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Abstract. Secure multiparty computation (MPC) allows multiple par-
ties to evaluate functions without disclosing the private inputs. Secure
comparisons (testing equality and greater-than) are important primitives
required by many MPC applications. We propose two equality tests for `-
bit values with O(1) online communication that require O(`) respectively
O(κ) total work, where κ is a correctness parameter.
Combining these with ideas of Toft [16], we obtain (i) a greater-than
protocol with sublinear online complexity in the arithmetic black-box
model (O(c) rounds and O(c · `1/c) work online, with c = log ` resulting
in logarithmic online work). In difference to Toft, we do not assume two
mutually incorruptible parties, but O(`) offline work is required, and
(ii) two greater-than protocols with the same online complexity as the
above, but with overall complexity reduced to O(log `(κ+ loglog `)) and
O(c·`1/c(κ+log `)); these require two mutually incorruptible parties, but
are highly competitive with respect to online complexity when compared
to existing protocols.
Key words: Additively homomorphic encryption, arithmetic black box,
secure comparison, secure equality test

1 Introduction

Secure multiparty computation (MPC) considers the following problem: n par-
ties hold inputs, x1, . . . , xn, for a function, f ; they wish to evaluate f without
disclosing their inputs to each other or third-parties. Numerous solutions to this
problem exist; many provide secure arithmetic over a field or ring, e.g., ZM for
an appropriate M , by relying either on secret sharing or additively homomorphic
encryption. The overall structure of those solutions is similar, thus the details
of the constructions may be abstracted away and MPC-protocols can be con-
structed based on secure arithmetic. This idea was formalized as the arithmetic
black-box (ABB) by Damg̊ard and Nielsen [7]. For a longer discussion of MPC
and the ABB, see Sect. 2.

Secure ZM -arithmetic may be used to emulate integer computation when
inputs/outputs are less than M (which typically can be chosen quite freely).
However, other operations may be needed. Secure comparison – equality testing
(Eq) and greater-than testing (GT) – are two important problems in the (MPC)
literature. They are required for tasks as diverse as auctions, data-mining, and
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Table 1. A comparison of sublinear GT protocols for bitlength `.

Result Online rounds Online work Overall work Correctness

Adversary structure with two mutually incorruptible parties

[16] O(c) O(c · `1/c(κ+ log `)) O(c · `1/c(κ+ log `)) Statistical

[16] O(log `) O(log `(κ+ loglog `)) O(log `(κ+ loglog `)) Statistical

This paper O(c) O(c · `1/c) O(c · `1/c(κ+ log `)) Statistical

This paper O(log `) O(log `) O(log `(κ+ loglog `))) Statistical

Arbitrary adversary structure

[18] O(1) O(
√
`/log`) O(`) Perfect

This paper O(c) O(c · `1/c) O(`) Perfect

This paper O(log `) O(log `) O(`) Perfect

benchmarking. A prime example is the first real-world MPC execution [4], which
required both integer additions and GT tests.

In this paper, we introduce two new Eq tests and improve over state of the
art GT testing in the ABB model. The main focus is online efficiency, i.e., parties
may generate joint randomness in advance (e.g, while setting up an auction) to
increase efficiency once the inputs have been supplied (bids have been given).

Related Work. Secure comparison and its applications is a very active
topic with too many papers to mention all. Damg̊ard et al. [6] proposed the
first constant-rounds protocols which required O(` log `) secure multiplications.
Nishide and Ohta [13] improved this to O(`) work for GT and O(κ) work for
equality where κ is a correctness parameter.

Until recently, all GT tests had a complexity (at least) linear in the bitlength,
`, of the inputs, but in [16], Toft proposed the first sublinear constructions.
These utilized proofs of boundedness and required the presence of 2 mutually
incorruptible parties, i.e., one of two named parties was required to be honest.
This is naturally satisfied in the two-party case (n = 2), but the multiparty case is
left with either a corruption threshold of 1 or a non-standard adversary structure.
In [18], Yu proposed a sublinear, constant-rounds protocol in the ABB model
based on sign modules. His protocol requires O(

√
`/log `) operations online and

works for an ABB over a finite field, i.e., prime M . It does not appear that
the ideas work with composite M such as is needed by Paillier encryption. See
Table 1 for an overview of existing sublinear GT tests.

