technology from seed

An Efficient and Highly Sound Voter Verification Technique (MarkPledge 3) and its Implementation

Rui Joaquim Carlos Ribeiro <u>rjoaquim@cc.isel.ipl.pt</u> (Inesc-ID / IPL) <u>carlos.ribeiro@ist.utl.pt</u> (Inesc-ID / UTL)

Distributed Systems Group

Introduction

- Main goal of electronic voting research:
 - How to create and deploy an electronic voting system that protects the voter's privacy and outputs verifiable results?

Introduction

- Main goal of electronic voting research:
 - How to create and deploy an electronic voting system that protects the voter's privacy and outputs verifiable results?
- Two verifiability problems to address:
 - Counted-as-cast verification
 - The tally is the correct sum of the casted votes
 - Cast-as-intended verification
 - The vote cast into the system represents the voter's choice

Contribution and Motivation

Our contribution, MarkPledge 3:

 MarkPledge 3 is a new voter verifiable encryption technique to ensure the voter that her vote intention is correctly recorded by the voting system.

(a new technique to provide cast-as-intended verification)

Contribution and Motivation

Our contribution, MarkPledge 3:

 MarkPledge 3 is a new voter verifiable encryption technique to ensure the voter that her vote intention is correctly recorded by the voting system.

(a new technique to provide cast-as-intended verification)

Motivation

- We wanted to develop a new verifiable Internet voting system that could run on constrained environments, e.g. smart cards and secure elements inside smart phones.
- We have chosen the MarkPledge voter verifiable vote encryption technique for our cast-as-intended verification mechanism.
 - The MarkPledge technique actually verifies the casted vote and not a test vote or a pre-encrypted ballot.
- But, the previous MarkPledge specifications do not perform fast enough.

Vote Encryption Implementation results overview

Vote encryption times for a ballot with 10 candidates

	MP1	MP2	MP3
JavaCard (p =1024, q =512)	8.5 min	15 hours	1.5 min
MULTOS card (p =1024, q =512)	5 min	30 min	43 sec
MULTOS card (p =1024, q =160)	4 min	2.8 min	28 sec

p and q are cryptosystem parameters (ElGamal parameters)

MarkPledge verification technique overview

Vote Encryption

Candidate	Cand. Encryption			
Alice	NO 8FD3			
Bob	NO IRN1			
Charles	NO 72T9			
Dharma	YES PZ8R			

Voter

voter's choice (Dharma)

Vote Encryption

Candidate	Cand. Encryption			
Alice	NO 8FD3			
Bob	NO IRN1			
Charles	NO 72T9			
Dharma	YES PZ8R			

value disclosed (pledged)
only to the voter

Vote Encryption

Candidate	Cand. Encryption			
Alice	NO 8FD3			
Bob	NO IRN1			
Charles	NO 72T9			
Dharma	YES PZ8R			

Vote Receipt

Candidate	Verification code
Alice	46R9
Bob	QE41
Charles	KNSY
Dharma	PZ8R

Vote Encryption

Candidate	Cand. Encryption			
Alice	NO 8FD3			
Bob	NO IRN1			
Charles	NO 72T9			
Dharma	YES PZ8R			

Vote Receipt

Candidate	Verification code
Alice	46R9
Bob	QE41
Charles	KNSY
Dharma	PZ8R

Vote Encryption

Candidate	Cand. Encryption			
Alice	NO 8FD3			
Bob	NO IRN1			
Charles	NO 72T9			
Dharma	YES PZ8R			

Vote Receipt

Candidate	Verification code
Alice	46R9
Bob	QE41
Charles	KNSY
Dharma	PZ8R

Voter

 RC_{pk}

Random

Challenge

The voter verifies that the verification code it is the pledged value.

MarkPledge details Preliminaries

MarkPledge specifications use the ElGamal over the subgroup G_q of \mathbb{Z}_p^* , where g is generator of G_q and p,q are large primes such that $q \mid p-1$.

Private key is x : 0 < x < q

Public key is $h = g^x$

Exponential ElGamal encryption of $m = \mathcal{E}_h(m,r) = \langle g^r, h^r \cdot g^m \rangle$, where 0 < r < q and $m \in \mathbb{Z}_q$

MarkPledge specifications take advantage of the following homomorphisms:

$$\mathcal{E}_{h}(m_{1},r_{1})\cdot\mathcal{E}_{h}(m_{2},r_{2}) = \mathcal{E}_{h}(m_{1}+m_{2},r_{1}+r_{2})$$
 (additive)

$$\mathcal{E}_{h}(m,r)^{n} = \mathcal{E}_{h}(m\cdot n,r\cdot n)$$
 (multiplicative)

