
Simulation-Extractable SNARKs Revisited
February 8, 2020

Helger Lipmaa1,2

1 Simula UiB, Bergen, Norway
2 University of Tartu, Tartu, Estonia

firstname.lastname@gmail.com

Abstract. The most efficient SNARKs (e.g., Groth, 2016) have a
brittle and difficult-to-verify knowledge-soundness proof in the generic
model, which makes it nontrivial to modify such SNARKs to, e.g., sat-
isfy simulation-extractability or to implement some other language in-
stead of QAP (Quadratic Arithmetic Program). We propose knowledge-
sound and non-black-box tag-based strong any-simulation-extractable
(tagSASE) subversion-zero knowledge SNARKs for QAP that by design
have a relatively simple security proof. The knowledge-sound SNARK is
similar to Groth’s SNARK, except having fewer trapdoors. To achieve
tagSASE, we add to it a one-time simulation-extractable QA-NIZK for
a subspace language. We give a simple characterization of languages
like SAP, SSP, and QSP in terms of QAP and show how to modify
the SNARKs for QAP correspondingly. The only prior published effi-
cient simulation-extractable SNARK was for the impractical SAP lan-
guage. We prove soundness and tagSASE under hash-algebraic knowl-
edge (HAK) assumptions that are a concrete version of the hash-algebraic
group model. The framework of HAK assumptions is another major con-
tribution of this paper. We also show that one can achieve tagless SASE
by using an efficient transformation.

Keywords: Algebraic group model, NIZK, non-black-box, QAP, QSP,
SNARK, SAP, SSP, simulation-extractability, subversion zero-knowledge

1 Introduction

Zero-knowledge proof systems [GMR85] are fundamental for the theory and ap-
plications of cryptography. In particular, zero-knowledge proof systems are used
to guarantee that participants of some protocol follow the protocol correctly.
For zero-knowledge proof systems to be used in practice, one needs an “effi-
cient” zero-knowledge proof system that satisfies “reasonable” security defini-
tions under “reasonable” cryptographic and trust assumptions. Due to their per-
formance and versatility, zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARKs, [DL08,Gro10,Lip12,GGPR13,PHGR13,Lip13,Gro16])
have become one of the most widely researched and deployed proof systems,
in particular because of their applicability in verifiable computation [PHGR13]
and anonymous cryptographic currencies [DFKP13,BCG+14].

2 Helger Lipmaa

It is challenging to design SNARKs, and it is easy for even
well-established research groups to err in such an endeavor (see,
e.g., [Par15,CGGN17,Gab19,Fuc19] for related cryptanalysis). One expla-
nation for this is that for the proof system to be secure, one needs to carefully
design the small constant number of proof elements and verification equations
o that they satisfy a number of properties:

First, they need to encode an NP language. The most widely used language
is QAP (quadratic arithmetic program, [GGPR13]). Other related languages
are SAP (square arithmetic program, [Gro16,GM17]), QSP (quadratic span pro-
gram, [GGPR13,Lip13]), and SSP (square span program, [DFGK14]). QSP and
SSP (resp., SAP and QAP) are convenient when one works with Boolean (resp.,
arithmetic) circuits.

Second, for optimal efficiency, the NP witness and the argument need to
be encoded into the smallest number of proof elements and verified via the
lowest number of verification equations possible. This creates a new set of design
constraints, and several (tight) lower bound are known, [Gro16,GM17].

Third, throughout this process, one needs to assure that the SNARK remains
(at least) knowledge-sound and zero-knowledge. Due to well-known impossibility
results [GW11], one has to use non-falsifiable assumptions like the knowledge as-
sumptions [Dam92]. To facilitate better efficiency, the most efficient zk-SNARKs
like [Gro16] are proven to be knowledge-sound in the generic model. Generic
model proofs often require one to derive soundness from a solution of a compli-
cated system of polynomial equations. Moreover, there exist constructions that
are secure in the generic group model but cannot be instantiated given any
efficient instantiation of the group encoding [Fis00,Den02].

Fourth, sometimes, knowledge-soundness is not sufficient and one desires
to achieve simulation-extractability (SE, [Sah99,DDO+01,GM17]). SE SNARKs
guarantee that knowledge-soundness holds even after the adversary has seen
many simulated proofs, a property needed in many applications, including UC-
security [Can01].

Kosba et al. [KZM+15] studied how to achieve UC-security for SNARKs.
They constructed a black-box simulation-extractable version of SNARKs; black-
box simulation-extractability is sufficient to obtain UC-security, [Gro06]. How-
ever, their transformation results in quite a significant overhead and, in particu-
lar, results in a linear-size commitment. Alternatively, Groth and Maller [GM17]
proposed a non-black-box strong any-simulation-extractable (SASE) SNARK
that is only slightly less efficient than the most efficient knowledge-sound
SNARK of Groth [Gro16]. However, their SNARK is based on the SAP lan-
guage [Gro16,GM17] and thus has a blowup of approximately two times in circuit
size compared to the QAP language. (This is since SAP has an efficient reduction
from arithmetic circuits that have squaring gates instead of general multiplica-
tion gates, [Gro16,GM17].) They also proved that their construction achieved
the lower bound for the argument length for SASE SNARKs. While SASE is
not sufficient to obtain UC-security, it is clearly a stronger security notion than
knowledge-soundness. Based on this observation, Baghery [Bag19] recently no-

Simulation-Extractable SNARKs Revisited 3

ticed that a much simpler transformation is needed to obtain UC-security based
on SASE SNARKs. However, due to the use of SAP, this transformation is twice
as costly when using the Groth-Maller SNARK as compared to (yet unknown)
SASE SNARKs for QAP.

No other simulation-extractable SNARKs are known at this moment (ex-
cept [BG18] that works in the random oracle model). This brings us to the main
question of this paper:

Is it possible to construct a general SNARK for a multitude of languages
(like QAP, SAP, QSP, and SSP) that would simultaneously (i) satisfy
SASE, (ii) have a simple soundness proof that does not use the whole
power of the generic model, and (iii) be almost as efficient as the most
efficient known knowledge-sound SNARKs.

Our Contributions. We answer positively to the main question. The new
knowledge-sound zk-SNARK Sqap for QAP is similar to Groth’s SNARK [Gro16].
We construct a tag-based [CHK04,Kil06] SASE (tagSASE) version Sse

qap of it by
using well-motivated modifications. Based on an observation about algebraic re-
lations (summarized in Table 2) between QAP and other languages, we modify
both Sqap and Sse

qap to cover SAP, QSP, and SSP. See Table 1 for an efficiency
comparison.3 Tag-based tagSASE is sufficient in many applications of SE, like
UC-security; see Section 2. Nevertheless, in Appendix B, we use a version of the
transformation of [CHK04,Kil06] to achieve tagless SASE. This will increase the
computation of both the prover and the verifier by only two exponentiations.

While the current trend is to construct efficient updatable zk-
SNARKs [GKM+18], non-updatable zk-SNARKs like the ones of the cur-
rent paper still have their applications, especially since most efficient zk-
SNARKs [MBKM19] rely on the random oracle model and are yet not as ef-
ficient as existing non-updatable zk-SNARKs like [Gro16]. We are not aware of
any work up to now on updatable SE zk-SNARKs. We hope advances of the
current paper will help one to construct the latter.

Since the new SASE SNARKs are tag-based and maliciously chosen tags can
depend on the group elements, we use (tautological) knowledge assumptions,
instead of the generic group model (GGM, [Nec94,Sho97]) or algebraic group
model (AGM, [FKL18]), to prove their security. Essentially, AGM states that
for any efficient algorithm A that on an input vector [x]ι of group elements
outputs an output vector [y]ι of group elements (we use the bracket notation
of [EHK+13]), there exists an efficient extractor ExtA that outputs a matrix N ,
s.t. y = Nx. An algebraic knowledge (AK) assumption states that the same

3 We emphasize that it is only fair to compare SNARKs for the same language (e.g.,
QAP); to compare SNARKs for different languages (e.g., QAP versus SAP), one has
to take into account the complexity of the reduction from circuits to these languages.
Note that [Lip13] only described a reduction from Boolean circuits to QSP and a
linear PCP [BCI+13] for QSP, leaving out cryptographic details of constructing a
SNARK.

4 Helger Lipmaa

Table 1. Efficiency comparison of QAP/SAP/SSP/QSP-based SNARKs. m (or m̃)
and n (or ñ) denote the number of wires and gates (or constraints) in the solutions.
“eι” (“mι”) denotes exponentiation (multiplication) in group Gι, “p” denotes pairing,
and gι denotes the representation length of a Gι element in bits. In the case of |crs|
and P’s computation we omit constant (or m0-dependent) addends like +(m0 + 3)g1.

Π security |crs| P computation |π| V computation

QAP-based (arithmetic circuit, with n gates), m̃ = m

[Gro16] KS (m+ 2n)g1 + ng2 (m+ 3n)e1 + ne2 2g1 + 1g2 3p + m0e1
Sqap § 4 KS (m+ 2n)g1 + ng2 (m+ 3n)e1 + ne2 2g1 + 1g2 3p + m0e1
Sse
qap § 4 tagSASE (m+ 3n)g1 + ng2 (m+ 4n)e1 + ne2 3g1 + 1g2 5p + (m0 + 1)e1

SAP-based (arithmetic circuit, with ñ squaring gates): u = v, ñ ≈ 2n, m̃ ≈ 2m

[GM17] SASE (m̃+ 2ñ)g1 + ñg2 (m̃+ 2ñ)e1 + ñe2 2g1 + 1g2 5p + m0e1
Ssap § 6 KS (m̃+ 2ñ)g1 + ñg2 (m̃+ 2ñ)e1 + ñe2 2g1 + 1g2 3p + m0e1
Sse
sap § 6 tagSASE (m̃+ 3ñ)g1 + ñg2 (m̃+ 2ñ)e1 + ñe2 2g1 + 1g2 5p + (m0 + 4)e1

SSP-based (Boolean circuit with n gates): u = v = w, ñ = m+ n

[DFGK14] KS (m+ ñ)g1 + ñg2 2mm1 + ñe1 + mm2 3g1 + 1g2 6p + m0m1

Sssp § 7 KS (m+ 2ñ)g1 + ñg2 2mm1 + ñe1 + mm2 2g1 + 1g2 3p + m0m1

Sse
ssp § 7 tagSASE (m+ 3ñ)g1 + ñg2 3mm1 + ñe1 + mm2 2g1 + 1g2 5p + (m0 + 4)m1

QSP-based (Boolean circuit with n gates): w = 0, ñ ≈ 14n [Lip13]

[Lip13] KS – – – –
Sqsp § D KS (m̃+ 2ñ)g1 + ñg2 4m̃m1 + ñe1 + m̃m2 2g1 + 1g2 3p + m0m1

Sse
qsp § D tagSASE (m̃+ 3ñ)g1 + ñg2 5m̃m1 + ñe1 + m̃m2 3g1 + 1g2 5p + (m0 + 1)m1

holds only for a concrete distribution of [x]ι (e.g., the distribution of correctly
formed CRSs).

In Section 3, we will also study a hashing version HAK of the AK assumption.
HAK is essentially a concrete AGM version of the generic group model with hash-
ing (GGMH, [Bro01,BFS16,ABLZ17]) that models the ability of an adversary
to create elliptic-curve group elements by using elliptic-curve hashing without
knowing their discrete logarithm, [Ica09]. When using a HAK assumption, we
require the extractor to output a matrix N and a vector of group elements [q]ι,
such that y = N(xq). Here, the adversary does not know the discrete logarithm
of [qk]ι. In the new SNARKs, to prove that their knowledge-soundness holds un-
der a HAK assumption, we need each [qk]ι to come from a distribution of high
min-entropy.

Similarly to GGMH and algebraic group model with hashing (AGMH), a
HAK assumption can explain the absence of attacks on existing efficient cryp-
tographic protocols as they are without having to decrease efficiency to obtain
security under more standard assumptions like the knowledge-of-exponent as-
sumptions [Dam92] or falsifiable assumptions. On the other hand, using a HAK
assumption as compared to the generic model enables one to handle a wider va-
riety of protocols (e.g., tag-based or protocols where one employs hashing from

Simulation-Extractable SNARKs Revisited 5

group elements to integers) and avoids some of the criticisms against the generic
model [Fis00,Den02]. Arguably, HAK assumptions hit a sweet spot, being weak-
est (known) non-falsifiable assumptions that allow to prove the security of maxi-
mally efficient protocols. Note that some of the very recent SNARKs [CHM+19]
have two versions: a more efficient one proven secure in the AGM and a less ef-
ficient one proven secure under knowledge-of-exponent assumptions. The use of
HAK assumptions eliminates the need for two separate versions.4 Hence, the in-
troduction of the HAK framework can be seen as one of the major contributions
of the current paper.

In Section 4, we propose a knowledge-sound zk-SNARK Sqap for QAP. Re-
call that the prover is honest (the statement belongs to the QAP language) iff
χ(X) := u(X)v(X) − w(X) − h(X)`(X) = 0 (see [GGPR13]) for some polyno-
mial h(X), where the polynomials u(X), v(X), and w(X) depend on the concrete
circuit and on the witness the prover is using, `(X) is a public fixed polynomial.

We consider polynomials A(X,Y), B(X,Y) (“commitments” to u(X) and
v(X), respectively), and C(X,Y) = A(X,Y)B(X,Y), such that the coefficient
of Y κ (for a κ fixed later) in C(X,Y) is u(X)v(X)−w(X) = h(X)`(X) for some
h(X) iff the prover is honest, i.e., χ(X) = 0. One can guarantee that χ(X) = 0
in the case of an algebraic adversary by inserting to the CRS elements of type
[f(x)yκ]1 only for polynomials f(X) that divide by `(X). On top of it, Sqap needs
to guarantee that (i) u(X), v(X), and w(X) use the same witness, and (ii) the
public input encoded into u(X) is correct.

We use aggressive optimization to get an as efficient SNARK as possible
while not sacrificing (much) in the simplicity of the knowledge-soundness proof.
Somewhat surprisingly, Sqap is very similar to Groth’s SNARK from EURO-
CRYPT 2016 [Gro16]. However, it uses only two trapdoors instead of five. This
distinction is important: for example, as noted in [ABLZ17,Fuc18], only two out
of Groth’s five trapdoors are used in simulation; thus, it is logical or at least
aesthetic to drop the other trapdoors. In particular, in the case of subversion-
security [ABLZ17,Fuc18], one needs to extract all trapdoors; the fewer trapdoors
there are, the simpler is this step. In Sqap, we use well-chosen powers of one trap-
door Y as substitutes of four out of the five trapdoors of Groth’s SNARK. (A
similar technique to use one trapdoor to align “interesting” monomials together
was used in the context of updatable SNARKs in [GKM+18]. However, while
their SNARK has the desirable updatability property, it is quite inefficient.)

The way we choose the powers of Y is interesting by itself. LetX∗ = (X, . . .)
be the vector of all indeterminates, except Y , that are relevant in the knowledge-
soundness (or tagSASE) proof. It includes X, Y , indeterminates created by the
adversary by using elliptic curve hashing [Ica09], and (in the case of tagSASE)
indeterminates created by simulator queries. Then, V (X∗, Y) =

∑
VY i(X

∗)Y i

for known polynomials VY i(X∗), where i is a linear combination of an initially

4 Very recently, Kastner and Pan [KP19] proposed an instantiation of AGM based
on knowledge-of-exponent assumptions. However, in their instantiation, every group
is always at least doubled and, sometimes, more than doubled. Thus, most of the
protocols will suffer an efficiency penalty when relying on their instantiations.

6 Helger Lipmaa

undetermined integer vector ∆ = (α, β, . . .). We show that in the case of Sqap, a
generic prover is honest iff VY i(X∗) = 0 for six critical values i. We then choose
∆ so that the corresponding six critical linear combinations i are distinct from
each other and all other non-critical linear combinations j. Moreover, we choose
∆ so that the SNARK is relatively efficient. E.g., we require that for all critical
i, |i| is as small as possible, and check if there is a way to make some non-critical
values j to collapse (this can shorten the CRS). Since this is a moderately hard
optimization problem for humans, we here use an exhaustive computer search.
Due to this, exponents in the resulting SNARKs may look somewhat obscure.

In Section 5, we modify Sqap to make it tagSASE. We establish that for any k,
a tagSASE adversary has an attack vector by setting A(X,Y) = sa1kDk+ . . . for
non-zero sa1k, where Dk is indeterminate generated during the kth simulation
query. We eliminate this attack vector by letting the prover to use an efficient
quasi-adaptive NIZK (QA-NIZK, [JR13]) to prove that A(X,Y) is in the span of
correct monomials. Since our goal is simulation-extractability, the QA-NIZK has
to be simulation-extractable. While known (unbounded) simulation-extractable
QA-NIZKs are not very efficient, we observe that Sqap itself (without the added
QA-NIZK) already guarantees that an acceptable argument can only depend on
the answer of a single simulation query. Thus, quite surprisingly, it is sufficient
to use a more efficient one-time simulation-extractable (OTSE) QA-NIZK. It is
known how to construct the latter efficiently [KW15] by using tags. We construct
an even more efficient OTSE QA-NIZK by relying on the specifics of Sqap and
non-falsifiable assumptions. Adding this QA-NIZK increases the complexity of
the SNARK only slightly compared to Sqap (see Table 1). Since the Groth-Maller
SASE zk-SNARK [GM17] is for SAP, the new tagSASE SNARK is more efficient.

Importantly, Sqap has a simple knowledge-soundness proof where only the
value of the six critical coefficients of V matters. The tagSASE proof Sse

qap re-
lies upon only a few more additional coefficients. This should be compared to
Groth’s SNARK [Gro16] (resp., the Groth-Maller SNARK [GM17]) that has a
very complicated knowledge-soundness (resp., SASE) proof.

