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Chapter 1

Manifolds and maps

1.1 Manifolds

The most important concept we will be dealing with in this lecture course is that of a manifold.
We will follow the treatment in [Lan85, ch. II, § 1]. A manifold can be viewed as a set with
an additional structure, called an atlas. In order to arrive at its definition, we take a few steps,
which will turn out to be useful later. We start with the definition of a chart :

Definition 1.1.1 (Chart). Let M be a set. A chart of dimension n ∈ N on M is a pair
(U, ϕ), where U ⊂ M is a subset of M and ϕ : U → Rn is an injective function, such that
the image ϕ(U) ⊂ Rn is open.

RnM

U

ϕ(U)ϕ

Figure 1.1: Illustration of a chart. The function ϕ establishes a bijection between a set U ⊂M
and its image ϕ(U) ⊂ Rn.

The concept is illustrated in figure 1.1. Note in particular that ϕ must be injective. Further,
recall that every function is surjective onto its image. Hence, ϕ establishes a bijection between
U and the image ϕ(U). This is required for the following definition:

Definition 1.1.2 (Compatibility between charts). LetM be a set and (U1, ϕ1) and (U2, ϕ2)
charts of dimension n ∈ N on M . We call these charts compatible of class Ck if and only if
the following conditions are satisfied:

• The images ϕ1(U1 ∩ U2) ⊂ Rn and ϕ2(U1 ∩ U2) ⊂ Rn are open sets.
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• If U1 ∩ U2 ̸= ∅, then the functions

ϕ12 : ϕ2(U1 ∩ U2)→ ϕ1(U1 ∩ U2) , ϕ12 = ϕ1|U1∩U2
◦ ϕ−12 |ϕ2(U1∩U2) , (1.1.1a)

ϕ21 : ϕ1(U1 ∩ U2)→ ϕ2(U1 ∩ U2) , ϕ21 = ϕ2|U1∩U2 ◦ ϕ−11 |ϕ1(U1∩U2) , (1.1.1b)

are of class Ck, i.e., they are k times continuously differentiable.

We also introduce the following notion:

Definition 1.1.3 (Transition function). Let M be a set and (U1, ϕ1) and (U2, ϕ2) compati-
ble charts on M such that U1∩U2 ̸= ∅. The functions ϕ12 and ϕ21 defined in definition 1.1.2
are called the transition functions between these two charts.

ϕ21

ϕ12

ϕ1 ϕ2

Rn Rn

M

U1 U2

ϕ1(U1) ϕ2(U2)

Figure 1.2: Illustration of a transition function. The functions ϕ12 and ϕ21 are bijections
between ϕ1(U1 ∩ U2) and ϕ2(U1 ∩ U2).

It follows immediately from their definition that the transition functions ϕ12 and ϕ21 are bijective
and inverses of each other. For our purposes it will be most useful to adopt the following
definition of an atlas:

Definition 1.1.4 (Atlas). Let M be a set. An atlas A of class Ck and dimension n on M
is a collection of charts (Ui, ϕi) of M of dimension n, where i ∈ I and I is an arbitrary
index set, such that the following properties hold:
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• The sets Ui cover M : ⋃
i∈I

Ui =M . (1.1.2)

• Any two charts (Ui, ϕi) and (Uj , ϕj) are compatible of class Ck.

We need to make a few remarks on this definition. First, what we have defined is also called
a real atlas, since the target space of all functions ϕi is the real vector space Rn. Second, a
few particular types of atlases have their own names. In this lecture we will deal mostly with
smooth or C∞-atlases, by demanding that all transition functions are smooth, i.e., that they are
continuous and infinitely often continuously differentiable. A less strict definition would have
been that of a topological or C0-atlas, where the transition functions only need to be continuous.
However, in physics it is often convenient to assume that everything is smooth, and so we will
stick to this assumption. We now further define:

Definition 1.1.5 (Maximal atlas). An atlas A of class Ck on a set M is called maximal
if there exists no further chart (U, ϕ) on M which is compatible of class Ck with all charts
in A and which is not already contained in A.

Note that any atlas A defines a maximal atlas Ā, which contains all charts which are compatible
with all charts of A. Finally, we define:

Definition 1.1.6 (Manifold). A manifold of class Ck is a set M (its space) together with
a maximal atlas A of class Ck on M .

Instead of calling the pair (M,A) a manifold, it is also common to call M itself a manifold and
to take A as implicitly defined. We will make use of this convention and explicitly write the
atlas A only if it is needed.

One may ask why we want a maximal atlas in this definition. The answer becomes clear if we
ask the question when two manifolds are the same. If we would simply say that a manifold
is a set M together with an atlas A, then two different atlases would by definition yield two
different manifolds. However, this is usually not what we want, since there is no unique way
how to specify an atlas. Instead, we want two manifolds to be “the same” if the atlases defining
their geometry are compatible. There are two equivalent solutions to this problem:

• If we demand that two (non-maximal) atlases A,A′ define the same manifold structure on
M if they are compatible, we can define a manifold as a setM together with an equivalence
class of compatible atlases. Any atlas then uniquely defines an equivalence class, and thus
uniquely defines a manifold. Compatible atlases belong to the same equivalence class, and
hence define the same manifold.

• We can use the fact that two atlases are compatible if and only if their completions to
maximal atlases agree, Ā = Ā′. Therefore, an equivalence class of compatible atlases
is essentially the same as a maximal atlas, and so we can define a manifold as a set M
together with a maximal atlas. Any (non-maximal) atlas can uniquely be completed to a
maximal atlas, and these completions agree for compatible atlases, hence yield the same
manifold.
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For practical purposes, in order to uniquely specify a particular manifold, it is therefore enough
to provide a non-maximal atlas, which is then uniquely extended to either a maximal atlas or
an equivalence class as described above. In the most simple cases, even a single chart can be
sufficient to cover the whole manifold. We make use of this fact in the examples below.

Example 1.1.1 (Euclidean space). The space M = Rn with atlas

A = {(Rn, idRn)} (1.1.3)

given by a single chart (U, ϕ), where U = Rn covers the whole space and ϕ = idRn is the
identity function, is a smooth manifold of dimension n.

Example 1.1.2 (Complex numbers). The space M = C of complex numbers with atlas
A = {(U, ϕ)}, where U = C and

ϕ : C → R2

x+ iy 7→ (x, y)
(1.1.4)

is a smooth manifold of dimension 2.

Example 1.1.3 (Quaternions). The space M = H of quaternions with atlas A = {(U, ϕ)},
where U = H and

ϕ : H → R4

x+ iy + jz + ku 7→ (x, y, z, u)
(1.1.5)

is a smooth manifold of dimension 4.

Example 1.1.4 (Punctured space). The “punctured” space M = Rn \ {(0, . . . , 0)} with atlas
A = {(U, ϕ)}, where U =M and ϕ = idM , is a smooth manifold of dimension n.

Of course, also for the manifolds above one can find an infinite number of further charts, which
are compatible with the single chart given above, and thus belong to the same maximal atlas,
hence the same manifold. For example, one may simply consider a smaller open domain V ⊂ U ,
and restrict ϕ to ϕ|V : V → Rn, or compose ϕ with a bijective function ψ : Rn → Rn, such that
ψ and its inverse are sufficiently often differentiable of class Ck, and consider ψ ◦ϕ instead of ϕ.
In general, however, a single chart is not sufficient to cover the whole manifold. An important
example, which we encounter often in these lecture notes, is the following.

Example 1.1.5 (Circle). Consider the set M = {(x, y) ∈ R2, x2 + y2 = 1} (the unit circle),
as well as the function

ψ : R → R2

u 7→ (cosu, sinu)
. (1.1.6)

Clearly, for all u ∈ R one has ψ(u) ∈ M , since cos2 u + sin2 u = 1. Note that ψ is not
invertible, since

ψ(u) = ψ(u+ 2πn) (1.1.7)

for all u ∈ R and n ∈ Z. However, if we restrict ψ to an open interval (a, b) ⊂ R with
0 < b − a ≤ 2π, then we find that for each p ∈ Uab = ψ((a, b)) there is a unique u ∈ (a, b)
such that p = ψ(u), and thus a function ψab : Uab → R which is uniquely defined by

ψ ◦ ϕab = idUab , ϕab(p) ∈ (a, b) for all p ∈ Uab . (1.1.8)
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This function ϕab is injective, since for each u ∈ (a, b), there is only one p = ψ(u) ∈ Uab
such that ϕab(p) = u. Also the image ϕab(Uab) = (a, b) is open. Hence, (Uab, ϕab) is a chart.
This is illustrated in figure 1.3.

Note that a single chart cannot be sufficient, since ϕab(Uab) ⊂ R must be open, and so
we cannot include endpoints to close the circle. We need at least two charts, and so we
can choose for example the most common charts constructed from the intervals (0, 2π) and
(−π, π), for which we have the domains

U1 =M \ {(1, 0)} , U2 =M \ {(−1, 0)} , (1.1.9)

so both charts lack exactly one point (±1, 0) on the circle. Their overlap is thus given by

U = U1 ∩ U2 =M \ {(1, 0), (−1, 0)} . (1.1.10)

To check compatibility, we calculate

ϕ1(U) = (0, π) ∪ (π, 2π) , ϕ2(U) = (−π, 0) ∪ (0, π) , (1.1.11)

which are both open. Further, we have the transition functions

ϕ12 : ϕ2(U)→ ϕ1(U), u 7→
{
u+ 2π if u ∈ (−π, 0) ,
u if u ∈ (0, π) ,

(1.1.12)

and

ϕ21 : ϕ1(U)→ ϕ2(U), u 7→
{
u if u ∈ (0, π) ,

u− 2π if u ∈ (π, 2π) ,
(1.1.13)

which is visualized in figure 1.4. Note that despite the apparent discontinuity, these are
smooth on their domains, which consist of two connected components, and so the location
of the apparent discontinuity is not part of the domain. Hence, the two charts are compatible
of class C∞. Finally, U1 ∪ U2 =M , and thus these two charts form an atlas of class C∞ of
M , and the dimension is 1.

M

Ra b(a, b)

ψ(a)

ψ(b)

Uab

ψ

ϕab

Figure 1.3: A chart of the circle (see example 1.1.5).

The examples above have in common that we started with a set M which is defined as a subset
(or all of) a Euclidean, complex or quaternionic space, and we chose charts (U, ϕ) such that the
functions ϕ are smooth functions on U . This often leaves the intuitive picture that a manifold
is a subset of such as space, and that the charts are merely used in order to compare the local
geometry to that of Rn. However, this is not necessarily the case, since in the definition of a
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R

R

0 π 2π

−π

0

π

ϕ1(U)

ϕ2(U)

Figure 1.4: Transition functions for two charts on the circle (see example 1.1.5).

manifold, M can be any abstractly defined set, and the manifold structure is fully determined
by the charts, even without defining M as or considering it as a subset of some other space. To
illustrate this fact, we may return to the example of the circle again.

Example 1.1.6 (Circle as quotient space). Consider the set

M = R/2πZ = {[x], x ∈ R} , [x] =

{
y ∈ R,

x− y
2π

∈ Z
}

(1.1.14)

of equivalence classes [x] of real numbers x ∈ R, where we consider two numbers as equiv-
alent when their difference is an integer multiple of 2π. Clearly, there is a one-to-one
correspondence between elements of M and the circle we have encountered in the previous
example 1.1.5, and we can equivalently define an atlas using this definition of M together
with the maps ϕ̃ab(x) = [x], using the same notation as above. This yields the same manifold
S1 without referring to the intuitive picture of a circle embedded in a plane.

We finally remark that in the literature one also encounters slightly different definitions of an
atlas and a manifold. Often the space M is a priori assumed to be equipped with a topology, and
that this topology is Hausdorff, i.e., for any two distinct points x, y ∈M there exist open subsets
U ∋ x and V ∋ y of M such that U ∩ V = ∅. We will not assume any a priori topology on M ,
since we can define the topology from the atlas itself as the coarsest topology on M such that all
charts are continuous. Note that this topology will in general not be Hausdorff. However, this
will not be relevant for most of the examples we consider, and follows the treatment in [Lan85,
ch. II, § 1].
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1.2 Charts and coordinates

A special role is given to charts in the application of differential geometry to physics. In this
context, a chart together with an assignment of names to the components of Rn is also called
a set of (local) coordinates, while a transition function is also called a change of coordinates.
There are different ways to label coordinates. One possibility is to give an explicit name to each
coordinate, such as (x, y, z) or (r, θ, φ) for a chart of a three-dimensional manifold. Another
common possibility is to write coordinates as indexed quantities, such as (xa, a = 1, . . . , 3),
where here the coordinates are named (x1, x2, x3). It is conventional to use upper indices for
coordinates - these must not be confused with powers!

ϕ1 ϕ2

Rn Rn

M

U1 U2

ϕ1(U1) ϕ2(U2)

x1

x2

y1

y2

Figure 1.5: Once we give names to the components of Rn, a chart associates coordinates to the
points of its domain. This association, of course, depends on the chart. On the intersection
U1 ∩ U2 of two charts we have usually different coordinates defined by these charts.

A similar notation is used for transition functions. Let the coordinates of the chart (Ui, ϕi) be
denoted by (xa) and those of (Uj , ϕj) by (x′a), where a = 1, . . . , n. The transition function ϕji
is then commonly written as x′(x), and specified in terms of the coordinate functions

x′1(x1, . . . , xn), . . . , x′n(x1, . . . , xn) . (1.2.1)

The requirement that a transition function must be smooth is then expressed by the requirement
that all component functions must be continuous, that they must be infinitely often partially
differentiable and that all partial derivatives are continuous.

One should be careful here, because in the physics literature one often finds coordinates cor-
responding to charts which cover almost, but not all of M . An example is the description of
the two-dimensional sphere S2 by latitude −π/2 < θ < π/2 and longitude 0 < φ < 2π, which
does not include the poles and the zero meridian. It is also conventional to “cure” this problem
by redefining the coordinate range in the form −π/2 ≤ θ ≤ π/2 and 0 ≤ φ < 2π, but this
is not even a chart anymore, since it does not define a function onto an open subset of R2!
The missing / added points here are called “coordinate singularities”. One can work with this
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description, but one must pay attention to all the possible illnesses that occur at coordinate
singularities and know how to deal with them (namely, by using proper charts). The following
example gives such charts for the sphere S2.