Previous MarkPledge solutions

- MarkPledge 1 (Neff, 2004)
 - Two ciphertexts per receipt verification code bit:
 - 24 bits -> 48 ciphertexts per candidate
 - Working principle:
 - 2-out-of-1 cut-and-choose in each verification code bit.
- MarkPledge 2 (Adida and Neff, 2009)
 - Two encryptions:
 - Encrypts the coordinates of a 2D vector (2 ciphertexts per candidate)
 - Working principle:
 - Vector algebra between special classes of 2D vectors (vector dot product).
 - Vector classes defined over the SO(2,q) of matrices defined based on the ElGamal parameters.
 - Requires modular matrix exponentiations.
 (no direct hardware acceleration for matrix exponentiations)

MarkPledge 3 Details

Vote Machine Voter Third Parties

$$b' \in \{-1_{\scriptscriptstyle (NO)}, 1_{\scriptscriptstyle (YES)}\}$$

$$\tau, \delta, \theta \in_{R} \mathbb{Z}_{q}$$
$$u \leftarrow \langle g^{\tau}, h^{\tau} \cdot g^{b'} \rangle$$

$$\mathbf{v} \leftarrow \langle \mathbf{g}^{\delta}, \mathbf{h}^{\delta} \cdot \mathbf{g}^{\theta} \rangle$$

$$\begin{array}{c}
u, v \\
\hline
 & \text{pledge} = \theta
\end{array}$$

Third Parties Vote Machine Voter

$$b' \in \{-1_{\scriptscriptstyle (NO)}, 1_{\scriptscriptstyle (YES)}\}$$

$$\tau,\delta,\theta \in_R \mathbb{Z}_q$$

$$\mathbf{u} \leftarrow \langle \mathbf{g}^{\tau}, \mathbf{h}^{\tau} \cdot \mathbf{g}^{b'} \rangle$$

$$\mathbf{v} \leftarrow \langle \mathbf{g}^{\delta}, \mathbf{h}^{\delta} \cdot \mathbf{g}^{\theta} \rangle \qquad \qquad \mathbf{u}, \mathbf{v}$$

$$c \in_{\mathbb{R}} \mathbb{Z}_{0}$$

Vote Machine

Third Parties

$$b' \in \{-1_{(\text{NO})}, 1_{(\text{YES})}\}$$

$$\tau, \delta, \theta \in_R \mathbb{Z}_q$$

$$\mathbf{u} \leftarrow \langle \mathbf{g}^{\tau}, \mathbf{h}^{\tau} \cdot \mathbf{g}^{\mathbf{b}'} \rangle$$

$$\mathbf{v} \leftarrow \langle \mathbf{g}^{\delta}, \mathbf{h}^{\delta} \cdot \mathbf{g}^{\theta} \rangle$$

$$\frac{\text{pledge} = \theta}{\theta}$$

$$c \in \mathbb{R}$$

$$\vartheta \leftarrow \frac{b' \cdot c - c + \theta}{b'}$$

$$\omega \leftarrow \tau \cdot (c - \theta) + \delta \longrightarrow \frac{\theta, \omega}{}$$

Vote Machine

Third Parties

$$b' \in \{-1_{(NO)}, 1_{(YES)}\}$$

$$\tau, \delta, \theta \in_{R} \mathbb{Z}_{q}$$
$$u \leftarrow \langle g^{\tau}, h^{\tau} \cdot g^{b'} \rangle$$

$$\mathbf{v} \leftarrow \langle \mathbf{g}^{\delta}, \mathbf{h}^{\delta} \cdot \mathbf{g}^{\theta} \rangle$$

$$\frac{\text{pledge} = \theta}{}$$

$$c \in_{\mathbb{R}} \mathbb{Z}$$

$$\vartheta \leftarrow \frac{b' \cdot c - c + \theta}{b'}$$

$$\omega \leftarrow \tau \cdot (c - \theta) + \delta \longrightarrow \frac{\theta, \omega}{}$$

$$pledge_{(YES)} = 9$$

$$pledge_{(NO)} = 2 \cdot c - 9$$

Vote Machine

$$b' \in \{-1_{(\text{NO})}, 1_{(\text{YES})}\}$$

$$\tau, \delta, \theta \in_{\mathbf{R}} \mathbb{Z}_{\mathbf{q}}$$

$$\mathbf{u} \leftarrow \langle \mathbf{g}^{\tau}, \mathbf{h}^{\tau} \cdot \mathbf{g}^{\mathbf{b}'} \rangle$$

$$v \leftarrow \langle g^{\delta}, h^{\delta} \cdot g^{\theta} \rangle$$

$$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ c \in_{_{R}} \mathbb{Z}_{_{q}} \end{array}$$

$$\vartheta \leftarrow \frac{b' \cdot c - c + \theta}{b'}$$

$$\omega \leftarrow \tau \cdot (c - \theta) + \delta \longrightarrow \frac{\theta, \omega}{}$$