As we mentioned before, Sqap is very similar to Groth’s SNARK. We obtain
a more straightforward knowledge-soundness proof by assuming that the pairing
is asymmetric. (Asymmetric pairings are much more efficient than symmetric
pairings and thus strongly preferred in practice.) On the other hand, Groth
proved knowledge-soundness in the case of symmetric pairing, which results in
A(X∗, Y), B(X∗, Y), and C(X∗, Y) having more terms and thus V (X∗, Y)
having more critical coefficients. (This implies knowledge-soundness also in the
case of asymmetric pairing.) Thus, one corollary of our knowledge-sound proof
is the (up to our knowledge, novel) observation that Groth’s SNARK has a
very simple knowledge-soundness proof given that one uses asymmetric pairings.
Our goal was not to duplicate Groth’s SNARK but to construct an efficient
SNARK that has a simple knowledge-soundness proof. Thus, our exposition of
the derivation of Sqap can also be seen as an intuitive pedagogical re-derivation
of (a slight variant of) the most efficient existing pairing-based SNARK. We

Simulation-Extractable SNARKs Revisited 7

emphasize that, on the other hand, Sse
qap is novel. In particular, none of the prior

simulation-extractable SNARKs [GM17,BG18] use tags.
After that, we consider languages SAP [Gro16,GM17], SSP [DFGK14], and

QSP [GGPR13,Lip13] that have also been used in the SNARK literature. We
explain their algebraic relation to QAP, which helps us to lift both Sqap and
Sse
qap to the setting of the corresponding languages. Previous research handled

all four languages separately, and our (simple) relation seems to be novel. In
some of the cases, we improve on the efficiency of previous known SNARKs for
the same language. We propose the first known tagSASE SNARKs for QAP,
SSP, and QSP. In fact, we propose the first known efficient tagSASE SNARKs
for Boolean circuits in general. We omit precise descriptions of the reduction
between circuits and corresponding languages, giving only a brief explanation
and then referring to original papers.

In Section 6, we describe a SNARK Ssap for the language SAP (Square Arith-
metic Program, [GM17]). As mentioned before, SAP has an efficient reduction
from arithmetic circuits that use squaring gates instead of multiplication gates.
Thus, one has to take into account that such a circuit usually has two times more
gates and wires, since in general, one needs two squaring gates to implement a
multiplication gate. This is a difference in the reduction overhead between cir-
cuits and the corresponding language, not in the cryptographic construction of
the SNARK. Algebraically, SAP is a variant of QAP with v(X) = u(X); thus,
χ(X) = u(X)2 − w(X) − h(X)`(X). Thus, Ssap itself is as efficient as Sqap.
Since the honest argument contains ([a]1, [b]2) with a = b, we obtain a tagSASE
SNARK Sse

sap by using a simpler tranformation than we used in the case of QAP.
In Section 7, we describe a SNARK Sssp for the SSP language [DFGK14]

that has efficient reduction from Boolean Circuit-SAT. Algebraically, SSP
is a variant of QAP, where one sets u(X) = v(X) = w(X). Then, χ(X) =
u(X)(u(X) − 1) − h(X)`(X). Sssp is approximately as efficient as the SSP-
based SNARK of [DFGK14] but it has a shorter argument with more efficient
verification (only one verification equation instead of two). The new tagSASE
SNARK Sse

ssp for SSP uses the same transformation as Sse
sap; no previous efficient

SE SNARKs for SSP were known. We are not aware of a previous observation
that one can design SNARKs for SSP by starting with a SNARK for QAP
and then just setting u(X) = v(X) = w(X). We emphasize that an efficient
SNARK for SSP is well-suited in applications where one needs to use Boolean cir-
cuits. They are also useful in applications like shuffle arguments [FLZ16,FLSZ17],
and SSP has been used as the basis for falsifiable SNARKs with long commit-
ments [DGP+19].

Finally, in Appendix D, we design a SNARK for QSP (Quadratic Span Pro-
grams, [GGPR13,Lip13]). (This part is postponed to the appendix since QSP
is the least popular of the four languages.) Algebraically, QSP is a variant of
QAP, where one sets w(X) = 0. QSP is interesting in theory since one can
construct a 2-query linear PCP for it, [BCI+13,Lip13]. However, the reduction
from Boolean circuits to QSP is relatively complex, with the need to imple-
ment span-program-based gate checkers and error-correcting-code-based wire

8 Helger Lipmaa

Table 2. Algebraic relations between languages: restrictions on u(X), v(X), and v(X)

u(X) v(X) w(X)

QAP general general general
SAP general = u(X) general
SSP general = u(X) = u(X)
QSP general general = 0

checkers [GGPR13,Lip13]. The new tagSASE SNARK Sse
qsp for QSP uses the

same transformation as Sse
qap. Sqsp is again more efficient than previously known

knowledge-sound SNARKs for QSP, while there was no formerly known SE
SNARK for QSP.

To construct eight different SNARKs and verify their sets of critical coeffi-
cients and also soundness, we used computer algebra and exhaustive search. We
believe that the soundness of the SNARKs is evident, assuming that the vari-
ables ∆ = (α, β, . . .) have been chosen so that exponents of Y corresponding to
the critical coefficients are different from all other exponents. However, finding
small values of these variables seems to require exhaustive search — the num-
ber of non-zero coefficients of VY i(X∗) (even in the knowledge-soundness proof
and without allowing the algebraic adversary to create new indeterminates) is
at least 30, depending on the SNARK. This issue can be solved by using more
trapdoors as in [Gro16], but such a solution is not always acceptable.

In Appendix F, we show that Sqap and Sse
qap can be made subversion-zero

knowledge (Sub-ZK, [BFS16,ABLZ17,Fuc18]). Recall that a Sub-ZK SNARK
remains zero knowledge even if the CRS creator was malicious. According to the
template of [ABLZ17], one can deal with it by constructing a public CRS verifica-
tion algorithm that checks that the CRS corresponds to some trapdoor, and then
use a knowledge assumption to recover the trapdoor and simulate the argument.
As explained in [ALSZ20], Sub-ZK is equivalent to no-auxiliary-string non-black-
box zero knowledge in the weak bare public key (BPK, [CGGM00,MR01]) model.
Hence, Sse

qap is a simulation-extractable (no-auxiliary-string non-black-box) zk-
SNARK in the BPK model.

2 Preliminaries

For a matrix A, Ai denotes its ith row and A(j) denotes its jth column. A
random variable X has min-entropy k, H∞(X) = k, if maxx Pr[X = x] = 2−k.

Assume n is a power of two, and let ω be the n-th primitive root of unity
modulo p. Such ω exists, given that n | (p− 1). Then, `(X) :=

∏n
i=1(X − ωi−1)

is the unique degree n monic polynomial such that `(ωi−1) = 0 for all i ∈ [1 .. n].
For i ∈ [1 .. n], let `i(X) be the ith Lagrange basis polynomial, i.e., the unique
degree n − 1 polynomial s.t. `i(ωi−1) = 1 and `i(ω

j−1) = 0 for i 6= j. Given
χ ∈ Zp, there is an efficient algorithm (see, e.g., [BCG+13]) that computes `i(χ)
for i ∈ [1 .. n]. Clearly, La(X) :=

∑n
i=1 ai`i(X) is the interpolating polynomial of

Simulation-Extractable SNARKs Revisited 9

a at points ωi−1, with La(ωi−1) = ai, and its coefficients can thus be computed
by executing an inverse Fast Fourier Transform in time Θ(n log n). Moreover,
(`j(ω

i−1))ni=1 = ej (the jth unit vector) and (`(ωi−1))ni=1 = 0n.
PPT denotes probabilistic polynomial-time; λ ∈ N is the security parameter.

For an algorithm A, range(A) is the range of A, i.e., the set of of valid outputs
of A, RNDλ(A) denotes the random tape of A (for given λ), and r←$ RNDλ(A)
denotes the uniformly random choice of the randomizer r from RNDλ(A). By
y ← A(inp; r) we denote the fact that A, given an input inp and a randomizer
r, outputs y. Let negl(λ) be an arbitrary negligible function, and poly(λ) be an
arbitrary polynomial function. We write a ≈λ b if |a− b| ≤ negl(λ).

Bilinear Groups. A bilinear group generator Pgen(1λ, n) returns
(p,G1,G2,GT , ê), where G1, G2, and GT are three additive cyclic groups
of prime order p, and ê : G1 × G2 → GT is a non-degenerate efficiently
computable bilinear pairing. We assume that n | (p − 1). As in say [BFS16],
we assume that Pgen is deterministic and cannot be subverted. We require
the bilinear pairing to be Type-3 [GPS08], i.e., we assume that there is no
efficient isomorphism between G1 and G2. At this moment, the curve BLS12-
381 [BLS04,Bow17] is recommended at the 128-bit security level. We use the
bracket notation of [EHK+13], i.e., we write [a]ι to denote agι where gι is a fixed
generator of Gι. We denote ê([a]1, [b]2) by [a]1 • [b]2. We use freely the bracket
notation together with matrix notation, e.g., AB = C iff [A]1 • [B]2 = [C]T .

Let d1(n), d2(n) ∈ poly(λ). Then, Pgen is (d1(n), d2(n))-PDL (Power Dis-
crete Logarithm, [Sta08,THS+09,JR10,Lip12]) secure if for any non-uniform
PPT adversary A, Advpdld1,d2,Pgen,A(λ) ≈λ 0, where Advpdld1,d2,Pgen,A(λ) := Pr[p ←
Pgen(1λ, n), x←$Z∗p : A(p; [(xi)

d1(n)
i=0]1, [(x

i)
d2(n)
i=0]2) = x]. The q-PDL assumption

in G1 (resp., G2) is equal to the (q, 0)-PDL (resp., (0, q)-PDL) assumption.

QAP. Quadratic Arithmetic Program (QAP) was introduced in [GGPR13] as
a language where for an input inp and witness wit, (inp,wit) ∈ R can be verified
by using a parallel quadratic check. QAP has an efficient reduction from the
(either Boolean or Arithmetic) Circuit-SAT. Thus, an efficient zk-SNARK for
QAP results in an efficient zk-SNARK for Circuit-SAT.

Let m0 < m be a non-negative integer. In the case of arithmetic circuits,
n is the number of multiplication gates, m is the number of wires, and m0 is
the number of public inputs. We consider arithmetic circuits that consist only
of fan-in-2 multiplication gates, but either input of each multiplication gate can
be any weighted sum of wire values, [GGPR13].

Let F = Zp. For the sake of efficiency, we require the existence of the
n-th primitive root of unity modulo p, denoted by ω. (However, this is not
needed for the new SNARKs to work.) Let U , V , and W be instance-dependent
matrices and let a be a witness. A QAP is characterized by the constraint
Ua ◦ V a = Wa. For j ∈ [1 ..m], define uj(X) := LU(j)(X), vj(X) := LV (j)(X),
and wj(X) := LW (j)(X) to be interpolating polynomials of the jth column of the
corresponding matrix. Thus, uj , vj , wj ∈ Z(≤n−1)

p [X]. Let u(X) =
∑
ajuj(X),

v(X) =
∑
ajvj(X), and w(X) =

∑
ajwj(X). Then Ua ◦ V a = Wa iff

10 Helger Lipmaa

`(X) | u(X)v(X) − w(X) iff u(X)v(X) ≡ w(X) (mod `(X)) iff there exists
a polynomial h(X) such that u(X)v(X)− w(X) = h(X)`(X).

An QAP instance Instqap is equal to (Zp,m0, {uj , vj , wj}mj=0). This instance
defines the following relation:

RInstqap =

{
(inp,wit) : inp = (a1, . . . , am0)> ∧ wit = (am0+1, . . . , am)>∧
u(X)v(X) ≡ w(X) (mod `(X))

}
(1)

where u(X) =
∑m
j=0 ajuj(X), v(X) =

∑m
j=0 ajvj(X), and w(X) =∑m

j=0 ajwj(X). Alternatively, (inp,wit) ∈ R = RInstqap if there exists a (degree
≤ n− 2) polynomial h(X), such that the following key equation holds:

χ(X) := u(X)v(X)− w(X)− h(X)`(X) = 0 , (2)

On top of checking Eq. (2), the verifier also needs to check that u(X), v(X),
and w(X) are correctly computed: that is, that (i) the first m0 coefficients aj
in u(X) are equal to the public inputs, and (ii) u(X), v(X), and w(X) are all
computed by using the same coefficients aj for j ≤ m.
SNARKs. Let RelGen be a relation generator, such that RelGen(1λ) returns
a polynomial-time decidable binary relation R = {(inp,wit)}. Here, inp is a
statement, and wit is a witness. We assume that λ is explicitly deductible from
the description of R. RelGen also outputs auxiliary information auxR that will
be given to the honest parties and the adversary. Intuitively, z̃R := (R, auxR) is
the common auxiliary input to an adversary and the corresponding extractor. As
in [Gro16], auxR will be equal to p← Pgen(1λ, n) for a well-defined n. Because
of this, we will also give auxR as an input to the honest parties; if needed, one
can include an additional auxiliary input as an input to the adversary. We recall
that the choice of p and thus of the groups Gz depends on n. Let LR = {inp :
∃wit, (inp,wit) ∈ R} be an NP-language.

We will define tag-based [MY04] argument systems; in the non-tag-based
case, the tag-space is Tags = {ε} (empty string) and tags are ignored by all
algorithms. A non-interactive zero-knowledge (NIZK) argument system Ψ =
(Kcrs,P,V,Sim) for RelGen consists of four PPT algorithms:
CRS generator: Kcrs is a probabilistic algorithm that, given z̃R ∈

range(RelGen(1λ)), outputs (crs, td) where crs is a CRS and td is a simu-
lation trapdoor. Otherwise, it outputs a special symbol ⊥. For the sake of
efficiency and readability, we divide crs into crsP (the part needed by the
prover) and crsV (the part needed by the verifier).

Prover: P is a probabilistic algorithm that, given (z̃R, crsP, τ, inp,wit) for τ ∈
Tags and (inp,wit) ∈ R, outputs an argument π. Otherwise, it outputs ⊥.

Verifier: V is a probabilistic algorithm that, given (z̃R, crsV, τ, inp, π), returns
either 0 (reject) or 1 (accept).

Simulator: Sim is a probabilistic algorithm that, given (z̃R, crs, td, τ, inp), out-
puts an argument π.

A NIZK argument system must satisfy completeness (an honest verifier accepts
an honest verifier), knowledge-soundness (if a prover makes an honest verifier

Simulation-Extractable SNARKs Revisited 11

accept, then one can extract from the prover a witness wit), and zero-knowledge
(there exists a simulator that, knowing CRS trapdoor but not the witness, can
produce accepting statements with the verifier’s view being indistinguishable
from the view when interacting with an honest prover). See Appendix A.1 for
formal definitions. A SNARK (succinct non-interactive argument of knowledge)
is a NIZK argument system where the argument is sublinear in the input size.
Simulation-Extractability (SE). SE [Sah99,DDO+01] is a stronger notion of
knowledge-soundness, motivated by applications like non-malleability and UC-
security. An SE argument system remains knowledge-sound even if the soundness
adversary has access to the simulation oracle. More precisely, one requires that
there exists a universal extractor Ext, such that for each PPT soundness adver-
sary A who has oracle access to the simulator, Ext can deduce the witness from
A.

Groth and Maller [GM17] introduced the notion of non-black-box
simulation-extractability for SNARKs. In the case of non-black-box simulation-
extractability, one requires that for each PPT soundness adversary A who has
oracle access to the simulator, there exists a non-black-box extractor ExtA that
can extract the witness from A. The definition of SE from [GM17] corresponds to
non-black-box strong any-simulation extractability (SASE) according to the defi-
nition of [DHLW10]. Since we are interested in non-black-box SE, we will implic-
itly assume SE means non-black-box SE. Groth and Maller proved that for any
SASE SNARK, the argument consists of at least three group elements and that
there should be at least two verification equations. They also proposed one con-
crete SASE SNARK, based on the SAP (Square Arithmetic Program) language,
that meets the lower bounds. We will design several tag-based SASE SNARKs
based on different languages like QAP [GGPR13], SSP [DFGK14], SAP [Gro16],
and QSP [GGPR13]. The following definition of tagless SASE SNARKs corre-
sponds to the definition of SE SNARKs in [GM17, Definition 2.10].

Definition 1 (Tagless SASE SNARK [DHLW10,GM17]). Let Π =
(Kcrs,P,V,Sim) be a SNARK for the relation R. Define AdvτsaseΠ,A,ExtA(λ) :=

Pr[ExpτsaseΠ,A,ExtA(λ)], where the experiment ExpτsaseΠ,A,ExtA(λ) is depicted in Fig. 1.
Π is tagless non-black-box strong any-simulation-extractable (tagless SASE)
if for any PPT adversary A there exists a PPT extractor ExtA such that
AdvτsaseΠ,A,ExtA(λ) ≈λ 0.

Tag-Based Simulation-Extractability. Tag-based primi-
tives [CHK04,Kil06,KW15] are commonly used in settings that are needed
for say the UC security [Can01]. They guarantee security if the simulation
queries are made on tags, differing from tags output by the adversary. In the
case of UC security, a tag corresponds to a triple (sid, sender, receiver), and
simulation queries are made in the case the sender is honest while the adversary
corresponds to corrupted senders. Thus, simulation queries are guaranteed by
default to use different tags compared to adversaries.

Definition 2 (tagSASE SNARK [DHLW10,KW15]). Let Π =
(Kcrs,P,V,Sim) be a SNARK for the relation R. Define AdvτsaseΠ,A,ExtA(λ) :=

12 Helger Lipmaa

Main ExpτsaseΠ,A,ExtA(λ)

Q ← ∅; z̃R ← RelGen(1λ);
(crs, td)← Kcrs(z̃R);
r ← RNDλ(A);
(inp, π)← ASimτsasecrs,td (crs; r);
wit← ExtA(crs; r);
if V(z̃R, crsV, inp, π) = 1∧

(inp, π) 6∈ Q ∧ (inp,wit) 6∈ R
then return 1; else return 0;fi

Simτsase
crs,td (inpj)

πj ← Sim(z̃R, crs, td, inpj);

Q ← Q∪ {(inpj , πj)} ;
return πj ;

Main ExpτsaseΠ,A,ExtA(λ)

Qτ ← ∅; z̃R ← RelGen(1λ);
(crs, td)← Kcrs(z̃R);
r ← RNDλ(A);
(τ, inp, π)← ASimτsasecrs,td (crs; r);
wit← ExtA(crs; r);
if V(z̃R, crsV, τ, inp, π) = 1∧
τ 6∈ Qτ ∧ (inp,wit) 6∈ R

then return 1; else return 0;fi

Simτsase
crs,td (τj , inpj)

πj ← Sim(z̃R, crs, td, τj , inpj);

Qτ ← Qτ ∪ {τj} ;
return πj ;

Fig. 1. Simulation-extractability experiments: tagless strong any-simulation (tagSASE,
left) and tag-based strong any-simulation (SASE, right). Differences are highlighted

Pr[ExpτsaseΠ,A,ExtA(λ)], where the experiment ExpτsaseΠ,A,ExtA(λ) is depicted in Fig. 1.
Π is non-black-box tag-based strong any-simulation-extractable (tagSASE)
if for any PPT adversary A there exists a PPT extractor ExtA such that
AdvτsaseΠ,A,ExtA(λ) ≈λ 0.