Example 1.2.1 (Sphere). Consider a sphere of radius 1 centered around the origin embedded
in Euclidean space R3. Using Cartesian coordinates x1, x2, x3 on R3, the set is given by

M = {(x1, x2, x3) ∈ R3, (x1)2 + (x2)2 + (x3)2 = 1} . (1.2.2)

We now construct two charts of the sphere as follows. Consider first the set

U1 =M \ {(0, 0,−1)} , (1.2.3)

i.e., the sphere without the south pole p1 = (0, 0,−1). Given a point p = (x1, x2, x3) ∈ U1,
there exists a unique line passing through p and p1. This line intersects the plane x3 = 0
exactly once in the point (

x1

1 + x3
,

x2

1 + x3
, 0

)
. (1.2.4)

This allows us to define a function

ϕ1 : U1 → R2

(x1, x2, x3) 7→ (v1, v2) =
(

x1

1+x3 ,
x2

1+x3

)
, (1.2.5)

thus defining coordinates (v1, v2). One easily checks that ϕ1(U1) = R2, and hence is open,
so that (U1, ϕ1) is a chart. Similarly, we can remove the north pole p2 = (0, 0, 1) instead, to
construct a chart consisting of the open set

U2 =M \ {(0, 0, 1)} , (1.2.6)

together with the function

ϕ2 : U2 → R2

(x1, x2, x3) 7→ (ṽ1, ṽ2) =
(

x1

1−x3 ,
x2

1−x3

)
. (1.2.7)

We then check the compatibility of the two charts. First note that the images

ϕ1(U1 ∩ U2) = ϕ2(U1 ∩ U2) = R2 \ {(0, 0)} (1.2.8)

of the intersection U1 ∩ U2 are open sets. Finally, consider the transition function

ϕ21 : R2 \ {(0, 0)} → R2 \ {(0, 0)}
(v1, v2) 7→ (ṽ1, ṽ2) =

(
v1

(v1)2+(v2)2 ,
v2

(v1)2+(v2)2

)
. (1.2.9)

One easily checks that this is smooth. The same holds for its inverse ϕ12, and so the two
charts (U1, ϕ1) and (U2, ϕ2) are compatible of class C∞. They cover M , i.e., U1 ∪ U2 =M ,
and so they define a smooth atlas on M . Hence, we obtain a smooth manifold of dimension
2. The manifold is usually denoted S2.

In this lecture course we will use coordinates whenever it is necessary, which is the case for
explicit calculations of examples (and which is also the most important application of coordi-
nates in physics). Sometimes we will introduce a particular set of coordinates, sometimes we
will simply assume that some set of coordinates is given, which we do not specify any further.
But most of the time, whenever it is possible, we will avoid the use of coordinates.
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1.3 Maps

The second very important notion we need is that of a map between manifolds. We define:

Definition 1.3.1 (Map). Let M,N be manifolds of class Ck. A map of class Ck from M
to N is a function f :M → N such that for each point p ∈M exist charts (U, ϕ) of M and
(V, χ) on N such that:

1. p ∈ U and f(U) ⊂ V .

2. The function χ ◦ f ◦ ϕ−1 : ϕ(U)→ χ(V ) is of class Ck.

We denote the space of all maps of class Ck between M and N by Ck(M,N).

f

χ ◦ f ◦ ϕ−1

ϕ

χ

Rm Rn

M N

U

f(U)

V

ϕ(U) χ(V )

p
f(p)

Figure 1.6: Illustration of a map of class Ck and the charts that appear in its definition 1.3.1.

Instead of “map” also the term “mapping” is often found in the literature.

One often expresses maps with the help of coordinates (charts). Using the notation from the
definition above, denote the components or Rm by (xi, i = 1, . . . ,m) and the components of Rn
by (yµ, µ = 1, . . . , n), where m and n are the respective dimensions of M and N . Consider a
point p ∈ M and charts (U, ϕ) of M and (V, χ) of N such that p ∈ U and f(U) ⊂ V . Then
there exists a function

χ ◦ f ◦ ϕ−1 : ϕ(U)→ Rn , (1.3.1)

where ϕ(U) ⊂ Rm. This function may be regarded as the coordinate representation of the map
f . It assigns to a tuple (x1, . . . , xm) ∈ ϕ(U) a tuple (y1, . . . , yn), so one may write it in the
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form
(χ ◦ f ◦ ϕ−1)(x1, . . . , xm) = (y1, . . . , yn) . (1.3.2)

Often in the literature the charts are omitted from the notation, and so one often writes f
instead of χ ◦ f ◦ ϕ−1 in the formula above; however, note that this is not strictly correct. The
map f assigns elements of N to elements of M . These elements can be represented by tuples
in Rm and Rn, respectively, with the help of a chart, but they are not identical to these tuples,
and f does not assign tuples to tuples. The coordinate expression of f depends on the choice
of the charts ϕ and χ.

To illustrate the notion of a map, and how to show its differentiability, let us consider the
following simple class of maps.

Definition 1.3.2 (Constant map). Let M,N be manifolds and q ∈ N . The constant map
with image q is the map fq :M → N defined by fq(p) = q for all p ∈M .

Now it is easy to show the following.

Theorem 1.3.1. The constant map fq : M → N, p 7→ q is a smooth map for all smooth
manifolds M,N and q ∈ N .

Proof. Let (V, χ) be a chart around q ∈ N . For any p ∈ M , we can choose a chart (U, ϕ).
Clearly, this satisfies

fq(U) = {q} ⊂ V , (1.3.3)

by choice of (V, χ). We then consider the function

χ ◦ fq ◦ ϕ−1 : ϕ(U) → χ(V )
x 7→ χ(q)

, (1.3.4)

which is now a constant function between subsets of Euclidean spaces. However, any constant
function between Euclidean spaces is infinitely often differentiable, and thus smooth. ■

Often one has to compose maps. The following statement guarantees that this is indeed allowed:

Theorem 1.3.2. Let L, M , N be manifolds of class Ck and f : L→M and g :M → N maps
of class Ck between them. Then g ◦ f : L→ N is a map of class Ck.

Proof. We denote l = dimL, m = dimM and n = dimN . From the fact that both f and g are
of class Ck follows that for every point p ∈ L there exists charts as follows:

1. (U, ϕ) of L and (V, χ) of M such that:

(a) p ∈ U ,

(b) f(U) ⊂ V ,

(c) χ ◦ f ◦ ϕ−1 : ϕ(U)→ χ(V ) is of class Ck;

2. (U ′, ϕ′) of M and (V ′, χ′) of N such that:

(a) f(p) ∈ U ′,
(b) g(U ′) ⊂ V ′,
(c) χ′ ◦ g ◦ ϕ′−1 : ϕ′(U ′)→ χ′(V ′) is of class Ck.
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Note that straight from the definition of smoothness of f and g, the two charts (V, χ) and (U ′, ϕ′)
of M are not guaranteed to be the same; however, they are guaranteed to be compatible of class
Ck, since M is a manifold of class Ck. This means in particular that χ(V ∩ U ′) ⊂ Rm is open.
Since χ◦f ◦ϕ−1 is of class Ck, and thus in particular continuous, also its preimage is continuous,
i.e., the set(

χ ◦ f ◦ ϕ−1
)−1

(χ(V ∩ U ′)) = {u ∈ ϕ(U), χ(f(ϕ−1(u))) ∈ χ(V ∩ U ′)}
= {u ∈ ϕ(U), f(ϕ−1(u)) ∈ V ∩ U ′}
= {u ∈ ϕ(U), f(ϕ−1(u)) ∈ U ′}
= {ϕ(q), q ∈ U, f(q) ∈ U ′}
= ϕ(U ∩ f−1(U ′)) ,

(1.3.5)

where in the first line we have used that χ is injective and can thus be omitted, in the second
line that f(ϕ−1)(u) ∈ f(U) ⊂ V , and finally that ϕ is a bijection from U to ϕ(U). Now we can
then define Ũ = U ∩ f−1(U ′), as well as ϕ̃ = ϕ|Ũ . We have already shown that

ϕ̃(Ũ) = ϕ(Ũ) = ϕ(U ∩ f−1(U ′)) (1.3.6)

is open; further, ϕ̃ is injective and compatible of class Ck with ϕ, as it is simply a restriction.
Hence, (Ũ, ϕ̃ is another chart of L. Now we have

g(f(Ũ)) ⊂ g(f(f−1(U ′))) = g(U ′) ⊂ V ′ . (1.3.7)

We can thus consider the function

χ′ ◦ g ◦ f ◦ ϕ̃−1 = χ′ ◦ g ◦ ϕ′−1︸ ︷︷ ︸ ◦ϕ′ ◦ χ−1︸ ︷︷ ︸ ◦χ ◦ f ◦ ϕ̃−1︸ ︷︷ ︸ . (1.3.8)

Here we see that the two outer parts are of class Ck since f and g are of class Ck, and the inner
part is of class Ck, since the two charts on M are compatible of class Ck. Hence, also g ◦ f is
of class Ck. The construction is illustrated in figure 1.7. ■

We finally introduce a particularly useful type of map:

Definition 1.3.3 (Diffeomorphism). A map f : M → N which is bijective and whose
inverse f−1 : N →M is again a map, is called a diffeomorphism. If such a diffeomorphism
exists, the manifolds M,N are called diffeomorphic.

To discuss a simple example, we define the following map.

Definition 1.3.4 (Identity map). Let M be a manifold of class Ck. The map idM :M →
M,p 7→ p is called the identity on M .

One may already assume that the identity is a diffeomorphism. We will show this as follows.

Theorem 1.3.3. Let M be a manifold of class Ck. The identity idM is a diffeomorphism of
class Ck.

Proof. Let p ∈M , and pick a chart (U, ϕ) with p ∈ U . Obviously, one has idM (U) = U . In this
chart, the identity is expressed by ϕ◦ idM ◦ϕ−1 = idϕ(U), which is the identity on a subset ϕ(U)
of Euclidean space. Since this is arbitrarily often differentiable, it follows that idM is of class
Ck. Further, the identity is bijective with inverse id−1M = idM , and its inverse is thus obviously
also of class Ck. Hence, idM is a diffeomorphism of class Ck. ■
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f g

χ ◦ f ◦ ϕ−1 ϕ ◦ χ−1 χ′ ◦ g ◦ ϕ′−1

ϕ
χ

ϕ′ χ′

Rl Rm Rm Rn

L M N

U
f−1(U ′)

Ũ f(U)

V

U ′

V ∩ U ′

g(U ′)

V ′
g(f(U))

ϕ(U) χ(V ) ϕ′(U ′) χ′(V ′)

p f(p) g(f(p))

Figure 1.7: Illustration of the composition of two maps of class Ck and the charts that appear
in theorem 1.3.2.

Note that we concluded on class Ck here only, and not on C∞. The reason is that one may also
choose different charts on the domain and codomain (even though these are the same manifold
in this case), and for a Ck-manifold these are only required to be compatible of order Ck.
Hence, only the differentiability up to Ck can be guaranteed independently of the choice of
the charts. We also remark that there exist many more diffeomorphisms on a manifold, as we
will see later. However, different manifolds are in general not diffeomorphic. In fact, manifolds
are often considered as being “the same” if and only if they are diffeomorphic. This is possible
because being diffeomorphic is an equivalence relation.

Another common type of map, which is sufficiently notable to deserve its own name, is obtained
when the domain is the set R of real numbers:

Definition 1.3.5 (Curve). A curve of class Ck on a manifold M is a map γ : R → M of
class Ck.

If one fixes a chart (U, ϕ) of M with coordinates (xa), one may denote the components of
(ϕ ◦ γ)(t) by (ϕ ◦ γ)a(t). Also here the less lengthy, but not strictly correct notation γa(t) is
conventionally used. Smoothness of the curve γ then simply means that the components γa
must be smooth functions.

We also point out particular maps, whose codomain is given either by the real or complex
numbers:
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Definition 1.3.6 (Real function). A real function of class Ck on a manifold M is a map
f :M → R of class Ck.

Definition 1.3.7 (Complex function). A complex function of class Ck on a manifold M
is a map f :M → C of class Ck.

These are most commonly used. One often finds the notation Ck(M) as a shorthand for either
Ck(M,R) or Ck(M,C). However, one may easily get confused whether this should denote the
space of real or complex functions, and so we will avoid this notation.

Note that in physics one usually works with smooth (C∞) manifolds and maps. Hence, in the
following we will mostly omit the explicit “of class Ck” or “of class C∞”, and assume that maps
and manifolds are smooth, unless we explicitly say otherwise.

1.4 Germs

There are situations in which only the local properties of a function are relevant, which are
described by the behavior of that function in the neighborhood of a particular point. Any
other function which behaves identically around the same point would then have the same local
properties. In order to work with such local properties in a mathematically rigorous way, one
therefore introduces a few notions, starting with the following.

Definition 1.4.1 (Local map). Let M,N be manifolds of class Ck and p ∈M . A local map
of class Ck at p is a pair (U, f), where U ⊂M is an open set containing p and f : U → N
is a map. The set of all local maps of class Ck around p is denoted Ckp (M,N).

This definition takes one step towards capturing only the local properties of a function f around
a point p. We only need to care about its values in some neighborhood U , and it does not even
have to be defined outside of U . However, there are still two issues which make working with
Ckp (M,N) less convenient:

• Given a local function (U, f) ∈ Ckp (M,N), there are (in general infinitely) many other
local functions which have exactly the same local properties at p. For example, one may
simply choose another open subset U ′ ⊂ U such that p ∈ U ′ and consider the restriction
f |U ′ . Then (U ′, f |U ′) clearly describes the same local behavior around p. Also any other
local function (V, g), which differs from f only outside some neighborhood of p, shares the
same local behavior.

• Often the target manifold N carries some additional structure, such as that of a group or
a vector space, and then the space Ck(M,N) of global functions inherits this structure, by
carrying out operations pointwise on M . This inheritance is lost for local functions, since
they are, in general, defined on different domains. For example, one may add two real
functions f, g ∈ Ck(M,R) on a manifold, but this is not possible for two local functions
(U, f), (V, g) ∈ Ckp (M,R) defined on different domains U ̸= V .

In order to solve these two issues, one introduces another notion as follows.
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Definition 1.4.2 (Germ). Let M,N be manifolds of class Ck, p ∈ M and (U, f) ∈
Ckp (M,N) a local function of class Ck at p. The germ of (U, f) at p is the set of all
local functions (V, g) ∈ Ckp (M,N) for which there exists an open set W ⊆ U ∩V containing
p such that the restrictions of f and g to W agree, f |W = g|W . The set of all such germs
of class Ck at p is denoted Okp(M,N).

f

g

N

MVUW
p

f(p) = g(p)

Figure 1.8: Two local functions (U, f) and (V, g) define the same germ at p if and only if there
exists an open set W ⊆ U ∩ V containing p on which f and g agree, f |W = g|W . Since p ∈W ,
one has in particular also f(p) = g(p).

