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Abstract. We propose a new non-interactive (perfect) zero-knowledge (NIZK)
shuffle argument that, when compared the only previously known efficient NIZK
shuffle argument by Groth and Lu, has a small constant factor times smaller com-
putation and communication, and is based on more standard computational as-
sumptions. Differently from Groth and Lu who only prove the co-soundness of
their argument under purely computational assumptions, we prove computational
soundness under a necessary knowledge assumption. We also present a general
transformation that results in a shuffle argument that has a quadratically smaller
common reference string (CRS) and a small constant factor times times longer
argument than the original shuffle.
Keywords. Bilinear pairings, cryptographic shuffle, non-interactive zero-
knowledge, progression-free sets.

1 Introduction

In a shuffle argument, the prover proves that two tuples of randomized ciphertexts en-
crypt the same multiset of plaintexts. Such an argument is needed in e-voting and anony-
mous broadcast. In the case of e-voting, shuffles are used to destroy the relation between
the voters and their ballots. There, the voters first encrypt their ballots. The ciphertexts
are then sequentially shuffled by several independent mix servers, where every server
also produces a zero-knowledge shuffle argument. At the end, all shuffle arguments are
verified and the final ciphertexts are threshold-decrypted. If all arguments are accepted,
then the shuffle is correct. Moreover, as long as one mix server is honest, the shuffle
remains private (that is, one cannot relate the voters and their ballots).

A lot of research has been conducted in the area of constructing secure and efficient
shuffle arguments, with recent work resulting in shuffles that have sublinear commu-
nication and very competitive computational complexity. However, it is also impor-
tant that the shuffle argument is non-interactive, due to the fact that non-interactive
arguments are transferable (create once, verify many times without interacting with
the prover). This is especially important in e-voting, where the correctness of e-voting
(and thus of the shuffle) should be verifiable in years to come. Practically all previ-
ous shuffle arguments are interactive, and can only be made non-interactive by using
the Fiat-Shamir heuristic, that is, in the random oracle model. For example, Groth and
Ishai [13], Groth [11], and Bayer and Groth [2] have constructed shuffle arguments
with communicationΘ(n2/3),Θ(n1/2), andΘ(n1/2) respectively, where n is the num-
ber of ciphertexts. Unfortunately, they make use of the Schwartz-Zippel lemma that
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|CRS| Comm. P’s comp. V’s comp. Pairing Sound Assumption

[14] 2n+ 8 15n+ 120 51n+ 246 75n+ 282 Sym. Co- PPA+SPA+DLIN

Sect. 5 7n+ 6 6n+ 11 17n+ 16 28n+ 18 Asym. Sound PKE+PSDL+DLIN

[19] 7
√
n+ 6 30n+ 33

√
n 63n+ 48

√
n 84n+ 54

√
n Asym. Sound PKE+PSDL+DLIN

Table 1. Brief comparison of existing (not random-oracle based) and new (two last ones) NIZK
shuffle arguments. Here, the communication complexity and the CRS length are given in group
elements, prover’s computation is given in exponentiations, and verifier’s computation is given in
(symmetric or asymmetric) bilinear pairings

requires the verifier to first provide a random input. The only known way to make the
Schwartz-Zippel lemma based arguments non-interactive is to use the random oracle
model. Unfortunately, it is well-known that there are protocols that are secure in the ran-
dom oracle model but not in the plain model. Even if there are no similar distinguishing
attacks against any of the existing shuffle arguments, it is prudent to design alternative
non-interactive shuffle arguments that are not based on random oracle model.

The only known (not random-oracle based) efficient non-interactive zero-
knowledge (NIZK) shuffle argument (for the BBS cryptosystem [3]) was proposed by
Groth and Lu in [14]. The security of the Groth-Lu argument is based on the common
reference string model and on two new computational assumptions, the permutation
pairing assumption (PPA, see [14]) and the simultaneous pairing assumption (SPA).
While Groth and Lu proved that their assumptions are secure in the generic group
model, one can argue that their assumptions are specifically constructed so as the con-
crete shuffle argument will be co-sound [16] (see [14] and Sect. 2 for discussions on
co-soundness). It is therefore interesting to construct a shuffle argument from “more
standard” assumptions. Moreover, their shuffle argument has a relatively large compu-
tational complexity and communication complexity. (See Tbl. 1 for a comparison.)

We construct a new non-interactive shuffle argument that has better communication
and is based on more standard computational security assumptions than the Groth-Lu
argument. Full comparison between the Groth-Lu and the new argument is given later.
Recall that permutation matrix is a Boolean matrix that has exactly one 1 in every
row and column. From a very high-level point of view, following [9] and subsequent
papers, we let the prover to commit to a permutation matrix and then present an efficient
permutation matrix argument (given commitments commit to a permutation matrix).
We then prove that the plaintext vector corresponding to the output ciphertext vector is
equal to the product of this matrix and the plaintext vector corresponding to the input
ciphertext vector, and thus is correctly formed. Both parts are involved. In particular,
coming up with a characterization of permutation matrices that allows for an efficient
cryptographic implementation was not a trivial task.

Terelius and Wikström [23] constructed an interactive permutation matrix argument
based on the fact that a matrix is a permutation matrix iff its every column sums to 1
and its every row has exactly one non-zero element. To verify that the committed matrix
satisfies these properties, they used the Schwartz-Zippel lemma with the verifier send-
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ing a random vector to the prover. This introduces interaction (or the use of a random
oracle). We do not know how to prove efficiently in NIZK that a commitment commits
to a unit vector; how to construct such an efficient argument is an interesting open prob-
lem. We propose a superficially similar permutation matrix argument that is based on
the (related) fact that a matrix is a permutation matrix exactly if every column sums to 1
and every row has at most one non-zero element. However, we do not explicitly use the
Schwartz-Zippel lemma, and this makes it possible for us to create a NIZK argument
without using the random oracle model.

Cryptographically, the new permutation matrix argument is based on recent tech-
niques of Groth [12] and Lipmaa [18] who proposed an NIZK argument for circuit
satisfiability based on two subarguments, for Hadamard — that is, entry-wise — prod-
uct and permutation. (The same basic arguments were then used in [4] to construct an
efficient non-interactive range proof.) Unfortunately, in their subarguments, the prover
has quadratic (or quasilinear O(n22

√
2 log2 n), if one only counts the group operations)

computational complexity. This is not acceptable in our case, and therefore we do not
use any of the arguments that were constructed in [12, 18].

We propose 2 new basic arguments (a zero argument, see Sect. 3.1, and a 1-sparsity
argument, see Sect. 3.2), and then combine them in Sect. 3.3 to form a permutation
matrix argument. The zero argument (the prover can open the given commitment to
the zero tuple) can be interpreted as a knowledge of the discrete logarithm argument,
and is a special case of Groth’s restriction argument from [12]. On the other hand,
the 1-sparsity argument (the prover can open the given commitment to a tuple a =
(a1, . . . , an), where at most one coordinate ai is non-zero) is conceptually new.

Like the basic arguments of [18], the new 1-sparsity argument relies on the existence
of a dense progression-free set. However, the costs of the 1-sparsity argument do not
depend explicitly on the size of the used progression-free sets. Briefly, in [18] and the
new 1-sparsity argument, the discrete logarithm of the non-interactive argument is equal
to the sum of two polynomials Fcon(x) and Fπ(x), where x is the secret key. The
first polynomial Fcon has exactly one monomial per constraint that a honest prover
has to satisfy. The number of constraints is linear (for any i, ai · bi = ci) in [18]
and quadratic (for any two different coefficients ai and aj , ai · aj = 0) in the new 1-
sparsity argument. The second polynomial consists of monomials (a quasilinear number
O(n22

√
2 log2 n) in [18] and a linear number in the new 1-sparsity argument) that have

to be computed by a honest prover during the argument, and this is the main reason
why both the CRS length and the prover’s computational complexity are lower in the
1-sparsity argument compared to the arguments in [18]. We find this to be an interesting
result by itself, leading to an obvious question whether similar arguments (that have a
superlinear number of constraints and a linear number of spurious monomials) can be
used as an underlying engine to construct other interesting NIZK proofs.

In Sect. 5, we combine the permutation matrix argument with a knowledge version
of the BBS [3] cryptosystem to obtain an efficient NIZK shuffle argument. Informally,
by the KE assumption [6], in the knowledge BBS cryptosystem (defined in Sect. 4) the
ciphertext creator knows both the used plaintext and the randomizer. Since it is usually
not required that the ciphertext creator also knows the randomizer, the knowledge BBS
cryptosystem satisfies a stronger than usual version of plaintext-awareness. While this
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version of plaintext-awareness has not been considered in the literature before, it is also
satisfied by the Damgård’s Elgamal cryptosystem from [6].

According to [1], only languages in P/poly can have direct black-box perfect
NIZK arguments.1 Since all known constructions of NIZK arguments use direct black-
box reductions, one can argue that the “natural” definition of soundness is not the right
definition of soundness for perfect NIZK arguments, see [14] for more discussion. To
overcome the impossibility results of [1], Groth and Lu [14] proved co-soundness [14,
16] of their argument under purely computational assumptions.

Our subarguments (the zero argument, the 1-sparsity argument, and the permuta-
tion matrix argument) are not computationally sound since their languages are based
on a perfectly hiding commitment scheme, see Sect. 3. Instead, we prove that these
arguments satisfy a weak version of soundness [12, 18] under purely computational
assumptions. We could use a similar definition of the weak soundness of the shuffle
argument and prove that the new shuffle argument is (weakly) sound by using only
standard computational assumptions. Instead (mostly since computational soundness is
a considerably more standard security requirement), we prove computational soundness
of the shuffle argument under a (known) knowledge assumption. This is also the reason
why we need to use the knowledge BBS cryptosystem.

Apart from the knowledge assumption, the security of the new shuffle argument is
based on the DLIN assumption [3] (which is required for the CPA-security of the BBS
cryptosystem), and on the power symmetric discrete logarithm (PSDL, see Sect. 2)
assumption from [18]. The PSDL assumption is much more standard(-looking) than
the SPA and PPA assumptions from [14].