Contribution. We propose a collection of actively secure protocols. We first
introduce two new protocols for equality testing of `-bit values. The first is
perfectly correct with O(1) ABB-operations online and O(`) ABB-operations
overall. The second reduces overall communication to O(κ) at the cost of imper-
fect correctness, i.e., κ is a correctness parameter; it also requires two mutually
incorruptible parties. Both improve online complexity dramatically over previous
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work. Additionally, we use these in combination with ideas of [16] to obtain new
GT tests for `-bit values in the ABB model. We end up with multiple variations.

First, ABB-protocols with O(log `) work and rounds (respectively O(c · `1/c)
work in O(c) rounds for constant c) online; O(`) work overall. Second, we reduce
overall work to O(log `·(κ+loglog `)) (O(c·`1/c(κ+log `)) respectively) at the cost
of requiring two mutually incorruptible parties. All constructions require proofs
of boundedness to prevent active attacks. In contrast to [18], we do not utilize
sign modules, hence our protocols work for Paillier encryption-based MPC as
well. In that setting our GT tests are the first with sublinear online complexity
and arbitrary adversary structure.

2 Preliminaries

The Arithmetic Black-Box. Many MPC protocols work by having parties
supply their inputs “secretly,” e.g., using secret sharing, which allows a value to
be split between parties such that it remains unknown unless sufficiently many
agree. A homomorphic scheme allows parties to compute sums, while secure
multiplication requires interaction. Once the desired result has been computed,
it is straightforward to output it by reconstructing. The arithmetic black-box
of [7] captures this type of behaviour, making it a convenient model for presenting
MPC protocols. This allows protocol construction with focus on the task at hand
rather than “irrelevant details” such as the specifics and security guarantees of
the underlying cryptographic primitives.

Formally, the arithmetic black-box is an ideal functionality, FABB, and pro-
tocols are constructed in a hybrid model where access to this functionality is
given. FABB can be thought of as a (virtual) trusted third party, who provides
storage of elements of a ring, ZM , as well as arithmetic computation on stored
values. Here, M will be either a prime or an RSA-modulus, i.e., the product of
two large, odd primes. We provide an intuitive presentation of the ABB here;
see [7] or [17] for a formal definition. Full simulation-based proofs are possible;
due to space constraints we merely sketch privacy proofs.

Secure storage (input/output) can be thought of as secret sharing and we
use the notation of Damg̊ard et al. [6], writing ABB-values in square brackets,
[[x]]. ABB-arithmetic is written using “plaintext space,” infix operators, e.g.,
[[x·y+z]]← [[x]]·[[y]]+[[z]]. Naturally, such operations eventually refer to protocols
between P1, . . . , Pn, e.g., the protocols of Ben-Or et al. [3].

The complexity of a protocol in the FABB hybrid model is the number of
basic operations performed, input/output and arithmetic. We assume that these
operations may be executed concurrently, i.e., that executing the underlying
cryptographic protocols concurrently does not violate security. Round complex-
ity is defined as the number of sequential sets of concurrent operations performed
(basic operations typically require a constant number of rounds; in this case
constant-rounds in the ABB model implies constant-rounds in the actual pro-
tocol). Finally, we focus on communication complexity and therefore consider
addition costless; typical ABB realizations are based on additively homomor-
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phic primitives, and this is a standard choice. Additionally, ABB-computatation
occurs in two phases: (i) random values are generated within FABB before the
inputs are known (preprocessing or offline phase), and (ii) when the inputs are
available within FABB, the result is computed (online phase). Focus is predom-
inantly on the efficiency of the online phase.

Known ABB Constructions and Additional Primitives. The following
known primitives are needed in the proposed constructions. These are exclusively
needed as part of the preprocessing phase; in practice it may be preferable to
utilize simpler (non-constant-rounds) solutions.
– RandElem: Generates a uniformly random, secret element of ZM stored

within the ABB. Considered as 1 multiplication and 1 rounds, [6].
– RandBit: Generates a uniformly random, secret bit stored within the ABB.
O(1) multiplications in O(1) rounds, [6].3

– RandBits: Generates a uniformly random ZM -value r and its binary rep-
resentation r =

∑
2iri, ri ∈ {0, 1} stored as elements of ZM , O(logM)

multiplications in O(1) rounds, [6].
– RandInv: Generates a uniformly random element in Z∗M along with its in-

verse; O(1) multiplications in O(1) rounds, [6].
– prefix×: Prefix product takes a vector of invertible, secret values, [[r1]], [[r2]],