In other words, one introduces an equivalence relation ∼ on the space Ckp (M,N) of local func-
tions, such that (U, f) ∼ (V, g) if and only if there exists an open set W ⊆ U ∩ V containing p
such that f |W = g|W . The germ of (U, f) is then the equivalence class

[U, f ] = {(V, g) ∈ Ckp (M,N) | (U, f) ∼ (V, g)} . (1.4.1)

Of course, one still has to check that this is indeed an equivalence relation, but this is simple
and we omit the proof here. We can thus take the set of equivalence classes

Okp(M,N) = Ckp (M,N)/ ∼= {[U, f ] | (U, f) ∈ Ckp (M,N)} . (1.4.2)

Note that instead of writing [U, f ] it is also conventional to write just [f ], since the domain
U on which f is defined is not important; it only must be open and contain the point p, but
otherwise does not have any influence on the local properties of f at p we are aiming to capture.
Also the notation f instead of [f ] is sometimes encountered. Another commonly used notation
emphasizes the point p by writing [f ]p.

The notion of germs now indeed addresses the two points mentioned above:

• A local function (U, f) defines the same germ as its restriction to a smaller domain U ′ ⊂ U ,
as long as also U ′ is open and contains the point p: (U, f) ∼ (U ′, f |U ′). Hence, to describe
the local properties of f around p, we can consider any open domain around p, no matter
how small. This explains why the original domain U is not important and often omitted
in the notation [f ].

• If the target space N has some algebraic structure, such as that of a group or vector space,
then this structure is now inherited by the space of germs. For example, if N is equipped
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with a binary operation ⊛ : N × N → N , one may carry this operation to the space of
germs as follows. Given two germs [f ], [g] ∈ Okp(M,N) at p ∈M , one picks representatives
(U, f), (V, g) ∈ Ckp (M,N). Then, on the intersection U ∩ V , one applies pointwise the
operation ⊛ to f |U∩V and g|U∩V . Finally, one defines [f ]⊛ [g] as the germ [fU∩V ⊛gU∩V ].
After checking that this operation does not depend on the choice of the representatives,
one has obtained a binary operation ⊛ : Okp(M,N)×Okp(M,N)→ Okp(M,N).

The local properties of f around p are now fully described by its germ [f ]. For example, the
image f(p) does not depend on the choice of the representative. Also “derivatives” (a notion
which we yet have to define, unless we resort to charts and functions on Rn) at p only depend on
the choice of the germ, but not on the choice of the representative. This includes in particular
jets, which we will encounter in chapter 21.

1.5 Partitions of unity

Definition 1.5.1 (Partition of unity). A partition of unity on a manifold M is a set R of
smooth functions ρ :M → [0, 1] such that for each p ∈M only a finite number of function
values are non-zero and their sum equals 1.
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Chapter 2

Fiber bundles and sections

2.1 Product manifolds and projections

Given manifolds M and N with atlases AM and AN , one can easily construct another manifold
as follows:

Definition 2.1.1 (Product manifold). Let M and N be manifolds of dimensions m and n
with atlases

AM = {(Ui, ϕi), i ∈ I} , (2.1.1a)
AN = {(Vj , χj), j ∈ J } . (2.1.1b)

On the Cartesian product

M ×N = {(p, q)|p ∈M, q ∈ N} (2.1.2)

define an atlas AM×N of dimension m+ n with charts (Wij , ψij) as follows:

• The sets Wij are given by Wij = Ui × Vj .

• The functions ψij :Wij → Rm+n are given by ψij(p, q) = (ϕi(p), χj(q)).

The completion of this atlas to a maximal atlas then turns M ×N into a manifold, called
the product manifold (or direct product).

One can easily check that this is indeed an atlas. We also see immediately the dimension of the
product manifold, which follows from the way the charts are constructed:

Theorem 2.1.1. The dimension of a product manifold is given by dimM×N = dimM+dimN .

The product manifold comes with a set of useful maps:

Definition 2.1.2 (Projection map). Let M and N be manifolds and M ×N their direct
product. The maps pr1 : M × N → M, (p, q) 7→ p and pr2 : M × N → N, (p, q) 7→ q are
called the projections onto the first and second factor, respectively.
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Again, it is easy to check that the projections are indeed smooth maps.

We also take a brief look at the coordinates one can use on a product manifold. Given coordi-
nates (xi) on M and (yµ) on N , corresponding to charts (U, ϕ) and (V, χ), the corresponding
coordinates for the product chart (W,ψ) as constructed above are simply (xi, yµ). We illustrate
this with a few examples.

Example 2.1.1. Let M = R the line and N = S1 the circle. Their direct product is the
cylinder R× S1.

U

V

x = (p, q)q = pr2(x)

p = pr1(x) R

S1

R× S1

W

R2 R

Rϕ(U)

χ(V )

ψ
ϕ

χ

ψ(W )

Figure 2.1: The (infinite) cylinder R× S1 and its charts and projection maps.

Example 2.1.2. Let S1 be the circle. The n-fold direct product S1 × . . . × S1 is the n-
dimensional torus Tn.

2.2 Fiber bundles

In the last section we have introduced the direct product of manifolds. We now discuss an
important concept, called a fiber bundle, which can be viewed as a local version of a product
manifold. Recall that in the case of the direct product M × N of two manifolds we have
projections pr1 and pr2 onto each factor. One can show that the preimage of a point p ∈ M
under pr1 is again a manifold which is diffeomorphic to N . We write: pr−11 (p) ∼= N . Of course
the construction of the direct product is symmetric in M and N , so that also pr−12 (q) ∼=M for
q ∈ N .

For a fiber bundle, only one half of this is true. It consists of a manifold E called the total
space, another manifold B called the base space and a map π : E → B called the projection
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or bundle map, such that for any p ∈ B the preimage π−1(p) is diffeomorphic to a manifold F
called the fiber. In addition, we need a condition which guarantees that the total space of the
fiber bundle “locally looks like” a direct product. We define:

Definition 2.2.1 (Fiber bundle). A fiber bundle (E,B, π, F ) consists of manifolds E,B, F
and a surjective map π : E → B, such that for any p ∈ B there exists an open set U ⊂ B
containing p and a diffeomorphism ϕ : π−1(U)→ U × F such that the diagram

π−1(U)
ϕ
//

π

��

U × F

pr1
yy

U

(2.2.1)

commutes. The pair (U, ϕ) is called a local trivialization.

BU

F

E

pr1

pr2

π−1(p)

p

π−1(U)

U × F

π

ϕ

Figure 2.2: Illustration of a fiber bundle (E,B, π, F ). For every p ∈ B there exists U ∋ p such
that π−1(U) is diffeomorphic to U × F .

Another common notation for a fiber bundle is the “function notation” π : E → B, when the
fiber manifold F is clear from the context. We will also make use of this notation, as it turns
out to be rather convenient. Sometimes, with a slight abuse of terminology, also the total space
E is simply called a fiber bundle, when the base manifold and the projection are known. We
will use this kind of terminology only for very special cases. Finally, in the latter case it is also
common to denote the fiber π−1(p) ⊂ E over p ∈ B by Ep.

We do not need to explicitly demand that π−1(p) ∼= F for any p ∈ B, because this follows from
the definition given above. To see this, note that pr−11 (p) ∼= F , as for any direct product. Since
ϕ is a diffeomorphism, it follows that also π−1(p) = ϕ−1(pr−11 (p)) ∼= F . Also the following
relation for the dimension of a fiber bundle follows immediately from its definition:

Theorem 2.2.1. For a fiber bundle (E,B, π, F ) the dimensions of the manifolds satisfy dimE =
dimB + dimF .
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A particular class of fiber bundles, which we encounter frequently, is the following.

Definition 2.2.2 (Trivial fiber bundle). The trivial fiber bundle with base manifold B
and fiber F is the fiber bundle (E,B, π, F ), where the total space is the product manifold
E = B × F with projection π = pr1 onto the first factor.

Of course, not every fiber bundle is trivial. A well known example is the following.

Example 2.2.1 (Möbius strip). Let Ũ1 = (0, 2π) × (−1, 1), Ũ2 = (−π, π) × (−1, 1) and the
functions

ϕ̃i : Ũi → R3

(t, s) 7→
((
R+Ws cos t2

)
cos t,

(
R+Ws cos t2

)
sin t,Ws sin t

2

) , (2.2.2)

i = 1, 2, with constants 0 < W < R. Let further E = ϕ̃1(Ũ1) ∪ ϕ̃2(Ũ2). It is easy to show
that E carries the structure of a two-dimensional manifold, and that an atlas is given by
the charts (Ui = ϕ̃i(Ũi), ϕi = ϕ̃−1i ). This manifold is called the Möbius strip.

Now consider the function

π̃ : {x ∈ R3|x21 + x22 > 0} → R2

(x1, x2, x3) 7→
(

x1√
x2
1+x

2
2

, x2√
x2
1+x

2
2

)
(2.2.3)

Looking at the compositions

π̃ ◦ ϕ̃i : Ũi → R2

(t, s) 7→ (cos t, sin t)
(2.2.4)

one can see that the restriction of π̃ to E defines a smooth map π : E → S1 = {x ∈
R2|x21 +x22 = 1} and that the preimages π−1(p) are diffeomorphic to (−1, 1). One can show
that (E,S1, π, (−1, 1)) is a non-trivial fiber bundle.

2.3 Sections

When dealing with fiber bundles we often work with maps σ : B → E which assign to each
point p ∈ B on the base manifold a point σ(p) ∈ π−1(p) ⊂ E on the fiber over p. These maps
are called sections, or cross sections, and are defined as follows.

Definition 2.3.1 (Section). A (global) section of a fiber bundle (E,B, π, F ) is a map
σ : B → E such that π ◦ σ = idB .

We usually omit the word global, and simply speak of sections. It should be noted that not
every bundle admits global sections - there are bundles for which no global sections exist. This
is often the case, for example, for frame bundles, which we will cover later. However, every
bundle admits local sections, which we define as follows.
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E

B = S1

π−1(p1)
π−1(p2)

π−1(p3)

p1
p2

p3

π
π

π

Figure 2.3: Möbius strip E as a fiber bundle with fiber F = (−1, 1) over the base manifold
B = S1.

B

E

π−1(p)

p

σ(p)

σ

π

Figure 2.4: Illustration of a section σ, which assigns to each point p ∈ B a point σ(p) ∈ π−1(p)
of the fiber π−1(p) over p.

Definition 2.3.2 (Local section). A local section of a fiber bundle (E,B, π, F ) is pair
(U, σ), composed of an open subset U ⊂ B and a map σ : U → E defined on U such that
π ◦ σ = idU .

The set of all sections of a bundle is often denoted with the letter Γ, and we introduce the
following notation, which will turn out to be useful later:

• The set of all global sections of a fiber bundle (E,B, π, F ) we denote Γ(E,B, π, F ), or
simply Γ(E) if it is clear which are the other ingredients of the fiber bundle. Another
convenient notation we will use is Γ(π), if E and B are the known domain and codomain
of π.

• The set of all local sections of (E,B, π, F ) will be denoted Γ|(E,B, π, F ) or simply Γ|(E)
or Γ|(π).

30



• The set of all local sections of (E,B, π, F ) with fixed domain U ⊂ B will be denoted
Γ|U (E,B, π, F ) or simply Γ|U (E) or Γ|U (π).

• The set of all local sections of (E,B, π, F ) whose domain contains p ∈ B will be denoted
Γp(E,B, π, F ) or simply Γp(E) or Γp(π).

These different sets are obviously related by

Γ(E) = Γ|B(E) , Γp(E) =
⋃

U⊂B,p∈U
Γ|U (E) , Γ|(E) =

⋃
U⊂B

Γ|U (E) =
⋃
p∈B

Γp . (2.3.1)

As we mentioned before, there are bundles which do not admit any global sections, and so have
Γ(E) = ∅. However, the situation is different for local sections, as we will see now.

Theorem 2.3.1. For every fiber bundle (E,B, π, F ) there exist local sections around any point
p ∈ B, so that Γp(E) ̸= ∅.

Proof. By definition, a fiber bundle admits a local trivialization (U, ϕ) around any point p ∈ B,
where U ⊂ B contains p and ϕ : π−1(U) → U × F is a diffeomorphism satisfying pr1 ◦ϕ = π.
Choose f ∈ F , and define

σ : U → E
x 7→ ϕ−1(x, f)

. (2.3.2)

This is obviously smooth, since ϕ−1 and the inclusion x 7→ (x, f) of U in U × F are smooth
maps. Further, it satisfies

(π ◦ σ)(x) = π(ϕ−1(x, f)) = pr1(x, f) = x , (2.3.3)

and so π ◦ σ = idU . Hence, it is a local section whose domain contains p. ■

We remark that in the previous proof, instead of choosing a single point f ∈ F in the fiber, one
could also have chosen an arbitrary function F : U → F , and defined σ(x) = ϕ−1(x, F (x)). In
fact, this is just how any section can be expressed within a local trivialization. Of course, a fiber
bundle is in general only locally trivial, and so only the existence of local sections is guaranteed
by this statement, but not that of global sections. For trivial fiber bundles, however, global
sections always exist, and we can identify them as follows.

Theorem 2.3.2. Let M,N be manifolds and M ×N their product, i.e., the trivial fiber bundle
(M ×N,M,pr1, N). Then there exists a one-to-one correspondence between maps ψ :M → N
and global sections σ :M →M ×N .

Proof. Given a map ψ :M → N , one can construct a section

σ : M → M ×N
p 7→ (p, ψ(p))

, (2.3.4)

while for a section σ : M → M × N , one can construct a map ψ = pr2 ◦σ. One easily checks
that this establishes the desired one-to-one correspondence. ■

A particularly simple case is the following.

Theorem 2.3.3. Let M,N be manifolds and M ×N their product, i.e., the trivial fiber bundle
(M ×N,M,pr1, N). For every q ∈ N , the constant section M →M ×N, p 7→ (p, q) is a smooth
section.

Proof. Recall from theorem 1.3.1 that the constant map fq : M → N, p 7→ q is a smooth map.
From the preceding theorem 2.3.2 then follows that the constant section p 7→ (p, fq(p)) = (p, q)
is a smooth section. ■
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2.4 Induced charts and coordinates

Since E, B and F are manifolds, we could in principle use any kind of chart to describe them.
However, it is often more convenient to use special charts on E, which we call adapted or
induced. These can be constructed as follows.

Theorem 2.4.1. Let (E,B, π, F ) be a fiber bundle. Let (V, χ) be a chart on F and (U,ψ) a
chart on B, such that there exists a local trivialization (U, ϕ). Then the pair (W,ω), where
W = ϕ−1(U × V ) and

ω(e) = (ψ(pr1(ϕ(e))), χ(pr2(ϕ(e)))) (2.4.1)

is a chart of dimension dimB + dimF on E.