Tbl. 1 provides a comparison between [14] and the new shuffle argument. Since
it was not stated in [14], we have calculated ourselves2 the computational complexity
of the Groth-Lu argument. As seen from Tbl. 1, the new argument is computationally
about 2.5 to 3 times more efficient and communication-wise about 2 times more ef-
ficient, if one just counts the number of exponentiations (in the case of the prover’s
computation), pairings (verifier’s computation), or group elements (communication). In
addition, the new argument uses asymmetric pairings ê : G1 × G2 → GT , while [14]
uses symmetric pairings with G1 = G2. This means in particular that the difference
in efficiency is larger than seen from Tbl. 1. First, asymmetric pairings themselves are
much more efficient than symmetric pairings. Second, if asymmetric pairings were used
in the Groth-Lu shuffle, one would have to communicate two different versions (one in
group G1 and another one in group G2) of some of the group elements.

The main drawback of the new shuffle argument is that its soundness relies addi-
tionally on a knowledge assumption. However, a non-standard assumption is necessary
to achieve perfect zero-knowledge [1]. Differently from the random oracle assumption
that is known to be false in general, knowledge assumptions are just known to be non-

1 It is not necessary to have a perfect NIZK argument for a shuffle (one could instead construct
a computational NIZK proof), but the techniques of both [14] and especially of the current
paper are better suited to construct efficient perfect NIZK arguments. We leave it as an open
question to construct a computational NIZK proof for shuffle with a comparable efficiency.

2 Our calculations are based on the Groth-Sahai proofs [17] that were published after the Groth-
Lu shuffle argument. The calculations may be slightly imprecise.



A More Efficient Computationally Sound NIZK Shuffle Argument 5

falsifiable and thus might be true for any practical purposes. (In comparison, the Groth-
Lu argument was proven to be co-sound, which is a weaker version of computational
soundness, under purely computational assumptions.)

Moreover, the Groth-Lu shuffle uses the BBS cryptosystem (where one ciphertext
is 3 group elements), while we use the new knowledge BBS cryptosystem (6 group
elements). This difference is small compared to the reduction in the argument size. The
use of knowledge BBS cryptosystem corresponds to adding a proof of knowledge of the
plaintexts (and the randomizers) by the voters. However, it means that in the proof of
soundness, we show security only against (white-box) adversaries who have access to
the secret coins of all voters and mixservers. It is a reasonable compromise, comparable
to the case in interactive (or Fiat-Shamir heuristic based) shuffles where the ballots are
accompanied by a proof of knowledge of the ballot, from which either the adversary
of the simulator can obtain the actual votes, but without the use of a random oracle,
see Sect. 5 for more discussion. As we note there, our soundness definition follows that
of [14], but the mentioned issues are due to the use of a knowledge assumption. We
hope that the current work will motivate more research on clarifying such issues.

Another drawback of our scheme as compared to [14] is that it uses a lifted cryp-
tosystem, and thus can be only used to shuffle small plaintexts. This is fine in appli-
cations like e-voting (where the plaintext is a candidate number). Many of the existing
e-voting schemes are based on (lifted) Elgamal and thus require the plaintexts to be
small. We note that significant speedups can be achieved in both cases by using efficient
multi-exponentiation algorithms and thus for a meaningful computational comparison,
one should implement the shuffle arguments.

In the full version [19], we show that one can transform both the Groth-Lu argument
and the new argument, by using the Clos network [5], to have a CRS of size Θ(

√
n)

while increasing the communication and computation by a small constant factor. This
version of the new argument is computationally/communication-wise only slightly less
efficient than the Groth-Lu argument but has a quadratically smaller CRS, see Tbl. 1.
This transformation can be applied to any shuffle argument that has linear communica-
tion and computation, and a CRS of length f(n) = Ω(1). We pose it as an open problem
to construct (may be using similar techniques) an NIZK shuffle argument where both
the CRS and the communication are sublinear.

Due to the lack of space, some proofs are only given in the full version [19].

2 Preliminaries

Let [n] = {1, 2, . . . , n}. If y = hx, then let logh y := x. To help readability in cases

like gri+x
λ
ψ−1(i)

2 , we sometimes write exp(h, x) instead of hx. Let κ be the security
parameter. PPT denotes probabilistic polynomial time. For a tuple of integers Λ =
(λ1, . . . , λn) with λi < λi+1, let (ai)i∈Λ = (aλ1 , . . . , aλn). We sometimes denote
(ai)i∈[n] as a. We say that Λ = (λ1, . . . , λn) ⊂ Z is an (n, κ)-nice tuple, if 0 < λ1 <
· · · < λi < · · · < λn = poly(κ). Let Sn be the set of permutations from [n] to [n].

By using notation that is common in additive combinatorics [22], if Λ1

and Λ2 are subsets of some additive group (Z or Zp within this paper), then
Λ1 + Λ2 = {λ1 + λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is their sum set and Λ1 − Λ2 =
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{λ1 − λ2 : λ1 ∈ Λ1 ∧ λ2 ∈ Λ2} is their difference set. In particular, if Λ is a
set, then kΛ = {

∑k
i=1 λi : λi ∈ Λ} is an iterated sumset. On the

other hand, k · Λ = {kλ : λ ∈ Λ} is a dilation of Λ. We also let 2̂Λ =
{λ1 + λ2 : λ1 ∈ Λ ∧ λ2 ∈ Λ ∧ λ1 6= λ2} ⊆ Λ+ Λ to denote a restricted sumset.

A set Λ = {λ1, . . . , λn} of integers is progression-free [22], if no three elements
of Λ are in arithmetic progression, that is, λi + λj = 2λk only if i = j = k. Let
r3(N) denote the cardinality of the largest progression-free set that belongs to [N ].
Recently, Elkin [7] showed that r3(N) = Ω((N · log1/4N)/22

√
2 log2N ). On the

other hand, it is known that r3(N) = O(N(log logN)5/ logN) [21]. Thus, accord-
ing to [21], the minimal N such that r3(N) = n is ω(n), while according to Elkin,
N = O(n22

√
2 log2 n) = n1+o(1). Thus, for any fixed n > 0, there exists N = n1+o(1),

such that [N ] contains an n-element progression-free subset [18].
While the efficiency of arguments from [18] directly depended on the choice of the

progression-free set, in our case the only thing dependent on this choice is the tightness
of most of our security reductions; see the definition of PSDL below, or the proofs of
Thm. 2, Thm. 4 and Thm. 5. Due to this, one may opt to use a less dense (but easy
to construct) progression-free set. As an example, Erdős and Turán [8] defined a set
T (n) of all integers up to n that have no number 2 in their ternary presentation. Clearly,
|T (n)| ≈ nlog3 2 ≈ n0.63 and T (n) is progression-free. One can obtain a dense set of
progression-free odd positive integers by mapping every a in T (n) to 2a+ 1.

A bilinear group generator Gbp(1κ) outputs gk := (p,G1,G2,GT , ê, g1, g2) ←
Gbp(1κ) such that p is a κ-bit prime, G1, G2 and GT are multiplicative cyclic groups
of order p, ê : G1 × G2 → GT is a bilinear map (pairing), and gt ← Gt \ {1} is a
random generator of Gt for t ∈ {1, 2}. Additionally, it is required that (a) ∀a, b ∈ Z,
ê(ga1 , g

b
2) = ê(g1, g2)ab, (b) ê(g1, g2) generates GT , and (c) it is efficient to decide the

membership in G1, G2 and GT , the group operations and the pairing ê are efficiently
computable, generators of G1 and G2 are efficiently sampleable, and the descriptions
of the groups and group elements each are O(κ) bit long. One can represent an element
of G1/G2/GT in respectively 512/256/3072 bits, by using an optimal (asymmetric) Ate
pairing over a subclass of Barreto-Naehrig curves.

A public-key cryptosystem (Gbp,Gpkc, Enc,Dec) is a tuple of efficient algorithms,
where Gbp is a bilinear group generator that outputs gk, Gpkc(gk) generates a se-
cret/public key pair (sk, pk), randomized encryption algorithm Encpk(µ; r) produces
a ciphertext c, and deterministic decryption algorithm Decsk(c) produces a plaintext
µ. It is required that for all gk ← Gbp(1κ), (sk, pk) ∈ Gpkc(gk) and for all valid µ
and r, Decsk(Encpk(µ; r)) = µ. Assume that the randomizer space R is efficiently
sampleable. A public-key cryptosystem (Gbp,Gpkc, Enc,Dec) is CPA-secure, if for all
stateful non-uniform PPT adversaries A, the following probability is negligible in κ:∣∣∣∣∣Pr

[
gk← Gbp(1κ), (sk, pk)← Gpkc(gk), (µ0, µ1)← A(pk),
b← {0, 1} , r ← R : A(Encpk(µb; r)) = b

]
− 1

2

∣∣∣∣∣ .

Let Λ be an (n, κ)-nice tuple for n = poly(κ). A bilinear group generator Gbp is
Λ-PSDL secure [18], if for any non-uniform PPT adversary A,

Pr[gk := (p,G1,G2,GT , ê, g1, g2)← Gbp(1κ), x← Zp : A(gk; (gx
`

1 , gx
`

2 )`∈Λ) = x]
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is negligible in κ. (Note that A also has access to gx
0

t since it belongs to gk.) A version
of PSDL assumption in a non pairing-based group was defined in [10]. Lipmaa [18]
proved that the Λ-PSDL assumption holds in the generic group model for any (n, κ)-
nice tuple Λ given that n = poly(κ). More precisely, any successful generic adversary
for Λ-PSDL requires time Ω(

√
p/λn) where λn is the largest element of Λ. Thus, the

choice of the actual security parameter depends on λn and thus also on Λ.
Let Gbp be a bilinear group generator, and let gk := (p,G1,G2,GT , ê, g1, g2) ←

Gbp(1κ). Let R = {(gk;C,w)} be an efficiently computable group-specific binary re-
lation such that |w| = poly(|C|). Here, C is a statement, and w is a witness. Let
L = {(gk;C) : (∃w) (gk;C,w) ∈ R} be a group-specific NP-language. Shuffle (see
Sect. 5) has a natural corresponding group-specific language, since one proves a relation
between elements of the same group.