In Appendix B, we use a version of the transformation of [CHK04,Kil06] from
tag-based tagSASE SNARKs to tagless SASE SNARKs. This will increase the
computation of both P and V by only two exponentiations if one is willing to
assume the non-falsifiable one-more discrete logarithm assumption [BNPS03].
A slightly less efficient transformation is secure under the standard falsifiable
discrete logarithm assumption; see Appendix B.

3 Hash-Algebraic Knowledge Assumptions

Algebraic Group Model (AGM, [FKL18]) is a new model that one can use to
prove the security of cryptographic assumptions, protocols, and primitives. Es-
sentially, in AGM one assumes that each PPT algorithm (including adversaries)
is algebraic in the following sense: if the adversary A’s input includes [xι]ι and
no other elements from the group Gι and A outputs group elements [yι]ι, then
A knows matrices N ι, such that yι = N ιxι. While [FKL18] defined AGM by
requiring the adversaries in the security proof to output [xι]ι together with N ι,
we find it more convenient to define AGM as a general knowledge assumption.

Let Gι be a cyclic group of prime order p. A PPT algorithm A is alge-
braic [BV98] (in Gι) if there exists an efficient extractor ExtA, such that for any
PPT sampleable distribution D, AdvakGι,D,A(λ) ≈λ 0, where AdvakGι,D,A(λ) :=

Pr
[
[x]ι←$D; r←$ RNDλ(A); [y]ι←$A([x]ι; r);N ← ExtA([x]ι; r) : y 6= Nx

]
.

Simulation-Extractable SNARKs Revisited 13

A group Gι is algebraic if every PPT algorithm A that obtains inputs from Gι
and outputs elements in Gι is algebraic.

The restriction that adversaries are algebraic is not
valid [Bro01,BFS16,ABLZ17] in situations where the adversary can create
new random group elements by using elliptic curve hashing; in this case,
she provably does not know their discrete logarithms [Ica09]. We model this
capability by allowing the adversary to create additional group elements [q]ι
for which she does not know discrete logarithms. We require that [qι]ι (but not
necessarily qι) can be extracted from the adversary, such that [y]ι = N · [xq]ι.
Moreover, the random variable [q]ι must have high min-entropy (we will analyze
the reason for high min-entropy after Lemma 2). For example, if elliptic-curve
hashing [Ica09] is used, one can assume that [q]ι is close to uniformly random
in a large subset of Gι.

A PPT algorithm A is hash-algebraic (in Gι) if there exists an efficient ex-
tractor ExtA, s.t. for any PPT sampleable distribution D, AdvhakGι,D,A(λ) :=

Pr

[
[x]ι←$D; r←$ RNDλ(A); [y]ι←$A([x]ι; r); (N , [q]ι)← ExtA([x]ι; r) :

(y 6= N(xq)) ∨ (∃i : H∞([qi]ι) = O(log λ))

]
≈λ 0 .

A group Gι is hash-algebraic if every PPT algorithm A that obtains inputs
from Gι and outputs elements in Gι is hash-algebraic. Clearly, a hash-algebraic
adversary is less restricted than an algebraic adversary.

The AGM (resp., AGMH) is essentially the assumption that the given group
is algebraic (resp., hash-algebraic). We make this more precise, by formaliz-
ing the requirement that for fixed D, A is hash-algebraic as the (D,A)-hash-
algebraic knowledge (HAK) assumption in Gι stating that AdvhakGι,D,A(λ) ≈λ 0.
Analogously, the (D,A)-algebraic knowledge (AK) assumption in Gι states that
AdvakGι,D,A(λ) ≈λ 0. In AGM for Gι, one assumes that (D,A)-AK holds in Gι for
all choices of (D,A). In AGMH for Gι, one assumes that (D,A)-HAK holds in Gι
for all choices of (D,A). We equate AGM (resp., AGMH) the Gι-AK (resp., Gι-
HAK) assumption. On the other hand, when proving the security of a concrete
protocol, it suffices to rely on the following tautological D-HAK assumption.

Definition 3 (D-HAK assumption in Gι). For each PPT A that obtains
inputs, distributed according to the distribution D, there exists an extractor
that outputs [q]ι and N such that [qi]ι has high min-entropy. More precisely,
AdvhakGι,D,A(λ) ≈λ 0 for each PPT adversary A.

Let us next demonstrate how HAK assumptions can be used. Consider the
q-PCDH assumption used in some earlier SNARKs [GJM03,Gro10]. Let Dpdl

ι =
{[1, x, x2, . . . , xq]>ι : x←$Z∗p}. A q-PCDH adversary A is asked, given an input
from Dpdl

ι , to output [y]ι = [xq+1]ι. (See Appendix C.1 for a proof.)

Lemma 1. The q-PCDH assumption is secure under the q-PDL and the Dpdl
ι -

HAK assumptions (all in Gι).

As another example, consider Damgård’s original Knowledge-of-Exponent
(KE, [Dam92]) assumption in Gι. Here, letDke

ι = {[1, x]>ι : x←$Z∗p}. Damgård’s

14 Helger Lipmaa

KE states that given [1, x]>ι ∼ Dke
ι , if the adversary outputs [y, z]ι such that

z = xy, then there exists an extractor that extracts y. (See Appendix C.2 for a
proof.)

Lemma 2. The KE assumption is secure under the DL and the Dke
ι -HAK as-

sumptions (all in Gι).

We note that the opposite does not always hold: KE assumption (and its
generalizations) cannot be used to extract unless each input group element [z]1
is accompanied with a “knowledge” input [xz]1 for random x.

Let us now analyze the need for high min-entropy. Following [Bro01], Bellare
et al. [BFS16,ABLZ17] proved subversion-security in the generic bilinear group
model with elliptic curve hashing (GBGMH) where the adversary can create
random group elements [qι]ι that are interpreted as new indeterminatesQι in the
security proof. Our approach will be more precise. Motivated by the upcoming
security proofs (e.g., see the proof of Theorem 1), we require that each [qi]1 has
min-entropy

H∞([qi]1) := − log2 maxq∗ Pr[qi : qi = q∗] = ω(log λ) .

Really, we will need that for any x, a random q is a root of a verification polyno-
mial V ∗(X,Q) with negligible probability. We assume that group elements cre-
ated in G1 and G2 are independent; see [BFS16,ABLZ17] for a discussion. Thus,
V ∗ has degree one in any indeterminate Qιi, and it follows from the Schwartz-
Zippel lemma [Zip79,Sch80] that Pr[V ∗(x, q) = 0] ≤ maxι,i 2−H∞([qιi]ι) =
2−ω(log λ) = λ−ω(1).5 Intuitively, we will use this as follows: since V ∗(x, q) = 0
and each qιi has high min-entropy, then due to the Schwartz-Zippel lemma,
with high probability, V ∗(x,Q) = 0 as a polynomial. Hence, in particular,
V ∗(x,0) = 0, and thus one only needs to analyze the case when the adversary
does not create new group elements. For this proof technique to work, however,
it is needed that all A’s outputs are involved in some verification equation.

There exist simpler versions of elliptic curve hashing (so-called encod-
ings, [Ica09]) where the output is assumed to have high-entropy but not close
to uniform; importantly, we obtain security also when using such hashing. The
assumption of high min-entropy is quite natural: if qιk is equal to some yιk with
a non-negligible probability, then a non-uniform adversary that has yιk as the
advice can compute the discrete logarithm qιk with a non-negligible probability.
In such a case, one can consider qιk to be an element with a known discrete
logarithm. Thus, instead of a usual knowledge assumption that states that A
knows some value, we now have an intuitively weaker assumption that states
that either A knows some value or is reasonably uncertain about it. That is,
there exists an extractor ExtA that, given non-black-box access to A and her in-
puts and random tape, either returns this value or is sufficiently confident that
A does not know it (and returns [qιk]ι).

Importantly, when proving the security under (H)AK assumptions, the ad-
versary is allowed to make use of the group presentation as long as this does
5 See [FKL18, Section 1.2] for a less concrete analysis of the AGMH case.

Simulation-Extractable SNARKs Revisited 15

not contradict the concrete knowledge assumption. This is important in the tag-
based setting where the adversary can choose her tags (integers).

Finally, in the bilinear-group setting we make both D1-HAK (in G1) and D2-
HAK (in G2) assumptions, with D1 and D2 being possibly correlated (e.g., the
input could contain both [x]1 and [x]2 for random x). In this case, we say that
a PPT algorithm A is hash-algebraic (in p) if there exists an efficient extractor
ExtA, s.t. for any PPT sampleable distribution D, Advhakp,D,A(λ) :=

Pr

inp = ([x1]1, [x2]2)←$D; r←$ RNDλ(A); ([y1]1, [y2]2)←$A(inp; r);

(N1,N2, [q1]1, [q2]2)← ExtA(inp; r) :

(y1 6= N1(x1
q1) ∨ y2 6= N2(x2

q2)) ∨ (∃ι, k : H∞([qιk]ι) = O(log λ))

 ≈λ 0 .

A (D,A)-HAK assumption in p states that Advhakp,D,A(λ) ≈λ 0. We define the
D-AK assumption in p analogously.

4 Knowledge-Sound SNARK for QAP

In this section, we will describe the new knowledge-sound SNARK Sqap (SNARK
for QAP). It follows a template that emphasizes two objectives: (i) simple sound-
ness proof under a HAK assumption, and (ii) efficiency. Sqap is very similar to
Groth’s SNARK from EUROCRYPT 2016 [Gro16], with the main difference
being the use of only two trapdoors instead of five. The second difference is
an alternative, much simpler, knowledge-soundness proof in the case of asym-
metric pairings; Groth, on the other hand, provided a very complex knowledge-
soundness proof that is valid for both asymmetric and symmetric pairings.

We will be using bivariate polynomials, where the indeterminate X is re-
lated to the definition of QAP, and the indeterminate Y is used to group to-
gether correct monomials in the security proof. (Such an approach was also
used in say [GKM+18].) Let u(X) =

∑m
j=1 ajuj(X), v(X) =

∑m
j=1 ajvj(X),

and w(X) =
∑m
j=1 ajwj(X) as in Section 2. Recall from Eq. (2) that for

χ(X) = u(X)v(X) − w(X) − h(X)`(X), the key equation of QAP states that
χ(X) = 0. That is, h(X) := (u(X)v(X) − w(X))/`(X) is a polynomial iff the
prover is honest.

The argument in the new template consists of three elements, π =
([a, c]1, [b]2), where a = A(x, y), b = B(x, y), and c = C(x, y) for well-defined
polynomials A(X,Y), B(X,Y), and C(X,Y). Intuitively, [a]1 is a succinct com-
mitment to u(X), [b]2 is a succinct commitment to v(X), and [c]1 is the “actual”
argument that additionally commits to w(X). More precisely, let α, β, γ, and δ
be integers chosen later. Then

A(X,Y) = raY
α + u(X)Y β , B(X,Y) = rbY

α + v(X)Y β . (3)

16 Helger Lipmaa

We now define

C(X,Y) = (A(X,Y) + Y γ)(B(X,Y) + Y δ)− Y γ+δ

=A(X,Y)B(X,Y) +B(X,Y)Y γ +A(X,Y)Y δ

=u(X)Y β+δ + v(X)Y β+γ + w(X)Y 2β + (u(X)v(X)− w(X))Y 2β+

rb(raY
α + u(X)Y β + Y γ)Y α + ra(v(X)Y β + Y δ)Y α

=
∑m
j=1 aj(uj(X)Y β+δ + vj(X)Y β+γ + wj(X)Y 2β)+

(u(X)v(X)− w(X))Y 2β + rb(A(X,Y) + Y γ)Y α+

ra(v(X)Y β + Y δ)Y α .

(4)

Since the SNARK also has a public input (aj)
m0
j=1, we define two polynomials

Cs(X,Y) and Cp(X,Y), so that for another integer η,

C(X,Y) = Cp(X,Y)Y η + Cs(X,Y)Y α ,

where Cp(X,Y) depends only on aj for j ≤ m0, Cs(X,Y) depends only on aj
for j > m0, and Cp(X,Y) only has m0 addends (to minimize the computation,
performed by the verifier):

Cp(X,Y) =
∑m0
j=1 aj

(
uj(X)Y β−η+δ + vj(X)Y β−η+γ + wj(X)Y 2β−η) ,

Cs(X,Y) =
∑m
j=m0+1 aj

(
uj(X)Y β−α+δ + vj(X)Y β−α+γ + wj(X)Y 2β−α)+

(u(X)v(X)− w(X))Y 2β−α + rb (A(X,Y) + Y γ) + rav(X)Y β + raY
δ .

(5)

Here, we use the multiplicand Y α for efficiency reasons, since C(X,Y) has an
addend raA(X,Y)Y α.

Hence, the argument consists of three elements, π = ([a, cs]1, [b]2), where
cs = Cs(x, y) and the verifier recomputes [C(x, y)]T = [cp]1 • [yη]2 + [cs]1 • [yα]2.
Essentially, the verifier of the new SNARK checks that [c(x, y)]T is computed
correctly by checking that [c]T = ([a]1 + [yγ]1) • ([b]2 + [yδ]2)− [yγ+δ]T .

We prove knowledge-soundness based on a PDL and a HAK assumption.
Recall that the adversary can create several new random group elements [q1]1
and [q2]2. Let Qι be the vector of corresponding formal indeterminates in Gι
for ι ∈ {1, 2}. Let Q = (Q1,Q2) and let X = (X,Q, Y) be the vector of all
indeterminates. Then, the verification guarantees that V (x) = 0, where

V (X) =(A(X) + Y γ)(B(X) + Y δ)− Y γ+δ − Cp(X)Y η − Cs(X)Y α , (6)

and A(X), B(X), and Cs(X) are potentially maliciously computed polynomials
that may depend on the indeterminates Q.

By the HAK assumption, all coefficients of V are known. Assume first that
V (X) = 0 is a zero polynomial and let X∗ = (X,Q). Writing V (X) =∑
i VY i(X

∗)Y i, we get that each VY i(X
∗) = 0. To simplify the knowledge-

soundness proof, we construct the SNARK so that for some small set Crit,
χ(X) = 0 follows from VY i(X

∗) = 0 for Y i ∈ Crit. Second, if V (X) 6= 0 as
a polynomial but the verification succeeds, then V (x) = 0 and by a modification
of the same strategy of Lemmas 1 and 2, one can break the PDL assumption.

Simulation-Extractable SNARKs Revisited 17

To formalize this discussion, in the malicious case A(X), B(X), and Cs(X)
can be any polynomials in the span of polynomials represented in the CRS
and of monomials consisting of the new indeterminates Qιk in groups G1, G2,
and G1, respectively. More precisely, any maliciously computed polynomials
crs1(a,X) and crs2(b,X), where a and b are symbolic (“string”) variables, that
represent group elements in G1 and G2 respectively, have to have the following
shape. This shape follows from the description of crs in Fig. 3. The latter, in
its turn, follows from the elements that either the honest prover or the honest
verifier have to be able to compute during the argument. It also takes into
account indeterminates Qιk that correspond to new group elements [qιk]ι.

crs1(a,X) =
∑m0
j=1 a

∗
j (uj(X)Y β−η+δ + vj(X)Y β−η+γ + wj(X)Y 2β−η)+∑m

i=m0+1 a
∗
i (ui(X)Y β−α+δ + vi(X)Y β−α+γ + wi(X)Y 2β−α)+

ha(X)`(X)Y 2β−α + raY
α + ua(X)Y β + aγY

γ + aδY
δ +

∑
k qakQ1k ,

crs2(b,X) = rbY
α + vb(X)Y β + bδY

δ + bηY
η +

∑
k bqkQ2k ,

(7)

where say a∗j ∈ Zp, ua(X) ∈ Zp[X] is a degree-≤ (n − 1) polynomial, and
ha(X) ∈ Zp[X] is a degree-≤ (n − 2) polynomial. Then, A(X) = crs1(a,X) =
· · ·+raY

α+ua(X)Y β + · · · , Cs(X) = crs1(c,X) = · · ·+rcY
α+uc(X)Y β + · · · ,

and B(X) = crs2(b,X) = rbY
α + · · · . Thus, V (X) is defined as in Eq. (6) but

with polynomials A(X), B(X), and Cs(X) as defined in Eq. (7).
Second, for the described proof idea to go through, we need 2β to be different

from all other exponents in maliciously computed V ∗(X). Moreover, the prover
is honest iff χ(X) = 0 iff u(X)v(X) − w(X) = h(X)`(X) for some polynomial
h(X) iff the coefficient of Y 2β in C(X) is divisible by `(X). In addition, Cs(X)
has addends uj(X)Y β−α+δ, vj(X)Y β−α+γ , and wj(X)Y 2β−α; thus their sum
can be written as

∑m
j=1 ajfj(X,Y) for known polynomials fj(X,Y), as above.

This and the shape of the coefficient of Y 2β−α are the main reasons why we
defined C(X,Y) as in Eq. (4). Let Coeff = {Y i : VY i(X

∗) 6= 0},

Crit = {Y 2β , Y β+γ , Y β+δ, Y γ+δ, Y γ+η, Y 2δ}

and Crit = Coeff \ Crit be the complement of Crit. Let ∆ = (α, β, γ, η, δ). To
obtain knowledge-soundness, we will need to choose the values in ∆ so that Crit
consists of mutually different powers of Y (|Crit| = 6) and Crit ∩ Crit = ∅. The
reason for this definition of Crit will become clear from the proof of Theorem 1
and from the following observation. Let h(X) := hc(X)− rbha(X). Let

ãj =

{
aj − bηa∗j , j ≤ m0 ,

c∗j − rba∗j , j > m0 .