Proof. Let m = dimB and n = dimF . Then ψ(pr1(ϕ(e))) ∈ Rm and χ(pr2(ϕ(e))) ∈ Rn, and
so ω(e) ∈ Rm+n. Further, let e′ ∈ W with e ̸= e′. Then also ϕ(e) ̸= ϕ(e′), since ϕ is bijective,
and hence

(pr1(ϕ(e)),pr2(ϕ(e))) = ϕ(e) ̸= ϕ(e′) = (pr1(ϕ(e
′)),pr2(ϕ(e

′))) . (2.4.2)

Since ψ and χ are charts, and therefore injective, it thus follows that

ω(e) = (ψ(pr1(ϕ(e))), χ(pr2(ϕ(e)))) ̸= (ψ(pr1(ϕ(e
′))), χ(pr2(ϕ(e

′)))) = ω(e′) , (2.4.3)

and so also ω is injective. Finally,

ω(W ) = ψ(U)× χ(V ) ⊂ Rm+n (2.4.4)

is open in the product topology, since ψ(U) and χ(V ) are open. Hence, (W,ω) is a chart of
dimension m+ n. ■

The type of chart constructed above also carries its own name:

Definition 2.4.1 (Induced chart). The chart (W,ω) constructed in theorem 2.4.1 is called
an induced chart.

To illustrate this definition, let dimB = m, dimF = n and consider the following diagram:

U × V
pr1

{{

pr2

##
U

ψ

��

W

ϕ

OO

πoo

ω
��

V

χ

��
Rm Rm+n //oo Rn

(2.4.5)

The lower half of this diagram shows the charts ψ : U → Rm and χ : V → Rn. To understand
its upper half, recall from definition 2.2.1 that a local trivialization (U, ϕ) consists of an open
set U ⊂ B and a diffeomorphism ϕ : π−1(U)→ U × F . Since V ⊂ F , we have U × V ⊂ U × F ,
and so its preimage under ϕ satisfies

W = ϕ−1(U × V ) ⊂ ϕ−1(U × F ) = π−1(U) ⊂ E . (2.4.6)

The map ϕ now assigns to each e ∈ W a pair (u, v) with u = π(e) ∈ U and v ∈ V . Via the
charts on B and F , we then obtain a pair (ψ(u), χ(v)) ∈ Rm×Rn = Rm+n. This is the function
ω introduced in definition 2.4.1.
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B

U

F

V

E

pr1
pr2

π−1(U)

U × F

W

ϕ(W )

π

ϕ

Rn

Rm

ω(W )

Rm+n

ψ(U)

χ(V )

χ

ψ

ω

Figure 2.5: Induced coordinates on a fiber bundle (E,B, π, F ). Note that the “vertical” coordi-
nate lines follow the fibers in E, but there is no restriction on the location of the “horizontal”
coordinate lines; the latter depends on the choice of the local trivialization (U, ϕ).

We also remark that in the definition we have chosen the open set U ⊂ B used in the chart
(U,ψ) and the local trivialization (U, ϕ) to be the same. Note that it is always possible to find
such a chart around an arbitrary point p ∈ B. By definition of a manifold, around each point
p there exists some chart (Ũ, ψ̃) with p ∈ Ũ . Further, by the definition of a fiber bundle there
also exists a local trivialization (Ū, ϕ̄) such that p ∈ Ū . Now we simply define U = Ũ ∩ Ū , as
well as ψ = ψ̃|U and ϕ = ϕ̄|U . One easily checks that (U,ψ) is a chart and (U, ϕ) is a local
trivialization. Of course, p ∈ U .

The main advantage of using induced charts and the corresponding coordinates on the total
space E becomes apparent if we consider sections of a fiber bundle. Recall from definition 2.3.1
that a section is a map f : B → E such that π ◦ f = idB . Using charts (U,ψ) on B and a
corresponding induced chart (W,ω) on E, which comes from a suitable chart (V, χ) on F , we
can express f in coordinates by looking at

ω ◦ f |U ◦ ψ−1 : ψ(U)→ Rm+n . (2.4.7)

Now by the definition of ω we have for x ∈ ψ(U):

(ω ◦ f ◦ ψ−1)(x) = ((ψ ◦ pr1 ◦ϕ︸ ︷︷ ︸
=π

◦f ◦ ψ−1)(x), (χ ◦ pr2 ◦ϕ ◦ f ◦ ψ−1)(x))

= ((ψ ◦ π ◦ f︸ ︷︷ ︸
=idB

◦ψ−1)(x), (χ ◦ pr2 ◦ϕ ◦ f ◦ ψ−1)(x))

= ((ψ ◦ idB ◦ ψ−1︸ ︷︷ ︸
=idψ(U)

)(x), (χ ◦ pr2 ◦ϕ ◦ f ◦ ψ−1)(x))

= (x, (χ ◦ pr2 ◦ϕ ◦ f ◦ ψ−1)(x)) .

(2.4.8)

We see that the first m components are already fully determined by the fact that f is a section,
and we only need to specify the remaining n components. This becomes even more clear if
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we express the section explicitly in coordinates. Denoting the components of Rm by (xi, i =
1, . . . ,m), the components of Rn by (yµ, µ = 1, . . . , n) and the components of Rm+n by (zA, A =
1, . . . ,m+ n), instead of writing the section in generic coordinates as

ω ◦ f ◦ ψ−1 : (xi) 7→ (zA) , (2.4.9)

which involves m + n functions for all zA, the choice of adapted coordinates (zA) = (xi, yµ)
allows us to write

ω ◦ f ◦ ψ−1 : (xi) 7→ (xi, yµ) , (2.4.10)

which requires only n functions for yµ to be given, since the functions for xi are identities.

Of course, a single chart is in general not sufficient to cover the whole manifold E, and so we
will need a whole atlas instead, which is comprised of mutually compatible charts which cover
E. To achieve this with the induced chart construction, we first show compatibility as follows.

Theorem 2.4.2. Let (E,B, π, F ) be a fiber bundle. Let (V1, χ1), (V2, χ2) be charts on F and
(U1, ψ1), (U2, ψ2) charts on B, such that there exist local trivializations (U1, ϕ1), (U2, ϕ2). Then
the corresponding induced charts (W1, ω1), (W2, ω2) are compatible.

Proof. We will assume W1 ∩W2 ̸= ∅, since otherwise they are trivially compatible. For e ∈
W1 ∩W2 we have

ω1(e) = (ψ1(pr1(ϕ1(e))), χ1(pr2(ϕ1(e)))) , (2.4.11a)
ω2(e) = (ψ2(pr1(ϕ2(e))), χ2(pr2(ϕ2(e)))) . (2.4.11b)

▶. . .◀ ■

Given atlases AB on B and AF on F , it is now straightforward to show that one can construct
an atlas on E from the induced charts as follows.

Theorem 2.4.3. Let (E,B, π, F ) be a fiber bundle. The induced charts defined from atlases
AB and AF together with the local trivializations form an atlas of E.

Proof. ▶. . .◀ ■

Of course, since E is a manifold, it is already equipped with an atlas by definition 1.1.6, and so
we finally need to show that the original atlas on E is compatible with this induced atlas, so
that both describe the same manifold.

Theorem 2.4.4. Let (E,B, π, F ) be a fiber bundle. The induced atlas defined from atlases AB
and AF together with the local trivializations is compatible with AE.

Proof. ▶. . .◀ ■

2.5 Construction from trivializations

Theorem 2.4.4 has an interesting consequence: it shows that we can fully reconstruct the man-
ifold structure on E, defined by its unique maximal atlas, from any induced atlas, and hence
from the atlases on B and F and the local trivializations alone, even if we are not given an
atlas on E beforehand. Of course, this constructing requires some additional input, since the
definition of a local trivialization (U, ϕ) entails the condition that ϕ is a diffeomorphism, which
requires that E is a manifold, and also the definition of the fiber bundle itself requires that the
total space E is a manifold and π is a map. If we do not assume a manifold structure on the
set E to be given a priori, we can only speak of bijective or surjective functions, and we need
to replace this assumption by imposing certain conditions on them to guarantee that they will
again yield an atlas on E. This leads to the following construction.
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Theorem 2.5.1. Let B,F be manifolds, E a set and π : E → B a surjective function. Further,
let (Ui, i ∈ I) be an open cover, such that for each i ∈ I there exists a bijective function
ϕi : π

−1(Ui) → Ui × F with pr1 ◦ϕi = π, such that for any i, j ∈ I with Uij = Ui ∩ Uj ̸= ∅ the
function ϕij = ϕi ◦ ϕ−1j : Uij × F → Uij × F is a diffeomorphism. Then E is equipped with a
unique manifold structure such that (E,B, π, F ) is a fiber bundle.

Proof. ▶. . .◀ ■

2.6 Construction from transition functions

In the definition 2.2.1 of a fiber bundle (E,B, π, F ) we started with a given total space E, and
demanded the existence of local trivializations as a condition. In practice, however, it is not
always easy to prove the existence of such maps. Also one often encounters the situation that
one does not a priori know the total space manifold E, but only some “local information” which
specifies how fibers must be “glued” together to a total space, and then needs to construct E
along with the fiber bundle structure from this local information. In the following, we explain
this construction.

Recall that given a fiber bundle (E,B, π, F ), for every p ∈ B, there exists a local trivialization
(U, ϕ), with p ∈ U ⊂ B and ϕ : π−1(U) → U × F a diffeomorphism satisfying pr1 ◦ϕ = π.
From the fact that every point p ∈ B must be contained in some local trivialization follows that
the open sets U ⊂ B on which these trivializations are defined cover B. This is similar to the
definition 1.1.4 of an atlas, where one also covers a manifold, but with charts. Another similarity
is the fact that in general one cannot use the same set U = B for all points p, unless the fiber
bundle is trivial; in general it will be necessary to use several, distinct local trivializations, and
so it makes sense to label them as (Ui, ϕi) with an index i ∈ I in some index set I, like we
did with charts. The definition of a fiber bundle states that one can find local trivializations to
cover B, hence ⋃

i∈I
Ui = B . (2.6.1)

Also, again similarly to the case of charts, these local trivializations satisfy a certain notion of
compatibility by construction. To see this, consider two local trivializations (Ui, ϕi) and (Uj , ϕj)
with Uij = Ui ∩ Uj ̸= ∅. Like with charts, one can then consider the maps

ϕij : Uij × F → Uij × F
(p, f) 7→ ϕi(ϕ

−1
j (p, f))

. (2.6.2)

Now recalling the property of local trivializations to preserve the base point p, we can construct
the following diagram:

Uij × F

pr1

��

Uij × F

pr1

��

ϕij

oo

π−1(Uij)

π

��

ϕi
ee

ϕj
99

Uij

(2.6.3)

To clarify this diagram, recall that a local trivialization ϕi satisfies pr1 ◦ϕi = π, and so
π(ϕ−1i (p, f)) = p. Consequently, for p ∈ Uij , we have ϕ−1i (p, f) ∈ π−1(Uij). Conversely,
choosing e ∈ π−1(Uij), and hence π(e) ∈ Uij , we have pr1(ϕi(e)) = π(e) ∈ Uij , and thus
ϕi(e) ∈ Uij×F . Taking these two statements together, we see that ϕi bijectively maps π−1(Uij)
to Uij × F . Smoothness follows from the condition that a local trivialization is smooth. The
same holds for ϕj , and so the upper part of the diagram, including the map ϕij , is well-defined.
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As discussed above, the left and right triangles in this diagram commute by the properties of
local trivialization, pr1 ◦ϕi = π and analogously for ϕj . The upper triangle commutes by the
definition of ϕij . Hence, also the outer triangle commutes, i.e., we have pr1 ◦ϕij = pr1, and so
ϕij preserves the base point p. From the construction of ϕij further follows

(ϕi1i2 ◦ · · ·ϕin−1in ◦ ϕini1)(p, f) = (ϕi1 ◦ ϕ−1i2 ◦ ϕi2 ◦ · · · ◦ ϕ
−1
in
◦ ϕin ◦ ϕ−1i1 )(p, f) = (p, f) (2.6.4)

for all (p, f) ∈ Ui1···in × F , where we used the notation

Ui1···in =

n⋂
k=1

Uik . (2.6.5)

It is instructive to consider this relation for the lowest values of n. For n = 1 it states that

ϕii(p, f) = (p, f) ⇔ ϕii = idUi×F (2.6.6)

for all i ∈ I. Setting n = 2, we have

(ϕij ◦ ϕji)(p, f) = (p, f) ⇔ ϕij = ϕ−1ji (2.6.7)

for all i, j ∈ I. Finally, for n = 3 we find

(ϕij ◦ ϕjk ◦ ϕki)(p, f) = (p, f) ⇔ (ϕij ◦ ϕjk)|Uijk×F = ϕ−1ki |Uijk×F = ϕik|Uijk×F (2.6.8)

for all i, j, k ∈ I. We do not need to consider higher values of n, since the last relation allows
us to conclude from any n to n+1. Hence, if we aim to construct local trivializations from the
transition functions alone, we will need these three conditions. This brings us to the following
construction.

Theorem 2.6.1. Let B and F be manifolds, (Ui, i ∈ I) an open cover of B and ϕij : Uij×F →
Uij × F diffeomorphisms such that

pr1 ◦ϕij = pr1 , (2.6.9a)
ϕii = idUi×F , (2.6.9b)

ϕij = ϕ−1ji , (2.6.9c)

(ϕij ◦ ϕjk)|Uijk×F = ϕik|Uijk×F (2.6.9d)

for all i, j, k ∈ I. Then

E =
⊎
i∈I

Ui × F
/
∼ , (2.6.10)

where
(i, p, f) ∼ (i′, p′, f ′) ⇔ (p′, f ′) = ϕi′i(p, f) , (2.6.11)

is equipped with a unique manifold structure such that (E,B, π, F ), with

π : E → B
[i, p, f ] 7→ p

, (2.6.12)

is a fiber bundle.

Proof. We first need to show that the relation ∼ defined above is indeed an equivalence relation,
so that we can define E as the quotient set, constituted by equivalence classes. Hence, we check:

1. Reflexivity: ϕii(p, f) = (p, f) and thus (i, p, f) ∼ (i, p, f).

2. Symmetry: If (i, p, f) ∼ (i′, p′, f ′), then (p′, f ′) = ϕi′i(p, f). Hence,

(p, f) = ϕ−1i′i (p
′, f ′) = ϕii′(p

′, f ′) , (2.6.13)

and thus (i′, p′, f ′) ∼ (i, p, f).
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3. Transitivity: If (i, p, f) ∼ (i′, p′, f ′) and (i′, p′, f ′) ∼ (i′′, p′′, f ′′), then

(p′′, f ′′) = ϕi′′i′(p
′, f ′) = (ϕi′′i′ ◦ ϕi′i)(p, f) = ϕi′′i(p, f) , (2.6.14)

and thus (i, p, f) ∼ (i′′, p′′, f ′′).