A non-interactive argument forR consists of the following PPT algorithms: a bilin-
ear group generator Gbp, a common reference string (CRS) generator Gcrs, a prover P ,
and a verifier V . For gk ← Gbp(1κ) and crs ← Gcrs(gk), P(gk, crs;C,w) produces an
argument π. The verifier V(gk, crs;C, π) outputs either 1 (accept) or 0 (reject). If the
verifier only accesses a small part crsv of crs, we say that crsv is the verifier’s part of
the CRS and we will give just crsv as an input to V . When efficiency is not important
(e.g., in the security definitions), we give the entire crs to V .

An argument (Gbp,Gcrs,P,V) is perfectly complete, if for all gk ←
Gbp(1κ), all crs ← Gcrs(gk) and all (C,w) such that (gk;C,w) ∈ R,
V(gk, crs;C,P(gk, crs;C,w)) = 1. An argument (Gbp,Gcrs,P,V) is adaptively com-
putationally sound, if for all non-uniform PPT adversaries A, the probability

Pr

[
gk← Gbp(1κ), crs← Gcrs(gk), (C, π)← A(gk, crs) :
(gk;C) 6∈ L ∧ V(gk, crs;C, π) = 1

]
is negligible in κ. The soundness is adaptive in the sense that the adversary

sees the CRS before producing the statement C. An argument (Gbp,Gcrs,P,V)
is perfectly witness-indistinguishable, if for all gk ∈ Gbp(1κ), crs ∈ Gcrs(gk)
and ((gk;C,w0), (gk;C,w1)) ∈ R2, the distributions P(gk, crs;C,w0) and
P(gk, crs;C,w1) are equal. An argument (Gbp,Gcrs,P,V) is perfectly zero-knowledge,
if there exists a PPT simulator S = (S1,S2), such that for all stateful interactive non-
uniform PPT adversaries A,

Pr


gk← Gbp(1κ), crs← Gcrs(gk),
(C,w)← A(gk, crs),
π ← P(gk, crs;C,w) :
(gk;C,w) ∈ R ∧ A(π) = 1

 = Pr


gk← Gbp(1κ), (crs, td)← S1(gk),
(C,w)← A(gk, crs),
π ← S2(gk, crs, td;C) :
(gk;C,w) ∈ R ∧ A(π) = 1

 .

Here, td is the simulation trapdoor.
The soundness of NIZK arguments (for example, an argument that a computation-

ally binding commitment scheme commits to 0) seems to be an unfalsifiable assumption
in general. We will use a weaker version of soundness in the subarguments, but in the
case of the shuffle argument, we will prove soundness. Similarly to [12, 18], we will
base the soundness of that argument on an explicit knowledge assumption.
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For two algorithms A and XA, we write (y; z) ← (A||XA)(x) if A on input x
outputs y, and XA on the same input (including the random tape ofA) outputs z. Let Λ
be an (n, κ)-nice tuple for some n = poly(κ). Consider t ∈ {1, 2}. The bilinear group
generator Gbp is Λ-PKE secure in group Gt if for any non-uniform PPT adversary A
there exists a non-uniform PPT extractor XA, such that

Pr


gk := (p,G1,G2,GT , ê, g1, g2)← Gbp(1κ), (α, x)← Z2

p,

crs← (gαt , (g
x`

t , g
αx`

t )`∈Λ), (c, ĉ; (a`)`∈{0}∪Λ)← (A||XA)(gk; crs) :

ĉ = cα ∧ c 6=
∏

`∈{0}∪Λ

ga`x
`

t


is negligible in κ. Note that the element a0 is output since gt belongs to the CRS, and
thus the adversary has access to (gx

`

t , g
αx`

t ) for ` ∈ {0}∪Λ. Groth [12] proved that the
Λ-PKE assumption holds in the generic group model in the case Λ = [n]; his proof can
be straightforwardly modified to the general case. We later need the special case where
Λ = ∅, that is, the CRS contains only gαt , and the extractor returns a0 such that c = ga0

t .
This KE assumption (in a bilinear group) is similar to Damgård’s KE assumption [6],
except that it is made in a bilinear group setting.

A (tuple) commitment scheme (Gcom, Com) consists of two PPT algorithms: a ran-
domized CRS generation algorithm Gcom, and a randomized commitment algorithm
Com. Here, Gtcom(1κ, n), t ∈ {1, 2}, produces a CRS ckt, and Comt(ckt;a; r), with
a = (a1, . . . , an), outputs a commitment value A ∈ Gt. Within this paper, we open a
commitment Comt(ckt;a; r) by publishing the values a and r.

A commitment scheme (Gcom, Com) is computationally binding in group Gt, if for
every non-uniform PPT adversaryA and positive integer n = poly(κ), the probability

Pr

[
ckt ← Gtcom(1κ, n), (a1, r1,a2, r2)← A(ckt) :

(a1, r1) 6= (a2, r2) ∧ Comt(ckt;a1; r1) = Comt(ckt;a2; r2)

]

is negligible in κ. A commitment scheme (Gcom, Com) is perfectly hiding in group Gt,
if for any positive integer n = poly(κ) and ckt ∈ Gtcom(1κ, n) and any two messages
a1 and a2, the distributions Comt(ckt;a1; ·) and Comt(ckt;a2; ·) are equal. We use
the following variant of the knowledge commitment scheme from [12] as modified by
Lipmaa [18]:

CRS generation Gtcom(1κ, n): Let Λ be an (n, κ)-nice tuple with n = poly(κ).
Define λ0 = 0. Given a bilinear group generator Gbp, set gk :=
(p,G1,G2,GT , ê, g1, g2) ← Gbp(1κ). Choose random α, x ← Zp. The CRS is
ckt ← (gk; ĝt, (gti, ĝti)i∈[n]), where gti = gx

λi

t and ĝti = gαx
λi

t . Note that
gt = gt0 is a part of gk.

Commitment: To commit to a = (a1, . . . , an) ∈ Znp in group Gt, the commit-
ting party chooses a random r ← Zp, and defines Comt(ckt;a; r) := (grt ·∏n
i=1 g

ai
ti , ĝ

r
t ·

∏n
i=1 ĝ

ai
ti ).

Let t = 1. Fix a commitment key ck1 that in particular specifies g2, ĝ2 ∈ G2. A com-
mitment (A, Â) ∈ G2

1 is valid, if e(A, ĝ2) = e(Â, g2). The case of t = 2 is dual.



A More Efficient Computationally Sound NIZK Shuffle Argument 9

As shown in [18], the knowledge commitment scheme in group Gt is perfectly
hiding, and computationally binding under the Λ-PSDL assumption in group Gt. If the
Λ-PKE assumption holds in group Gt, then for any non-uniform PPT algorithmA, that
outputs some valid knowledge commitments there exists a non-uniform PPT extractor
XA that, given as an input the input of A together with A’s random coins, extracts the
contents of these commitments.

A trapdoor commitment scheme has 3 additional efficient algorithms: (a) A trap-
door CRS generation algorithm inputs t, n and 1κ and outputs a CRS ck∗ (that
has the same distribution as Gtcom(1κ, n)) and a trapdoor td, (b) a randomized trap-
door commitment that takes ck∗ and a randomizer r as inputs and outputs the value
Comt(ck∗;0; r), and (c) a trapdoor opening algorithm that takes ck∗, td, a and r as an
input and outputs an r′, s.t. Comt(ck∗;0; r) = Comt(ck∗;a; r′). The knowledge com-
mitment scheme is trapdoor, with the trapdoor being td = x: after trapdoor-committing
A← Comt(ck;0; r) = grt for r ← Zp, the committer can open it to (a; r−

∑n
i=1 aix

λi)
for any a [12, 18].

To avoid knowledge assumptions, one can relax the notion of soundness. Follow-
ing [16] and [14], Rco-soundness is a weaker version of soundness, where it is required
that an adversary who knows that (gk;C) 6∈ L should not be able to produce a witness
wco such that (gk;C,wco) ∈ Rco (see [14] or [16] for a longer explanation). More for-
mally, let R = {(gk;C,w)} and L = {(gk;C) : (∃w)(gk;C,w) ∈ R} be defined as
earlier. LetRco = {(gk;C,wco)} be an efficiently computable binary relation. An argu-
ment (Gbp,Gcrs,P,V) is (adaptively)Rco-sound, if for all non-uniform PPT adversaries
A, the following probability is negligible in κ:

Pr

[
gk← Gbp(1κ), crs← Gcrs(gk), (C,wco, π)← A(gk, crs) :
(gk;C,wco) ∈ Rco ∧ V(gk, crs;C, π) = 1

]
.

In [12], Groth proposed efficient NIZK arguments that he proved to be sound under
the power computational Diffie-Hellman assumption and the PKE assumption. Groth’s
arguments were later made more efficient by Lipmaa [18], who also showed that one can
use somewhat weaker security assumptions (PSDL instead of PCDH). Groth [12] and
Lipmaa [18] proposed two basic arguments (for Hadamard product and permutation).
In both cases, Lipmaa showed that by using results about progression-free sets one can
construct a set Λ2 with |Λ2| = O(n22

√
2 log2 n) = n1+o(1). Together with a trivial

Hadamard sum argument, one obtains a complete set of arguments that can be used to
construct NIZK arguments for any NP language. (See [12, 18] for discussion.) However,
this is always not the most efficient way to obtain a NIZK argument for a concrete
language. In Sect. 3 we define new basic arguments that enable us to construct a very
efficient permutation matrix argument and thus also a very efficient shuffle argument.

3 New Subarguments

In this section we present some subarguments that are required to construct the final
shuffle argument. However, we expect them to have independent applications and thus
we will handle each of them separately.
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CRS generation Gcrs(1
κ): Let gk := (p,G1,G2,GT , ê, g1, g2) ← Gbp(1

κ). Let α̊ ← Zp.
Denote g̊t ← gα̊t for t ∈ {1, 2}. The CRS is crs ← (̊g1, g̊2). The commitment key is
ck2 ← (gk; g̊2), and the verifier’s part of the CRS is crsv ← g̊1.

Common input: A2 ← gr2 ∈ G2.
Argument generation P0(gk, crs;A2, r): The prover defines Å2 ← g̊r2 , and sends π ← Å2 ∈

G2 to V as the argument.
Verification V0(gk, crsv;A2, π = Å2): The verifier accepts if ê(̊g1, A2) = ê(g1, Å2).