Denote u(X) =
∑m
j=1 ãjuj(X), v(X) =

∑m
j=1 ãjvj(X), and w(X) =∑m

j=1 ãjwj(X). In this case, the “critical” coefficients VY i(X∗), Y i ∈ Crit, of
V (X) are depicted in Fig. 2. (The last row in Fig. 2 only applies in the case of
tagSASE SNARK in Section 5.) As argued in the the proof of Theorem 1, from
VY i(X

∗) = 0 for Y i ∈ Crit it follows that χ(X) = 0. We will give a concrete
suggestion for the value of ∆ in Eq. (8).

18 Helger Lipmaa

Y iDj
k Coeff. V

Y iD
j
k
(X∗) (KS and tagSASE) V +

Y iD
j
k

(X∗) (tagSASE only)

Y 2β ua(X)vb(X)− w(X)− h(X)`(X)
∑
k(sc2k − rbsa2k)

∑
j σkjwj(X)

Y β+γ (aγ + 1)vb(X)− v(X)
∑
k(sc2k − rbsa2k)

∑
j σkjvj(X)

Y β+δ (bδ + 1)ua(X)− u(X) + aδvb(X)
∑
k(sc2k − rbsa2k)

∑
j σkjuj(X)

Y γ+δ bδ + aγ(bδ + 1)
Y γ+η (aγ + 1)bη
Y 2δ (bδ + 1) aδ
Y γEk rbsa2k − sc2k + (aγ + 1)sbk

Fig. 2. Critical coefficients in Sqap (left) and addends to the same coefficients in the
tagSASE case (right). The coefficient of Y γEk is 0 in the case of Sqap.

Kcrs(z̃R): Sample x, y, z ←$Z∗p s.t. xn 6= 1, let td← (x, y, z). Let

crsP ←

[{uj(x)yβ−α+δ + vj(x)y
β−α+γ + wj(x)y

2β−α}mj=m0+1]1,[
yα, {xjyβ}n−1

j=0 , {xi`(x)y2β−α}n−2
j=0 , y

γ , yδ, yαz, {xjyβz}n−1
j=0

]
1
, [yα, {xjyβ}n−1

j=0]2

 ;

crsV ←
(
[{uj(x)yβ−η+δ + vj(x)y

β−η+γ + wj(x)y
2β−η}m0

j=1, y
γ , z]1,

[yα, yδ, yη]2, [y
γ+δ]T

)
;

crs← (crsP, crsV); return (crs, td);

P(z̃R, crsP, τ,(aj)
m0
j=1, (aj)

m
j=m0+1):

u(X)←
∑m
j=1 ajuj(X); v(X)←

∑m
j=1 ajvj(X); w(X)←

∑m
j=1 ajwj(X);

h(X)← (u(X)v(X)− w(X))/`(X);
(ra, rb)←$Z2

p; [a]1 ← ra[y
α]1 + [u(x)yβ]1; [b]2 ← rb[y

α]2 + [v(x)yβ]2;
[b1]1 ← rb(τ [y

α]1 + [yαz]1) + [τv(x)yβ]1 + [v(x)yβz]1 ;
[cs]1 ←

∑m
j=m0+1 aj [uj(x)y

β−α+δ + vj(x)y
β−α+γ + wj(x)y

2β−α]1 +

[h(x)`(x)y2β−α]1 + rb ([a]1 + [yγ]1) + ra([y
δ]1 + [v(x)yβ]1);

return π ←
(
[a, b1,cs]1 , [b]2

)
;

V(z̃R, crsV, τ,(aj)
m0
j=1, π = ([a, b1,cs]1 , [b]2)):

[cp]1 ←
∑m0
j=1 aj [uj(x)y

β−η+δ + vj(x)y
β−η+γ + wj(x)y

2β−η]1; Check that
1. [cp]1 • [yη]2 + [cs]1 • [yα]2 = [a+ yγ]1 • [b+ yδ]2 − [yγ+δ]T ;
2. [b1]1 • [1]2 = [τ + z]1 • [b]2 ;

Sim(z̃R, crs, td = y, τ, inp = (aj)
m0
j=1):

[cp]1 ←
∑m0
j=1 aj [uj(x)y

β−η+δ + vj(x)y
β−η+γ + wj(x)y

2β−η]1;
d←$Zp; e←$Zp; [a]1 ← d[1]1; [b1]1 ← e(τ [1]1 + [z]1) ; [b]2 ← e[1]2;
[cs]1 ← y−α((de+ dyδ + eyγ)[1]1 − yη[cp]1);
return π ←

(
[a, b1,cs]1 , [b]2

)
;

Fig. 3. The new SNARKs Sqap (without highlighted entries) and Sse
qap (with highlighted

entries). Moreover, Sqsp is exactly like Sqap and Sse
qsp is exactly like Sse

qap, except wj(X) =
0. Tags τ are only used in the tagSASE version.

We are now ready to describe the SNARK Sqap, see Fig. 3, and prove its secu-
rity. Like [Gro16] but unlike say [GGPR13], Sqap guarantees that u(X), v(X), and
w(X) use the same witness a without having to use a strong QAP [GGPR13].

Simulation-Extractable SNARKs Revisited 19

Before stating the following theorem, we need to specify the D-HAK assump-
tion. More precisely, we need to define D, since Gι is fixed by the protocol. Here
and in the rest of the paper, Dcrs

z̃R
(Ψ) is the distribution of honestly generated

CRS of SNARK Ψ = (Kcrs,P,V,Sim) for the concrete QAP instance R = Instqap
and for auxR. That is,

Dcrs
z̃R(Ψ) = {crs : (crs, td)← Kcrs(z̃R)} .

Theorem 1. Let R = Instqap = (Zp,m0, {uj , vj , wj}mj=0) be a QAP instance.
Let Sqap be the SNARK in Fig. 3.
(1) Assume ∆ satisfies Crit ∩ Crit = ∅. (An example recommendation for ∆ is
given in Eq. (8).) Then, Sqap is knowledge-sound under the (2n− 2, n− 1)-PDL
and Dcrs

z̃R
(Sqap)-HAK assumptions.

(2) Sqap is perfectly zero-knowledge.

We emphasize that the following knowledge-soundness proof depends mini-
mally on the concrete SNARK: the onley SNARK-dependent part is Step 1. The
rest of the knowledge-soundness proof can essentially be copied to the knowledge-
soundness proofs of all following SNARKs.

Proof. (1: knowledge-soundness) In all following knowledge-soundness and
tagSASE proofs, we will use the following template. We use the Dcrs

z̃R
(Sqap)-HAK

assumption to extract all coefficients of V (X). Since the verifier accepts, V (x) =
0 where x is the vector of actual trapdoors. We will move everything from group
elements to indeterminates, and we argue that if the verification polynomial
V (X) is a zero polynomial (V (X) = 0) then the prover did not cheat. After
that, we use the PDL assumption to derive a contradiction from V (X) 6= 0 but
V (x) = 0; we also argue that due to the high min-entropy of the distribution
of ([q1]1, [q2]2), creating random group elements does not benefit A. These two
steps together guarantee that the SNARK is knowledge-sound/tagSASE: if the
verifier accepted and the PDL assumption holds, then V (X) = 0 as a polynomial
and thus the prover did not cheat.

Let A be a knowledge-soundness adversary that, given (z̃R, crs; r) as an input
outputs (inp, π), such that V accepts. Denote crs = ([Γ 1]1, [Γ 2]2) (here, [yγ+δ]T is
only included to the CRS as an optimization and has no influence on the security)
and D = Dcrs

z̃R
(Sqap). By the HAK assumption, there exists an extractor ExtA

that on the same inputs, with probability 1−Advhakp,D,A(λ) = 1−negl(λ), returns
N1, N2, [q1]1 and [q2]2, such that (a, cs)

> = N1

(
Γ 1
q1

)
and b = N2

(
Γ 2
q2

)
. We

abort if the extractor fails. As above, write a = A(x), c = C(x), and b = B(x).
Taking into account that elements of Γ ι are known polynomials of X and Y ,
we can efficiently extract the coefficients of the polynomials A(X), C(X), and
B(X) from N1 and N2.
Step 1. Assume first that V (X) = 0 and thus VY i(X∗) = 0 for Y i ∈ Crit.
Consider Fig. 2. Since VY γ+δ(X∗) = bδ+aγ(bδ+1) = 0, we have aγ = −bδ/(bδ+
1). Thus, aγ , bδ 6= −1 and (aγ + 1)(bδ + 1) = 1. Moreover, VY η+γ (X∗) = (aγ +
1)bη = 0 and thus bη = 0. Next, VY 2δ(X∗) = aδ = 0. Thus, ãj = aj for

20 Helger Lipmaa

j ≤ m0. Finally, (bδ + 1)ua(X) = u(X), (aγ + 1)vb(X) = v(X), and χ(X) =
u(X)v(X)− w(X)− `(X)h(X) = 0, thus the prover did not cheat.

Step 2. Assume that V (X) 6= 0 but V (x) = 0, then the extractor has produced
a root of the non-zero multivariate polynomial V (X). We will first consider the
“non-hashing” case when the adversary did not create any new group elements
in G1 and G2, i.e., where we do not consider elliptic-curve hashing. After that,
we show how to reduce the “hashing” case to the “non-hashing” case.

In the non-hashing case, assume that the HAK assumption holds and
that A is a knowledge-soundness adversary that succeeds with probabil-
ity εsnd := AdvsndRelGen,A(λ) where εsnd > εhak := Advhakp,D,A(λ). Note that
due to the HAK assumption, εhak ≈λ 0. We construct the following PDL
adversary B. The PDL challenger C samples x←$Z∗p and gives inp =
([1, x, . . . , x2n−2]1, [1, x, . . . , x

n−1]2) as an input to B. B samples y←$Z∗p, and
uses it together with z̃R and inp to create correctly distributed crs. B plays
the challenger in the knowledge-soundness game with A: after sending crs and
r←$ RNDλ(A) to A, B obtains a purported proof ([a, cs]1, [b]2) from A. B runs
the extractor ExtA, guaranteed by the HAK assumption to succeed with prob-
ability 1 − negl(λ), to obtain matrices N ι and [qι]ι (the latter is empty in the
non-hashing case). From N ι, she computes the coefficients of various polyno-
mials like A(X,Y), B(X,Y), Cs(X,Y), and V (X,Y). Now, [a]1 = [A(x, y)]1,
[cs]1 = [Cs(x, y)]1, and [b]2 = [B(x, y)]2. Since the verifier accepts, V (x, y) = 0;
however, V (X,Y) 6= 0 as a polynomial. For the fixed value of y ∈ Z∗p, let
V ∗(X) := V (X, y). Finally, B does the following:
1. Use an efficient polynomial factorization algorithm to obtain up to 2n − 2

roots xi of V ∗(X).
2. Return the root xi that satisfies [xiy

β]1 = [xyβ]1.
Clearly, B has broken the (2n−2, n−1)-PDL assumption with probability εpdl =

Advpdl2n−2,n−1,Pgen,B(λ) ≥ εsnd − εhak. Thus,

εsnd ≤ Advpdl2n−2,n−1,Pgen,B(λ) + Advhakp,D,A(λ) .

Moreover, B’s running time is dominated by the running time of A and the time
to perform polynomial factorization.

Consider now the “hashing” case when A has created at least one random
group element qιi. We will rely on the fact that the new group elements qιi are
added additively to a polynomial of x in both groups; moreover, the elements
in G1 and G2 are independent. Then, V ∗(X,Q) is a degree-1 polynomial in any
indeterminate Qιi. Thus, by the Schwartz-Zippel lemma and since H∞([qιi]ι) =
ω(log λ), for any x, the probability that V ∗(x, q) = 0 is negligible. Hence, the
probability that an adversary, who created at least one (high min-entropy) group
element [qιi]1, can make the verifier accept is negligible.

(2: zero-knowledge) To see that Sim makes the verifier accept, note that
(a + yγ)(b + yδ) − csy

α − cpy
η − yγ+δ = de + dyδ + eyγ − cpy

η − (de + dyδ +
eyγ − cpy

η) = 0. Sim’s output comes from the correct distribution since a and b
are individually uniform in Zp, and c is chosen so that V accepts. ut

Simulation-Extractable SNARKs Revisited 21

In Appendix E, we observe that if the verification consists of a single pairing
execution, then it is not even needed to assume that [qιi]ι has high min-entropy.
Choice of ∆. Recall that we need to find values for ∆ = (α, . . .), such that
Crit ∩ Crit = ∅. For convenience sake, we require that the polynomial sets crs1
and crs2 both contain a non-zero monomial corresponding to Y 0 = 1 (then we
can publish [1]1 and [1]2) and that the values i, such that j for which f(X)Y j

belongs to the CRS for some f(X), have as small absolute values as possible (this
potentially speeds up the CRS verification algorithm [ABLZ17], see Appendix F).
Since there are too many coefficients that one has to take into account, we used
a computer search to find the following values for α, β, . . .:

α = 0, β = 1, γ = −6, δ = 4, η = −1. (8)

In this case, Crit = {Y 2, Y −5, Y 5, Y −2, Y −7, Y 8} and

crsP =

[{uj(x)y5 + vj(x)y
−5 + wj(x)y

2}mj=m0+1, y
0, {xjy1}n−1

j=0]1,[
{xi`(x)y2}n−2

j=0 , y
−6, y4, y0z, {xjy1z}n−1

j=0

]
1
, [y0, {xjy1}n−1

j=0]2

 ,

crsV =
(
[{uj(x)y6 + vj(x)y

−4 + wj(x)y
3}m0
j=1, y

−6]1,
[
y0, y4, y−1, z

]
2
, [y−2]T

)
.

(9)

Efficiency. Sqap has fewer trapdoors but otherwise the same complexity as
Groth’s knowledge-sound zk-SNARK [Gro16], see Table 1 for a comparison. E.g.,
crsP has (m−m0) + 1 + n+ (n− 1) + 1 = m+ 2n−m0 + 1 elements from G1

and (n + 2) elements from G2. Moreover, crsV has m0 + 1 elements from G1,
3 elements from G2, and one element from GT . Since crsP and crsV have one
common element in G1 then |crs| = (m + 2n + 2)g1 + (n + 4)g2 + gT . (Recall
that gι denotes the representation length of an element of Gι.) Clearly, [a]1 can
be computed from [yα]1 and [xiyβ]1 by using n+ 1 exponentiations, and it takes
≈ m+ 2n additional exponentiations to compute [c]1.

5 tagSASE SNARK Sse
qap for QAP

In this section, we will describe the new tagSASE SNARK Sse
qap (SE SNARK

for QAP). Recall that in the case of simulation-extractability, the adversary can
query the simulator. Let σk = (σkj)

m0
j=1 be the (maliciously generated) simulator

input used by the adversary during the kth query. LetX = (X,Q,D,E, Y) and
X∗ = (X,Q,D,E), where Dk (resp., Ek) is the indeterminate corresponding
to the random trapdoor d (resp., e) generated by the simulator during the kth
query. In the case of tagSASE, in Sqap, crs1(a,X) and crs2(b,X) have additional
addends (highlighted in what follows) that correspond to the indeterminates
generated by the simulator oracle:

crs1(a,X) = . . .+
∑
k sa1kDk +

∑
k sa2k

(
Y δ−αDk + Y −αDkEk + Y γ−αEk

)
+∑

k sa2k
∑m0
j=1 σkj

(
uj(X)Y β−α+δ + vj(X)Y β−α+γ + wj(X)Y 2β−α) ,

crs2(b,X) = . . .+
∑
k sbkEk .

22 Helger Lipmaa

In this case, due to the extra inputs from the simulator, the critical coefficients
of VY i(X∗) of V (X) will be changed by extra addends V +

Y i(X
∗), depicted in

Fig. 2. For example, VY β+δ(X∗) = (bδ + 1)ua(X)−u(X) +aδvb(X) +
∑
k(sc2k−

rbsa2k)
∑
j σkjuj(X).

First, assume that the first verification equation is used. Then the coefficient
of Y −α+δ+γEk of V (X) (namely, (bδ + 1)sa2k) implies that sa2k = 0. Moreover,
the coefficients of Y γ+δ (namely, bδ +aγ(bδ +1)), Y δDk (namely, rbsa2k−sc2k +
(bδ+1)sa1k), Y γEk (namely, rbsa2k−sc2k+(aγ+1)sbk), Y αDk (namely, rbsa1k−
sc1k), and DkEk (namely, rbsa2k − sc2k + sa1ksbk) in V (X) imply that either
(i) sa1k = sbk = 0 and thus sc2k = rbsa2k = 0, for all k, or
(ii) sa1k = 1/(bδ + 1) and sbk = bδ + 1 for at least one k.

(We note that we will not use all these coefficients in the actual tagSASE proof.)
In the first case, sc2k = rbsa2k for all k and thus we can eliminate the V +

Y i(X
∗)

addends in Fig. 2, and thus get back to the (already solved) knowledge-soundness
setting that guarantees us that χ(X) = 0.

In the second case, for some k, A(X) = sa1kDk+ . . . and B(X) = sbkEk+ . . .
for sa1k = 1/(bδ+1) 6= 0 and sbk = bδ+1 6= 0. Now, for k1 6= k2, the coefficient of
Dk1Ek2 is sa1k1sbk2 = 0. Since sa1k = 0 iff sbk = 0, we get that sa1k, sbk 6= 0 for
at most one index k := k0. Thus, the polynomials V +

Y i(X
∗) in Fig. 2 are equal to∑

j σk0juj(X),
∑
j σk0jvj(X), and

∑
j σk0jwj(X), respectively. Note also that

sa2k = 0 and thus sc2k = 1.
To guarantee that the prover is honest, we must make it impossible for the

prover to include a term sa1k0Dk0 , for non-zero sa1k0 , to A(X). The first idea
how to achieve this is by asking the prover to additionally output [b]1 and then
letting the verifier to check that [b]1 • [1]2 = [1]1 • [b]2. Since in the kth query,
the simulator also outputs [bk]1 = [ek]1, then now A(X) also depends on Ek.
That is, the polynomial A(X) has an additional monomial −

∑
k sa3kEk for

each simulation query, and similarly for polynomial B1(X) = . . .−
∑
k sb13kEk.