. . ., [[rm]], and computes the prefix-product, i.e., [[
∏j
i=1 ri]] for 1 ≤ j ≤ m,

using O(m) ABB operations in O(1) rounds [2,6].
We also require that the ABB can verify that an input is of bounded size,

e.g., [[x]] < 2`. x is known by the inputter, Pi, so this corresponds to execut-
ing a proof of boundedness. A communication-efficiently solution (Θ(1) group
elements) can be obtained using the sum-of-four-squares technique, [10]: Pi sup-
plies an integer input (decomposed into squares) which is converted to a ZM
element; this can be done using integer commitments (for encryption) or lin-
ear integer secret sharing scheme [15] (for Shamir sharing). An alternative is to
use the constant-communication non-interactive zero-knowledge argument of [5];
there, Pi commits to a vector of digits of x and uses the techniques of [8,11] to
prove that the encrypted x belongs to the given range.

Disclose-If-Equal. In a disclose-if-equal (DIE) protocol between Alice and
Bob, Alice gets to know Bob’s secret β exactly if she encrypted x (where x is a
value known to Bob only, or possibly to both). Otherwise, Alice should obtain
a (pseudo)random plaintext. See [1,9] for original definitions.

If the plaintext space is ZM for a prime M (as it is in the case of the secret
sharing setting), one can use the following simple protocol inspired by [1] (here,
Encpk means encryption by public key pk and Decsk means decryption by the
corresponding secret key sk): (1) Alice sends q ← Encpk(α) to Bob. (2) If the
ciphertext is invalid, Bob returns ⊥. Otherwise, he returns a← (q ·Encpk(−x))r ·
3 When M is an RSA-modulus, complexity is linear in the number of parties, for

simplicity we assume that this is constant. (This is only used in preprocessing.)
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Encpk(β), where r ← ZM . (3) Alice computes Decsk(a) = r(α−x) +β, which is
equal to β when α = x. Clearly, this protocol is perfectly complete, and encryp-
tion, decryption, and exponent-arithmetic can be replaced by ABB operations.

If M is not a prime but has sufficiently large prime factors (like in the case of
existing additively homomorphic public-key cryptosystems), then the resulting
DIE protocol, proposed by Laur and Lipmaa in [9], is somewhat more compli-
cated. Let ` be the bitlength of β. Let T ← b2−` ·Mc. Let spf(M) be the smallest
prime factor of the plaintext group order M . We assume ` ≤ 1

2 log2M + log2 ε,
where ε ≤ 2−80 is the hiding parameter. Here we assume that Bob knows the
public key and Alice knows the secret key and the parties use an additively ho-
momorphic public-key cryptosystem like the one by Paillier [14]. (1) Alice sends
q ← Encpk(α) to Bob. (2) If the ciphertext is invalid, Bob returns ⊥. Otherwise,
he returns a← (q ·Encpk(−x))r ·Encpk(β + 2` · t), where r ← ZM and t← ZT .
(3) Alice computes Decsk(a) mod 2`.

As shown in [9], this protocol is (1 − ε)-semisimulatable [12] (that is,
game-based computationally private against a malicious server, and simulation-
based statistically private against a malicious client) as long as 2`−1/spf(M)
is bounded by ε. That is, if x 6= α then the distribution of U(ZM ) · (α− x) +
2` · U(ZT ) is ε-far from the uniform distribution U(ZM ) on ZM . Since in the
case of Paillier, spf(M) ≈

√
M , we need that ` − 1 − 1

2 · log2M ≤ log2 ε or
` < 1

2 · log2M + log2 ε, as mentioned. The idea behind including the addi-
tional term 2` · t in the Laur-Lipmaa protocol is that if M is composite, then
Decpk((q · Encpk(−x))U(ZM )) = U(ZM ) · (α− x) can be a random element of a
nontrivial subgroup of ZM and thus far from random in ZM ; adding 2` · U(ZT )
guarantees that the result is almost uniform in ZM .

3 Secure Equality Tests

It is well-known that equality testing can be implemented using a zero-test (given
additively homomorphic primitives) as x = y ⇔ x− y = 0; w.l.o.g., we focus on
testing whether x equals 0 and present two new, secure protocols.