Protocol 1: New zero argument in group G2

3.1 New Zero Argument

In a zero argument, the prover aims to convince the verifier that he knows how to open
knowledge commitment At ∈ Gt to the all-zero message tuple 0 = (0, . . . , 0). Alter-
natively, one aims to prove the knowledge of the discrete logarithm of At, that is, that
At = grt for some r. By using the homomorphic properties of the knowledge commit-
ment scheme, the prover can use the zero argument to show that At can be opened to
an arbitrary constant.

This argument can be derived from [12, 18]. Intuitively, we set (only for this argu-
ment) n = 0 and show that A = A2 is a commitment to a length-0 tuple. For this,
we only have to include to the CRS the elements g̊1 and g̊2. (The case t = 1 can be
handled dually.) The following theorem is basically a tautology, since the KE assump-
tion states that the prover knows r. However, since any (A2, Å2), where Å2 = Aα̊2 , is
a commitment of 0 (and thus, (gk;A2) ∈ L) for some r, we cannot claim that Prot. 1
is computationally sound (even under a knowledge assumption). Instead, analogously
to [12, 18], we prove a weaker version of soundness (which is however sufficient to
achieve soundness of the shuffle argument). Note that the last statement of the theorem
basically says that no efficient adversary can output an input to the product argument
together with an accepting argument and openings to all commitments and all other
pairs of type (y, ȳ) that are present in the argument, such that aibi 6= ci for some i.

Theorem 1. The non-interactive zero argument in Prot. 1 is perfectly complete, per-
fectly zero-knowledge. Any non-uniform probabilistic-polynomial time adversary has a
negligible chance of returning an input inp0 = A2 and a satisfying argument π0 = Å2

together with a opening witness w0 = (a, r), such that (A2, Å2) = Com2(ck2;a; r),
a 6= 0 but the verification V0(gk, crs;A2, Å2) accepts.

Proof. PERFECT COMPLETENESS is straightforward, since ê(̊g1, A2) = ê(gα̊1 , A2) =
ê(g1, Aα̊2 ) = ê(g1, Å2). PERFECT ZERO-KNOWLEDGE: we construct the following
simulator S = (S1,S2). The simulator S1 generates first td = α̊ ← Zp, and then
crs←

(̊
g1 ← gα̊1 , g̊2 ← gα̊2

)
, and saves td. Since the simulator S2 later knows α̊, it can

compute a satisfying argument Å2 as Å2 ← Aα̊2 . Clearly, Å2 has the same distribution
as in the real argument.

WEAKER VERSION OF SOUNDNESS: assume that there exists an adversary A that
can break the last statement of the theorem. That is, A can create (A2, (a, r), Å2)
such that (A2, Å2) = Com2(a; r), a 6= 0, and ê(̊g1, A2) = ê(g1, Å2). But then
(A2, Å2) = (gr2 ·

∏n
i=1 g

aix
λi

2 , g̊r2 ·
∏n
i=1 g̊

aix
λi

2 ) with λI 6= 0 for some I ∈ [n]. Since
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(gk, crs) contains g̊x
`

2 only for ` ∈ {0}, the adversary has thus broken the ∅-PSDL as-
sumption. But the ∅-PSDL assumption is straightforwardly true, since then the input of
the adversary does not depend on x at all. Thus, the argument in Prot. 1 satisfies the last
statement of the theorem. ut

The fact that the weaker version of soundness of this argument does not require any
(non-trivial) assumption is, while somewhat surprising, also a logical consequence of
CRS including g̊x

`

2 only for ` 6= 0. In fact, if the CRS contained g̊x`2 for some other
value of ` then the argument would not be sound under any (reasonable) computational
assumption. The proof of the following lemma is straightforward.

Lemma 1. The CRS length in Prot. 1 is 1 element from the group G1 and 1 element
from the group G2. The argument size in Prot. 1 is 1 element from the group G2.
Prover’s computational complexity is dominated by 1 exponentiation. The verifier’s
computational complexity is dominated by 2 bilinear pairings.

3.2 New 1-Sparsity Argument

Assume that A2 ∈ G2. A vector a ∈ Znp is k-sparse, if it has at most k non-zero
coefficients. In a 1-sparsity argument in G2, the prover aims to convince the verifier
that he knows an opening A2 = gr2 ·

∏n
i=1 g

ai
2,λi

such that a is 1-sparse, that is, there
exists I ∈ [n] such that for i 6= I , ai = 0, while aI can take any value, including 0.
Alternatively, since Zp has no zero divisors, this means that the prover aims to convince
the verifier that aiaj = 0 for every i, j ∈ [n] such that i 6= j. (Note that the zero
argument can seen as a 0-sparsity argument.) A new 1-sparsity argument is depicted by
Prot. 2; 1-sparsity argument in G1 is defined dually.

Intuitively, the new 1-sparsity argument is constructed by following the same main
ideas as the basic arguments (for Hadamard product and permutation) from [18]. That
is, we start with a verification equation ê(A1, A2) = ê(g1, F ), where the discrete log-
arithm of the left-hand side, see Eq. (1), is a sum of two polynomials Fcon(x) and
Fπ(x), where x is the secret key. In this case, Fcon(x) has n(n − 1) monomials (with
coefficients aiaj with i 6= j) that all vanish exactly if the prover is honest. On the other
hand, the polynomial Fπ(x) has only 2n+1 monomials. Therefore, a honest prover can
compute the argument given 2n+1 pairs (g2`, ḡ2`). Moreover, the prover can construct
F by using 10 exponentiations. For comparison, in the basic arguments (the Hadamard
product argument and the permutation argument) of [18], the polynomial Fcon(x) had
n monomials, and the polynomial Fπ(x) had O(n22

√
2 log2 n) = n1+o(1) monomials.

Thus, the CRS had O(n22
√

2 log2 n) = n1+o(1) group elements and the prover’s com-
putational complexity was dominated by O(n22

√
2 log2 n) = n1+o(1) exponentiations.

Similarly to the zero argument, we cannot prove the computational soundness of this
argument, since for every a, there exists r such that A2 = gr2

∏
i∈[n] g

aix
λi

2 . Instead,
following [12, 18], we prove a weaker version of knowledge. Intuitively, the theorem
statement includes f ′` only for ` ∈ Λ̄ (resp., a` for ` ∈ Λ together with r) since ḡ2`
(resp., ḡ1`) belongs to the CRS only for ` ∈ Λ̄ (resp., ` ∈ {0} ∪ Λ).
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Theorem 2. The 1-sparsity argument in Prot. 2 is perfectly complete and perfectly
witness-indistinguishable. Let Λ be a progression-free set of odd positive integers. If
the Gbp is Λ̄-PSDL secure, then any non-uniform PPT adversary has negligible chance
of outputting inpspa ← (A2, Ā2) and a satisfying argument πspa ← (A1, Ā1, F, F̄ )
together with an opening witness wspa ← ((a`)`∈Λ, r, (f ′`)`∈Λ̄), such that (A2, Ā2) =

Com2(ck2;a; r), (F, F̄ ) = (g
P
`∈Λ̄ f

′
`x`

2 , ḡ
P
`∈Λ̄ f

′
`x`

2 ), for some i 6= j ∈ [n], aiaj 6= 0,
and the verification Vspa(gk, crs; (A2, Ā2), πspa) accepts.

The (weak) soundness reduction is tight, except that it requires to factor a polynomial
of degree 2λn = max

{
i ∈ Λ̄

}
.

Proof. Let η ← ê(A1, A2) and h ← ê(g1, g2). PERFECT WITNESS-
INDISTINGUISHABILITY: since satisfying argument πspa is uniquely determined,
all witnesses result in the same argument, and thus this argument is witness-
indistinguishable.

PERFECT COMPLETENESS. All verifications but the last one are straightforward.
For the last verification ê(A1, A2) = ê(g1, F ), note that logh η = (r+

∑n
i=1 aix

λi)(r+∑n
j=1 ajx

λj ) = Fcon(x) + Fπ(x), where

Fcon(x) =
n∑
i=1

n∑
j=1:j 6=i

aiajx
λi+λj

︸ ︷︷ ︸
δ∈2̂Λ

and Fπ(x) = r2 + 2r
n∑
i=1

aix
λi +

n∑
i=1

a2
ix

2λi

︸ ︷︷ ︸
δ∈Λ̄

.

(1)
Thus, logh η is equal to a sum of xδ for δ ∈ 2̂Λ and δ ∈ Λ̄. If the prover is honest, then
aiaj = 0 for i 6= j, and thus logh η is a formal polynomial that has non-zero monomials
γxδ with only δ ∈ Λ̄. Since then ai = 0 for i 6= I , we have logh η = r2 + 2raIxλI +
a2
Ix

2λI = logg2 F . Thus, if the prover is honest, then the third verification succeeds.
WEAKER VERSION OF SOUNDNESS: Assume thatA is an adversary that can break

the last statement of the theorem. Next, we construct an adversary A′ against the Λ̄-
PSDL assumption. Let gk ← Gbp(1κ) and x ← Zp. The adversary A′ receives crs ←
(gk; (gx

`

1 , gx
`

2 )`∈Λ̄) as her input, and her task is to output x. She sets ᾱ ← Zp, crs′ ←
(ḡ1, ḡ2, (gx

`

1 , gᾱx
`

1 )`∈Λ, (gx
`

2 , gᾱx
`

2 )`∈Λ∪(2·Λ)), and then forwards crs′ toA. Clearly, crs′

follows the distribution imposed by Gcrs(1κ). Denote ck2 ← (gk; ḡ2, (gx
`

2 , gᾱx
`

2 )`∈Λ).
According to the last statement of the theorem, A(gk; crs′) returns ((A2, Ā2), wspa =
((a`)`∈Λ, r, (f ′`)`∈Λ̄), πspa = (A1, Ā1, F, F̄ )).

Assume thatAwas successful, that is, for some i, j ∈ [n] and i 6= j, aiaj 6= 0. Since
(A2, Ā2) = Com2(ck2;a; r) and Vspa(gk, crs′; (A2, Ā2), πspa) = 1, A′ has expressed
logh η = logg2 F as a polynomial f(x), where at least for some ` ∈ 2̂Λ, x` has a
non-zero coefficient.