Thus, checking that [b]1 • [1]2 = [1]1 • [b]2 only guarantees that B(X) = rbY
α +

vb(X)Y β +
∑
sbk0Ek0 for some rb, vb(X), and (possibly non-zero) sbk0 = sb13k.

The problem here is that the added step can be seen as a knowledge-sound
QA-NIZK argument Πsub [JR13] that [b]2 belongs to the “subspace”6 generated
by [M(X,Y)]1 = [Y α, Y β , XY β , . . . , Xn−1Y β]1. Since we allow for simulation
queries, we need a simulation-extractable QA-NIZK argument for the subspace
language. While such QA-NIZK arguments are known, they are not very effi-
cient; see [KW15, Section 4]. A saving grace for us is that it suffices for Πsub

to be one-time simulation-extractable (OTSE): that is, it suffices for Πsub to
be knowledge-sound after one malicious query to the simulator. Really, as we
argued before, it is only possible that sa1k, sbk 6= 0 for at most one index k = k0.
More precisely, assume that sa1k0 = sbk0 = 1. Then, as seen from the coefficient
of Y −αDk1Ek1Ek2 , sa2k1sbk2 = 0 for any k1, k2. Thus, sbk = 0 for any k 6= k0.

6 Since this subspace is trivial (equal to the whole space), we need to rely on a knowl-
edge assumption to achieve security. See [FLSZ17,CFQ19] that used a similar tech-
nique to combine QA-NIZK and SNARKs.

Simulation-Extractable SNARKs Revisited 23

Next, we use the main idea of the one-time simulation-sound (OTSS) QA-
NIZK of Kiltz-Wee [KW15, Section 3.3] Πotss by introducing a tag τ , and re-
quiring that the simulation queries are made on tags τk that differ from the tag
τ for which the malicious prover constructs a forgery attempt. (However, our
construction is more efficient than Πotss.) We introduce for this a new indeter-
minate Z, and ask the prover to compute the QA-NIZK argument with respect
to the sum τ+Z. This can be interpreted as making use of the pairwise indepen-
dent function HZ1,Z2(τ) = τZ1 + Z2 [WC81]. Note that also Πotss is somewhat
inefficient, and therefore we do not use it directly.

Let X = (X,Q,D,E, Y, Z) and X∗ = (X,Q1,Q2,D,E, Z). Then,

crs1(a,X) =
∑m0
j=1 a

∗
j (uj(X)Y β−η+δ + vj(X)Y β−η+γ + wj(X)Y 2β−η)+∑m

i=m0+1 a
∗
i (ui(X)Y β−α+δ + vi(X)Y β−α+γ + wi(X)Y 2β−α)+

ha(X)`(X)Y 2β−α + raY
α + ua(X)Y β + aγY

γ + aδY
δ +

∑
k aqkQ1k−∑

k sa1kDk +
∑
k sa2k

(
Y δ−αDk + Y −αDkEk + Y γ−αEk

)
+∑

k sa2k
∑m0
j=1 σkj

(
uj(X)Y β−α+δ + vj(X)Y β−α+γ + wj(X)Y 2β−α)+

rzaY
αZ + uza(X)Y βZ +

∑
k sa3kEk(τk + Z) ,

crs2(b,X) = rbY
α + vb(X)Y β + bδY

δ + bηY
η +

∑
k bqkQ2k +

∑
k sbkEk .

where uza(X) ∈ Z(≤n−1)
p [X]. Then, for example, B1(X) = crs1(b1,X). Recall

that the verifier’s second verification guarantees that for fixed τ , the second
verification polynomial V se(X) satisfies V se(x) = 0, where

V se(X) := B1(X)− (τ + Z)B(X) .

Consider again first the case V se(x) = 0 as a polynomial. Looking at the co-
efficient of Ek in V se(X), we get τksb13k = −τsbk, while looking at the coefficient
of EkZ in V se(X), we get sb13k = −sbk. Since τk 6= τ , we get sb13k = sbk = 0.
From the earlier discussion, we obtain that sa1k = 0 and thus sc2k = rbsa2k,
which means that the polynomials V +

Y i(X
∗) in Fig. 2 are equal to 0 and thus

tagSASE of Sse
qap follows from the knowledge-soundness of Sqap.

Due to the introduction of the new indeterminate Z, we will have a bigger
set of critical coefficients. Let Coeff ′ = {i = Y j0Dj1

k1
Ej2k1E

j3
k2
Zj4 : Vi(X

∗) 6= 0},
Coeff ′se = {i = Y j0Dj1

k1
Ej2k1E

j3
k2
Zj4 : V sei (X∗) 6= 0},

Crit′ = Crit ∪ {Y γDk}k = {Y 2β , Y β+γ , Y β+δ, Y γ+δ, Y γ+η, Y 2δ} ∪ {Y γDk}k

be the set of critical coefficients of V (X) and Crit′se = {Ek, EkZ}k be the
set of critical coefficients of V se(X). Let Crit′ = Coeff ′ \ Crit′ and Crit′se =
Coeff ′se \Crit′se. Another difference with Section 4 is that in the current section,
ãj = aj −

∑
k sc2kσkj for j ≤ m0 and ãj = c∗j for j > m0.

Theorem 2. Let R = Instqap = (Zp,m0, {uj , vj , wj}mj=0) be a QAP instance.
Let Sse

qap be the tagSASE SNARK (with highlighted entries) in Fig. 3.
(1) Assume ∆ is chosen so that Crit′ ∩ Crit′ = ∅. (The setting of Eq. (8) is

24 Helger Lipmaa

suitable.) If the (2n− 2, n− 1)-PDL and Dcrs
z̃R

(Sse
qap)-HAK assumptions hold then

Sse
qap in Fig. 3 is tagSASE.

(2) Sse
qap is perfectly zero-knowledge.

Proof. (1: tagSASE) We use a proof template, very similar to the proof of
Theorem 1. Let A be a tagSASE adversary that outputs (inp, π), s.t. V accepts.
Since we are proving tagSASE, another part of the input to A is the reply of the
Sim oracle to each query. Due to the use of a HAK assumption, Gι-outputs of A
belong to the span of her inputs (the elements of CRS, Sim replies in Gι, and [qι]1
extracted from A) and of new random group elements and moreover, one can
extract the corresponding coordinates. When replying to jth query, Sim samples
fresh random integers dj and ej . We model dj and ej as new indeterminates Dj

and Ej . Let X = (X,Q,D,E, Y, Z) be the vector of all indeterminates and let
X∗ = (X,Q,D,E, Z) be the vector of all indeterminates but Y .

Since the second verification equation holds, from the coefficients of Ek
(namely, τksb13k − τsbk) and EkZ (namely, sb13k − sbk) of V se(X) = 0, we
get M

(sb13k
sbk

)
= 02 where M :=

(
τk −τ
1 −1

)
. Since τ 6= τk, M is invertible and thus

sb13k = sbk = 0. From the coefficient of Y γEk (namely, rbsa2k+(aγ+1)sbk−sc2k)
of V (X) = 0 we get that sc2k = rbsa2k for each k. Thus, the first three poly-
nomials V +

Y i(X
∗) in Fig. 2 are all equal to 0. The rest of the proof of tagSASE

follows from the knowledge-soundness proof of Theorem 1.
(2: zero-knowledge) similar to Theorem 1. ut

We emphasize that in the proof of tagSASE, the reduction to knowledge-
soundness lays crucially on the fact that M is invertible. This is not the case
when τk = τ , in this case one only obtains sbk = sb13k, and one will not be able
to show that the polynomials V +

Y i(X
∗) are equal to 0. Thus, Sse

qap is not SASE.

6 SAP-Based SNARKs

In the following sections, we will describe SNARKs for three different languages
SAP, SSP, and QSP. Since these SNARKs and their security proofs are modifi-
cations of Sqap, we will omit most of the details.

Groth et al. [Gro16,GM17] used SAP (Square Arithmetic Programs) instead
of QAP. The only algebraic distinction here is that v(X) = u(X) and thus a
SAP instance is of form R = Instsap = (Zp,m0, {uj , wj}mj=0). RInstsap is defined as
RInstqap in Eq. (1) except that v(X) = u(X). Thus, each gate in the arithmetic
circuit gets the same left and right inputs, or, putting it another way, the circuit
consists of squaring gates only. Since each multiplication gate c = ab can be
implemented by using two squaring gates (ab = (a/2+b/2)2− (a/2−b/2)2), one
can verify the correctness of an arbitrary d-gate arithmetic circuit by transferring
it to a circuit that has m̃ ≤ 2d squaring gates and then constructing a SNARK
for SAP for the resulting circuit. The primary motivation behind introducing
SAP is that one can construct a zk-SNARK where A(X,Y) = B(X,Y), which
potentially makes the SNARK more efficient.

Simulation-Extractable SNARKs Revisited 25

We will next describe how to modify our approach to the case of SAP. Since
u(X) = w(X), the corresponding key equation is χsap(X) = 0, where

χsap(X) = u(X)2 − w(X)− h(X)`(X) .

In this case, we simplify Eqs. (3) and (4) by setting v(X) = u(X) and ra = rb.
Then A(X,Y) = B(X,Y) = raY

α + u(X)Y β .
Thus, Eqs. (3) to (5) simplify to

A(X,Y) = B(X,Y) = raY
α + u(X)Y β ,

C(X,Y) = (A(X,Y) + Y γ)(A(X,Y) + Y δ)− Y γ+δ

=u(X)(Y β+γ + Y β+δ) + u(X)2Y 2β + ra(raY
α + 2u(X)Y β + Y γ + Y δ)Y α ,

=(u(X)(Y β+γ + Y β+δ) + w(X)Y 2β) + (u(X)2 − w(X))Y 2β+

ra(raY
α + 2u(X)Y β + Y γ + Y δ)Y α ,

Cp(X,Y) =
∑m0
j=1 aj(uj(X)(Y β−η+γ + Y β−η+δ) + wj(X)Y 2β−η) ,

Cs(X,Y) =
∑m
j=m0+1 aj(uj(X)(Y β−α+γ + Y β−α+δ) + wj(X)Y 2β−α)+

h(X)`(X)Y 2β−α + ra(raY
α + 2u(X)Y β + Y γ + Y δ) .

We construct the SNARK Ssap by correspondingly simplifying Fig. 3, see
Fig. 4. We can find a suitable ∆ as in the case of QAP in Section 4, see Eq. (8).
Knowledge-soundness. Since Ssap is an optimized version of Sqap, its
knowledge-soundness can be proven by using the same approach. That is, one
can follow the proof of Theorem 1. Let h(X) := hc(X)− raha(X). Let

ãj =

{
aj − bηa∗j , j ≤ m0 ,

c∗j − raa∗j , j > m0 .

Denote u(X) =
∑m
j=1 ãjuj(X) and w(X) =

∑m
j=1 ãjwj(X). In this case, the

“significant” coefficients VY i(X,Q), Y i ∈ Crit, of V (X) are depicted in Fig. 5.
(The last row is only relevant in the tagSASE SNARK Sse

sap.) The differences
compared to Fig. 2 are solely due to the setting v(X) = u(X).

Theorem 3. Let R = Instsap = (Zp,m0, {uj , wj}mj=0) be a SAP instance.
(1) Assume ∆ is chosen so that Crit ∩ Crit = ∅. If the (2n− 2, n− 1)-PDL and
Dcrs

z̃R
(Ssap)-HAK assumptions hold then Ssap in Fig. 3 is knowledge-sound.

(2) Ssap is perfectly zero-knowledge.

(See Appendix C.3 for the proof sketch.)
Efficiency. Clearly, in Ssap, the CRS has (n) + (n − 1) + m + 2 = 2n + m + 1
elements from G1 and n + 3 elements from G2. The prover’s computation is
n + 1 exponentiations to compute [a]1, n + 1 exponentiations to compute [b]2,
and 1 + (m−m0) + (n− 1) = n+m−m0 exponentiations to compute [cs]1.
tagSASE SNARK Sse

sap. Consider the case of tagSASE with Ssap. Taking into
account answers from simulation queries, the polynomials crs1 and crs2 have
the following new addends:

crs1(a,X) = . . .+
∑
k sa1kDk +

∑
k sa2k

(
Y δ−α + Y −αDk + Y γ−α

)
Dk+

26 Helger Lipmaa

Kcrs(z̃R): Sample x, y, z ←$Z∗p s.t. xn 6= 1, let td← (x, y, z). Let

crsP ←

[{uj(x)yβ−α+δ + uj(x)y
β−α+γ + wj(x)y

2β−α}mj=m0+1, y
α, {xjyβ}n−1

j=0]1,[
{xi`(x)y2β−α}n−2

j=0 , y
γ , yδ, yαz, {xjyβz}n−1

j=0

]
1
, [yα, {xjyβ}n−1

j=0]2

 ;

crsV ←
([
{uj(x)yβ−η+δ + uj(x)y

β−η+γ + wj(x)y
2β−η}m0

j=1, y
γ , z, yγz

]
1
,[

yα, yδ, yη, yηz, yαz
]
2
, [yγ+δ]T

)
;

crs← (crsP, crsV); return (crs, td);

P(z̃R, crsP, τ,(aj)
m0
j=1, (aj)

m
j=m0+1):

u(X)←
∑m
j=1 ajuj(X); w(X)←

∑m
j=1 ajwj(X); h(X)← (u(X)2 − w(X))/`(X);

ra ←$Zp; [u′]1 ← ra[y
α]1; [u′′]1 ← [u(x)yβ]1;

[a]1 ← τ ·([u′]1 + [u′′]1)+ra[y
αz]1 + [u(x)yβz]1 ; [b]2 ← ra[y

α]2 + [u(x)yβ]2;
[cs]1 ←

∑m
j=m0+1 aj [uj(x)y

β−α+δ + uj(x)y
β−α+γ + wj(x)y

2β−α]1 +

[h(x)`(x)y2β−α]1 + ra
(
[u′]1 + 2[u′′]1 + [yγ]1 + [yδ]1

)
);

return π ←
(
[a, cs]1 , [b]2

)
;

V(z̃R, crsV, τ,(aj)
m0
j=1, π = ([a, cs]1 , [b]2)):

[cp]1 ←
∑m0
j=1 aj [uj(x)y

β−η+δ + uj(x)y
β−η+γ + wj(x)y

2β−η]1; Check that
1. [cp]1 • [(τ + z)yη]2 + [cs]1 • [(τ + z)yα]2 = [a + (τ + z)yγ]1 • [b + yδ]2 −

[(τ + z)yγ+δ]T ;
2. [a]1 • [1]2 = [τ + z]1 • [b]2 ;

Sim(z̃R, crs, td = y, τ, inp = (aj)
m0
j=1):

[cp]1 ←
∑m0
j=1 aj [uj(x)y

β−η+δ + uj(x)y
β−η+γ + wj(x)y

2β−η]1;
d←$Zp; [a]1 ← τ ·d[1]1+d[z]1 ; [b]2 ← e[1]2;
[cs]1 ← y−α((d2 + d(yδ + yγ))[1]1 − yη[cp]1);
return π ←

(
[a, cs]1 , [b]2

)
;

Fig. 4. The new SNARKs for SAP and SSP: knowledge-sound Ssap (without highlighted
entries) and tagSASE Sse

sap (with highlighted entries). Sssp is like Ssap and Sse
ssp is like

Sse
sap, except that then also wj(X) = uj(X).

Y iDj
k Coeff. V

Y iD
j
k
(X∗) (KS and tagSASE) V +

Y iD
j
k

(X∗) (tagSASE only)

Y 2β ua(X)ub(X)− w(X)− h(X)`(X)
∑
k(τsc2k − rasa2k)

∑
j σkjwj(X)

Y β+γ (aγ + τ)ub(X)− u(X)
∑
k(τsc2k − rasa2k)

∑
j σkjuj(X)

Y β+δ (bδ + 1)ua(X)− u(X) + aδub(X)
∑
k(τsc2k − rasa2k)

∑
j σkjuj(X)

Y γ+δ bδ(aγ + τ) + aγ
Y 2δ (bδ + 1) aδ
Y η+γ (aγ + τ)bη
Y γDk rasa2k − τsc2k + sbk(aγ + τ)

Fig. 5. Critical coefficients in Ssap (left, τ = 1) and addends to the same coefficients in
the tagSASE case (right).

∑
k sa2k

∑m0
j=1 σkj

(
uj(X)Y β−α+δ + uj(X)Y β−α+γ + wj(X)Y 2β−α) ,

Simulation-Extractable SNARKs Revisited 27

crs2(b,X) = . . .+
∑
k sbkDk .

(Compared to Sse
qap, we just changed vj(X) to uj(X) and Ek to Dk.) In the

honest case, [a]1•[1]2 = [1]1•[b]2. However, if the verifier additionally checks that
[a]1 • [1]2 = [1]1 • [b]2, one obtains the guarantee that A(X) = B(X) = raY

α +
ua(X)Y β −

∑
sa1kDk. Again, this does not guarantee simulation-extractability.

We proceed similarly to the case of Sse
qap but take advantage of the fact that

a = b in the honest case. Recall that in Sse
qap, one constructed b1, such that

b1 = b(τ + z) (where τ is a tag and Z is a new indeterminate). What we do next
is to define a = b1, and then modify the verification equations to take that into
account, as in Fig. 4. That is, we define two verification polynomials,

V (X) =(A(X) + (τ + Z)Y γ)(B(X) + Y δ)− (τ + Z)Cp(X)Y η−

(τ + Z)Cs(X)Y α − (τ + Z)Y γ+δ ,

V se(X) =A(X)− (τ + Z)B(X) .

After this, the CRS has to additionally include some new elements (highlighted
in Fig. 4). This changes the polynomials crs1 and crs2 to

crs1(a,X) =
∑m0
j=1 a

∗
j (uj(X)Y β−η+δ + uj(X)Y β−η+γ + wj(X)Y 2β−η)+∑m

i=m0+1 a
∗
i (ui(X)Y β−α+δ + ui(X)Y β−α+γ + wi(X)Y 2β−α)+

ha(X)`(X)Y 2β−α + raY
α + ua(X)Y β + aγY

γ + aδY
δ +

∑
k aqkQ1k−∑

k sa1k(τk + Z)Dk +
∑
k sa2k

(
Y δ−αDk + Y −αD2

k + Y γ−αDk
)
+∑

k sa2k
∑m0
j=1 σkj

(
uj(X)Y β−α+δ + uj(X)Y β−α+γ + wj(X)Y 2β−α)+

aY αZY
αZ + uza(X)Y βZ + aZZ + aγzY

γZ ,

crs2(b,X) = rbY
α + ub(X)Y β + bδY

δ + bηY
η +

∑
k bqkQ2k+∑

k sbkDk + bαzY
αZ + bηzY

ηZ .