The first zero-test is based on the Hamming distance between a mask and
the masked value. Complexity is linear in the bit-length, but only O(1) ABB
multiplications and outputs are needed online. Hence, when a preprocessing
phase is present, this is highly efficient. Additionally, we present a variation
allowing comparison of `-bit numbers with O(`) preprocessing and O(1) work
online, when 2`+k+logn �M for statistical security parameter k, and n parties.

The second approach is based on DIE and reduces the problem from arbitrary
size inputs to κ-bit inputs, where κ is a correctness parameter, e.g., 80. This
simpler problem may then be solved, e.g., using the Hamming-based approach.

3.1 Equality from Hamming Distance

Let `M = dlog2Me be the bitlength of M . The protocol, denoted eqH , is seen as
Protocol 1. It is a variation of [13] with a highly optimized online phase. (Though
phrased differently, Nishide and Ohta [13] did essentially the same thing.)
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Alice ABB([[x]]) Bob

Preprocessing:
[[r]]; [[r`M−1]], . . . , [[r0]]← RandBits()

([[R]], [[R−1]])← RandInv()

[[R]], [[R2]], . . . , [[R`M ]]← prefix×([[R]], [[R]], . . . , [[R]])

Online:
[[m]]← [[r]] + [[x]]

.m m

[[1 +H]]← 1 +
∑`M−1

i=0 (mi + [[ri]]− 2 ·mi · [[ri]])
[[mH ]]← [[R−1]] · [[1 +H]]

.
mH mH

for i← 0 to `M do [[(1 +H)i]]← miH · [[R
i]];

[[x =? 0]]←
∑`M
i=0 αi · [[(1 +H)i]] = [[P`M (H + 1)]]

Protocol 1: eqH , secure zero-testing based on Hamming distance

Correctness. Picking a uniformly random, unknown [[r]] and revealing m =
[[x]] + [[r]] allows testing x = 0 by testing whether m = r. If [[r]] in generated

in binary, we can compute the Hamming distance [[H]] =
∑`M−1
i=0 [[ri]] ⊕ mi =∑`M−1

i=0 (mi + [[ri]]− 2 ·mi · [[ri]]), and test if H = 0. Since H ≤ `M , the latter

is simpler than the general zero-test. Let P`M (x) =
∑`M
i=0 αi · xi denote the (at

most) `M -degree polynomial that maps 1 to 1 and x ∈ {2, 3, . . . , `M + 1} to 0.4

Evaluating P`M at 1 +H determines H + 1 = 1⇔ m = r ⇔ x = 0.
To avoid Ω(`M ) online multiplications when computing the `M + 1 powers

of [[1 +H]], the following trick is used: A uniformly random value, [[R]] ∈ Z∗M is
chosen in advance, and its exponents [[R0]], [[R1]], . . . , [[R`M ]] and inverse, [[R−1]],
are computed in the offline phase. In the online phase, mH = [[R−1]] · [[1 + H]]
is computed and revealed, and the powers of [[1 + H]] are computed from the
powers of [[R]] and the powers of mH , which can be done locally by all parties:
mi
H · [[Ri]] = (R−1(1 +H))i · [[Ri]] = [[(1 +H)i]].

Privacy. Two values are revealed in eqH , m and mH . Since r is uniformly
random in ZM , then so is m = x+ r. Similarly, since 1 + `M is smaller5 than the
smallest prime factor of M we have 1+H ∈ Z∗M . Thus (1+H) ·R−1 is uniformly
random in Z∗M as R is uniformly random. Simulation in the FABB-hybrid model
consists of providing “fake” m and mH distributed as the real ones.

Complexity. The preprocessing phase consists of generating [[r]] along with its
bits, [[ri−1]] as well as [[R]], [[R−1]], and [[Ri]] for i ∈ {1, . . . , `M}. Overall this

4 P`M exists both when M is a prime or an RSA-modulus and the coefficients, αi, can
be computed using Lagrange interpolation. For technical reasons, the input to P`M

must belong to Z∗
M , this is ensured by adding 1.

5 Always the case since M is either a prime or the product of two large primes.
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amounts to O(`M ) work. Online, only 1 ABB-multiplication (to compute mH)
and 2 outputs are needed. Computing the Hamming distance and evaluating
P`M are costless.