On the other hand, logg2 F =
∑
`∈Λ̄ f

′
`x
` = f ′(x). Since Λ is a progression-free

set of odd positive integers, then 2̂Λ∩ Λ̄ = ∅ and thus if ` ∈ Λ̄ then ` 6∈ 2̂Λ. Therefore,
all coefficients of f ′(x) corresponding to any x`, ` ∈ 2̂Λ, are equal to 0. Thus f(X) =∑
f`X

` and f ′(X) =
∑
`∈Λ̄ f

′
`X

` are different polynomials with

f(x) = f ′(x) = logg2 F .
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System parameters: Let n = poly(κ). Let Λ = {λi : i ∈ [n]} be an (n, κ)-nice progression-
free set of odd positive integers. Denote λ0 := 0. Let Λ̄ = {0} ∪ Λ ∪ (2 · Λ).

CRS generation Gcrs(1
κ): Let gk := (p,G1,G2,GT , ê, g1, g2) ← Gbp(1

κ). Let ᾱ, x ← Zp.
Denote ḡt ← gᾱt , gt` ← gx

`

t and ḡt` ← gᾱx
`

t for t ∈ {1, 2} and ` ∈ Λ̄. The CRS is
crs ← (ḡ1, ḡ2, (g1`, ḡ1`)`∈Λ, (g2`, ḡ2`)`∈Λ∪(2·Λ)). Set ck2 ← (gk; ḡ2, (g2`, ḡ2`)`∈Λ), and
let crsv ← (ḡ1, ḡ2) be the verifier’s part of crs.

Common input: (A2, Ā2) = Com2(ck2; a; r) = (gr2 · gaI2,λI
, ḡr2 · ḡaI2,λI

) ∈ G2
2, with I ∈ [n].

Argument generation Pspa(gk, crs; (A2, Ā2), (a, r)): The prover defines A1 ← gr1 · gaI1,λI
,

Ā1 ← ḡr1 · ḡaI1,λI
, F ← gr

2

2 · g2raI
2,λI
· ga

2
I

2,2λI
, and F̄ ← ḡr

2

2 · ḡ2raI
2,λI
· ḡa

2
I

2,2λI
. The prover sends

πspa ← (A1, Ā1, F, F̄ ) ∈ G2
1 ×G2

2 to the verifier as the argument.
Verification Vspa(gk, crsv; (A2, Ā2), π

spa): Vspa accepts iff ê(A1, g2) = ê(g1, A2),
ê(Ā1, g2) = ê(A1, ḡ2), ê(g1, Ā2) = ê(ḡ1, A2), ê(g1, F̄ ) = ê(ḡ1, F ), and ê(A1, A2) =
ê(g1, F ).

Protocol 2: New 1-sparsity argument

Therefore, A′ has succeeded in creating a non-zero polynomial d = f − f ′, such that
d(x) =

∑
`∈Λ̄ d`x

` = 0.
Next, A′ can use an efficient polynomial factorization algorithm in Zp[X] to effi-

ciently compute all 2λn + 1 roots of d(x). For some root y, gx
`

1 = gy
`

1 . A′ sets x← y,
thus violating the Λ̄-PSDL assumption. ut

The 1-sparsity argument is not perfectly zero-knowledge. The problem is that the
simulator knows td = (ᾱ, x), but given td and (A2, Ā2) she will not be able to generate
πspa. E.g., she has to compute A1 = gr1 · g

aIx
λI

1 based on A2 = gr2 · g
aIx

λI

2 and x, but
without knowing r, I or aI . This seems to be impossible without knowing an efficient
isomorphism G1 → G2. Computing F and F̄ is even more difficult, since in this case
the simulator does not even know the corresponding elements in G1. Technically, the
problem is that due to the knowledge of the trapdoor, the simulator can, knowing one
opening (a, r), produce an opening (a′, r′) to any other a′. However, here she does not
know any openings. For the same reason, the permutation matrix argument of Sect. 3.3
will not be zero-knowledge. On the other hand, in the final shuffle argument of Sect. 5,
the simulator creates all commitments by herself and can thus properly simulate the
argument. By the same reason, the subarguments of [12, 18] are not zero-knowledge
but their final argument (for circuit satisfiability) is.

Theorem 3. Consider Prot. 2. The CRS consists of 2n+ 1 elements of G1 and 4n+ 1
elements of G2, with the verifier’s part of the CRS consisting of only 1 element of G1

and 1 element of G2. The communication complexity (argument size) of the argument
in Prot. 2 is 2 elements from G1 and 2 elements from G2. Prover’s computational com-
plexity is dominated by 10 exponentiations. Verifier’s computational complexity is dom-
inated by 10 bilinear pairings.

3.3 New Permutation Matrix Argument

In this section, we will design a new permutation matrix argument where the prover
aims to convince the verifier that he knows a permutation matrix P such that (c2i, c̄2i) ∈
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Setup: let gk := (p,G1,G2,GT , ê, g1, g2)← Gbp(1
κ).

Common reference string Gcrs(gk): Let ᾱ, α̊, x ← Zp, ḡt ← gᾱt , g̊t ← gα̊t ,
gt` ← gx

`

t , and ḡt` ← ḡx
`

t . Let D ←
Qn
i=1 g2,λi . Let crs ←

(ḡ1, ḡ2, g̊1, g̊2, (g1`, ḡ1`)`∈Λ, (g2`, ḡ2`)`∈Λ∪(2·Λ), D), ck2 = (gk; ḡ2, (g2`, ḡ2`)`∈Λ), c̊k2 =
(gk; g2, g̊2), and crsv = (ḡ1, ḡ2, g̊1).

Common input: (c2i, c̄2i) = Com2(ck2; Pi; ri) = (gri2 · g2,λψ(i) , ḡ
ri
2 · ḡ2,λψ(i)) for i ∈ [n].

Argument Generation Ppm(gk, crs; (c2, c̄2), (P, r)): Construct a zero argument π0 ←
g̊

Pn
i=1 ri

2 that (
Qn
i=1 c2i)/D commits to 0. For i ∈ [n], construct a 1-sparsity argument

πspai = (c1i, c̄1i, Fi, F̄i) that (c2i, c̄2i) commits to a 1-sparse row. Send πpm ← (π0,πspa)
to the verifier.

Verification Vpm(gk, crsv; (c2, c̄2);πpm): The verifier checks n+ 1 arguments (π0,πspa).

Protocol 3: New permutation matrix argument in group G2 with P = Pψ

G2
2 are knowledge commitments to P ’s rows. Recall that a permutation matrix is a

Boolean matrix with exactly one 1 in every row and column: if ψ is a permutation then
the corresponding permutation matrix Pψ is such that (Pψ)ij = 1 iff j = ψ(i). Thus
(Pψ−1)ij = 1 iff i = ψ(j). We base our argument on the following lemma.

Lemma 2. An n× n matrix P is a permutation matrix if and only if the following two
conditions hold: (a) the sum of elements in any single column is equal to 1, and (b) no
row has more than 1 non-zero elements.

Proof. First, assume that P is a permutation matrix. Then every column has exactly one
non-zero element (namely, with value 1), and thus both claims hold. Second, assume
that (a) and (b) are true. Due to (a), every column must have at least one non-zero
element, and thus the matrix has at least n non-zero elements. Due to (b), no row has
more than 1 non-zero elements, and thus the matrix has at most n non-zero elements.
Thus the matrix has exactly n non-zero elements, one in each column. Due to (a), all
non-zero elements are equal to 1, and thus P is a permutation matrix. ut

We now use the 1-sparsity argument and the zero argument to show that the commit-
ted matrix satisfies the claims of Lem. 2. Therefore, by Lem. 2, P is a permutation ma-
trix. Following [12, 18] and similarly to the case of the zero and 1-sparsity arguments,
we prove that the permutation argument satisfies a “weaker” version of soundness.

Theorem 4. The argument in Prot. 3 is a perfectly complete and perfectly
witness-indistinguishable permutation matrix argument. Let Λ be a progression-
free set of odd positive integers. If the Λ̄-PSDL assumption holds, then any non-
uniform PPT adversary has a negligible chance in outputting an input inppm ←
(c2, c̄2) and a satisfying argument πpm ←

(
π0, (c1i, c̄1i, Fi, F̄i)i∈[n]

)
together

with an opening witness wpm ←
(
(ai)i∈Λ, ra, (Pi, ri, (f ′ij)j∈Λ̄)i∈[n]

)
, such that(

(
∏n
i=1 c2i) /D, π

0
)

= Com2(ck2;a; ra), (∀i ∈ [n])(c2i, c̄2i) = Com2(ck2;Pi; ri),
(∀i ∈ [n]) logg2 Fi =

∑
j∈Λ̄ f

′
ijx

j , (a 6= 0 ∨ (∃i ∈ [n])Pi is not 1-sparse), and the
verification Vpm(gk, crs; (c2, c̄2), πpm) accepts.
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Proof. PERFECT COMPLETENESS: follows from the completeness of the 1-sparsity
and zero arguments and from Lem. 2, if we note that

∏n
i=1 c2i/D = g

Pn
i=1 ri

2 , and thus
(
∏n
i=1 c2i/D, π

0) commits to 0 iff every column of P sums to 1.
WEAKER VERSION OF SOUNDNESS: Let A be a non-uniform PPT adversary that

creates (c2, c̄2), an opening witness ((a`)`∈Λ, ra, (Pi, ri, (f ′ij)j∈Λ̄)i∈[n]), and an ac-
cepting NIZK argument πspa.

Since the zero argument is (weakly) sound, verification of the argument π0 shows
that every column of P sums to 1. Here the witness is w0 = (a, ra) with a =∑n
i=1 Pi−1. By the Λ̄-PSDL assumption, the 1-sparsity assumption is (weakly) sound.

Therefore, verification of the arguments πspa shows that every row of P has exactly
one 1 (here the witness is wspai = (Pi, ri, (f ′ij)j∈Λ̄)). Therefore, by Lem. 2 and by the
(weak) soundness of the 1-sparsity and zero arguments, P is a permutation matrix.

PERFECT WITNESS-INDISTINGUISHABILITY: since satisfying argument πpm is
uniquely determined, all witnesses result in the same argument, and therefore the per-
mutation matrix argument is witness-indistinguishable. ut

Lemma 3. Consider Prot. 3. The CRS consists of 2n + 2 elements of G1 and 5n + 4
elements of G2. The verifier’s part of the CRS consists of 2 elements of G1 and of 2 ele-
ments of G2. The communication complexity is 2n elements of G1 and 2n+ 1 elements
of G2. The prover’s computational complexity is dominated by 10n+1 exponentiations.
The verifier’s computational complexity is dominated by 10n+ 2 pairings.