Since the second verification accepts, then V se(x) = 0. If V se(X) = 0 as a
polynomial then A(X) = (τ + Z)B(X), and from the coefficients of Dk and
DkZ of V se(X) we get τksa1k = τsbk and sa1k = sbk. Since τ 6= τk, this means
sa1k = sbk = 0. From the coefficient of Y γDk of V (X), we get rbsa2k1 − τsc2k1 +
sbk2(Aγ + τ) = 0. and thus τsc2k1 = rbsa2k1 . This means that V +

i (X∗) = 0 in
Fig. 5 and thus, analogously to the case of Sse

qap, tagSASE of Sse
sap can be reduced

to the knowledge-soundness of Ssap and the hardness of SAP.

Theorem 4. Let R = Instsap = (Zp,m0, {uj , wj}mj=0) be a SAP instance.
(1) Assume ∆ is chosen so that Crit′ ∩Crit′ = ∅. If the (2n− 2, n− 1)-PDL and
Dcrs

z̃R
(Sse

sap)-HAK assumptions hold then Sse
sap in Fig. 4 is tagSASE.

(2) Sse
sap is perfectly zero-knowledge.

Efficiency. Clearly, in Sse
sap, the CRS has (n)+(n−1)+m+2+(n+3) = 3n+m+4

elements from G1 and n + 5 elements from G2. The prover’s computation is
n + 1 + 1 = n + 2 exponentiations to compute [a]1, n + 1 exponentiations to
compute [b]2, and 1 + (m − m0) + (n − 1) = n + m − m0 exponentiations to
compute [cs]1. The verifier executes 5 pairings and m0 + 4 exponentiations.

28 Helger Lipmaa

7 SSP-Based SNARKs

In this section, we will construct a knowledge-sound SNARK Sssp and a tagSASE
SNARK Sse

ssp for SSP (Square Span Programs, [DFGK14]). We recall that by
using SSP, one can prove that different linear combinations of witness coefficients
are simultaneously Boolean. As shown in [DFGK14], this is sufficient to show
that a Boolean circuit has been correctly evaluated on (secret or public) inputs:

– For each wire, one checks that the wire value is Boolean.
– For each gate, one can check that it has implemented its Boolean function

correctly by checking that certain linear combination of its input and output
wire values is Boolean. For example, a∧̄b = c iff a+ b+ 2c− 2 ∈ {0, 1} and
a⊕ b = c iff (a+ b+ c)/2 ∈ {0, 1} [DFGK14].

Thus, one can implement SSP by using a QAP-type approach, by checking
n = d + m constraints of type (

∑m
j=1 Uijaj)

2 =
∑m
j=1 Uijaj , i ∈ [1 .. n], where

d is the number of the gates and m is the number of the wires. (In a QAP-
based approach for arithmetic circuits, n = d.) Based on this observation, we
design Sssp around the verification equation as in Section 4. The only difference
in the language is that u(X) = v(X) = w(X), and thus the key equation is
χssp(X) = 0, where

χssp(X) = u(X)(u(X)− 1)− h(X)`(X) .

Thus, h(X) = u(X)(u(X) − 1)/`(X) is a polynomial iff the prover is honest.
The new SNARK Sssp for SSP in Fig. 4 is like Ssap, except that now we have
uj(X) = vj(X) = wj(X) instead of just uj(X) = vj(X).

Let R = (Zp,m0, {uj}mj=0) be a SSP instance. RInstssp is defined as RInstqap in
Eq. (1) except that u(X) = v(X) = w(X).

Theorem 5. Let R = Instssp = (Zp,m0, {uj}mj=0) be a SSP instance.
(1) Assume ∆ is chosen so that Crit ∩ Crit = ∅. If the (2n− 2, n− 1)-PDL and
Dcrs

z̃R
(Sssp)-HAK assumptions hold then Sssp in Fig. 4 is knowledge-sound.

(2) Sssp is perfectly zero-knowledge.

Proof. Follows directly from Theorem 3. ut

Importantly, since aj are Boolean, it is cheaper to compute say [u(X)uβ]1 ←∑m
j=1 aj [uj(X)yβ]1: this requires m multiplications compared to n exponen-

tiations in the case of QAP and SAP. (Here, and in the next section, we
count the number of multiplications in the worst case. In the average case,
it will be reduce by a factor of two.) Moreover, setting wj(X) = uj(X) al-
lows for additional minor optimizations. For example, to compute [a]1 and
[cs]1, the prover can first set [u′]1 ← ra[yα]1; [u′′]1 ←

∑m
j=1 aj [uj(x)yβ]1,

and then [a]1 ← τ ·([u′]1 + [u′′]1)+ra[yαz]1 +
∑m
j=1 aj [uj(x)yβz]1 and [cs]1 ←∑m

j=m0+1 aj [uj(x)yβ−α+δ + uj(x)yβ−α+γ + wj(x)y2β−α]1 + [h(x)`(x)y2β−α]1 +

ra
(
[u′]1 + 2[u′′]1 + [yγ]1 + [yδ]1

)
. Thus, the prover spends one exponentiation

Simulation-Extractable SNARKs Revisited 29

and m multiplications in G1 to compute [u′]1 and [u′′]1, and additional m−m0

multiplications and (n− 1) + 1 = n exponentiations in G1 to compute [cs]1. She
also spends 1 exponentiation and m multiplications in G2 to compute [b]2.
tagSASE SNARK Sse

ssp. Sse
ssp is defined as Sse

sap, setting wj(X) = uj(X).

Theorem 6. Let R = Instssp = (Zp,m0, {uj}mj=0) be a SSP instance.
(1) Assume ∆ is chosen so that Crit′ ∩Crit′ = ∅. If the (2n− 2, n− 1)-PDL and
Dcrs

z̃R
(Sse

ssp)-HAK assumptions hold then Sse
ssp in Fig. 4 is tagSASE.

(2) Sse
ssp is perfectly zero-knowledge.

Efficiency-wise, Sse
ssp is like Sse

sap, except that the prover needs to compute
3m−m0 multiplications and n+ 2 exponentiations in G1 and 1 exponentiation
and m multiplications in G2.

8 Discussion

Application: UC-Secure SNARKs. One can plug in Sse
qap (instead of the

Groth’s SNARK as done in [KZM+15] or the Groth-Maller SNARK as done
in [Bag19]) to the known transformation of non-black-box SASE SNARKs to
black-box SASE SNARKs [Bag19] obtain better efficiency.
Further Work. Since our goal was to provide a simple, very general, template
that allows for efficient soundness proofs, we did not fully optimize all eight
new SNARKs. We did not also consider the important question of updatable
SNARKs [GKM+18] since in that case there exists even no efficient knowledge-
sound (random-oracle-less) solutions.
Historic Remark. The second eprint version (from July 13, 2019) differs sig-
nificantly from the first eprint version from May 31, 2019. The main difference
is in the handling of simulation-extractability (SE): the earlier version achieved
ASE but not SASE. In fact, its ASE security proofs contained a subtle error,
introduced in the last moment during a submission rush. The current version of
this paper achieves SASE by using tags; this changed the SE SNARKs somewhat
but their efficiency remains comparable to the SE SNARKs in the earlier version.
Due to the use of tags, we stopped using the full power of the generic bilinear
group model in the soundness / SE proofs and added a lengthy description of
the AGM and tautological knowledge (AK and SAK) assumptions.

The third eprint version (from July 23, 2019) adds subversion-security and
many typo fixes.

The fourth eprint version (from Feb 8, 2020) has a better explanation of
the (H)AK assumption framework. We renamed SAK assumptions to HAK as-
sumptions. We differentiated clearly between the tag-based (as used in most of
this paper) and tagless SASE. We clarified why tagSASE is sufficient in appli-
cations like UC-security. Nevertheless, we described an efficient transformation
from tagSASE SNARKs to tagless SASE SNARKs. We simplified the proof of
tagSASE (it does not rely on the hardness of the language anymore.) The new

30 Helger Lipmaa

SNARKs are however the same as in the July 23, 2019 version. We also corrected
a lot of small typos (and small but non-essential mistakes).
Acknowledgment. We thank Mikhail Volkhov for helpful comments. The au-
thor was partially supported by the Estonian Research Council grant (PRG49).

References
ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.

A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3–33.
Springer, Heidelberg, December 2017. doi:10.1007/978-3-319-70700-6_
1.

ALSZ20. Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michał Zając. On
QA-NIZK in the BPK Model. In Aggelos Kiayias, editor, PKC 2020, vol-
ume ? of LNCS, pages ?–?, Edinburgh, UK, May 4–7, 2020. Springer, Cham.
doi:?

Bag19. Karim Baghery. On the efficiency of privacy-preserving smart contract
systems. In Johannes Buchmann, Abderrahmane Nitaj, and Tajje eddine
Rachidi, editors, AFRICACRYPT 19, volume 11627 of LNCS, pages 118–
136. Springer, Heidelberg, July 2019. doi:10.1007/978-3-030-23696-0_7.

BCG+13. Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and
Madars Virza. SNARKs for C: Verifying program executions succinctly
and in zero knowledge. In Ran Canetti and Juan A. Garay, editors,
CRYPTO 2013, Part II, volume 8043 of LNCS, pages 90–108. Springer,
Heidelberg, August 2013. doi:10.1007/978-3-642-40084-1_6.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,
Ian Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized
anonymous payments from bitcoin. In 2014 IEEE Symposium on Secu-
rity and Privacy, pages 459–474. IEEE Computer Society Press, May 2014.
doi:10.1109/SP.2014.36.

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth. Succinct non-interactive arguments via linear interactive proofs.
In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 315–333.
Springer, Heidelberg, March 2013. doi:10.1007/978-3-642-36594-2_18.

BCPR14. Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the
existence of extractable one-way functions. In David B. Shmoys, edi-
tor, 46th ACM STOC, pages 505–514. ACM Press, May / June 2014.
doi:10.1145/2591796.2591859.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an
untrusted CRS: Security in the face of parameter subversion. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 777–804. Springer, Heidelberg, December 2016. doi:
10.1007/978-3-662-53890-6_26.

BG18. Sean Bowe and Ariel Gabizon. Making groth’s zk-SNARK simulation ex-
tractable in the random oracle model. Cryptology ePrint Archive, Report
2018/187, 2018. https://eprint.iacr.org/2018/187.

BLS04. Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott. On the selection of
pairing-friendly groups. In Mitsuru Matsui and Robert J. Zuccherato, edi-
tors, SAC 2003, volume 3006 of LNCS, pages 17–25. Springer, Heidelberg,
August 2004. doi:10.1007/978-3-540-24654-1_2.

http://dx.doi.org/10.1007/978-3-319-70700-6_1
http://dx.doi.org/10.1007/978-3-319-70700-6_1
http://dx.doi.org/?
http://dx.doi.org/10.1007/978-3-030-23696-0_7
http://dx.doi.org/10.1007/978-3-642-40084-1_6
http://dx.doi.org/10.1109/SP.2014.36
http://dx.doi.org/10.1007/978-3-642-36594-2_18
http://dx.doi.org/10.1145/2591796.2591859
http://dx.doi.org/10.1007/978-3-662-53890-6_26
http://dx.doi.org/10.1007/978-3-662-53890-6_26
https://eprint.iacr.org/2018/187
http://dx.doi.org/10.1007/978-3-540-24654-1_2

Simulation-Extractable SNARKs Revisited 31

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Se-
manko. The one-more-RSA-inversion problems and the security of Chaum’s
blind signature scheme. Journal of Cryptology, 16(3):185–215, June 2003.
doi:10.1007/s00145-002-0120-1.

Bow17. Sean Bowe. BLS12-381: New zk-SNARK Elliptic Curve Construction.
Blog post, https://blog.z.cash/new-snark-curve/, last accessed in July,
2018, March 11, 2017.

Bro01. Daniel R. L. Brown. The exact security of ECDSA. Contributions to IEEE
P1363a, January 2001. http://grouper.ieee.org/groups/1363/.

BS07. Mihir Bellare and Sarah Shoup. Two-tier signatures, strongly unforgeable
signatures, and Fiat-Shamir without random oracles. In Tatsuaki Okamoto
and Xiaoyun Wang, editors, PKC 2007, volume 4450 of LNCS, pages 201–
216. Springer, Heidelberg, April 2007. doi:10.1007/978-3-540-71677-8_
14.

BV98. Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be
equivalent to factoring. In Kaisa Nyberg, editor, EUROCRYPT’98, volume
1403 of LNCS, pages 59–71. Springer, Heidelberg, May / June 1998. doi:
10.1007/BFb0054117.

Can01. Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society
Press, October 2001. doi:10.1109/SFCS.2001.959888.

CFQ19. Matteo Campanelli, Dario Fiore, and Anaïs Querol. LegoSNARK: Modu-
lar design and composition of succinct zero-knowledge proofs. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, edi-
tors, ACM CCS 2019, pages 2075–2092. ACM Press, November 2019.
doi:10.1145/3319535.3339820.

CGGM00. Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Re-
settable zero-knowledge (extended abstract). In 32nd ACM STOC, pages
235–244. ACM Press, May 2000. doi:10.1145/335305.335334.

CGGN17. Matteo Campanelli, Rosario Gennaro, Steven Goldfeder, and Luca Niz-
zardo. Zero-knowledge contingent payments revisited: Attacks and pay-
ments for services. In Bhavani M. Thuraisingham, David Evans, Tal Malkin,
and Dongyan Xu, editors, ACM CCS 2017, pages 229–243. ACM Press, Oc-
tober / November 2017. doi:10.1145/3133956.3134060.

CHK04. Ran Canetti, Shai Halevi, and Jonathan Katz. Chosen-ciphertext secu-
rity from identity-based encryption. In Christian Cachin and Jan Ca-
menisch, editors, EUROCRYPT 2004, volume 3027 of LNCS, pages 207–
222. Springer, Heidelberg, May 2004. doi:10.1007/978-3-540-24676-3_
13.

CHM+19. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas Ward. Marlin: Preprocessing zkSNARKs with Uni-
versal and Updatable SRS. Technical Report 2019/1047, IACR, Septem-
ber 13, 2019. https://eprint.iacr.org/2019/1047, last retrieved version
from Sep 19, 2019.

Dam92. Ivan Damgård. Towards practical public key systems secure against chosen
ciphertext attacks. In Joan Feigenbaum, editor, CRYPTO’91, volume 576
of LNCS, pages 445–456. Springer, Heidelberg, August 1992. doi:10.1007/
3-540-46766-1_36.

DDO+01. Alfredo De Santis, Giovanni Di Crescenzo, Rafail Ostrovsky, Giuseppe Per-
siano, and Amit Sahai. Robust non-interactive zero knowledge. In Joe Kil-

http://dx.doi.org/10.1007/s00145-002-0120-1
https://blog.z.cash/new-snark-curve/
http://grouper.ieee.org/groups/1363/
http://dx.doi.org/10.1007/978-3-540-71677-8_14
http://dx.doi.org/10.1007/978-3-540-71677-8_14
http://dx.doi.org/10.1007/BFb0054117
http://dx.doi.org/10.1007/BFb0054117
http://dx.doi.org/10.1109/SFCS.2001.959888
http://dx.doi.org/10.1145/3319535.3339820
http://dx.doi.org/10.1145/335305.335334
http://dx.doi.org/10.1145/3133956.3134060
http://dx.doi.org/10.1007/978-3-540-24676-3_13
http://dx.doi.org/10.1007/978-3-540-24676-3_13
https://eprint.iacr.org/2019/1047
http://dx.doi.org/10.1007/3-540-46766-1_36
http://dx.doi.org/10.1007/3-540-46766-1_36

32 Helger Lipmaa

ian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 566–598. Springer,
Heidelberg, August 2001. doi:10.1007/3-540-44647-8_33.

Den02. Alexander W. Dent. Adapting the weaknesses of the random oracle model
to the generic group model. In Yuliang Zheng, editor, ASIACRYPT 2002,
volume 2501 of LNCS, pages 100–109. Springer, Heidelberg, December
2002. doi:10.1007/3-540-36178-2_6.

DFGK14. George Danezis, Cédric Fournet, Jens Groth, and Markulf Kohlweiss.
Square span programs with applications to succinct NIZK arguments. In
Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014, Part I, vol-
ume 8873 of LNCS, pages 532–550. Springer, Heidelberg, December 2014.
doi:10.1007/978-3-662-45611-8_28.

DFKP13. George Danezis, Cédric Fournet, Markulf Kohlweiss, and Bryan Parno.
Pinocchio coin: building zerocoin from a succinct pairing-based proof sys-
tem. pages 27–30, Berlin, Germany, November 4, 2013. ACM.

DGP+19. Vanesa Daza, Alonso González, Zaira Pindado, Carla Ràfols, and Javier
Silva. Shorter quadratic QA-NIZK proofs. In Dongdai Lin and Kazue
Sako, editors, PKC 2019, Part I, volume 11442 of LNCS, pages 314–343.
Springer, Heidelberg, April 2019. doi:10.1007/978-3-030-17253-4_11.

DHLW10. Yevgeniy Dodis, Kristiyan Haralambiev, Adriana López-Alt, and Daniel
Wichs. Efficient public-key cryptography in the presence of key leak-
age. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of LNCS,
pages 613–631. Springer, Heidelberg, December 2010. doi:10.1007/
978-3-642-17373-8_35.

DL08. Giovanni Di Crescenzo and Helger Lipmaa. Succinct NP Proofs from an
Extractability Assumption. In Arnold Beckmann, Costas Dimitracopoulos,
and Benedikt Löwe, editors, Computability in Europe, CIE 2008, volume
5028 of LNCS, pages 175–185, Athens, Greece, June 15–20, 2008. Springer,
Heidelberg.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Vil-
lar. An algebraic framework for Diffie-Hellman assumptions. In Ran
Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 129–147. Springer, Heidelberg, August 2013. doi:
10.1007/978-3-642-40084-1_8.