Hence, E is well-defined. Further, one has

p′ = pr1(p
′, f ′) = pr1(ϕi′i(p, f)) = pr1(p, f) = p (2.6.15)

whenever (i, p, f) ∼ (i′, p′, f ′), and thus also π is well-defined, since it does not depend on the
representative of the equivalence class [i, p, f ]. Moreover, for each p ∈ B there exists i ∈ I such
that p ∈ Ui, since the Ui cover B. For each i ∈ I, we can then define

ϕ̃i : Ui × F → π−1(Ui)
(p, f) 7→ [i, p, f ]

. (2.6.16)

Also this is well-defined, since

π(ϕ̃i(p, f)) = π([i, p, f ]) = p = pr1(p, f) ∈ Ui (2.6.17)

by construction. It is surjective, since

π−1(Ui) = {[i, p, f ], p ∈ Ui, f ∈ F} , (2.6.18)

and injective, since [i, p, f ] = [i, p′, f ′] if and only if (p, f) = (p′, f ′), which follows from the fact
that ϕii = idUi×F . Hence, we can take its inverse ϕi = ϕ̃−1i , and find that it satisfies

(pr1 ◦ϕi)([i, p, f ]) = pr1(p, f) = p = π([i, p, f ]) , (2.6.19)

and so pr1 ◦ϕi = π. Finally, we have that

(ϕi ◦ ϕ−1j )(p, f) = ϕi([j, p, f ]) = ϕi([i, p,pr2(ϕij(p, f))]) = ϕij(p, f) , (2.6.20)

which follows from
(j, p, f) ∼ (i, p,pr2(ϕij(p, f))) , (2.6.21)

and so ϕi ◦ ϕ−1j = ϕij , which we assumed to be a diffeomorphism. Hence, the functions ϕi
satisfy the conditions of theorem 2.4.4, and so the statement of the theorem follows. ▶. . .◀ ■

2.7 Bundle morphisms

We can say that a fiber bundle (E,B, π, F ) equips the total space E with some additional
structure, by dividing it into fibers, such that it locally looks like a product manifold. When we
consider maps between the total spaces of two fiber bundles, we are mostly interested in maps
which preserve this structure, i.e., we want points that reside on the same fiber to be mapped
again to points residing on the same fiber. A map that satisfies this property is called a bundle
morphism and defined as follows:

Definition 2.7.1 (Bundle morphism). Let (E1, B1, π1, F1) and (E2, B2, π2, F2) be fiber
bundles. A bundle morphism (or bundle map) is a map θ : E1 → E2 such that there exists
a map ϑ : B1 → B2 for which the diagram

E1
θ //

π1

��

E2

π2

��
B1

ϑ
// B2

(2.7.1)

commutes. The bundle morphism θ is then said to cover ϑ.
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We see that a bundle morphism actually comprises two maps, since a second map ϑ relating the
base spaces also appeared in this definition. However, we do not need to specify ϑ explicitly,
since it is already uniquely determined by θ. To see this, recall from definition 2.2.1 that the
projection of a fiber bundle, and hence also π1, is surjective. This means that for any p ∈ B1

we can find at least one e ∈ E1 such that π1(e) = p. The commutativity of the diagram (2.7.1)
then implies that

ϑ(p) = (ϑ ◦ π1)(e) = (π2 ◦ θ)(e) (2.7.2)

is uniquely determined. Note that the definition also implies that θ must preserve the fibers,
i.e., points e, e′ ∈ E1 with π1(e) = p = π1(e

′) are mapped to points θ(e), θ(e′) ∈ E2 with
π2(θ(e)) = ϑ(p) = π2(θ(e

′)).

Sometimes we need maps which do not only preserve the fibers as discussed above, but maps
between bundles over the same base space that also preserve the base point. This condition
then leads to the following definition.

Definition 2.7.2 (Bundle morphism covering the identity). Let (E1, B, π1, F1) and
(E2, B, π2, F2) be fiber bundles over a common base manifold B. A bundle morphism
covering the identity is a bundle morphism θ : E1 → E2 covering the identity map ϑ = idB
on B, i.e., a map θ such that the diagram

E1
θ //

π1   

E2

π2~~
B

(2.7.3)

commutes.

Note that in general neither of the maps θ, ϑ is required to be bijective. Also there is no
particular requirement on the fibers or the base manifolds of the two bundles. However, if one
poses an additional condition on the bundle morphism, such that it possesses an inverse, this
also implies further compatibility conditions for the two bundles. Let us therefore define:

Definition 2.7.3 (Bundle isomorphism). A bundle isomorphism is a bijective bundle mor-
phism whose inverse is also a bundle morphism. If a bundle isomorphism between two
bundles exists, these bundles are called isomorphic.

It is now easy to check the following statement:

Theorem 2.7.1. Let θ be a bundle isomorphism covering a map ϑ. Then both θ and ϑ are
diffeomorphisms.

Proof. This immediately follows from the fact that θ and ϑ are maps by definition of a bundle
morphism, which in this case must be bijective and whose inverses are also maps, so that they
are diffeomorphisms. ■

Another helpful fact is the following.

Theorem 2.7.2. Let (Ei, Bi, πi, Fi) with i = 1, . . . , 3 be fiber bundles and θ : E1 → E2 and
θ′ : E2 → E3 be bundle morphisms (isomorphisms) covering ϑ : B1 → B2 and ϑ′ : B2 → B3.
Then θ′ ◦ θ : E1 → E3 is a bundle morphism (isomorphism) covering ϑ′ ◦ ϑ : B1 → B3.
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Proof. ▶. . .◀ ■

Finally, we take a look at the relation between bundle morphisms and sections. In particular,
we have the following statement.

Theorem 2.7.3. Let (E1, B, π1, F1) and (E2, B, π2, F2) be fiber bundles over a common base
manifold B, θ : E1 → E2 a bundle morphism covering the identity and σ : B → E1 a section.
Then also θ ◦ σ : B → E2 is a section.

Proof. First note that if σ and θ are smooth maps, then also θ ◦ σ is a smooth maps. Further,
from the fact that θ is a bundle morphism covering the identity follows

π ◦ θ ◦ σ = π ◦ σ = idB , (2.7.4)

and so θ ◦ σ is a section. ■

2.8 Fibered product

There are different possibilities to construct new fiber bundles from given ones, some of which
we will study in the following sections. One of the most elementary is the following. Given two
fiber bundles over a common base manifold, one may construct another fiber bundle as follows:

Definition 2.8.1 (Fibered product). Let (E1, B, π1, F1) and (E2, B, π2, F2) be two fiber
bundles over a common base manifold B. Their fibered product is the fiber bundle
(E,B, π, F ) over B, where:

• The fiber is given by the product manifold F = F1 × F2.

• The total space is the set

E = E1 ×B E2 = {(e1, e2) ∈ E1 × E2 |π1(e1) = π2(e2)} ⊂ E1 × E2 . (2.8.1)

• The atlas of the total space is constructed from the induced charts from defini-
tion 2.4.1, where the charts (V, χ) are the charts of the product manifold F = F1×F2

as given in definition 2.1.1.

• The projection is given by the map

π : E1 ×B E2 → B
(e1, e2) 7→ π(e1, e2) = π1(e1) = π2(e2)

. (2.8.2)

The construction is illustrated in figure 2.6. At each point p ∈ B, the fiber π−1(p) is given by
the product π−11 (p)× π−12 (p). To understand the geometry of the total space E constituted by
these fibers, it is instructive to construct the local trivializations of this bundle, which are then
used to construct induced charts on E. For p ∈ B, one can find local trivializations (U1, ϕ1)
and (U2, ϕ2) of the two factor bundles. Since U1 and U2 are open sets, also their intersection
U = U1 ∩ U2 is open. To construct a local trivialization of (E,B, π, F ) with set U , one still
need a diffeomorphism ϕ : π−1(U)→ U × F . Since F = F1 × F2 is a product manifold, this is
obtained from the known trivializations as

ϕ(e1, e2) = (π(e1, e2), (pr2 ◦ϕ1)(e1), (pr2 ◦ϕ2)(e2)) . (2.8.3)

Here pr2 denotes the projection onto the second factor in U ×F1 in the first occurrence, and in
U × F2 in the second occurrence.
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Bp

E1

π−11 (p)

π1

pr1

E2

π−12 (p)

π2

pr2

π

E

π−1(p) ∼= π−11 (p)× π−12 (p)

Figure 2.6: Illustration of a fibered product. Over each point p ∈ B, the fiber π−1(p) is the
product manifold π−11 (p)× π−12 (p).

Recalling that the total space of a fibered product is as subset of the Cartesian product, E ⊂
E1 ×E2, one can restrict the projections maps defined by the latter to maps pr1 : E → E1 and
pr2 : E → E2. Denoting the elements of E ⊂ E1 × E2 as pairs (e1, e2) (keeping in mind that
they share a common base point in B), these projections have the known form

pr1(e1, e2) = e1 , pr2(e1, e2) = e2 (2.8.4)

and relate the total spaces of the fibered product and its constituent factors. This operation
plays a similar role for fiber bundles as the projection from a product manifold onto its factor
manifolds. One finds that these maps have a few useful properties. To reveal these, it is helpful
to first notice that there are two more fiber bundles hidden in the construction above.

Theorem 2.8.1. Given a fibered product E = E1 ×B E2, the tuples (E,E1,pr1, F2) and
(E,E2,pr2, F1) are fiber bundles.

Proof. Here we show the proof for (E,E1,pr1, F2); the proof for (E,E2,pr2, F1) proceeds anal-
ogously. First note that pr1 : E → E1 is obviously surjective. We will show its smoothness
along with the construction of the local trivializations. For this purpose, let e1 ∈ E1 and
p = π1(e1) ∈ B. Then there exists U ⊂ B with p ∈ U such that there is a local trivialization
(U, ϕ) of E of the form (2.8.3), with ϕ : π−1(U) → U × F1 × F2, as well as a local trivial-
ization ϕ1 : π−11 (U) → U × F1. Now define V = π−11 (U) ⊂ E1. Note that e1 ∈ V and that
π−1(U) = pr−11 (V ). On this set, we can define a diffeomorphism

ψ : π−1(U) → V × F2

(e1, e2) 7→ (e1,pr3(ϕ(e1, e2)))
. (2.8.5)

Using the trivialization ϕ1, we have

pr1,2(ϕ(e1, e2)) = ϕ1(e1) , (2.8.6)

and so we can also write ψ as
ψ = (ϕ−11 , idF2) ◦ ϕ . (2.8.7)

40



The relations between the involved maps is visualized in the following commutative diagram:

π−1(U)
ϕ //

pr1

��

ψ

%%

π

��

U × F1 × F2

pr1,2

��

(ϕ−1
1 ,idF2

)

xx
V × F2

pr1

yy
V

π1

��

ϕ1 // U × F1

pr1

ssU

(2.8.8)

We see that the upper left triangle between π−1(U), V × F1 and V commutes, showing that
(V, ψ) is a local trivialization. This also shows that pr1 : π−1(U) → V is smooth, since it
is composed of the smooth maps ψ : π−1(U) → V × F2 and pr1 : V × F2 → V . Hence,
(E,E1,pr1, F2) is a fiber bundle. ■

Since there are several fiber bundles involved in this construction, it is natural to expect that
these are related by certain bundle morphisms. It turns out that this is indeed the case. The
first class of bundle morphisms is the following.

Theorem 2.8.2. Given a fibered product E = E1×BE2, the maps pr1 : E → E1 and pr2 : E →
E2 defined above are bundle morphisms from (E,B, π, F ) to (E1, B, π1, F1) and (E2, B, π2, F2),
respectively, covering the identity on B.

Proof. The smoothness of pr1 and pr2 was was already shown in theorem 2.8.1, so that here we
restrict ourselves to proving the commutativity of the diagram given in definition 2.7.2. This
simply follows from the constructing of the projection π : E → B of the fibered product, which
satisfies

π(e1, e2) = π1(e1) = π1(pr1(e1, e2)) , π(e1, e2) = π2(e2) = π2(pr2(e1, e2)) (2.8.9)

for all (e1, e2) ∈ E, and hence

π = π1 ◦ pr1 , π = π2 ◦ pr2 . (2.8.10)
■

This result shows once more the aforementioned similarity of a fibered product to a product
manifold. While the latter is canonically equipped with maps which project onto the consti-
tuting factors, in the case of a fibered product, these are promoted to bundle morphisms, and
therefore preserve the fiber bundle structure over B. Two more bundle morphisms are the
following.

Theorem 2.8.3. Given a fibered product E = E1 ×B E2, the maps pr1 : E → E1 and pr2 :
E → E2 defined above are bundle morphisms from (E,E2,pr2, F1) to (E1, B, π1, F1), covering
π2 : E2 → B, and from (E,E1,pr1, F2) to (E2, B, π2, F2), covering π1 : E1 → B, respectively.

Proof. Again we will not show the smoothness of the involved maps, as it was shown in the-
orem 2.8.1. To show the commutativity of the diagram from definition 2.7.1, note that by
construction we have

π1(pr1(e1, e2)) = π1(e1) = π2(e2) = π2(pr2(e1, e2)) (2.8.11)

for all (e1, e2) ∈ E, and hence
π1 ◦ pr1 = π2 ◦ pr2 . (2.8.12)

Identifying pr1 : E → E1 as map between total spaces, pr2 : E → E2 and π1 : E1 → B as bundle
projections and π2 : E2 → B as map between base manifolds, the first part of the statement
follows. The second part is obtained in full analogy by exchanging 1↔ 2. ■
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The two previous statements are easily understood by means of the diagram

E
pr1

~~

pr2

  
π

��

E1

π1   

E2

π2~~
B

(2.8.13)

which commutes by construction of the fibered product. By identifying the appropriate maps
in this diagram either as bundle projections or as maps between bundles, its commutativity
yields the proofs of the aforementioned statements.

The projection maps are also useful for understanding the structure of sections of a fibered
product. It turns out that every section of (E,B, π, F ) can equivalently be expressed as a pair
of sections of the two factor bundles. This is formalized as follows.

Theorem 2.8.4. There is a one-to-one correspondence between sections σ : B → E of a fibered
product E = E1×B E2 and pairs (σ1, σ2) of sections, where σ1 : B → E1 is a section of E1 and
σ2 : B → E2 is a section of E2.

Proof. Given a section σ : B → E, one can easily obtain sections σ1 = pr1 ◦σ : B → E1 and
σ2 = pr2 ◦σ : B → E2. These are sections, since pr1 and pr2 are bundle morphisms covering
the identity.