Voter

$$c \in_{R} \mathbb{Z}_{q}$$

$$u, v, c, \theta, \omega$$

$$pledge_{(YES)} = 9$$

$$pledge_{(NO)} = 2 \cdot c - 9$$

Third Parties

Vote Machine

Third Parties

$$b' \in \{-1_{(NO)}, 1_{(YES)}\}$$

$$\tau, \delta, \theta \in_{R} \mathbb{Z}_{q}$$
$$u \leftarrow \langle g^{\tau}, h^{\tau} \cdot g^{b'} \rangle$$

$$\mathbf{v} \leftarrow \langle \mathbf{g}^{\delta}, \mathbf{h}^{\delta} \cdot \mathbf{g}^{\theta} \rangle$$

$$\xrightarrow{u,\,v}$$

$$c \in_{R} \mathbb{Z}_{q}$$

$$\vartheta \leftarrow \frac{b' \cdot c - c + \theta}{b'}$$

$$\omega \leftarrow \tau \cdot (c - \theta) + \delta \longrightarrow \frac{\theta, \omega}{}$$

 u, v, c, θ, ω

$$pledge_{(YES)} = 9$$

pledge_(YES) =
$$\theta$$

pledge_(NO) = $2 \cdot c - \theta$

$$u^{c-9} \cdot v \stackrel{?}{=} \langle g^{\omega}, h^{\omega} \cdot g^{c} \rangle$$

$$\mathbf{u}^{c-\theta} \cdot \mathbf{v} = \langle g^{\omega}, h^{\omega} \cdot g^{c} \rangle$$

 ω – validation factor

MarkPledge 3 Third party verification

$$u^{c-\vartheta} \cdot v = \langle g^{\omega}, h^{\omega} \cdot g^{c} \rangle \Leftrightarrow \langle g^{\tau}, h^{\tau} \cdot g^{b'} \rangle^{c-\vartheta} \cdot \langle g^{\delta}, h^{\delta} \cdot g^{\theta} \rangle = \langle g^{\omega}, h^{\omega} \cdot g^{c} \rangle \Rightarrow$$

$$b' \cdot (c - \vartheta) + \theta = c \pmod{q}$$

$$c - \text{challenge}$$

$$\vartheta - \text{verification code}$$

$$\mathbf{u}^{\mathsf{c}-\vartheta} \cdot \mathbf{v} = \langle \mathbf{g}^{\omega}, \mathbf{h}^{\omega} \cdot \mathbf{g}^{\mathsf{c}} \rangle \Longleftrightarrow \langle \mathbf{g}^{\tau}, \mathbf{h}^{\tau} \cdot \mathbf{g}^{\mathsf{b}'} \rangle^{\mathsf{c}-\vartheta} \cdot \langle \mathbf{g}^{\delta}, \mathbf{h}^{\delta} \cdot \mathbf{g}^{\theta} \rangle = \langle \mathbf{g}^{\omega}, \mathbf{h}^{\omega} \cdot \mathbf{g}^{\mathsf{c}} \rangle \Longrightarrow$$

$$b' \cdot (c - \theta) + \theta = c \pmod{q}$$

• YES (b' = 1)

$$1 \cdot (c - \theta) + \theta = c \Leftrightarrow \theta = \theta$$

The verification code is a "pledgeable" value ($\vartheta = \theta$)

- θ random commit code
- c challenge
- 9 verification code
- ω validation factor

$$\mathbf{u}^{\mathsf{c}-\vartheta} \cdot \mathbf{v} = \langle \mathbf{g}^{\omega}, \mathbf{h}^{\omega} \cdot \mathbf{g}^{\mathsf{c}} \rangle \Longleftrightarrow \langle \mathbf{g}^{\tau}, \mathbf{h}^{\tau} \cdot \mathbf{g}^{\mathsf{b}'} \rangle^{\mathsf{c}-\vartheta} \cdot \langle \mathbf{g}^{\delta}, \mathbf{h}^{\delta} \cdot \mathbf{g}^{\theta} \rangle = \langle \mathbf{g}^{\omega}, \mathbf{h}^{\omega} \cdot \mathbf{g}^{\mathsf{c}} \rangle \Longrightarrow$$

$$b' \cdot (c - \theta) + \theta = c \pmod{q}$$

- θ random commit code
- c challenge
- 9 verification code
- ω validation factor

• YES (b' = 1)