Bounded Inputs. If the input is of bounded size, [[x]] < 2`, and 2`+k+logn �M
where k is a statistical security parameter, the following variation is possible:
Each party Pj inputs a uniformly random k-bit value, r(j), and the n parties
jointly generate ` random bits, [[ri]], using RandBit. The ABB then computes

[[r]]←
∑n
j=1[[r(j)]] · 2` + (

∑`−1
i=0 2i[[ri]]). Here, r statistically masks x: m mod 2` is

uniformly random, while a single r(j) masks the `’th carrybit of the addition, x+
r, i.e., bm/2`c is statistically indistinguishable from a sum of uniformly random
k-bit values plus the ri of malicious parties. Testing equality between r mod 2`

and m mod 2` is sufficient; note that this zero-test allows equality testing even
when the difference between the inputs is negative.

Theorem 1. Given two `-bit values [[x]] and [[y]] stored in an n-party arith-
metic black-box for ZM augmented with a proof of boundedness, equality may
be computed with 2 outputs and 1 ABB-multiplication in the online phase and
O(`) operations overall. This is the case both when ` = `M as well as when
2`+k+logn �M , where k is a statistical security parameter.

3.2 Equality from DIE

We utilize the DIE protocol in the ABB model to construct a statistically correct
zero test (and hence an equality test) in the presence of mutually incorruptible
parties, denoted Alice and Bob. Complexity linear in the correctness parameter,
κ, i.e., it is only useful when the input is of greater bitlength, say ` = 1000 and
κ = 80. For the sake of concreteness, we describe the case where M is composite.

The idea is to transform [[x]], x ∈ {0, 1}`, to [[y]], where y = 0 when x = 0,
and y is (1 − ε)-close to uniformly random, for an exponentially small ε, when
x 6= 0. Note that here we use the security parameter κ as the bitlength in the
DIE protocol. (See Sect. 2 for the explanation of ε= 2κ−1/spf(M).) The value
y is then used to “mask” t · 2κ + β, i.e., disclose it when x = 0 and hide it
otherwise. The value revealed to Alice is always statistically close to uniformly
random, hence reducing it modulo 2κ and testing equality with β provides a zero
test with a probability of failure of 2−κ. Details are seen as Protocol 2, where eq

denotes the equality test from Sect. 3.1 but for κ-bit inputs. We focus on the case
when M is an RSA-modulus and limit the description to the two-party case. The
main benefit of this combined protocol is that by combining it with the equal-
ity test above replaces the O(`) offline computation/communication with O(κ)
offline computation/communication. As a drawback, it requires two mutually
incorruptible parties and has only has statistical (not perfect) correctness.

Correctness. When x = 0, we have m = t · 2κ + β and therefore m̃ = β. Thus,
the final equality test correctly determines equality with 0. When x 6= 0, [[x]] · [[r]]
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Alice ABB([[x]]), κ, T = b2−κ ·Mc Bob

Preprocessing:
[[r]]← RandElem() β ∈ Z2κ

t ∈ ZTβ < 2κ; t < T

Online:
[[m]]← [[x]] · [[r]] + (2κ · [[t]] + [[β]])

m

m̃ = m mod 2κ < 2κ

[[x = 0]]← eq(m̃, β)

Protocol 2: eqDIE, secure zero-testing based on disclose-if-equal

is (1− ε)-close to uniformly random since [[r]] is generated using RandElem and
therefore guaranteed to be uniformly random. This implies that m is statistically
close to uniformly random, independently of t·2κ+β. Thus,m reveals statistically
almost no information about β. We remark that the ABB must verify not only
m̃ < 2κ, but also that m̃ = m mod 2κ. This can be done by providing not
only m̃ = m mod 2κ < 2κ, but also bm/2κc < bM/2κc, and verifying that
m = bm/2κc · 2κ + m̃ (e.g., by outputting the difference).

Privacy. A corrupt Bob receives no outputs from the ABB, hence simulation
is trivial: do nothing. For a corrupt Alice, note that the only value leaving the
ABB is m, hence this is the only possible information leak. Since Bob is honest,
t ·2κ+β is chosen correctly, thus, no matter the value of x, m will be statistically
close to uniformly random – either due to Bob’s random choice or the addition
of x · r. Hence, simulation will consist of a uniformly random element.

Complexity. The protocol consists of one random element generation, three
inputs, and one output plus the invocation of eq. Using eqH of the previous
subsection, implies O(κ) work overall and O(1) (but a slightly worse constant)
work online. We state the following theorem:

Theorem 2. Given two `-bit values [[x]] and [[y]] stored in an n-party arithmetic
black-box for ZM augmented with a proof of boundedness, equality may be com-
puted with 3 outputs and 2 ABB-multiplication in the online phase and O(κ)
operations overall when two mutually incorruptible parties are present.