Fis00. Marc Fischlin. A note on security proofs in the generic model. In Tatsuaki
Okamoto, editor, ASIACRYPT 2000, volume 1976 of LNCS, pages 458–469.
Springer, Heidelberg, December 2000. doi:10.1007/3-540-44448-3_35.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96881-0_2.

FLSZ17. Prastudy Fauzi, Helger Lipmaa, Janno Siim, and Michal Zajac. An efficient
pairing-based shuffle argument. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part II, volume 10625 of LNCS, pages 97–127.
Springer, Heidelberg, December 2017. doi:10.1007/978-3-319-70697-9_
4.

FLZ16. Prastudy Fauzi, Helger Lipmaa, and Michal Zajac. A shuffle argument
secure in the generic model. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part II, volume 10032 of LNCS, pages 841–872.
Springer, Heidelberg, December 2016. doi:10.1007/978-3-662-53890-6_
28.

http://dx.doi.org/10.1007/3-540-44647-8_33
http://dx.doi.org/10.1007/3-540-36178-2_6
http://dx.doi.org/10.1007/978-3-662-45611-8_28
http://dx.doi.org/10.1007/978-3-030-17253-4_11
http://dx.doi.org/10.1007/978-3-642-17373-8_35
http://dx.doi.org/10.1007/978-3-642-17373-8_35
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/978-3-642-40084-1_8
http://dx.doi.org/10.1007/3-540-44448-3_35
http://dx.doi.org/10.1007/978-3-319-96881-0_2
http://dx.doi.org/10.1007/978-3-319-70697-9_4
http://dx.doi.org/10.1007/978-3-319-70697-9_4
http://dx.doi.org/10.1007/978-3-662-53890-6_28
http://dx.doi.org/10.1007/978-3-662-53890-6_28

Simulation-Extractable SNARKs Revisited 33

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Ab-
dalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of
LNCS, pages 315–347. Springer, Heidelberg, March 2018. doi:10.1007/
978-3-319-76578-5_11.

Fuc19. Georg Fuchsbauer. WI Is Not Enough: Zero-Knowledge Contingent (Ser-
vice) Payments Revisited. Technical Report 2019/964, IACR, August 24,
2019. https://eprint.iacr.org/2019/964, last retrieved version from
August 25, 2019.

Gab19. Ariel Gabizon. On the security of the BCTV Pinocchio zk-SNARK variant.
Technical Report 2019/199, IACR, February 5, 2019. https://eprint.
iacr.org/2019/199.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. doi:
10.1007/978-3-642-38348-9_37.

GJM03. Philippe Golle, Stanislaw Jarecki, and Ilya Mironov. Cryptographic prim-
itives enforcing communication and storage complexity. In Matt Blaze,
editor, FC 2002, volume 2357 of LNCS, pages 120–135. Springer, Heidel-
berg, March 2003.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applications
to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96878-0_24.

GM17. Jens Groth and Mary Maller. Snarky signatures: Minimal signatures
of knowledge from simulation-extractable SNARKs. In Jonathan Katz
and Hovav Shacham, editors, CRYPTO 2017, Part II, volume 10402 of
LNCS, pages 581–612. Springer, Heidelberg, August 2017. doi:10.1007/
978-3-319-63715-0_20.

GMR85. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof-systems (extended abstract). In 17th ACM
STOC, pages 291–304. ACM Press, May 1985. doi:10.1145/22145.22178.

Gol93. Oded Goldreich. A Uniform-Complexity Treatment of Encryption and
Zero-Knowledge. J. Cryptology, 6(1):21–53, 1993.

GPS08. Steven D. Galbraith, Kenneth G. Paterson, and Nigel P. Smart. Pairings for
Cryptographers. Discrete Applied Mathematics, 156(16):3113–3121, 2008.

Gro06. Jens Groth. Simulation-sound NIZK proofs for a practical language and
constant size group signatures. In Xuejia Lai and Kefei Chen, editors,
ASIACRYPT 2006, volume 4284 of LNCS, pages 444–459. Springer, Hei-
delberg, December 2006. doi:10.1007/11935230_29.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of
LNCS, pages 321–340. Springer, Heidelberg, December 2010. doi:10.1007/
978-3-642-17373-8_19.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May
2016. doi:10.1007/978-3-662-49896-5_11.

http://dx.doi.org/10.1007/978-3-319-76578-5_11
http://dx.doi.org/10.1007/978-3-319-76578-5_11
https://eprint.iacr.org/2019/964
https://eprint.iacr.org/2019/199
https://eprint.iacr.org/2019/199
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-642-38348-9_37
http://dx.doi.org/10.1007/978-3-319-96878-0_24
http://dx.doi.org/10.1007/978-3-319-63715-0_20
http://dx.doi.org/10.1007/978-3-319-63715-0_20
http://dx.doi.org/10.1145/22145.22178
http://dx.doi.org/10.1007/11935230_29
http://dx.doi.org/10.1007/978-3-642-17373-8_19
http://dx.doi.org/10.1007/978-3-642-17373-8_19
http://dx.doi.org/10.1007/978-3-662-49896-5_11

34 Helger Lipmaa

GW11. Craig Gentry and Daniel Wichs. Separating succinct non-interactive ar-
guments from all falsifiable assumptions. In Lance Fortnow and Salil P.
Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.
doi:10.1145/1993636.1993651.

Ica09. Thomas Icart. How to hash into elliptic curves. In Shai Halevi, editor,
CRYPTO 2009, volume 5677 of LNCS, pages 303–316. Springer, Heidel-
berg, August 2009. doi:10.1007/978-3-642-03356-8_18.

JR10. Tibor Jager and Andy Rupp. The semi-generic group model and appli-
cations to pairing-based cryptography. In Masayuki Abe, editor, ASI-
ACRYPT 2010, volume 6477 of LNCS, pages 539–556. Springer, Heidel-
berg, December 2010. doi:10.1007/978-3-642-17373-8_31.

JR13. Charanjit S. Jutla and Arnab Roy. Shorter quasi-adaptive NIZK proofs
for linear subspaces. In Kazue Sako and Palash Sarkar, editors, ASI-
ACRYPT 2013, Part I, volume 8269 of LNCS, pages 1–20. Springer, Hei-
delberg, December 2013. doi:10.1007/978-3-642-42033-7_1.

Kil06. Eike Kiltz. Chosen-ciphertext security from tag-based encryption. In Shai
Halevi and Tal Rabin, editors, TCC 2006, volume 3876 of LNCS, pages
581–600. Springer, Heidelberg, March 2006. doi:10.1007/11681878_30.

KP19. Julia Kastner and Jiaxin Pan. Towards Instantiating the Algebraic Group
Model. Technical Report 2019/1018, IACR, September 10, 2019. https:
//eprint.iacr.org/2019/1018.

KW15. Eike Kiltz and Hoeteck Wee. Quasi-adaptive NIZK for linear sub-
spaces revisited. In Elisabeth Oswald and Marc Fischlin, editors, EU-
ROCRYPT 2015, Part II, volume 9057 of LNCS, pages 101–128. Springer,
Heidelberg, April 2015. doi:10.1007/978-3-662-46803-6_4.

KZM+15. Ahmed Kosba, Zhichao Zhao, Andrew Miller, Yi Qian, Hubert Chan, Char-
alampos Papamanthou, Rafael Pass, abhi shelat, and Elaine Shi. How to use
SNARKs in universally composable protocols. Cryptology ePrint Archive,
Report 2015/1093, 2015. http://eprint.iacr.org/2015/1093.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg,
March 2012. doi:10.1007/978-3-642-28914-9_10.

Lip13. Helger Lipmaa. Succinct non-interactive zero knowledge arguments
from span programs and linear error-correcting codes. In Kazue Sako
and Palash Sarkar, editors, ASIACRYPT 2013, Part I, volume 8269 of
LNCS, pages 41–60. Springer, Heidelberg, December 2013. doi:10.1007/
978-3-642-42033-7_3.

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128.
ACM Press, November 2019. doi:10.1145/3319535.3339817.

MR01. Silvio Micali and Leonid Reyzin. Soundness in the public-key model. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 542–565.
Springer, Heidelberg, August 2001. doi:10.1007/3-540-44647-8_32.

MY04. Philip D. MacKenzie and Ke Yang. On simulation-sound trapdoor com-
mitments. In Christian Cachin and Jan Camenisch, editors, EURO-
CRYPT 2004, volume 3027 of LNCS, pages 382–400. Springer, Heidelberg,
May 2004. doi:10.1007/978-3-540-24676-3_23.

http://dx.doi.org/10.1145/1993636.1993651
http://dx.doi.org/10.1007/978-3-642-03356-8_18
http://dx.doi.org/10.1007/978-3-642-17373-8_31
http://dx.doi.org/10.1007/978-3-642-42033-7_1
http://dx.doi.org/10.1007/11681878_30
https://eprint.iacr.org/2019/1018
https://eprint.iacr.org/2019/1018
http://dx.doi.org/10.1007/978-3-662-46803-6_4
http://eprint.iacr.org/2015/1093
http://dx.doi.org/10.1007/978-3-642-28914-9_10
http://dx.doi.org/10.1007/978-3-642-42033-7_3
http://dx.doi.org/10.1007/978-3-642-42033-7_3
http://dx.doi.org/10.1145/3319535.3339817
http://dx.doi.org/10.1007/3-540-44647-8_32
http://dx.doi.org/10.1007/978-3-540-24676-3_23

Simulation-Extractable SNARKs Revisited 35

Nec94. V. I. Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Mathematical Notes, 55(2):165–172, 1994.

Par15. Bryan Parno. A note on the unsoundness of vnTinyRAM’s SNARK. Cryp-
tology ePrint Archive, Report 2015/437, 2015. http://eprint.iacr.org/
2015/437.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, pages 238–252. IEEE Computer Society Press, May
2013. doi:10.1109/SP.2013.47.

Sah99. Amit Sahai. Non-malleable non-interactive zero knowledge and adaptive
chosen-ciphertext security. In 40th FOCS, pages 543–553. IEEE Computer
Society Press, October 1999. doi:10.1109/SFFCS.1999.814628.

Sch80. Jacob T. Schwartz. Fast Probabilistic Algorithms for Verification of Poly-
nomial Identities. Journal of the ACM, 27(4):701–717, 1980.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997. doi:10.1007/3-540-69053-0_
18.

Sta08. Grzegorz Stachowiak. Proofs of knowledge with several challenge values.
Cryptology ePrint Archive, Report 2008/181, 2008. http://eprint.iacr.
org/2008/181.

THS+09. Pairat Thorncharoensri, Qiong Huang, Willy Susilo, Man Ho Au, Yi Mu,
and Duncan S. Wong. Escrowed Deniable Identification Schemes. In Do-
minik Slezak, Tai-Hoon Kim, Wai-Chi Fang, and Kirk P. Arnett, editors,
FGIT-SecTech 2009, volume 58 of Communications in Computer and In-
formation Science, pages 234–241, Jeju Island, Korea, December 10–12,
2009. Springer.

WC81. Mark N. Wegman and Larry Carter. New hash functions and their use in
authentication and set equality. Journal of Computer and System Sciences,
22:265–279, 1981.

Zip79. Richard Zippel. Probabilistic Algorithms for Sparse Polynomials. In Ed-
ward W. Ng, editor, EUROSM 1979, volume 72 of LNCS, pages 216–226,
Marseille, France, June 1979. Springer, Heidelberg.

A Formal Security Definitions

A.1 Zero-Knowledge

As in [Gro16], we define all security notions against a non-uniform adversary.
However, since our security reductions are uniform, it is a simple matter to
consider only uniform adversaries, as it was done by Bellare et al. [BFS16] (see
also [Gol93]).

Definition 4 (Perfect Completeness). A non-interactive argument Ψ is per-
fectly complete for RelGen, if for all λ, all z̃R ∈ range(RelGen(1λ)), tag τ ∈ Tags,
and (inp,wit) ∈ R,

Pr [(crs, td)← Kcrs(z̃R) : V(z̃R, crsV, τ, inp,P(z̃R, crsP, τ, inp,wit)) = 1] = 1 .

http://eprint.iacr.org/2015/437
http://eprint.iacr.org/2015/437
http://dx.doi.org/10.1109/SP.2013.47
http://dx.doi.org/10.1109/SFFCS.1999.814628
http://dx.doi.org/10.1007/3-540-69053-0_18
http://dx.doi.org/10.1007/3-540-69053-0_18
http://eprint.iacr.org/2008/181
http://eprint.iacr.org/2008/181

36 Helger Lipmaa

Definition 5 (Computational Knowledge-Soundness). Ψ is computation-
ally (adaptively) knowledge-sound for RelGen, if for every PPT A, there exists
a PPT extractor ExtA, s.t. for all λ, AdvsndRelGen,A(λ) :=

Pr

z̃R ← RelGen(1λ); (crs, td)← Kcrs(z̃R); r←$ RNDλ(A);

(τ, inp, π)← A(z̃R, crs; r); wit← ExtA(z̃R, crs; r) :

(inp,wit) 6∈ R ∧ V(z̃R, crsV, τ, inp, π) = 1

 ≈λ 0 .

Here, auxR can be seen as a common auxiliary input to A and ExtA that is
generated by using a benign [BCPR14] relation generator; we recall that we just
think of auxR as being the description of a secure bilinear group. A knowledge-
sound argument system is called an argument of knowledge.

Definition 6 (Statistically Unbounded ZK [Gro06]). Ψ is statistically
unbounded Sub-ZK for RelGen, if for all λ, all z̃R ∈ range(RelGen(1λ)), all
τ ∈ Tags, and all computationally unbounded A, εunb0 ≈λ εunb1 , where

εunbb = Pr[(crs, td)← Kcrs(z̃R) : AOb(·,·,·)(z̃R, crs) = 1] .

Here, the oracle O0(τ, inp,wit) returns ⊥ (reject) if (inp,wit) 6∈ R, and otherwise
it returns P(z̃R, crsP, τ, inp,wit). Similarly, O1(τ, inp,wit) returns ⊥ (reject) if
(inp,wit) 6∈ R, and otherwise it returns Sim(z̃R, crs, td, τ, inp). Ψ is perfectly
unbounded ZK for RelGen if one requires that εunb0 = εunb1 .

B CHK Tag-Elimination Transformation

Canetti, Halevi, and Katz showed in [CHK04] (in another context) how to elimi-
nate the use of tags. We will use the CHK transformation in the context of SASE
SNARKs. The resulting (tagless) SNARK will be based on a tagSASE SNARK
and a one-time signature scheme. To avoid confusion, in this section only, we use
the adjective “tag-based” to refer to tagSASE SNARKs that satisfy Definition 2.

Preliminaries. A one-time signature scheme Σ = (Σ.KGen, Σ.Sig, Σ.V) con-
sists of three polynomial-time algorithms:

Key-generation algorithm Σ.KGen(1λ): randomized algorithm that returns
(vk, sk) (a verification key and a signing key).

Signing algorithm Σ.Sig(sk,M): an algorithm that allows a user to sign a
message M by using signing key sk.

Verification algorithm Σ.V(vk,M, σ): an algorithm that allows a user to ver-
ify whether the signature σ on the message M is correct, given verification
key vk. It outputs either 0 or 1.

Σ is perfectly correct if for all λ ∈ N and all messagesM from the message space,

Pr[(vk, sk)←$Σ.KGen(1λ) : Σ.V(vk,M,Σ.Sig(sk,M)) = 1] .

Simulation-Extractable SNARKs Revisited 37

A one-time signature scheme Σ is strongly unforgeable, if

Pr
[
(vk, sk)←$Σ.KGen(1λ); (M∗, σ∗)←$AΣ.Sig(vk) : Σ.V(sk,M∗, σ∗) = 1

]
≈λ 0

for all PPT adversaries A. Here, A is allowed to make only a single query to the
oracle Σ.Sig, and the target pair (M∗, σ∗) output by A must be different from
the message/signature pair (M,σ) obtained from the oracle query. Bellare and
Shoup [BS07] proposed a general construction of a one-time signature scheme
based on a canonical identification protocol ID (i.e., Σ protocols where the prover
has a public key) and collision-resistant hash functions H. They proved that the
resulting scheme is strongly unforgeable if ID is specially sound under concurrent
attacks and H is collision-resistant. Based on Schnorr’s identification protocol
that has the required security property under the non-falsifiable one-more dis-
crete logarithm (OMDL, [BNPS03]) problem, one can obtain a one-time signa-
ture scheme where the key length is two group elements and the key of H, the
signature consists of one integer from Zp, the signing is dominated by one mul-
tiplication, and the verification is dominated by two exponentiations. In group
G1, this scheme Σ is defined as follows:

Σ.KGen(1λ): generate p← Pgen(1λ), a new key K for H, x, y←$Zp. Set vk←
(K, [x, y]1) and sk← (x, y).

Σ.Sig(sk,M): e← HK([y]1,M); return σ ← ex+ y;
Σ.V(vk,M, σ): e← HK([y]1,M); Output 1 iff σ[1]1 = e[x]1 + [y]1.

Based on Okamoto’s identification protocol that has the required security prop-
erty under the falsifiable discrete logarithm problem, one can obtain a slightly
less efficient one-time signature scheme where the key length is three group el-
ements and the key of H, the signature consists of two integers from Zp, the
signing is dominated by two multiplications, and the verification is dominated
by three exponentiations.

Transformation to SASE SNARKs. Canetti, Halevi, and Katz [CHK04] and
Kiltz [Kil06] proposed a transformation from a tag-based to a tagless encryp-
tion scheme. We use essentially the same transformation to transfer a tagSASE
SNARK Π = (Kcrs,P,V,Sim), by using a strongly unforgeable one-time signa-
ture scheme Σ, to a tagless SASE SNARK Π ′ = (K′crs,P

′,V′,Sim′); see Fig. 6.
This transformation applies to any of Π ∈ {Sse

qap,S
se
sap,S

se
ssp,S

se
qsp}. Note that all

algorithms in Π use vk as the tag τ .

Theorem 7. Let Σ be a one-time signature scheme and let Π be a tag-based
SNARK. Let Π ′ the result of the transformation in Fig. 6.
(1) If Σ is perfectly correct and Π is perfectly complete then Π ′ is perfectly
complete.
(2) If Σ is strongly unforgeable and Π is computationally tagSASE then Π ′ is
tagless computationally SASE.
(3) If Π is perfect composable zero-knowledge then Π ′ is perfect composable
zero-knowledge.