4 Knowledge BBS Cryptosystem

Boneh, Boyen and Shacham [3] proposed the BBS cryptosystem Π =
(Gbp,Gpkc, Enc,Dec). We will use a (publicly verifiable) “knowledge” version of this
cryptosystem so that according to the KE (that is, the ∅-PKE) assumption, the party
who produces a valid ciphertext must know both the plaintext and the randomizer. We
give a definition for group G1, the knowledge BBS cryptosystem for group G2 can be
defined dually.

Setup (1κ): Let gk← (p,G1,G2,GT , ê, g1, g2)← Gbp(1κ).
Key Generation Gpkc(gk): Set (α̃1, α̃2, α̃3) ← Z3

p, g̃1 ← gα̃3
1 , g̃(1)

2 ← gα̃1
2 , g̃(2)

2 ←
gα̃2
2 , g̃(3)

2 ← gα̃3
2 . The secret key is sk := (sk1, sk2)← (Z∗

p)
2, and the public key is

pk ← (gk; g̃1, g̃
(1)
2 , g̃

(2)
2 , g̃

(3)
2 , f, f̃ , h, h̃), where f = g

1/sk1
1 , f̃ = f α̃1 , h = g

1/sk2
1 ,

and h̃ = hα̃2 .
Encryption Encpk(µ;σ, τ): To encrypt a message µ ∈ Zp with randomizer (σ, τ) ∈

Z2
p, output the ciphertext u = (u1, u2, u3, ũ1, ũ2, ũ3), where u1 = fσ , u2 = hτ ,

u3 = gµ+σ+τ
1 , ũ1 = f̃σ , and ũ2 = h̃τ , and ũ3 = g̃µ+σ+τ

1 .
Decryption Decsk(u1, u2, u3, ũ1, ũ2, ũ3): if ê(u1, g̃

(1)
2 ) = ê(ũ1, g2), ê(u2, g̃

(2)
2 ) =

ê(ũ2, g2) and ê(u3, g̃
(3)
2 ) = ê(ũ3, g2), then return the discrete logarithm of gµ1 ←

u3/(usk1
1 usk2

2 ). Otherwise, return ⊥.

Since Encpk(µ1;σ1, τ1) · Encpk(µ2;σ2, τ2) = Encpk(µ1 + µ2;σ1 + σ2, τ1 + τ2), the
knowledge BBS cryptosystem is additively homomorphic (with respect to element-wise
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multiplication of the ciphertexts). In particular, one can re-encrypt (that is, blind) a
ciphertext efficiently: if σ2 and τ2 are random, then Encpk(µ;σ1, τ1)·Encpk(0;σ2, τ2) =
Encpk(µ;σ1 + σ2, τ1 + τ2) is a random encryption of µ, independently of σ1 and τ1.

The cryptosystem has to be lifted (i.e., the value µ be in exponent) for the soundness
proof of the new shuffle argument in Sect. 5 to go through; see there for a discussion.
Thus, to decrypt, one has to compute discrete logarithms. Since this the latter is in-
tractable, in real applications one has to assume that µ is small. Consider for example
the e-voting scenario where µ is the number of the candidate (usually a small number).

One can now use one of the following approaches. First, discard the ballots if
the ciphertext does not decrypt. (This can be checked publicly.) Second, use a (non-
interactive) range proof [20, 4] (in the e-voting scenario, range proofs are only given by
the voters and not by the voting servers, and thus the range proof can be relatively less
efficient compared to the shuffle argument) to guarantee that the ballots are correctly
formed. In this case, invalid ballots can be removed from the system before starting to
shuffle (saving thus valuable time otherwise wasted to shuffle invalid ciphertexts). Both
approaches have their benefits, and either one can be used depending on the application.

The inclusion of ũ3 to the ciphertext is required because of our proof technique.
Without it, the extractor in the proof of of the soundness of the new shuffle argument
can extract µ only if µ is small. Thus, security would not be guaranteed against an
adversary who chooses u3 without actually knowing the element µ.

It is easy to see that the knowledge BBS cryptosystem, like the original BBS cryp-
tosystem, is CPA-secure under the DLIN assumption (see Sect. A for the definition of
the latter).

5 New Shuffle Argument

Let Π = (Gpkc, Enc,Dec) be an additively homomorphic cryptosystem. Assume
that ui and u′i are valid ciphertexts of Π . We say that (u′1, . . . , u

′
n) is a shuffle

of (u1, . . . , un) iff there exists a permutation ψ ∈ Sn and randomizers r1, . . . , rn
such that u′i = uψ(i) · Encpk(0; ri) for i ∈ [n]. (In the case of the knowledge
BBS cryptosystem, ri = (σi, τi).) In a shuffle argument, the prover aims to con-
vince the verifier in zero-knowledge that given (pk, (ui, u′i)i∈[n]), he knows a per-
mutation ψ ∈ Sn and randomizers ri such that u′i = uψ(i) · Encpk(0; ri) for
i ∈ [n]. More precisely, we define the group-specific binary relation Rsh exactly
as in [14]: Rsh := {((p,G1,G2,GT , ê, g1, g2), (pk, {ui} , {u′i}), (ψ, {ri})) : ψ ∈
Sn ∧

(
∀i : u′i = uψ(i) · Encpk(0; ri)

)
} Note that both according to the correspond-

ing computational soundness definition and the Groth-Lu co-soundness definition (see
App. B), the adversary picks not only the final ciphertexts u′i but also the initial cipher-
texts ui.

In a real life application of the shuffle argument, the adversary (e.g., a malicious
mix server) usually gets the ciphertexts ui from a third party (from voters, or from an-
other mix server), and thus does not know their discrete logarithms. However, in such a
case we can still prove soundness of the full e-voting system (including the voters and
all mix servers) if we give the adversary access to secret coins of all relevant parties.
The use of knowledge BBS guarantees that the encrypters (voters) know the plaintexts
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and the randomizers, and thus the use of knowledge BBS can be seen as a white-box
non-interactive knowledge argument. This corresponds to the case in several interac-
tive (or Fiat-Shamir heuristic based) shuffles, where the ballots are accompanied by
a proof of knowledge of the actual vote, from what the (black-box) simulator obtains
the actual plaintexts necessary to complete the simulation. We thus think that sound-
ness in our model is relevant, and corresponds to the established cryptographic practice
with a twist. We leave the question of whether this model is necessary in applications
like e-voting (where initial ciphertexts are not provided by the mixservers), and when
co-soundness is undesired, as an interesting open problem. Using the Groth-Lu co-
soundness definition avoids this issue, since in that case the adversary does not have
access to the random coins of the participants.

We note that Groth and Lu made in addition a similar assumption in [14] where
they prove co-soundness against adversaries who also output and thus know the secret
key of the cryptosystem. (See App. B for a precise definition.) Thus, the adversary can
decrypt all the ciphertexts, and thus knows the plaintexts (but does not have to know
the randomizers). As argued in [14], this is reasonable in the setting of mixnet where
the servers can usually threshold-decrypt all the results. Their approach is however not
applicable in our case, since the knowledge of the secret key enables the adversary to
obtain the plaintexts and the randomizers in exponents, while to prove the soundness in
Thm. 5 the adversary has to know the plaintexts and the randomizers themselves.

Next, we construct an efficient shuffle argument that works with the knowledge
BBS cryptosystem of Sect. 4. Assume that the ciphertexts (ui1, ui2, ui3, ũi1, ũi2, ũi3),
where i ∈ [n], are created as in Sect. 4. The shuffled ciphertexts with permutation
ψ ∈ Sn and randomizers (σ′i, τ

′
i)i∈[n] are u′i = (u′i1, u

′
i2, u

′
i3, ũ

′
i1, ũ

′
i2, ũ

′
i3) = uψ(i) ·

Encpk(0;σ′i, τ
′
i) = Encpk(µψ(i);σψ(i) + σ′i, τψ(i) + τ ′i). Let P = Pψ−1 denote the

permutation matrix corresponding to the permutation ψ−1.
The new shuffle argument is described in Prot. 4. Here, the prover first constructs

a permutation matrix and a permutation matrix argument πpm. After that, he shows
that the plaintext vector of u′i is equal to the product of this permutation matrix and the
plaintext vector of ui. Importantly, we can prove the adaptive computational soundness
of the shuffle argument. This is since while in the previous arguments one only relied
on (perfectly hiding) knowledge commitment scheme and thus any commitment could
commit at the same time to the correct value (for example, to a permutation matrix)
and to an incorrect value (for example, to an all-zero matrix), here the group-dependent
language contains statements about a public-key cryptosystem where any ciphertext
can be uniquely decrypted. Thus, it makes sense to state that (pk, (ui, u′i)i∈[n]) is not a
shuffle. To prove computational soundness, we need to rely on the PKE assumption. It
is also nice to have a shuffle argument that satisfies a standard security notion.

Theorem 5. Prot. 4 is a non-interactive perfectly complete and perfectly zero-
knowledge shuffle argument of the knowledge BBS ciphertexts. Assume that µ is suf-
ficiently small so that logg1 g

µ
1 can be computed in polynomial time. If the Λ-PSDL, the

DLIN, the KE (in group G1), and the Λ̄-PKE (in group G2) assumptions hold, then the
argument is also adaptively computationally sound.

We recall that ∅-PKE is equal to the KE assumption (in the same bilinear group). Thus,
if Λ̄-PKE is hard then also Λ-PKE and KE are hard (in the same group).
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Common reference string: Similarly to the permutation matrix argument, let ᾱ, α̊, x ← Zp,
ḡt ← gᾱt , g̊t ← gα̊t , gt` ← gx

`

t , and ḡt` ← ḡx
`

t . Let D ←
Qn
i=1 g2,λi . In addition, let

sk1, sk2 ← Z∗
p and α̃1, α̃2, α̃3 ← Zp. Let f ← g

1/sk1
1 , h ← g

1/sk2
1 , f̃ ← f α̃1 , h̃ ← hα̃2 ,

g̃1 ← gα̃3
1 , g̃(1)

2 ← gα̃1
2 , g̃(2)

2 ← gα̃2
2 , and g̃(3)

2 ← gα̃3
2 .