Conversely, given sections σ1 : B → E1 and σ2 : B → E2, one can construct a section σ : B → E
by defining

σ(p) = (σ1(p), σ2(p)) (2.8.14)
for every p ∈ B. This is an element of E, since

π1(σ1(p)) = p = π2(σ2(p)) , (2.8.15)

which follows from the fact that σ1 and σ2 are sections. Finally, one easily checks that this
construction is the inverse of the construction of σ1 and σ2 given above. ■

▶Explain section in induced coordinates◀

2.9 Pullback bundles

We have seen that in order to specify a bundle morphism, it is sufficient to specify only one
map θ between the total spaces of two bundles, since the map θ̃ covered by θ is uniquely defined
by the commutativity of the diagram (2.7.1). However, there are particular bundle morphisms
which are uniquely defined by a map relating only the base manifolds. One class of such bundles,
which we will encounter later, is called natural bundles. Another construction which yields this
property is the following.

Definition 2.9.1 (Pullback bundle). Let (E,B, π, F ) be a fiber bundle and M a manifold
together with a map ψ : M → B. The pullback bundle (or induced bundle) of (E,B, π, F )
along ψ is the fiber bundle (ψ∗E,M,ψ∗π, F ), where

ψ∗E = {(m, e) ∈M × E,ψ(m) = π(e)} (2.9.1)

and
ψ∗π : ψ∗E → M

(m, e) 7→ m
. (2.9.2)
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Bψ(m)

E

π−1(ψ(m))

π

M m

ψ∗E

(ψ∗π)−1(m)

ψ∗π

ψ

pr2

Figure 2.7: Illustration of a pullback bundle. Over each point m ∈ M , the fiber (ψ∗π)−1(m)
is isomorphic to the fiber π−1(ψ(m)). This isomorphism is mediated by the projection pr2 :
ψ∗E → E, which is defined from ψ∗E ⊂M × E.

The geometric picture behind this construction is that for every base point m ∈ M , the fiber
(ψ∗E)m over m is a copy of the fiber Eψ(m) over ψ(m), which is “pulled back” along ψ. In order
to describe the manifold structure on ψ∗E, one most easily constructs the local trivializations of
the pullback bundle, which then define an atlas via the induced charts as shown in section 2.4.
For m ∈M , let (U, ϕ) be a local trivialization of (E,B, ϕ, F ) such that ψ(m) ∈ U . Then define
Ũ = ψ−1(U) ⊂M and

ϕ̃ : (ψ∗π)−1(Ũ) → Ũ × F
(m, e) 7→ (m,pr2(ϕ(e)))

. (2.9.3)

This construction can be visualized in the following commutative diagram:

F

Ũ × F

pr1
&&

pr2

44

(ψ∗π)−1(Ũ)
pr2

//
ϕ̃

oo

ψ∗π=pr1
��

π−1(U)
ϕ
//

π

��

U × F

pr1
zz

pr2

ii

Ũ
ψ

// U

(2.9.4)

To clarify this, recall that an element (m, e) ∈ (ψ∗π)−1(Ũ) is a pair such that m ∈ Ũ and
e ∈ Eψ(m), i.e., e ∈ E with π(e) = ψ(m). The latter equality, together with the properties
pr2(m, e) = e and

(ψ∗π)(m, e) = pr1(m, e) = m (2.9.5)

explains the lower central rectangle of the diagram (2.9.4). The lower right triangle commutes,
since ϕ is a local trivialization by assumption. The lower left triangle commutes by the defini-
tion (2.9.3) of ϕ̃, which leaves the first component unchanged, such that pr1 ◦ϕ̃ = pr1. Finally,
the upper triangle also commutes due to the definition of ϕ̃, since for the second component
holds

(pr2 ◦ϕ̃)(m, e) = (pr2 ◦ϕ)(e) = (pr2 ◦ϕ ◦ pr2)(m, e) . (2.9.6)

It follows that ϕ̃ is smooth, since it is constituted by smooth maps. To see that it is a diffeo-
morphism, one may explicitly construct its inverse

ϕ̃−1 : Ũ × F → (ψ∗π)−1(Ũ)
(m, v) 7→ (m,ϕ−1(ψ(m), v))

. (2.9.7)
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One first has to check that this is well-defined. For (m, v) ∈ Ũ ×F holds (ψ(m), v) ∈ U ×F by
the definition of Ũ . Hence, we can apply ϕ−1 to obtain an element of π−1(U). Now obviously
holds

π(ϕ−1(ψ(m), v)) = pr1(ψ(m), v) = ψ(m) , (2.9.8)

so that (m,ϕ−1(ψ(m), v)) ∈ (ψ∗π)−1(Ũ), as required. To check that it is indeed the inverse of
ϕ̃, we calculate

(ϕ̃ ◦ ϕ̃−1)(m, v) = ϕ̃(m,ϕ−1(ψ(m), v))

= (m,pr2(ϕ(ϕ
−1(ψ(m), v))))

= (m,pr2(ψ(m), v))

= (m, v) .

(2.9.9)

We must also check the opposite direction, which reads

(ϕ̃−1 ◦ ϕ̃)(m, e) = ϕ̃−1(m,pr2(ϕ(e)))

= (m,ϕ−1(ψ(m),pr2(ϕ(e))))

= (m,ϕ−1(π(e),pr2(ϕ(e))))

= (m,ϕ−1(pr1(ϕ(e)),pr2(ϕ(e))))

= (m,ϕ−1(ϕ(e)))

= (m, e) .

(2.9.10)

Hence, we have indeed constructed the inverse of ϕ̃. Finally, since ϕ̃−1 is constructed from
smooth maps, it is also smooth. This finally proves that ϕ̃ is a diffeomorphism, so that (Ũ, ϕ̃)
is a trivialization. Since we can construct such a pair (Ũ, ϕ̃) around any point m ∈ M from a
local trivialization (U, ϕ) around ψ(m) ∈ B, it follows that (ψ∗E,M,ψ∗π, F ) is indeed a fiber
bundle.

Pullback bundles are interesting also in physics because they allow studying maps whose domain
is one manifold M , but whose codomain is the total space E of a fiber bundle over a different
manifold B. A typical example occurs when one discusses parallel transport, where M = R,
and one is interested in elements of the fibers of E only over the image of a curve γ : M → E.
These are described by sections of the corresponding pullback bundle γ∗E. This turns out to
be a special case of the following statement.

Theorem 2.9.1. Let (E,B, π, F ) be a fiber bundle and M a manifold together with a map
ψ : M → B, and denote the pullback bundle by (ψ∗E,M,ψ∗π, F ). Then there is a one-to-
one correspondence between sections σ of (ψ∗E,M,ψ∗π, F ) and maps σ̂ : M → E satisfying
π ◦ σ̂ = ψ.

Proof. Let first σ :M → ψ∗E be a section. By definition of the pullback bundle it satisfies

ψ = ψ ◦ ψ∗π ◦ σ = ψ ◦ pr1 ◦σ = π ◦ pr2 ◦σ . (2.9.11)

We may hence define σ̂ = pr2 ◦σ :M → E, and obtain the desired map. Conversely, given such
a map σ̂, one may construct

σ : M → ψ∗E
m 7→ (m, σ̂(m))

. (2.9.12)

The latter is indeed an element of ψ∗E, since

(π ◦ σ̂)(m) = ψ(m) . (2.9.13)

Also it is clear that σ is a section. One now easily checks that the two assignments σ 7→ σ̂ and
σ̂ 7→ σ described above are inverses of each other. ■
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The appearance of the pullback bundle can be seen also in the following two constructions.

Definition 2.9.2 (Pullback section). Let (E,B, π, F ) be a fiber bundle and M a manifold
together with a map ψ : M → B, and denote the pullback bundle by (ψ∗E,M,ψ∗π, F ).
Given a section σ : B → E of E, its pullback is defined as the section

ψ∗σ : M → ψ∗E
m 7→ (m,σ(ψ(m)))

. (2.9.14)

This is well-defined, since
(π ◦ σ ◦ ψ)(m) = ψ(m) , (2.9.15)

so that (m,σ(ψ(m))) ∈ ψ∗E, and obviously satisfies (ψ∗π) ◦ (ψ∗σ) = idM , so that it is indeed
a section. This construction now allows us to work with objects in the fibers over B as if they
had been defined over M instead. One may also go in the opposite direction, as we will show
next.

Theorem 2.9.2. Let (E,B, π, F ) be a fiber bundle and M a manifold together with a map
ψ :M → B, and denote the pullback bundle by (ψ∗E,M,ψ∗π, F ). The projection

pr2 : ψ∗E → E
(m, e) 7→ e

(2.9.16)

is a bundle morphism covering ψ.

Proof. Obviously pr2 is smooth, since projections are smooth. To see that it is a bundle mor-
phism, one calculates

(π ◦ pr2)(m, e) = π(e) = ψ(m) = (ψ ◦ pr1)(m, e) = (ψ ◦ ψ∗π)(m, e) , (2.9.17)

where π(e) = ψ(m) follows from (m, e) ∈ ψ∗E. ■

Finally, pullback bundles allow us to relate general bundle morphisms to bundle morphisms
covering the identity as follows.

Theorem 2.9.3. Let (E1, B1, π1, F1) and (E2, B2, π2, F2) be fiber bundles and ψ : B1 → B2 a
map. Then there exists a one to one correspondence between bundle morphisms θ : E1 → E2

covering ψ and bundle morphisms ϑ : E1 → ψ∗E2 covering idB1
.

Proof. We first visualize the maps and spaces mentioned above in the following diagram.

E1
ϑ //

θ

$$

π1 ""

ψ∗E2

pr2 //

ψ∗π2

��

E2

π2

��
B1

ψ
// B2

(2.9.18)

Assuming that ϑ is a bundle morphism, the lower left triangle of this diagram commutes. Also
the lower right rectangle commutes due to theorem 2.9.2. Since both ϑ and pr2 are bundle
morphisms, also their composition θ = pr2 ◦ϑ is a bundle morphism. This can also be seen
directly from

π2 ◦ θ = π2 ◦ pr2 ◦ϑ
= ψ ◦ (ψ∗π2) ◦ ϑ
= ψ ◦ π1 .

(2.9.19)
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Conversely, given a bundle morphism θ on can construct ϑ as

ϑ(e) = (π1(e), θ(e)) . (2.9.20)

The right hand side is an element of the fiber (ψ∗π2)−1(π1(e)), since

(π2 ◦ pr2)(π1(e), θ(e)) = (π2 ◦ θ)(e) = (ψ ◦ π1)(e) = (ψ ◦ pr1)(π1(e), θ(e)) (2.9.21)

and
(ψ∗π2)(π1(e), θ(e)) = pr1(π1(e), θ(e)) = π1(e) . (2.9.22)

Thus, ϑ obtained from this construction is a bundle morphism covering the identity. One now
easily checks that these two constructions are in one to one correspondence. ■
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Chapter 3

Vector bundles

3.1 Vector bundles

Often we encounter fiber bundles whose fibers are not just manifolds, but also carry additional
structure. The most common structure is that of a (real or complex) vector space. In this
case the fiber bundle is called a vector bundle. To keep things simple for now, we will restrict
ourselves to real vector bundles, which are defined as follows.

Definition 3.1.1 (Vector bundle). A (real) vector bundle of rank k ∈ N is a fiber bundle
(E,B, π,Rk) such that for all p ∈ B the fiber Ep = π−1(p) is a real vector space of dimension
k and such that the restrictions of the local trivializations ϕ : π−1(U)→ U ×Rk to a fiber
Ep for p ∈ U are vector space isomorphisms from Ep to {p} × Rk.

One may ask why we want the local trivializations to restrict to vector space isomorphisms.
This is a typical example for a very common situation that we have two different structures,
here that of a manifold and that of a vector space, which we want to be compatible. In this case
it guarantees that on every fiber Ep for p ∈ B, which is both a manifold diffeomorphic to Rk
and a vector space isomorphic to Rk, both

1. the scalar multiplication · : R× Ep → Ep

2. and the addition + : Ep × Ep → Ep

are smooth maps. Further, it guarantees that if p, p′ ∈ B are “close to each other”, then:

1. The zero elements of the vector spaces Ep and Ep′ are “close to each other”.

2. If v ∈ Ep and v′ ∈ Ep′ are “close to each other”, then also λv and λv′ are “close to each
other” for any λ ∈ R.

3. If v ∈ Ep is “close to” v′ ∈ Ep′ and w ∈ Ep is “close to” w′ ∈ Ep′ , then also v + w and
v′ + w′ are “close to each other”.

Of course, we need to define what we mean by being “close to each other”, and why this is
necessary. The necessity will become clear later, when we discuss sections of vector bundles.
One consequence of the aforementioned “closeness” is the following helpful statement.
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Theorem 3.1.1. For every vector bundle (E,B, π,Rk) the functions

+ : E ×B E → E
(e1, e2) 7→ e1 + e2

(3.1.1)

and
· : (B × R)×B E → E

((π(e), λ), e) 7→ λe
(3.1.2)

are fiber bundle morphisms covering the identity on B.

Proof. For p ∈ B, let U ⊂ B with p ∈ U such that there exists a chart (U,ψ) of B with
ψ : U → Rn and a local trivialization (U, ϕ) of E with ϕ : π−1(U)→ U ×Rk. This allows us to
define an induced chart (Ũ, ψ̃) of E with Ũ = π−1(U) and

ψ̃(e) = (ψ(π(e)),pr2(ϕ(e))) ∈ Rn × Rk ∼= Rn+k . (3.1.3)

We will use these components to check that the two functions given above are smooth maps:

First, we construct the set

V = (π ×B π)−1(U) = {(e1, e2) ∈ E × E, π(e1) = π(e2) ∈ U} , (3.1.4)

on which we define an induced chart (V, χ) by

χ : V → Rn+2k

(e1, e2) 7→ (ψ(π(e1)),pr2(ϕ(e1)),pr2(ϕ(e2)))
. (3.1.5)

On this chart, the addition takes the form

ψ̃ ◦+ ◦ χ−1 : χ(V ) → ψ̃(Ũ)
(u, v, w) 7→ (u, v + w)

, (3.1.6)

where we used the fact that ϕ restricts to a vector space isomorphism on each fiber, and hence

pr2(ϕ(e1 + e2)) = pr2(ϕ(e1)) + pr2(ϕ(e2)) , (3.1.7)

while the base point remains unchanged,

π(e1 + e2) = π(e1) = π(e2) . (3.1.8)

The function (u, v, w) 7→ (u, v + w) is smooth, and so it follows that addition is smooth.