38 Helger Lipmaa

K′crs(z̃R): return Kcrs(z̃R);

P′(z̃R, crsP, inp,wit): (vk, sk)←$Σ.KGen(1λ); π ← P(z̃R, crsP, vk, inp,wit); σ ←
Σ.Sig(sk, π); return π′ ← (π, vk, σ);

V′(z̃R, crsV, inp, π
′ = (π, vk, σ)): if Σ.V(vk, π, σ) = 0 then return 0; else return

V(z̃R, crsV, vk, inp, π);

Sim′(z̃R, td, inp): (vk, sk)←$Σ.KGen(1λ); π ← Sim(z̃R, td, vk, inp); σ ← Σ.Sig(sk, π);
return π′ ← (π, vk, σ);

Fig. 6. The CHK transformation on SASE SNARKs.

Proof. In this case, (1) and (3) are obvious.
(2: SASE): Assume that A′ is a SASE adversary for Π ′. We construct the

following tagSASE adversary A for Π. In the game Expτsase, after being called
by the challenger with the CRS crs, A(crs) calls A′(crs). A plays challenger to
and answers the simulations queries of A′ in the game Expτsase. When A′ queries
the simulator oracle Simτsase

crs,td (inpj), A does the following:

1. sample (vkj , skj)←$Σ.KGen(1λ);
2. call her own tag-based simulation oracle πj ← Simτsase

crs,td (vkj , inpj);
3. set σj ← Σ.Sig(skj , πj); set π′j ← (πj , vkj , σj); add (inpj , π

′
j) to Q;

4. return π′j as the simulation answer to A′.

Additionally, vkj is added to Qτ . Clearly, this is a perfect simulation. A makes
no additional simulation queries. When the tagless adversary A′ finally returns
(inp, π′ = (π, vk, σ)), A returns (vk, inp, π). The extractor ExtA′(crs; r) returns
wit← ExtA(crs; r) and thus wit is the same in both Simτsase and Simτsase.

Let us now analyze the case A′ wins the tagless game, but A does not win
the tag-based game. If A′ wins, then V′(z̃R, crsV, inp, π′) = 1, (inp,wit) /∈ R,
and no Simτsase

crs,td (inp) query returned π′ = (π, vk, σ). According to Fig. 6 and the
execution of Simτsase

crs,td by A, hence Σ.V(vk, π, σ) = 1, V(z̃R, crsV, vk, inp, π) = 1,
(inp,wit) /∈ R, and no Simτsase

crs,td (vk, inp) query returned π.
Since A did not win in the tag-based game, A made the (say, jth)

Simτsase
crs,td (vk, inp) query, obtaining πj ← Sim(z̃R, td, vkj , inpj) as the answer.

Thus, vk = vkj (for a newly generated (vkj , skj)) and inp = inpj . Hence,
A′ made the simulation query Simτsase

crs,td (inpj) that returned π′j = (πj , vkj =

vk, σj), such that (vkj , skj)←$Σ.KGen(1λ), σj ← Σ.Sig(skj , πj), and thus also
Σ.V(vkj , πj , σj) = 1. Since no query returned π′ = (π, vk, σ), we have π′ 6= π′j
and thus (π, σ) 6= (πj , σj). In particular, since vk was created during the jth
query, A′ does not know the corresponding sk and cannot herself sign messages
with sk. Since (π, σ) 6= (πj , σj), then Σ.Vf(vk, π, σ) = 0; otherwise, A′ would
have forged a new valid signature σ on π. Contradiction with the assumption
that A′ won the tagless game. ut

Simulation-Extractable SNARKs Revisited 39

C Postponed Proofs

C.1 Proof of Lemma 1

Proof. Here, the Dpdl
ι -HAK assumption in Gι states that one can efficiently

extract [q]ι (that has a high min-entropy) and integers Ni and N ′i such that
xq+1 =

∑q
i=0Nix

i +
∑
N ′iqi. It means that either

V (X,Q) = Xq+1 −
∑q
i=0NiX

i −
∑
N ′iQi = 0

as a polynomial (which is impossible) or A has returned x, such that (x, q) is a
root of the non-zero polynomial V (X,Q). If A created no new group elements
then V (X) is a univariate polynomial and the adversary has broken the q-PDL
assumption in Gι. Otherwise, since [qi]ι has min-entropy ω(log λ) from the view-
point of A, the probability that V (x, q) = 0 is negligible. ut

C.2 Proof of Lemma 2

Proof. By the HAK assumption, there exist an extractor that can extractN and
[q]1 (that has a high min-entropy), such that (yz) = N

(
1
x
q

)
, thus y = Y (x, q)

for Y (X,Q) = N11 + N12X +
∑
N1,k+2Qk and z = Z(x, q) for Z(X,Q) =

N21 +N22X +
∑
N2,k+2Qk. Moreover, we know z = xy and thus for

V (X,Q) :=Z(X,Q)−XY (X,Q)

=N21 +N22X +
∑
N2,k+2Qk −X(N11 +N12X +

∑
N1,k+2Qk) ,

it holds V (x, q) = 0. If V (X,Q) = 0 as a polynomial thenN21 = N12 = N2,k+2 =
N1,k+2 = 0 and N22 = N11. Thus Y (X,Q) = N11 and Z(X,Q) = N22X =
XN11. Thus, we have extracted y = N11 that satisfies z = yx. Now, consider
the case V (X,Q) 6= 0 but V (x, q) = 0. If A created no new group elements then
V (X) is univariate and the adversary has broken the DL assumption (i.e., the
1-PDL assumption) in Gι. Otherwise, since [qιk]ι has min-entropy ω(log λ) from
the viewpoint of A, the probability that V (x, q) = 0 is negligible. ut

C.3 Proof of Theorem 3

Proof (Sketch). (1: knowledge-soundness) Since the rest of the knowledge-
sound is essentially the same as in the proof of Theorem 1, we only reprove the
Step 1 from that proof.

Consider the polynomials in Fig. 5. Since bδ + aγ(bδ + 1) = 0, we get aγ =
−bδ/(bδ + 1) and aγ , bδ 6= −1 and (aγ + 1)(bδ + 1) = 1. Thus aδ = bη = 0, which
means that ãj = aj for j ≤ m0. Thus, ua(X)vb(X) = u(X)2 and u(X)2−w(X) =
h(X)`(X), which means that χsap(X) = 0.

(2: zero-knowledge) as in Theorem 1, except that we use only one new
trapdoor d due to the fact that a = b. ut

40 Helger Lipmaa

D QSP-Based SNARKs

In addition to QAP, Gennaro et al. [GGPR13] proposed another formalism called
QSP (Quadratic Span Program). This approach was further optimized by Lip-
maa [Lip13]. Without going to full details, we mention that there exists a re-
duction from Boolean circuit satisfiability to QSPs. The reduction itself is not
as efficient than the reduction to SSPs, and in particular, the size of the QSP,
given the same circuit, is considerably larger than that of the SSP. (According
to [DFGK14], if the circuit has m wires and n gates, SSP matrices have size
≈ m× (m+n) while QSP matrices have size ≈ 14n×11n.) However, QSP-based
solutions like the SSP-based solutions have a short argument and CRS. They
also result in 2-query linear PCPs for Circuit-SAT, [BCI+13,Lip13].

In this section, we assume that one has already constructed a reduction to
the QSP. Given now a concrete QSP instance, we construct a knowledge-sound
and a tagSASE SNARK fo QSP. We also assume that the QSP matrix size is
n×m (thus, n and m do not correspond to the circuit size anymore.)

In the case of QSP [GGPR13,Lip13], w(X) = 0 and thus the key equation is

χqsp(X) = u(X)v(X)− h(X)`(X) = 0 .

We now construct the SNARK Sqsp, see Fig. 3 (the case wj(X) = uj(X)).
Thus, each cost parameter is the same as in the case of Sqap except that there
are significantly more constraints (that are hidden in the reduction from circuits
to QSP, [Lip13]) and thus n is larger.

Let R = (Zp,m0, {uj , vj}mj=0) be a QSP instance. RInstqsp is defined as RInstqap

in Eq. (1) except that w(X) = 0.

Theorem 8. Let R = (Zp,m0, {uj , vj}mj=0) be a QSP instance.
(1) Assume ∆ is chosen so that Crit ∩ Crit = ∅. If the (2n− 2, n− 1)-PDL and
Dcrs

z̃R
(Sqsp)-HAK assumptions hold then Sqsp in Fig. 3 is knowledge-sound.

(2) Sqsp is perfectly zero-knowledge.

As in the case of SSP, since the witness is Boolean, we can signifi-
cantly speed up the prover’s computation. Really, the prover computes [a]1 ←
ra[yα]1 +

∑m
j=1 aj [uj(x)yβ]1, [b]2 ← rb[y

α]2 +
∑m
j=1 aj [vj(x)yβ]2, and [cs]1 ←∑m

j=m0+1 aj [uj(x)yβ−α+δ+vj(x)yβ−α+γ]1+[h(x)`(x)y2β−α]1+rb ([a]1 + [yγ]1)+

ra([yδ]1+
∑m
j=1 aj [vj(x)yβ]1). Thus, the prover executes 1+1+((n−1)+1) = n+2

exponentiations and m+m+ ((m−m0) +m) = 4m−m0 multiplications in G1

and 1 exponentiation and m multiplications in G2.
tagSASE SNARK Sse

qsp. One obtains a tagSASE version of Sqsp exactly as in
the case of Sqap in Section 4. Thus, Sse

qsp is like Sse
qap, except that wj(X) = 0.

Theorem 9. Let R = (Zp,m0, {uj , vj}mj=0) be a QSP instance.
(1) Assume ∆ is chosen so that Crit′ ∩Crit′ = ∅. If the (2n− 2, n− 1)-PDL and
Dcrs

z̃R
(Sse

qsp)-HAK assumptions hold then Sse
qsp in Fig. 3 is tagSASE.

(2) Sse
qsp is perfectly zero-knowledge.

Simulation-Extractable SNARKs Revisited 41

Efficiency-wise, compared to Sqsp, the prover additionally computes [b1]1 ←
rb(τ [yα]1 + [yαz]1) + τ

∑m
j=1 aj [vj(x)yβ]1 +

∑m
j=1 aj [vj(x)yβz]1, which takes 3

exponentiations and m additional multiplications (since
∑m
j=1 aj [vj(x)yβ]1 is

already computed) in G1.

E Discussion: Verification Equation with One Pairing

Consider the case the verification equation V consists of only one pairing eval-
uation. That is,

V ∗(X,Q1,Q2) = (f1(X) +
∑
k c1kQ1k) (f2(X) +

∑
k c2kQ2k)

for polynomials f1(X) and f2(X) and coefficients cιk. (As in the knowledge-
soundness proof of Theorem 1, Y is not an indeterminate.) In this case, under a
PDL assumption, the creation of new random group elements — independently
of their distribution — does not help the adversary at all.

Really, V ∗(x, q1, q2) = 0 is only possible if
∑
cιkqιk = −fι(x) for at least one

ι. W.l.o.g., assume it holds for ι = 1. This means that [q1k]1 (or at least their
weighted sum, which is the only thing that matters) are not created as random
new group elements but as evaluations of some polynomials in x. Thus, one can
assume that the adversary created no random group elements in G1. Hence,

V ∗(X,Q1,Q2) = f1(X)
(
f2(X) +

∑
c2kq2k

)
for some polynomials f1(X) and f2(X). Next, either f1(x) = 0 or

∑
c2kq2k =

−f2(x). In the first case, f1(X) 6= 0 (otherwise also V ∗(X,Q1,Q2) = 0 as
a polynomial) but f1(x) = 0 and thus one has broken the (2n − 2, n − 1)-PDL
assumption. In the second case, the adversary created no random group elements
in G1 and thus

V ∗(X,Q1,Q2) = f1(X)f2(X) .

Again, since f1(x)f2(x) = 0 but f1(X)f2(X) 6= 0, the adversary has broken the
(2n − 2, n − 1)-PDL assumption. Hence, creating new group elements does not
increase the adversarial power.

F Subversion-Zero Knowledge

In a subversion zero-knowledge (Sub-ZK) SNARK [BFS16,ABLZ17,Fuc18], one
wants to obtain zero-knowledge even if the CRS creator cannot be trusted. As
proven in [ALSZ20], Sub-ZK is equivalent to non-auxiliary-string non-black-box
zero knowledge in the Bare Public Key (BPK, [CGGM00,MR01]) model.

Let us show that under the setting in Eq. (8) with CRS as in Eq. (9), the
correctness (i.e., that it corresponds to some choice of trapdoors) of the CRS
of Sse

qap and thus also of Sqap can be verified by using a public CV algorithm.
Note that here we assume uj(X) =

∑
ujiX

i, vj(X) =
∑
vjiX

i, and wj(X) =

42 Helger Lipmaa

CV(z̃R, crs, crsCV):

1 : Check that the following holds:
2 : // Trapdoors are not 0 and xn 6= 1:

3 : [xy]1 6= [0]1; [`(x)y
2]1 6= [0]1; [t]1 6= [0]1; [z]1 6= [0]1;

4 : // The bracketed element in G1 and G2 are consistent:

5 : [y4]1 • [1]2 = [1]1 • [y4]2; [z]1 • [1]2 = [1]1 • [z]2;
6 : for j = 0 to n− 1 do [xjy]1 • [1]2 = [1]1 • [xjy]2; endfor
7 : // Degrees of yi are consistent:

8 : [y]1 • [y−1]2 = [1]1 • [1]2; [y2t]1 • [y−1]2 = [t]1 • [y]2;
9 : [y4t]1 • [y−1]2 = [y2t]1 • [y]2; [t]1 • [y4]2 = [y4t]1 • [1]2;

10 : [y−6]1 • [y4]2 = [y]1 • [y]2;
11 : // Degrees of xjy are consistent:

12 : for j = 1 to n− 2 do [xj+1y]1 • [y]2 = [xjy]1 • [xy]2; endfor
13 : // xjyz are consistent:

14 : for j = 1 to n− 1 do [xjyz]1 • [1]2 = [xjy]1 • [z]1; endfor
15 : // xj`(x)y are consistent:

16 : [`(x)y2]1 • [1]2 = [xn−1y]1 • [xy]2 − [y]1 • [y]2;
17 : for j = 0 to n− 3 do [xj+1`(x)y2]1 • [y]2 = [xj`(x)y2]1 • [xy]2; endfor
18 : // Polynomials of type uj(x)y

6
+ vj(x)y

−4
+ wj(x)y

3 are consistent:

19 : for j = 1 to m0 do
20 : [uj(x)y

6 + vj(x)y
−4 + wj(x)y

3]1 • [y−1]2 =
21 :

∑n−1
i=0 uji[x

iy]1 • [y4]2 + [y−6]1 •
∑n−1
i=0 vji[x

iy]2 +
∑n−1
i=0 wji[x

iy]1 • [y]2;
22 : endfor
23 : for j = m0 + 1 to m do
24 : [uj(x)y

5 + vj(x)y
−5 + wj(x)y

2]1 • [1]2 =
25 :

∑n−1
i=0 uji[x

iy]1 • [y4]2 + [y−6]1 •
∑n−1
i=0 vji[x

iy]2 +
∑n−1
i=0 wji[x

iy]1 • [y]2;
26 : endfor

Fig. 7. The CRS verification algorithm CV in Sqap and Sse
qap (with highlighted entries)

∑
wjiX

i. The only problem one encounters is the check that yδ = y4 is correctly
computed. We deal with it by introducing a random trapdoor t, adding crsCV :=
[t, y2t, y4t]1 to the CRS, and then additionally verifying the correctness of crsCV.
Clearly, inclusion of such elements does not change the critical coefficients from
Crit. Alternatively, one can define new trapdoors s and t instead of yγ = y−6

and yδ = y4, but then (in the case of Sse
qap) one would have the setting of 5

independent trapdoors (x, y, z, s, t) again.
The existence of public CV can be used to make Sqap and Sse

qap subversion-
resistant, by using the techniques of [ABLZ17]. In particular, if CV accepts crs,
one can use the BDH-KE assumption [ABLZ17] to extract y and then use
extracted y to simulate the argument. Alternatively, one can use the poten-
tially weaker assumption that if an adversary on input z̃R succeeds in creating
([yα, yγ , yδ]1, [y

α, yδ, yη]2), such that at least two of {α, γ, δ} (or {α, δ, η}) ele-
ments are distinct (and non-zero), then he knows y. The assumption on α, . . . , η
holds for the setting discussed in this paper, see Eq. (8). Let us call this the

Simulation-Extractable SNARKs Revisited 43

({α, γ, δ}, {α, δ, η})-PKE assumption. Both assumptions hold under a suitable
HAK assumption.

Lemma 3. Assume α, γ, δ, η = poly(λ). Let ε be the empty string. If the ε-HAK
assumption holds then the ({α, γ, δ}, {α, δ, η})-PKE assumption holds.

Proof (Sketch). Assume A is an adversary that, on input z̃R, outputs
([yα, yγ , yδ]1, [y

α, yδ, yη]2). Under the ε-HAK assumption, there exists an ex-
tractor that outputs N ι and qι such that[

yα

yγ

Y δ

]
1

= N1

[
1
q1

]
1
and

[
yα

yδ

yη

]
1

= N2

[
1
q2

]
1
.

Assume, w.l.o.g., that α 6= γ with α, β 6= 0. Thus, yα = N111 +
∑
N11,k+1q1k

and yγ = N121 +
∑
N12,k+1q1k. Let V (Q1) = (N111 +

∑
N11,k+1Q1k)γ− (N121 +∑

N12,k+1q1k)α. By the HAK assumption, V (q1) = 0. If V = 0 as a polynomial
then, since γ 6= α, N11,k+1 = N12,k+1 = 0, and thus yα = N111, from which one
can extract y. If V 6= 0 as a polynomial then, since [q1k]1 has high min-entropy
O(log λ), then by the Schwartz-Zippel lemma, the probability that V (q1) = 0 is
negligible. ut

Note that CV can be sped up significantly by using batching techniques as
explained in [ABLZ17].

CV for other new SNARKs is very similar: it is essentially the same for
knowledge-sound versions while the added CRS elements in the tagSASE ver-
sions are trivially verifiable due to [1]1 and [z]2 being a part of the CRS.

	Simulation-Extractable SNARKs Revisited