The CRS is crs := (ḡ1, ḡ2, g̊1, g̊2, (g1`, ḡ1`)`∈Λ, (g2`, ḡ2`)`∈Λ∪(2·Λ), D). The commit-
ment keys are ckt ← (gk; ḡt, (gt`, ḡt`)`∈Λ) and c̊k2 ← (gk; g̊2). The public key is
pk = (gk; g̃1, g̃

(1)
2 , g̃

(2)
2 , g̃

(3)
2 , f, f̃ , h, h̃), and the secret key is sk = (sk1, sk2).

Common input: (pk, (ui, u
′
i)i∈[n]), where ui = Encpk(µi;σi, τi) ∈ G3

1 and u′i =
Encpk(µψ(i);σψ(i) + σ′i, τψ(i) + τ ′i) ∈ G3

1.
Argument Psh(gk, crs; (pk, (ui, u

′
i)i∈[n]), (ψ, (σ

′
i, τ

′
i)i∈[n])): the prover does the following.

1. Let P = Pψ−1 be the n×n permutation matrix corresponding to the permutation ψ−1.
2. For i ∈ [n], let ri ← Zp and (c2i, c̄2i)← Com2(ck2; Pi; ri) = (gri2 · g2,λψ−1(i)

, ḡri2 ·
ḡ2,λ

ψ−1(i)
).

3. Generate a permutation matrix argument πpm for inputs (c2, c̄2).
4. Set (Rσ, Rτ ) ← Z2

p, (cσ, c̄σ) ← Com2(ck2;σ
′
1, . . . , σ

′
n;Rσ), and (cτ , c̄τ ) ←

Com2(ck2; τ
′
1, . . . , τ

′
n;Rτ ).

5. Compute (uσ, ũσ) ← (fRσ ·
Qn
i=1 u

ri
i1 , f̃

Rσ ·
Qn
i=1 ũ

ri
i1), (uτ , ũτ ) ← (hRτ ·Qn

i=1 u
ri
i2 , h̃

Rτ ·
Qn
i=1 ũ

ri
i2), (uµ, ũµ)← (gRσ+Rτ

1 ·
Qn
i=1 u

ri
i3 , g̃

Rσ+Rτ
1 ·

Qn
i=1 ũ

ri
i3).

6. The argument is

πsh ← ((c2i, c̄2i)i∈[n], π
pm, cσ, c̄σ, cτ , c̄τ , uσ, ũσ, uτ , ũτ , uµ, ũµ) . (2)

Verification Vsh(gk, crs; (pk, (ui, u
′
i)i∈[n]), π

sh): the verifier does the following.
1. Check that ê(ḡ1, cσ) = ê(g1, c̄σ) and ê(ḡ1, cτ ) = ê(g1, c̄τ ).
2. Check that ê(uσ, g̃

(1)
2 ) = ê(ũσ, g2), ê(uτ , g̃

(2)
2 ) = ê(ũτ , g2), and ê(uµ, g̃

(3)
2 ) =

ê(ũµ, g2).
3. For i ∈ [n], check that ê(ui1, g̃

(1)
2 ) = ê(ũi1, g2), ê(ui2, g̃

(2)
2 ) = ê(ũi2, g2),

ê(ui3, g̃
(3)
2 ) = ê(ũi3, g2), ê(u′i1, g̃

(1)
2 ) = ê(ũ′i1, g2), ê(u′i2, g̃

(2)
2 ) = ê(ũ′i2, g2), and

ê(u′i3, g̃
(3)
2 ) = ê(ũ′i3, g2).

4. Check the permutation matrix argument πpm.
5. Check that the following three equations hold:

(a) ê(f, cσ) ·
Qn
i=1 ê(ui1, c2i) = ê(uσ, g2) ·

Qn
i=1 ê(u

′
i1, g2,λi),

(b) ê(h, cτ ) ·
Qn
i=1 ê(ui2, c2i) = ê(uτ , g2) ·

Qn
i=1 ê(u

′
i2, g2,λi), and

(c) ê(g1, cσcτ ) ·
Qn
i=1 ê(ui3, c2i) = ê(uµ, g2) ·

Qn
i=1 ê(u

′
i3, g2,λi).

Protocol 4: New shuffle argument
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Proof. PERFECT COMPLETENESS: To verify the proof, the verifier first checks the con-
sistency of the commitments, ciphertexts and the permutation matrix argument; here
one needs that the permutation matrix argument is perfectly complete. Assume that the
prover is honest. The verification equation in step 5a holds since

ê(f, cσ) ·
n∏
i=1

ê(ui1, c2i) =ê(f, gRσ2 ·
n∏
i=1

g
σ′i
2,λi

) ·
n∏
i=1

(ê(ui1, gri2 ) · ê(fσi , g2,λψ−1(i)
))

=ê(fRσ ·
n∏
i=1

urii1, g2) ·
n∏
i=1

ê(fσψ(i)+σ
′
i , g2,λi)

=ê(uσ, g2) ·
n∏
i=1

ê(u′i1, g2,λi) .

The equations in steps 5b and 5c can be verified similarly.
ADAPTIVE COMPUTATIONAL SOUNDNESS: Let A be a non-uniform

PPT adversary that, given gk and a crs, creates a statement (pk =
(gk; g̃1, g̃

(1)
2 , g̃

(2)
2 , g̃

(3)
2 , f, f̃ , h, h̃), (ui, u′i)i∈[n]) and an accepting NIZK argument

πsh (as in Eq. (2) in Prot. 4), such that the plaintext vector (u′i)i∈[n] is not a permutation
of the plaintext vector (ui)i∈[n]. Assume that the DLIN assumption holds in G1, the
KE assumption holds in G1 and Λ̄-PKE (and thus also Λ-PKE and KE) assumption
holds in G2. We now construct an adversary A′ that breaks the Λ-PSDL assumption.

Recall that πpm contains values π0 and πspai = (c1i, c̄1i, Fi, F̄i). By applying the
relevant knowledge assumption, we can postulate the existence of the following non-
uniform PPT knowledge extractors that, with all but a negligible probability, return
certain values:

– By the KE assumption in group G1, there exists a knowledge extractor that, given
(uij , ũij , u′ij , ũ

′
ij)j∈[3] and access to A’s random coins, returns the values µi, σi,

τi, µ′i, σ
′
i and τ ′i , such that ui = Encpk(µi;σi, τi) and u′i = Encpk(µ′i;σ

′
i, τ

′
i). Note

that it might be the case that µ′i 6= µ%(i).
– By the Λ-PKE assumption in group G2, there exists a knowledge extractor

that, given (cσ, c̄σ, cτ , c̄τ ) and access to A’s random coins, returns openings
(σ∗, Rσ) and (τ∗, Rτ ), such that (cσ, c̄σ) = Com2(ck2;σ∗;Rσ) and (cτ , c̄τ ) =
Com2(ck2; τ∗;Rτ ). It does not have to hold that σ′i = σψ(i) + σ∗i and τ ′i =
τψ(i) + τ∗i for i ∈ [n].

– By the KE assumption in group G1, there exists a knowledge extractor that,
given (uσ, ũσ, uτ , ũτ , uµ, ũµ) and access to A’s random coins, returns open-
ings (vσ, vτ , vµ), such that (uσ, ũσ) = (fvσ , f̃vσ ), (uτ , ũτ ) = (hvτ , h̃vτ ), and
(uµ, ũµ) = (gvµ1 , g̃

vµ
1 ). (Thus, it is not necessary that the adversary created the

values uσ , uτ and uµ correctly, it is just needed that she knows their discrete loga-
rithms.)

– By the KE assumption in group G2, there exists a knowledge extractor that,
given ((

∏n
i=1 c2i)/D, π

0) and access to A’s random coins, returns an opening
((ai)i∈[n], ra), such that ((

∏n
i=1 c2i)/D, π

0) = Com2(c̊k2;a; ra).
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– By the Λ-PKE assumption in group G2, for every i ∈ [n] there exists a knowledge
extractor that, given (c2i, c̄21) and access to A’s random coins, returns an opening
((Pij)j∈[n], ri) such that (c2i, c̄2i) = Com2(ck2;Pi; ri).

– By the Λ̄-PKE assumption in group G2, for every i there exists a knowledge extrac-
tor that, given (Fi, F̄i) and access to A’s random coins, returns openings (f ′ij)j∈Λ̄
such that logg2 Fi =

∑
j∈Λ̄ f

′
ijx

j .

The probability that any of these extractors fails is negligible, in this case we can abort.
In the following, we will assume that all extractors succeeded.

Let a be A’s output. Based on A and the last three type of extractors, we can
build an adversaryA′ that returns a together with ((ai)i∈[n], ra, (Pi, ri, (f ′ij)j∈Λ̄)i∈[n]).
Since the permutation matrix argument is (weakly) sound (as defined in the last state-
ment of Thm. 4) and πpm verifies, we have that c2 = (c2i)i∈[n] commits to a per-
mutation matrix. Thus, there exists ψ ∈ Sn such that for every i ∈ [n], c2i =
exp(g2, ri + xλ(ψ−1(i))).

Assume now that the equation in step 5a holds. Then

ê(uσ, g2) =ê(f, cσ) ·
n∏
i=1

ê(ui1, c2i)/
n∏
i=1

ê(u′i1, g2,λi)

=ê(f, gRσ+
Pn
i=1 σ

∗
i x
λi

2 ) ·
n∏
i=1

ê(fσi , gri+x
λ
ψ−1(i)

2 )/
n∏
i=1

ê(fσ
′
i , gx

λi

2 )

=ê(fRσ+
Pn
i=1 σiri+

Pn
i=1(σψ(i)+σ

∗
i−σ

′
i)x

λi
, g2) .