We proceed analogously with the multiplication. Let

W = {((b, λ), e) ∈ (B × R)× E, b = π(e) ∈ U} , (3.1.9)

and define an induced chart (W,ω) by

ω : W → Rn+k+1

((π(e), λ), e) 7→ (ψ(π(e)), λ,pr2(ϕ(e)))
. (3.1.10)

On this chart, the scalar multiplication becomes

ψ̃ ◦ · ◦ ω−1 : ω(W ) → ψ̃(Ũ)
(u, λ, v) 7→ (u, λv)

, (3.1.11)

where we once again used the fiber-wise linearity of ϕ to conclude

pr2(ϕ(λe)) = λ pr2(ϕ(e)) , (3.1.12)

as well as the fact that these operations do not change the base point. Since (u, λ, v) 7→ (u, λv)
is smooth, we find that also scalar multiplication is smooth.

Finally, we have seen that both for addition and scalar multiplication the base point is un-
changed. Hence, both operations define bundle morphisms covering the identity on B. ■

We continue with a motivating example.
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Example 3.1.1 (Möbius strip as a vector bundle). In the last section we discussed the Möbius
strip as a fiber bundle (M,S1, π, (−1, 1)). However, the open interval (−1, 1) and the real
line R are diffeomorphic, one-dimensional manifolds, so that one can also view the Möbius
strip as a fiber bundle (M,S1, π,R), which one may call an “infinite Möbius strip”. This
can be seen most easily by changing the charts from our previous definition 2.2.1 such that
Ũ1 = (0, 2π)× R, Ũ2 = (−π, π)× R and the functions

ϕ̃i : Ũi → R3

(t, s) 7→
((
R+ Ws√

1+s2
cos t2

)
cos t,

(
R+ Ws√

1+s2
cos t2

)
sin t, Ws√

1+s2
sin t

2

) .

(3.1.13)
On each fiber π−1(p) ∼= R one has the usual structure of the one-dimensional vector space
R.

3.2 Induced charts and fiber coordinates

The properties given in the definition of vector bundles allow the construction of very convenient
induced charts from the local trivializations and an atlas on the base manifold B alone, since
the fiber F = Rk is canonically equipped with an atlas containing the single chart (V, χ) =
(Rk, idRk). Using the same notation as in definition 2.4.1, the diagram (2.4.5) therefore reduces
to

π−1(U)
ϕ //

π

��

U × Rk

pr1
yy

pr2 ##
U

ψ

��

Rk

Rm

(3.2.1)

For the induced chart (W,ω) we thus have W = ϕ−1(U × Rk) = π−1(U) and

ω(e) = (ψ(π(e)),pr2(ϕ(e))) (3.2.2)

for e ∈W . Since ϕ restricts to isomorphisms of vector spaces on every fiber Ep, the same holds
for the combined function

Ep
ϕ−→ {p} × Rk pr2−−→ Rk (3.2.3)

This means that for v, w ∈ Ep and λ, µ ∈ R we have

(pr2 ◦ϕ)(λv + µw) = λ(pr2 ◦ϕ)(v) + µ(pr2 ◦ϕ)(w) . (3.2.4)

Denoting the coordinates on B by (xi, i = 1, . . . ,m) and the coordinates on F = Rk by (yµ, µ =
1, . . . , k), so that the coordinates in the induced chart are (xi, yµ) and the coordinates xi are
constant along each fiber Ep, the vector space operations act on the fiber coordinates yµ.

Another possible way to view the fiber coordinates on Ep is by realizing that Rk is equipped
with a canonical basis (eµ, µ = 1, . . . , k), so that the coordinates yµ are simply the components
of an element y = yµeµ with respect to this basis. Using the fact that local trivializations
restrict to linear vector space isomorphisms on each fiber, this allows us to define the following
notion:

Definition 3.2.1 (Coordinate basis). Let (E,B, π,Rk) be a vector bundle, p ∈ B and
(U, ϕ) a local trivialization such that p ∈ U . Denote by (eµ, µ = 1, . . . , k) the canonical
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basis of Rk. The coordinate basis on the fiber Ep = π−1(p) induced by the local trivialization
(U, ϕ) is the basis (ϵµ, µ = 1, . . . , k) defined by

ϵµ(p) = ϕ−1(p, eµ) ∈ Ep . (3.2.5)

With the help of the coordinate basis, we can now write every element of Ep in the form yµϵµ(p),
where yµ are the fiber coordinates. Obviously the coordinate basis depends on the choice of
the local trivialization. However, we know that any two bases of a vector space are related by a
linear transformation. It follows that given two different trivializations, and hence two induced
charts both defining a coordinate basis, these bases, and therefore the induced coordinates,
must also be related by linear transformation. We conclude:

Theorem 3.2.1. For the induced vector bundle charts the transition functions are linear trans-
formations of the fiber coordinates.

Proof. Let (U, ϕ) and (Ũ, ϕ̃) be local trivializations with U ∩ Ũ ̸= ∅. Restricting the trivializa-
tions to their intersection, we have the commutative diagram

(U ∩ Ũ)× Rk

pr1

&&

π−1(U ∩ Ũ)
ϕoo ϕ̃ //

π

��

(U ∩ Ũ)× Rk

pr1

xx
U

. (3.2.6)

We see that ϕ|π−1(U∩Ũ) and ϕ̃|π−1(U∩Ũ) are diffeomorphisms which both map π−1(U ∩ Ũ) to
(U ∩ Ũ)× Rk, and so we have a diffeomorphism

ϕ̃|π−1(U∩Ũ) ◦ (ϕ|π−1(U∩Ũ))
−1 : (U ∩ Ũ)× Rk → (U ∩ Ũ)× Rk (3.2.7)

and its inverse. Further restricting these to the fiber over a point p, we have the diagram

{p} × Rk Ep
ϕoo ϕ̃ // {p} × Rk (3.2.8)

and the respective restrictions ϕ|Ep and ϕ̃|Ep are vector space isomorphisms. Hence, also ϕ̃Ep ◦
(ϕ|Ep)−1 and its inverse are vector space isomorphisms, and thus linear transformations of the
fiber coordinates at the point p. ■

This can also easily be seen if we write the corresponding induced fiber coordinates as yµ and
ỹµ, the bases as ϵµ(p) and ϵ̃µ(p), as well as their duals as ϵ̄µ(p) and ¯̃ϵµ(p). From the relation

yµϵµ(p) = ỹµϵ̃µ(p) (3.2.9)

follows
yµ = ỹν⟨ϵ̄µ(p), ϵ̃ν(p)⟩ , ỹµ = yν⟨¯̃ϵµ(p), ϵν(p)⟩ , (3.2.10)

where we wrote ⟨•, •⟩ for the canonical pairing between elements of Ep and its dual E∗p .

3.3 Sections of vector bundles

Vector bundles always admit global sections, the most simple one given in the following example.
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Definition 3.3.1 (Zero section). Let (E,B, π,Rk) be a vector bundle. The zero section
is the map 0 : B → E which assigns to each p ∈ B the zero element of the vector space
Ep = π−1(p).

It is not difficult to show that the zero section is indeed a section. We will prove a more general
statement here, from which also this property of the zero section follows.

Theorem 3.3.1. The set of all sections of a (real) vector bundle is a (real) vector space, where
scalar multiplication and addition are defined pointwise.

Proof. Let f, g be sections of a vector bundle (E,B, π,Rk) with dimB = n and λ, µ ∈ R. We
have to check that also the function h = λf + µg defined by

h : B → E
p 7→ h(p) = λf(p) + µg(p)

(3.3.1)

is a smooth section, i.e., a smooth map such that π ◦ h = idB . We first have to check that this
function is well-defined. Since both f and g are sections, they satisfy π ◦ f = π ◦ g = idB . For
any p ∈ B we thus have f(p) ∈ π−1(p) and g(p) ∈ π−1(p). Since π−1(p) carries the structure
of a vector space, there is a well-defined element λf(p) + µg(p) = h(p) ∈ π−1(p), so that the
function h is indeed well-defined. This also shows that π ◦ h = idB .

We finally show that h is a smooth map. To see this, let (U, ϕ) be a local trivialization around
some point p ∈ B, (U,ψ) a chart defined on the same open set U ∋ p and (π−1(U), ω) the
corresponding induced chart on E. The functions f̃ = ω ◦ f ◦ ψ−1 : ψ(U) → Rn+k and
g̃ = ω ◦ g ◦ ψ−1 : ψ(U) → Rn+k are smooth, since f and g are smooth. By definition of the
induced coordinates, they are of the form

f̃(x1, . . . , xn) = (x1, . . . , xn, f1(x1, . . . , xn), . . . , fk(x1, . . . , xn)) , (3.3.2)

and analogously for g̃. We then define a function h̃ : ψ(U)→ Rn+k by

h̃(x) = (x, λf̃(x) + µg̃(x)) , (3.3.3)

where we wrote x = (x1, . . . , xn). This is smooth, since sums and multiples of smooth functions
on Rn are smooth. Using the fact that in induced coordinates the linear operations on each
fiber Ep are represented by the linear operations on the fiber coordinates, it is now easy to see
that h = ω−1 ◦ h̃ ◦ ψ is smooth on U . Finally, this construction holds for all p ∈ B, and thus h
is a smooth map.

As an alternative proof, we can also make use of theorem 3.1.1. For this purpose, note that

fλ : B → (B × R)×B E
p 7→ ((p, λ), f(p))

(3.3.4)

and
gµ : B → (B × R)×B E

p 7→ ((p, µ), g(p))
(3.3.5)

are smooth sections due to theorem 2.8.4, since f , g and the constant sections p 7→ (p, λ)
and p 7→ (p, µ) of the trivial bundle B × R are smooth sections due to theorem 2.3.3. Since
· : (B×R)×BE → E is a bundle morphism covering the identity, also λf = ·◦fλ and µg = ·◦gµ
are smooth sections by theorem 2.7.3. It then follows that also

(λf, µg) : B → E ×B E
p 7→ (λf(p), µg(p))

(3.3.6)

is a smooth section, again using theorem 2.8.4. Finally using that + : E ×B E → E is a bundle
morphism covering the identity, it follows again from theorem 2.7.3 that λf +µg = + · (λf, µg)
is a smooth section. ■

51



B
p p′

f(p)

f(p′)

g(p) g(p′)

Figure 3.1: Compatibility between geometry and algebraic structure of a vector bundle: if for
two “nearby” points p and p′ both f(p) is “near” f(p′) (i.e., f is a smooth section) and g(p) is
“near” g(p′) (i.e., g is a smooth section), then the same also holds for their linear combinations.

Now this is the precise notion of what we meant by being “close to each other” in the previous
section. It means that if f, g are smooth sections of a vector bundle (“f(p) is close to f(p′)” if
“p is close to p′” and the same for g), then also λf + µg is a smooth section (“λf(p) + µg(p) is
close to λf(p′)+µg(p′)”) for any λ, µ ∈ R. In fact, we can even go one step further, and replace
the constants µ, ν by functions α, β ∈ C∞(B,R), where also multiplication is then defined
pointwise. This then leads to the following statement:

Theorem 3.3.2. The set of all sections of a (real) vector bundle (E,B, π,Rk) is a module over
C∞(B,R), where scalar multiplication and addition are defined pointwise.

Proof. The proof is very similar to the proof of theorem 3.3.1 above. First note that for functions
α, β ∈ C∞(B,R) and sections f, g ∈ Γ(E) the maps

fα : B → (B × R)×B E
p 7→ ((p, α(p)), f(p))

(3.3.7)

and
gβ : B → (B × R)×B E

p 7→ ((p, β(p)), g(p))
(3.3.8)

are smooth sections. The remaining steps are then fully analogous to the proof of theorem 3.3.1.
■

Since vector bundles are (a particular type of) fiber bundles, sections are most conveniently
described in terms of induced coordinates (xi, yµ) on a chart (W,ω) of the total space E, where
(xi) are coordinates on a chart (U,ψ) the base manifold B. In these coordinates a section is
expressed by an assignment (xi) 7→ (xi, yµ), where only the components yµ must be specified,
while the components xi are determined by identity functions. However, in the case of a
vector bundle we can use the fact that for each p ∈ U the coordinates yµ of f(p) are simply
its components in the coordinate basis ϵµ. Using the dual basis ϵ̄µ of E∗p these are given by
yµ = ϵ̄µ(f(p)).

3.4 Vector bundle morphisms

In section 2.7 we have discussed bundle morphisms as maps between the total spaces of fiber
bundles which preserve the fibers, i.e., which map elements belonging to the same fiber of one
bundle to elements of the same fiber of another bundle. In the case of vector bundles, each fiber
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is equipped with the structure of a vector space, and we are usually interested in maps which
also preserve this structure. We can define such maps as follows.

Definition 3.4.1 (Vector bundle morphism). Let (E1, B1, π1,Rk1) and (E2, B2, π2,Rk2) be
vector bundles. A vector bundle morphism (or vector bundle homomorphism) is a bundle
morphism θ : E1 → E2 covering a map ϑ : B1 → B2 such that for each p ∈ B1 the
restriction of θ to the fiber π−11 (p) is a linear function between the vector spaces π−11 (p)
and π−12 (ϑ(p)).

As in the case of (general) bundle morphisms, we can define an isomorphism as an invertible
morphism.

Definition 3.4.2 (Vector bundle isomorphism). A vector bundle isomorphism is a bijective
vector bundle morphism whose inverse is also a vector bundle morphism. If a vector bundle
morphism between two vector bundles exists, these bundles are called isomorphic.

Finally, as in the case for general fiber bundles, also for vector bundles the following statement
holds.

Theorem 3.4.1. Let (Ei, Bi, πi,Rki) with i = 1, . . . , 3 be vector bundles and θ : E1 → E2 and
θ′ : E2 → E3 be vector bundle homomorphisms (isomorphisms) covering ϑ : B1 → B2 and
ϑ′ : B2 → B3. Then θ′ ◦ θ : E1 → E3 is a vector bundle homomorphism (isomorphism) covering
ϑ′ ◦ ϑ : B1 → B3.

Proof. ▶. . .◀ ■

Definition 3.4.3 (Rank). Let (E1, B1, π1, F1) and (E2, B2, π2, F2) be vector bundles and
θ : E1 → E2 a vector bundle morphism covering ϑ : B1 → B2. For p ∈ B1, the rank of θ
in p is the rank of the linear function θp : E1p → E2ϑ(p). A vector bundle morphism is of
constant rank if it has the same rank in all points p ∈ B1.

3.5 Line bundles

Definition 3.5.1 (Line bundle). A line bundle over the field F is a vector bundle
(E,B, π,F) whose typical fiber is the field F.

Theorem 3.5.1. For every line bundle (E,B, π,F) there exists a one-to-one correspondence
between nowhere vanishing sections of E and vector bundle isomorphisms from the trivial line
bundle B × F to E.