4 Greater-Than with Sublinear online Complexity

Toft [16] recently introduced the first sublinear GT protocols, i.e., protocols
computing [[x ≥ y]] from [[x]] and [[y]]. Utilizing eqH and eqDIE from Sect. 3,
we propose two different (and orthogonal) improvements: (i) We can eliminate
the need for two mutually incorruptible parties; this comes at the cost of linear
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Alice ABB([[x]], [[y]], `) Bob

if ` = 1 then return;

([[e
(`)
1 ]], . . . , [[e

(`)
Se

]])← eq(`/2),preproc;

for i← 0 to `− 1 do [[ri]]← RandBit;

[[r
(`)
⊥ ]]←

∑`/2−1
i=0 2i[[ri]];

[[r
(`)
> ]]←

∑`/2−1
i=0 2i[[ri+`/2]];

r(A,`) ← Z
2k

r(B,`) ← Z
2k

.
r(A,`) < 2k r(B,`) < 2k

[[R(`)]]← 2`([[r(A,`)]] + [[r(B,`)]]) + 2`/2[[r
(`)
> ]] + [[r

(`)
⊥ ]]

([[g
(`)
1 ]], . . . , [[g

(`)
Sg

]])← gt(`/2),log,preproc

Protocol 3: gt(`),log,preproc: Preprocessing for the secure, `-bit GT test, gt(`),log

preprocessing, or (ii) We improve efficiency when two mutually incorruptible
parties exist by an order of magnitude. Similarly to [16] we assume 2`+k+logn �
M , where k is a statistical security parameter and n the number of parties.

The overall idea behind Toft’s construction is to perform a GT-test through
log ` equality tests: If the `/2 most significant bits of [[x]] and [[y]] differ then
ignore the `/2 least significant ones; if they are equal then continue with the
`/2 least significant ones. (This description is not correct, but provides sufficient
intuition at this point.)

4.1 Sublinear Online Communication in the ABB Model

The main idea of the construction, gt(`),log = (gt(`),log,preproc, gt(`),log,online),
for comparing `-bit numbers is to take the two mutually incorruptible par-
ties of [16] and implement one using the ABB and executing the other “pub-
licly.” The core task of the ABB-party is then to generate appropriately dis-
tributed random values. Letting eq(`) = (eq(`),preproc, eq(`),online) denote an
equality test for `-bit numbers (and its offline and online phases), preprocess-
ing consists of invoking eq(2j),preproc as well as generating log ` random values

[[R(2j)]]← 2(2
j)(

∑n
i=1[[r(i,2

j)]])+2(2
j−1)[[r

(2j)
> ]]+[[r

(2j)
⊥ ]] for j ∈ {1, . . . , log `}, where

[[r(i,2
j)]] is a uniformly random k-bit number supplied by Pi and [[r

(2j)
> ]], [[r

(2j)
⊥ ]] are

uniformly random 2j−1-bit values unknown to all. Details are seen as Protocol 3.
The online phase of the construction is seen as Protocol 4 and explained

in the correctness argument below. For clarity, we include preprocessed values
implicitly in invocations of subprotocols.

Correctness. Correctness is immediate for single bit inputs: 1− y + x · y is 1
exactly when x ≥ y. For ` > 1, the goal is to transform the comparison of `-
bit integers to a comparison of `/2-bit integers. Observe that bz/2`c equals the
desired result and that this can be computed as 2−`([[z]]− [[z mod 2`]]). Further,
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Alice ABB([[x]], [[y]]) Bob

if ` = 1 then return 1− [[y]] + [[x]] · [[y]];
;

[[z]]← 2` + [[x]]− [[y]];

[[m]]← [[z]] + [[R(`)]];

.m m

m⊥ = m mod 2`/2

m> = bm/2`/2c mod 2`/2
m⊥ = m mod 2`/2

m> = bm/2`/2c mod 2`/2

[[b]]← eq((`/2)),online(m>, [[r
(`)
> ]])

[[m̃]]← [[b]]·(m⊥ −m>) +m>

[[r̃]]← [[b]]·([[r(`)⊥ ]]− [[r
(`)
> ]]) + [[r

(`)
> ]]

[[f ]]← 1− (gt(`/2),log,online([[m̃]], [[r̃]]))