$$1 \cdot (c - \theta) + \theta = c \Leftrightarrow \theta = \theta$$

The verification code is a "pledgeable" value $(\vartheta = \theta)$

• NO (b' = -1)

$$-1 \cdot (c - 9) + \theta = c \Leftrightarrow 9 = 2 \cdot c - \theta$$

The verification code is NOT a "pledgeable" value $(\vartheta = 2.c - \theta)$

$$\mathbf{u}^{\mathsf{c}-\vartheta} \cdot \mathbf{v} = \langle \mathbf{g}^{\omega}, \mathbf{h}^{\omega} \cdot \mathbf{g}^{\mathsf{c}} \rangle \Longleftrightarrow \langle \mathbf{g}^{\tau}, \mathbf{h}^{\tau} \cdot \mathbf{g}^{\mathsf{b}'} \rangle^{\mathsf{c}-\vartheta} \cdot \langle \mathbf{g}^{\delta}, \mathbf{h}^{\delta} \cdot \mathbf{g}^{\theta} \rangle = \langle \mathbf{g}^{\omega}, \mathbf{h}^{\omega} \cdot \mathbf{g}^{\mathsf{c}} \rangle \Longrightarrow$$

$$b' \cdot (c - \theta) + \theta = c \pmod{q}$$

- θ random commit code
- c challenge
- 9 verification code
- ω validation factor

• YES (b' = 1)

$$1 \cdot (c - 9) + \theta = c \Leftrightarrow 9 = \theta$$

The verification code is a "pledgeable" value ($\theta = \theta$)

• NO (b' = -1)

$$-1 \cdot (c - 9) + \theta = c \Leftrightarrow 9 = 2 \cdot c - \theta$$

The verification code is NOT a "pledgeable" value $(\vartheta = 2.c - \theta)$

Conclusion:

If the voter verifies that pledge = ϑ it is guaranteed, with a very high soundness, that the voter has found a YES vote encryption.

Number of modular exponentiations (theoretical comparison)

	Performed by the vote encryption device		Performed by the "election server" and independent third parties			
	Vote encryption		Receipt	Vote validity	Receipt	Canonical
	Candidate encryption	Validity proof*	creation	verification	verification	vote transf.*
MP3	5	5	0	8	5	0
MP1	4. α = 48	-	0	-	2.α = 48	≈ α/2 = 12
MP1a	$2 + 4.\alpha = 50$	5	0	8 + 2.α =56	2.α = 48	0
MP2	6 + mme	8 + mme	mme	8	8 + mme	3 + mme

 $\alpha = 24$ (commonly proposed value)

mme = 1 matrix modular exponentiation

* MP2 values include our add-ons to complete its specification

Number of modular exponentiations (theoretical comparison)

	Performed by the vote encryption device		Performed by the "election server" and independent third parties			
	Vote encry	yption	Receipt	Voto validity	Receipt	Canonical
	Candidate encryption	Validity proof*	Receipt Vote validity creation verification	verification	vote transf.*	
MP3	5	5	0	8	5	0
MP1	4. α = 48	-	0	-	2.α = 48	≈ α/2 = 12
MP1a	$2 + 4.\alpha = 50$	5	0	8 + 2.α =56	2.α = 48	0
MP2	6 + mme	8 + mme	mme	8	8 + mme	3 + mme

 $\alpha = 24$ (commonly proposed value)

mme = 1 matrix modular exponentiation

* MP2 values include our add-ons to complete its specification

Vote Encryption Implementation results overview

Vote encryption times for a ballot with 10 candidates

	MP1	MP2	MP3
Number of ciphertexts	480	20	20
JavaCard (p =1024, q =512)	8.5 min	15 hours	1.5 min
MULTOS card (p =1024, q =512)	5 min	30 min	43 sec
MULTOS card (p =1024, q =160)	4 min	2.8 min	28 sec

p and q are cryptosystem parameters (ElGamal parameters)

Conclusions

MarkPledge 3

- The more efficient and simpler MarkPledge style voter verifiable encryption.
- Highly sound and simple voter YES vote verification
- The only MarkPledge specification that runs in acceptable times on today's constrained hardware (smart cards, secure elements inside smart phones).
- Can replace the other MarkPledge specifications in previously proposed vote protocols.

Conclusions

MarkPledge 3

- The more efficient and simpler MarkPledge style voter verifiable encryption.
- Highly sound and simple voter YES vote verification
- The only MarkPledge specification that runs in acceptable times on today's constrained hardware (smart cards, secure elements inside smart phones).
- Can replace the other MarkPledge specifications in previously proposed vote protocols.

