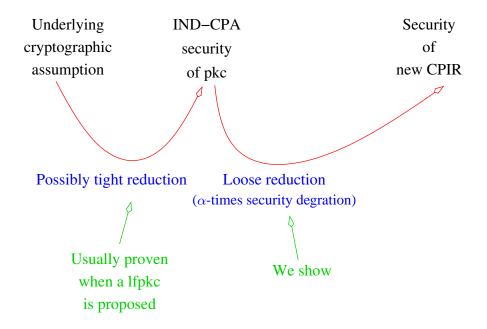


Singapore, I2R, 26.01.2005

Security: IND-CPA security

- Standard security requirement for homomorphic pkc's: IND-CPA security
 - ★ For a randomly chosen key pair, attacker cannot distinguish random encryptions of two plaintexts, chosen by herself.
- We use a *length-flexible* additively homomorphic pkc.
- [Damgård-Jurik 2001, 2003]: There exist IND-CPA secure length-flexible additively homomorphic pkc's.

Security Reduction



- IND-CPA security gives only loose security reduction here
- (Recall that $\alpha = \Theta(\log n)$.)

Why Loose Reduction?

- Length-flexible cryptosystems have been used before to improve the efficiency of e-voting and e-auction schemes.
- There, IND-CPA security gives a tight reduction. Why not here?
- In e-voting/e-auction schemes, the participants send out ciphertexts only with one, fixed, although large, *s*.
- In our protocol, Chooser sends ciphertexts that correspond to different *s*'s: $\beta_{jt} = E_K^{s+j-1}(\sigma_j = t).$
- Thus, the cryptosystem must be secure against attacks where the attacker legally sees ciphertexts of related but unknown plaintexts with different values of *s*.

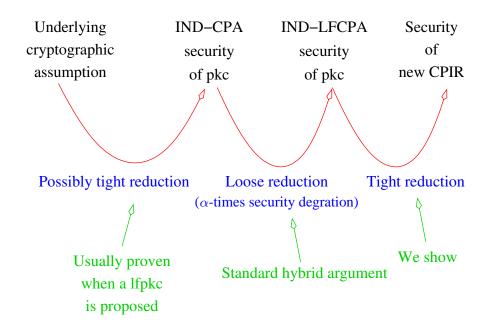
Singapore, I2R, 26.01.2005

New Security Notion: IND-LFCPA Security

Definition A pkc is α -IND-LFCPA secure, if every "efficient" attacker has "small" success in the next game:

- A random key is chosen, attacker gets the public key.
- Attacker chooses $(m_0, m_1, s_1, \ldots, s_\alpha)$.
- A random $b \leftarrow \{0, 1\}$ is chosen.
- Attacker obtains random ciphertexts $(E_K^{s_1}(m_b), \ldots, E_K^{s_\alpha}(m_b))$.
- Attacker outputs a bit b'.
- Attacker wins if b = b'.

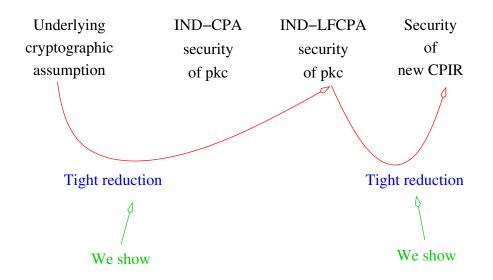
Security Reduction: Finer Picture



- Tight reduction to IND-LFCPA security of pkc.
- Loose reduction to IND-CPA security of pkc.
- Loose reduction to underlying cryptographic assumption.

Singapore, I2R, 26.01.2005

Security Reduction: Damgård-Jurik pkc's



- [DJ '01,'03] pkc's are IND-LFCPA secure with *tight reduction* to DCRA.
- Thus the new CPIR, based on DJ, is secure with tight reduction to DCRA.
- We argue that IND-LFCPA security is such a basic notion that is should be considered standard for length-flexible pkc's.

Singapore, I2R, 26.01.2005

Log-Squared Oblivious Transfer

- In CPIR, we care only about Chooser's privacy.
- OT: also Sender's privacy is important .

* Chooser obtains no information about $\mu[i]$ for $i \neq \sigma$.

- To modify the new CPIR into an OT,
 - * Chooser must prove the correctness of public key. (done once)
 - * Sender must hide intermediate random values. (easy)
 - We must guarantee that Chooser cannot cheat by sending incorrect inputs. (complicated)

Singapore, I2R, 26.01.2005

Log-Squared Oblivious Transfer: Some Attempts

- [Naor-Pinkas 1999] transformation: with log. overhead in communication, transforms our CPIR to OT.
 - ★ Bad: computational server-privacy.
- Zero-knowledge proofs: Chooser proves in ZK that her inputs are correct. Information-theoretical server-privacy.
 - * Bad: four rounds, or two-rounds but security only in the randomoracle/common reference string model.

Log² OT with AIR OT

- [Aiello-Ishai-Reingold]: the AIR CPIR protocol is actually an OT protocol, that can be used in conjunction with any sublinear CPIR protocol to construct an OT protocol with comparable communication.
 - * Chooser only sends one ciphertext to Sender who computes ciphertexts $E_K(\nu[i])$, where $\nu[\sigma] = \mu[\sigma]$ and $\nu[i]$ is "garbage" for $i \neq \sigma$.
 - * In parallel, Chooser executes any CPIR protocol to retrieve $E_K(\nu[\sigma])$.
- In conjunction with the new CPIR, we get an OT protocol with communication $\Theta(\log^2 n \cdot k + \log n \cdot \log d)$.
- Problem: AIR OT is secure only if the DDH holds.
- Thus the resulting log-squared OT is secure only if both the pkc is IND-LFCPA secure and DDH assumption holds.

Singapore, I2R, 26.01.2005

Log² OT with Laur-Lipmaa OT

- [Laur, Lipmaa, manuscript]: A similar OT protocol that works over the known length-flexible pkc's.
- Result: two-round information-theoretically server-private OT protocol with log-squared communication, secure when assuming that the underlying pkc is IND-LFCPA secure.
- Transformation is very efficient!

Conclusions

- CPIR/OT with log-squared communication: better than "impractical" polylogarithmic CMS CPIR and "practical" superpolylogarithmic CPIR by Stern.
- Inspired by Stern's CPIR, but uses length-flexible cryptosystems.
- Security: requires new notion if we want tight security. Purely by luck(?), existing length-flexible pkc's are tightly IND-LFCPA secure.
- Communication: $\Theta(\log^2 n \cdot k + \log n \cdot \log d)$ note that for large documents, this is $\approx \Theta(\log n \cdot \log d)$.
 - * Non-private information retrieval: $\log n + \log d$ bits close to optimal!
- Polylogarithmicity is not everything! Exact communication matters.

Singapore, I2R, 26.01.2005

Any questions?

Caveat: This presentation is based on a draft version of the paper!

Singapore, I2R, 26.01.2005

Thanks for inviting!

Singapore, I2R, 26.01.2005