Since uσ = fvσ ,
∑n
i=1(σψ(i) + σ∗i − σ′i)x

λi + Rσ +
∑n
i=1 σiri − vσ = 0. If

σ′i 6= σψ(i) + σ∗i for some i ∈ [n], then the adversary has succeeded in creating a
non-trivial polynomial f∗(X) =

∑n
i=1 f

∗
i X

λi + f∗0 , with f∗i = σψ(i) + σ∗i − σ′i and
f∗0 = Rσ +

∑n
i=1 σiri − vσ , such that f∗(x) = 0. By using an efficient polynomial

factorization algorithm, one can now find all λn + 1 roots of f∗(X). For one of those
roots, say y, we have gy2 = gx2 . A′ can now return y = x. Since (gk, crs) only contains
fx

`

for ` = 0, the adversary has thus broken the ∅-PSDL assumption, an assumption
that is true unconditionally since the adversary’s input does not depend on x at all. Thus,
σ′i = σψ(i) + σ∗i for i ∈ [n].

Analogously, by the verification in step 5b,
∑n
i=1(τψ(i) + τ∗i − τ ′i)x

λi + Rτ +∑n
i=1 τiri − vτ = 0, and thus, τ ′i = τψ(i) + τ∗i for all i ∈ [n].
Finally, by the verification in step 5c,

ê(uµ, g2) =ê(g1, cσcτ ) ·
n∏
i=1

ê(ui3, c2i)/
n∏
i=1

ê(u′i3, g2,λi)

=ê(g1, g
Rσ+Rτ+

Pn
i=1(σ

∗
i+τ

∗
i )xλi

2 )·
n∏
i=1

ê(gµi+σi+τi1 , exp(g2, ri + xλψ−1(i)))/
n∏
i=1

ê(gµ
′
i+σ

′
i+τ

′
i

1 , gx
λi

2 ) .
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Thus,

logg1 uµ =Rσ +Rτ +
n∑
i=1

(σ∗i + τ∗i )xλi +
n∑
i=1

(µi + σi + τi)(ri + xλψ−1(i))−

n∑
i=1

(µ′i + σ′i + τ ′i)x
λi

=Rσ +Rτ +
n∑
i=1

(µi + σi + τi)ri+

n∑
i=1

(µψ(i) − µ′i + σψ(i) + σ∗i − σ′i + τψ(i) + τ∗i − τ ′i)xλi

=Rσ +Rτ +
n∑
i=1

(µi + σi + τi)ri +
n∑
i=1

(µψ(i) − µ′i)xλi .

If µ′i 6= µψ(i) for some i ∈ [n], then the adversary has succeeded in creating a
non-trivial polynomial f∗(X) =

∑n
i=1 f

∗
i X

λi + f∗0 , with f∗i =
∑n
i=1(µψ(i)−µ′i) and

f∗0 = Rσ+Rτ +
∑n
i=1(µi+σi+τi)ri−vµ, such that f∗(x) = 0. By using an efficient

polynomial factorization algorithm, one can now find all λn + 1 roots of f∗. For one
of those roots, say y, we have gy2 = gx2 . Since (gk, crs) only contains gx

`

1 for ` ∈ Λ,
the adversary has thus broken the Λ-PSDL assumption. Therefore, due to the Λ-PSDL
assumption, µ′i = µψ(i) for i ∈ [n].3

Thus, u′i1 = fσψ(i)+σ
∗
i , u′i2 = hτψ(i)+τ

∗
i , u′i3 = g

µψ(i)+σψ(i)+σ
∗
i+τψ(i)+τ

∗
i

1 and simi-
larly for elements ũ′ij , and therefore, {u′i} is indeed a correct shuffle of {ui}.

PERFECT ZERO-KNOWLEDGE: We construct a simulator S = (S1,S2) as follows.
First, S1 generates random å, ᾱ, x ← Zq, and sets td ← (̊a, ᾱ, x). He then creates crs
as in Prot. 4, and stores td. The construction of S2 is given in Prot. 5. Next, we give an
analysis of the simulated proof. Note that cσ , cτ and c2i are independent and random
variables in G, exactly as in the real run of the protocol. With respect to those variables,
we define uσ , uτ and uµ so that they satisfy the verification equations. Thus, we are
now only left to show that the verification equations in steps 5a, 5b and 5c hold.

Clearly, πpm is simulated correctly, since ê (̊g1, (
∏n
i=1 c2i)/D) = ê(g1, π0),

ê(c1i, g2) = ê(g1, c2i), ê(c̄1i, g2) = ê(c1i, ḡ2), ê(g1, c̄2i) = ê(ḡ1, c2i), ê
(
g1, F̄i

)
=

ê(ḡ1, Fi), and ê(c1i, c2i) = ê(gzi1 , g
zi
2 ) = ê

(
g1, g

z2i
2

)
= ê(g1, Fi).

3 For the argument in this paragraph to go through, we need the knowledge BBS cryptosystem to
be lifted and the plaintexts to be small. Otherwise, the adversary will not know the coefficients
of f ′(X), and thus one could not use a polynomial factorization algorithm to break the Λ-
PSDL assumption. Thus, a crafty adversary might be able to break soundness by choosing gµ1
from which she cannot compute µ.
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Inputs: gk and CRS as in Prot. 4, trapdoor td = (α̊, ᾱ, x), and (pk, (ui, u
′
i)i∈[n])

Output: πsh

Simulation:
1. Pick random zi, ri1, ri2 ← Zp for i ∈ [n].
2. Set cσ ←

Qn
i=1 g

ri1
2 , cτ ←

Qn
i=1 g

ri2
2 , c2i ← gzi2 and c̄2i ← ḡzi2 for i ∈ [n].

3. Set (uσ, ũσ)← (
Qn
i=1(f

ri1 · uzii1 · (u
′
i1)

−xλi ),
Qn
i=1(f̃

ri1 · ũzii1 · (ũ
′
i1)

−xλi )), (uτ , ũτ )←
(
Qn
i=1(h

ri2 ·uzii2 · (u
′
i2)

−xλi ),
Qn
i=1(h̃

ri2 · ũzii2 · (ũ
′
i2)

−xλi )), (uµ, ũµ)← (
Qn
i=1(g

ri1+ri2
1 ·

u
zi
i3 · (u

′
i3)

−xλi ),
Qn
i=1(g̃

ri1+ri2
1 · ũzii3 · (ũ

′
i3)

−xλi )).
4. Complete the remaining part of the proof.
5. Simulate πpm by using the trapdoor opening of commitments as follows:

(a) Let π0 ← ((
Qn
i=1 c2i)/D)α̊.

(b) Let πspai be a 1-sparsity argument that (c2i, c̄2i) commits to a 1-sparse vector. That is,

πspai = (c1i, c̄1i, Fi, F̄i) for c1i ← gzi1 , c̄1i ← ḡzi1 , Fi ← g
z2i
2 , F̄i ← ḡ

z2i
2 .

(c) Let πpm ← (π0,πspa).
6. Set πsh ← ((c2i, c̄2i)i∈[n], π

pm, cσ, c̄σ, cτ , c̄τ , uσ, ũσ, uτ , ũτ , uµ, ũµ).

Protocol 5: Simulator S2: construction

Finally, we have

ê(f, cσ) ·
n∏
i=1

ê(ui1, c2i) =ê(f,
n∏
i=1

gri12 ) ·
n∏
i=1

ê(ui1, gzi2 ) = ê(
n∏
i=1

fri1 ·
n∏
i=1

uzii1, g2)

=ê(
n∏
i=1

(fri1uzii1(u
′
i1)

−xλi ), g2) ·
n∏
i=1

ê(u′i1, g2,λi)

=ê(uσ, g2) ·
n∏
i=1

ê(u′i1, g2,λi) .

Similarly, ê(h, cτ ) ·
∏n
i=1 ê(ui2, c2i) = ê(uτ , g2) ·

∏n
i=1 ê(u

′
i2, g2,λi) and ê(g1, cσcτ ) ·∏n

i=1 ê(ui3, c2i) = ê(uµ, g2) ·
∏n
i=1 ê(u

′
i3, g2,λi). Thus all three verification equations

hold, and therefore the simulator has succeeded in generating an argument that has the
same distribution as the real argument. ut

Theorem 6. Consider Prot. 4. The CRS consists of 2n+ 2 elements of G1 and 5n+ 4
elements of G2, in total 7n+6 group elements. The communication complexity is 2n+6
elements of G1 and 4n+5 elements of G2, in total 6n+11 group elements. The prover’s
computational complexity is dominated by 17n + 16 exponentiations. The verifier’s
computational complexity is dominated by 28n+ 18 pairings.

We note that in a mix server-like application where several shuffles are done sequen-
tially, one can get somewhat smaller amortized cost. Namely, the output ciphertext u′i
of one shuffle is equal to the input ciphertext ui of the following shuffle. Therefore, in
step 3, one only has to check the correctness of the ciphertexts u′i in the case of the
very last shuffle. This means that the verifier’s amortized computational complexity is
dominated by 22n+ 18 pairings (that is, one has thus saved 6n pairings).
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A Decisional Linear Assumption

We say that a bilinear group generator Gbp is DLIN (decisional linear) secure [3] in
group Gt, for t ∈ {1, 2}, if for all non-uniform polynomial time adversaries A, the
following probability is negligible in κ:∣∣∣∣∣∣∣Pr

 gk← Gbp(1κ),

(f, h)← (G∗
t )

2, (σ, τ)← Z2
p :

A(gk; f, h, fσ, hτ , gσ+τ
t ) = 1

− Pr

 gk← Gbp(1κ),

(f, h)← (G∗
t )

2, (σ, τ, z)← Z3
p :

A(gk; f, h, fσ, hτ , gzt ) = 1


∣∣∣∣∣∣∣ .

B Groth-Lu Co-Soundness Definition

The Groth-Lu shuffle argument is proven to be Rshco -sound with respect to the next
language [14] (here, as in [14], we assume the setting of symmetric pairings ê : G ×
G → GT , and like [14] we give the definition with respect to the BBS cryptosystem
only):

Rshco :=

{
((p,G,GT , ê, g) , (f, h, {ui} , {u′i}) , sk = (sk1, sk2)) : (x, y) ∈ (Z∗

p)
2∧

f = gsk1 ∧ h = gsk2 ∧
(
∀ψ ∈ Sn∃i : Decsk(u′i) 6= Decsk(uψ(i))

) }
.

That is, the adversary is required to return not only a non-shuffle ({ui} , {u′i}), but also
a secret key sk that makes it possible to verify efficiently that ({ui} , {u′i}) is really not
a shuffle. As argued in [14], this definition of Rshco makes sense in practice, since there
is always some coalition of the parties who knows the secret key. See [14] for more.