[[z mod 2`]]← ((m mod 2`)− (2`/2[[r
(`)
> ]] + [[r

(`)
⊥ ]]) + 2`[[f ]]

return [[x ≥ y]]← 2−`([[z]]− [[z mod 2`]])

Protocol 4: gt(`),log,online: Online phase of the secure, `-bit GT test, gt(`),log

since 2`+k+logn � M , we have z mod 2` ≡ m − r mod 2`. We reduce m and
[[r]] before the subtraction, which ensures that the result lies between −2` and
2`. The correct result is obtained by adding 2` when this is negative, i.e., when
[[r mod 2`]] > m mod 2`. The latter implies [[f ]] = 1 since we recursively compare
the `/2 most- or least-significant bits of [[r mod 2`]] and m mod 2` depending on
whether the `/2 most significant bits differed.

Privacy. In each recursive call, m = z + r is revealed, but this is statistically
indistinguishable from a random value distributed as r – as above r statistically
masks z as the bit-length is (at least) k bits longer; for honest ith party Pi,
2` · r(i) + 2`/2 · r> + r⊥ is uniformly random.

Complexity. Preprocessing requires O(`) work: Though there is a logarithmic
number of rounds, each one deals with a problem of half size. Hence, the com-
bined r>, r⊥ and random masks for eqH,(·) are only O(`) bits overall. Round
complexity is O(1), as the iterations can be preprocessed in parallel.

Each online iteration (for j ∈ {1, . . . , 2`}) requires an output (m) and an
execution of eq(2j),online. Additionally, an ABB-multiplication is used to copy
the most significant differing halves (if these exist). The remaining computation
is purely local or in the form of ABB-additions. Thus, the overall complexity is
O(log `) given that eq(·),online requires a constant number of ABB operations.

Implementing eq· as eqH,(·), the above results in a protocol with 3 log ` out-
puts and 2 log ` + 1 ABB-multiplications online; three outputs and two ABB-
multiplications per iteration and a single secure ABB-multiplication in the final,
single-bit comparison. We state the following theorem:

Theorem 3. Given two `-bit values [[x]] and [[y]] stored in an n-party arithmetic
black-box for ZM augmented with a proof of boundedness, greater-than may be
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computed with 3 log ` outputs and 2 log ` + 1 ABB-multiplications in the online
phase when 2`+k+logn �M , where k is a statistical security parameter.

We may adapt the constant-rounds protocol of [16] to the present setting.
Sketching the solution, let c be a (constant) integer and split m mod 2` into
`1/c strings of `1−1/c length. The most significant differing strings may be de-
termined using O(`1/c) equality tests and arithmetic; these are then compared
recursively. Overall this requires c iterations and O(c · `1/c) equality tests and
ABB-multiplications/outputs.

Theorem 4. Given two `-bit values [[x]] and [[y]] stored in an n-party arithmetic
black-box for ZM augmented with a proof of boundedness, greater-than may be
computed with O(c · `1/c) ABB operations in O(c) rounds in the online phase
when 2`+k+logn �M , where k is a security parameter.

4.2 Sublinear, DIE-based Greater-than

eqDIE,(·) is much more efficient than the equality test used in [16]. Thus, com-

bining this with Toft’s original protocol6 improves practical efficiency and re-
duces the theoretical online complexity – O(log `) rounds and work online and7

O(log `(κ+loglog `)) ABB-operations overall. The constant-rounds protocol may
also be combined with eqDIE resulting in an O(c) rounds protocol with O(c·`1/c)
work online and O(`1/c(κ+log `)) work overall. We state the following theorems:

Theorem 5. Given two `-bit values [[x]] and [[y]] stored in an n-party arithmetic
black-box for ZM augmented with a proof of boundedness, GT may be computed in
the presence of two mutually incorruptible parties with 4 log ` outputs and 3 log `+
1 ABB-multiplications in the online phase and O(log `(κ+ loglog `)) operations
overall when 2`+k+logn �M , where k is a statistical security parameter.

Theorem 6. Given two `-bit values [[x]] and [[y]] stored in an n-party arithmetic
black-box for ZM augmented with a proof of boundedness, greater-than may be
computed in the presence of two mutually incorruptible parties with O(c · `1/c)
ABB-operations in O(c) rounds in the online phase and O(`1/c(κ+ log `)) oper-
ations overall when 2`+k+logn �M , where k is a statistical security parameter.
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