Proof. ▶. . .◀ ■
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3.6 Subbundles

Often it is necessary to consider not all elements of the total space of a vector bundle, but
only elements which belong a particular subset of its total space, which again forms a vector
bundle. Recall that given a vector space, such as the fiber Ep over a point p ∈ B of a vector
bundle (E,B, π,Rk), a linear subspace of Ep is a subset which is closed under the vector space
operations of addition and scalar multiplication, and thus is again a vector space. In order to
generalize this concept to vector bundles, one also needs to preserve their geometric properties,
i.e., their differentiable structure. This gives rise to the following notion.

Definition 3.6.1 (Subbundle of a vector bundle). Let (E,B, π,Rk) a vector bundle of rank
k. A subbundle of (E,B, π,Rk) is a vector bundle (S,B, ς,Rl) with S ⊂ E and ς = π|S
of rank l ≤ k such that for every p ∈ B there exists an open set U ⊂ B with p ∈ U and
local sections σ1, . . . , σl ∈ Γ|U (E) such that for all p′ ∈ U the fiber Sp′ = ς−1(p′) is a vector
space of dimension l spanned by σ1(p′), . . . , σl(p′).

This definition conveys the idea that the vector spaces Sp ⊂ Ep at each point p ∈ B are not
chosen arbitrarily, but “smoothly varying”, in the sense that they are spanned by (smooth) local
sections. If follows that also the local trivializations of E and S are related to each other. We
formulate this statement as follows.

Theorem 3.6.1. Let (E,B, π,Rk) a vector bundle of rank k. A vector bundle (S,B, ς,Rl) with
S ⊂ E and ς = π|S is a subbundle of rank l if and only if for each p ∈ B there exists a local
trivialization (U, ϕ) of E with p ∈ U such that (U, ϕ̃) with

ϕ̃ : ς−1(U) → U × Rl
e 7→ (ϕ1(e), . . . , ϕl(e))

(3.6.1)

is a local trivialization of S.

Proof. We prove the statement in two steps. Let ▶. . .◀ ■

In the literature one sometimes finds a different definition of subbundles as vector, which are
mapped into another bundle by means of an injective vector bundle morphism. This definition
is closely related, and essentially equivalent up to isomorphism, to the definition we have given,
as we shall see below.

Theorem 3.6.2. Let (E,B, π,Rk) and (S̃, B, ς̃,Rl) be vector bundles over a common base
B and θ : S → E an injective vector bundle morphism covering the identity on B. Then
(S,B, ς,Rl) with S = θ(S̃) and ς = π|S is a subbundle of (E,B, π,Rk).

Proof. For p ∈ B, consider a local trivialization of S̃ on U ⊂ B with p ∈ U , which is expressed as
a local basis (ϵµ, µ = 1, . . . , l). The basis elements ϵµ : U → S̃ are local sections, which are linear
independent at each p′ ∈ U . Since θ : S̃ → E is injective, the compositions θ ◦ ϵµ : U → E are
local sections which are also linear independent at each point. Hence, they span a l-dimensional
subspace Sp′ ⊂ Ep′ , which agrees with the image θ(S̃p′), since θ is a vector bundle morphism
and thus linear on each fiber. Hence, S is a subbundle. ■

3.7 Metrics on vector bundles
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Chapter 4

Operations on vector bundles

4.1 Dual bundle

Given a vector space, there exist several canonical operations which allow the construction of
further vector spaces, and we will now see that performing them on each fiber of a vector bundle
yields a similar set of operations also on vector bundles. The most common such operation on
vector spaces is taking its dual vector space, and it allows us to define the following notion.

Definition 4.1.1 (Dual vector bundle). Let (E,B, π,Rk) be a vector bundle and denote
the fiber over p ∈ B as Ep. Its dual bundle is the bundle (E∗, B, π̄,Rk) where the total
space E∗ is the union

E∗ =
⊎
p∈B

E∗p , (4.1.1)

where E∗p is the dual vector space of the fiber Ep, and the projection π̄ : E∗ → B assigns
to α ∈ E∗p the base point p.

We still need to specify an atlas on E∗ in order to define its manifold structure. Alternatively, we
can provide the local trivializations of (E∗, B, π̄,Rk), which then yield an induced atlas on E∗
from an atlas on B. Here we will do the latter, and construct the local trivializations from those
on (E,B, π,Rk). Recall that these are pairs (U, ϕ), where U ⊂ B and ϕ : π−1(U) → U × Rk
restricts to a linear isomorphism on every fiber Ep with p ∈ U . From this we can define a map
ϕ̃ : U × Rk → π̄−1(U), which assigns to (p, x) ∈ U × Rk the linear function

ϕ̃(p, x) : Ep → R
e 7→ x · (pr2 ◦ϕ)(e)

. (4.1.2)

This definition needs a few remarks. First, recall that pr2 ◦ϕ : Ep → Rk is a linear isomorphism.
The Euclidean space Rk is equipped with an inner product (x, y) 7→ x · y, which is linear in
each component and non-degenerate. Hence, for fixed x ∈ Rk, the function y 7→ x · y is linear,
and therefore defines an element of (Rk)∗ ∼= Rk. Together with the map pr2 ◦ϕ we thus see
that ϕ̃(p, x) ∈ E∗p . Using the Riesz representation theorem, one can show that this establishes
a linear isomorphism

ϕ̃(p, •) : Rk → E∗p
x 7→ ϕ̃(p, x)

(4.1.3)

of vector spaces. One can further show that ϕ̃ is a diffeomorphism from U×Rk to π̄−1(U) ⊂ E∗.
Its inverse therefore yields a local trivialization (U, ϕ̃−1) of (E∗, B, π̄,Rk). One easily checks
that these are compatible with the definition of a vector bundle.
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If E is equipped with adapted coordinates (xi, yµ) on a chart (W,ω) with W = π−1(U), which
are induced by coordinates (xi) on a chart (U,ψ) on B and a local trivialization, then the
construction above yields coordinates (xi, zµ) on W ∗ = π̄−1(U) ⊂ E∗ such that (yµ) and (zµ)
are dual vector space coordinates on each pair of fibers Ep and E∗p (which is the reason for using
lower indices on zµ).

An equivalent possibility to arrive at the coordinates (xi, zµ) makes use of the induced coordinate
basis on E as given by definition 3.2.1. Denoting the coordinate basis of Ep by (ϵµ), there exists
a corresponding dual basis (ϵ̄µ) on the dual vector space E∗p . This is the coordinate basis
induced by the local trivialization (U, ϕ̃−1) constructed above.

Recall that for any (finite-dimensional) real vector space V and its dual V ∗ there exists a
canonical pairing, i.e., a function

⟨•, •⟩ : V ∗ × V → R
(α, e) 7→ ⟨α, e⟩ = α(e)

, (4.1.4)

which is bilinear and non-degenerate. This of course also applies to the fibers of a vector bundle
and its dual. Further exploiting their geometric relation, we can extend this notion to the whole
bundles, and show the following.

Theorem 4.1.1. Let (E,B, π,Rk) be a vector bundle and (E∗, B, π̄,Rk) its dual bundle. Then
the function

⟨•, •⟩ : E∗ ×B E → R
(α, e) 7→ ⟨α, e⟩ = α(e)

(4.1.5)

is a smooth map.

Proof. For p ∈ B, let (U,ψ) be a chart of B with p ∈ U , as well as (U, ϕ) a local trivialization
of E and (U, ϕ̄) the corresponding local trivialization of E∗. These define a local trivialization
(U,Φ) of E∗ ×B E such that

Φ(α, e) = (π(e),pr2(ϕ̄(α)),pr2(ϕ(e))) (4.1.6)

For e ∈ π−1(U) and α ∈ π̄−1(U). The scalar product · : Rk × Rk → R is smooth, and so is

(α, e) 7→ pr2(ϕ̄(α)) · pr2(ϕ(e)) = α(e) = ⟨α, e⟩ . (4.1.7)
■

It is now clear that if we pre-compose this map with a section of E∗ ×B E, which is equivalent
to a pair of sections of E∗ and E, we obtain a function from B to R. This leads us to the
following definition.

Definition 4.1.2 (Canonical pairing). Let (E,B, π,Rk) be a vector bundle and
(E∗, B, π̄,Rk) its dual bundle. The canonical pairing ⟨•, •⟩ : Γ(E∗) × Γ(E) → C∞(B,R)
between sections of E and E∗ is the function that assigns to f ∈ Γ(E) and υ ∈ Γ(E∗) the
function

⟨υ, f⟩ : B → R
p 7→ ⟨υ(p), f(p)⟩ . (4.1.8)

It is clear that
⟨υ, f⟩ = ⟨•, •⟩ ◦ (υ, f) (4.1.9)

is a composition of smooth maps, and hence also a smooth map.

With the help of the canonical pairing, it is now also possible to define the following notion.
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Definition 4.1.3 (Dual vector bundle morphism). Let (E1, B1, π1,Rk1) and
(E2, B2, π2,Rk2) be vector bundles and θ : E1 → E2 a vector bundle homomor-
phism covering a diffeomorphism ϑ : B1 → B2. The dual vector bundle morphism is the
vector bundle morphism θ̄ : E∗2 → E∗1 covering ϑ̄ = ϑ−1 : B2 → B1 which is defined such
that

⟨θ̄(α), e⟩ = ⟨α, θ(e)⟩ (4.1.10)

for all e ∈ E1 and α ∈ E∗2 with ϑ(π1(e)) = π̄2(α).

4.2 Direct sum

We continue with another important construction:

Definition 4.2.1 (Direct sum bundle). Let (E1, B, π1,Rk1) and (E2, B, π2,Rk2) be vector
bundles and denote the fibers over p ∈ B as E1p and E2p. Their direct sum (or Whitney
sum) is the bundle (E1⊕E2, B, π1⊕π2,Rk1+k2) where the total space E1⊕E2 is the union

E1 ⊕ E2 =
⊎
p∈B

E1p ⊕ E2p , (4.2.1)

where (E1 ⊕ E2)p = E1p ⊕ E2p is the direct sum of the fiber vector spaces E1p and E2p,
and the projection π1 ⊕ π2 : E1 ⊕ E2 → B assigns to e ∈ (E1 ⊕ E2)p the base point p.

Note that the elements of each fiber (E1 ⊕ E2)p are given by pairs (v, v′) of elements v ∈ E1p

and v′ ∈ E2p, where the vector space operations act on both components:

λ(v, v′) + µ(w,w′) = (λv + µw, λv′ + µw′) . (4.2.2)

Given a chart (U,ψ) on B and local trivializations (U, ϕ1) of (E1, B, π1,Rk1) and (U, ϕ2) of
(E2, B, π2,Rk2), so that the latter induce charts (W1, ω1) and (W2, ω2), we can construct an
induced chart (W,ω) and local trivialization (U, ϕ) of (E1 ⊕ E2, B, π1 ⊕ π2,Rk1+k2) as follows.
Let W = (π1 ⊕ π2)−1(U) ⊂ E1 ⊕ E2 and define

ϕ(v, v′) = ((π1 ⊕ π2)(v, v′), (pr2 ◦ϕ1)(v), (pr2 ◦ϕ2)(v′)) , (4.2.3)

as well as
ω(v, v′) = (ψ((π1 ⊕ π2)(v, v′)), (pr2 ◦ϕ1)(v), (pr2 ◦ϕ2)(v′)) . (4.2.4)

One easily checks that all required properties are satisfied.

Given coordinates (xi) defined by chart (U,ψ) on B and corresponding introduced coordinates
(xi, yµ) on (E1, B, π1,Rk1) and (xi, zµ̄) on (E2, B, π2,Rk2), the corresponding induced coordi-
nates on (E1 ⊕ E2, B, π1 ⊕ π2,Rk1+k2) simply take the form (xi, yµ, zµ̄).

Again we can make use of the induced coordinate bases. Denoting the coordinate bases of
E1p and E2p by (ϵµ, µ = 1, . . . , k1) and (ϵ′µ̄, µ̄ = 1, . . . , k2), respectively, the induced basis of
E1p ⊕ E2p is simply their union

(ϵµ, ϵ
′
µ̄) = {ϵ1, . . . , ϵk1 , ϵ′1, . . . , ϵ′k2} (4.2.5)

with k1+k2 elements. Using this basis an element of E1p⊕E2p is uniquely written as yµϵµ+zµ̄ϵ′µ̄.
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We finally remark that there is a close relationship, but also a subtle difference between the
fibered product E1 ×B E2 and the direct sum E1 ⊕ E2. We will first study the former, which
we can formulate as follows.

Theorem 4.2.1. Let (E1, B, π1,Rk1) and (E2, B, π2,Rk2) be vector bundles over a common
base B. Then the map

⊕ : E1 ×B E2 → E1 ⊕ E2

(v, v′) 7→ (v, v′)
(4.2.6)

is a fiber bundle isomorphism covering the identity.

Proof. In both cases the total spaces are constituted by pairs (v, v′) ∈ E1 × E2 with π1(v) =
π2(v

′). Hence, both spaces contain the same elements. Also the atlases and local trivializations
agree, and so E1 ×B E2 and E1 ⊕ E2 are isomorphic fiber bundles, and the isomorphism is as
given above. ■

The statement above implies that the total spaces of E1 ×B E2 and E1 ⊕ E2 are “the same”,
i.e., diffeomorphic manifolds, and that also the projections agree. The difference lies in the
additional algebraic structure. The fibered product is an operation on general fiber bundles,
and does not assign any algebraic structure to the resulting bundle; hence, E1 ×B E2 is a fiber
bundle, but not a vector bundle, even if E1 and E2 are vector bundles, because it does not
imply any vector space operations on the pairs (v, v′). In contrast, E1 ⊕E2 is a vector bundle,
since its definition equips every fiber with a particular vector space structure.

Theorem 4.2.2. Let (E1, B, π1,Rk1) and (E2, B, π2,Rk2) be vector bundles over a common
base B. Then the inclusion maps

ι1 : E1 → E1 ⊕ E2

v 7→ (v, 0)
(4.2.7)

and
ι2 : E2 → E1 ⊕ E2

v′ 7→ (0, v′)
(4.2.8)

are vector bundle homomorphisms covering the identity.

Proof. ▶. . .◀ ■

Theorem 4.2.3. Let (E1, B, π1,Rk1) and (E2, B, π2,Rk2) be vector bundles over a common
base B. Then the projection maps

pr1 : E1 ⊕ E2 → E1

(v, v′) 7→ v
(4.2.9)

and
pr2 : E1 ⊕ E2 → E2

(v, v′) 7→ v′
(4.2.10)

are vector bundle homomorphisms covering the identity.

Proof. ▶. . .◀ ■

4.3 Tensor product

Another possible construction is the following:
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Definition 4.3.1 (Tensor product bundle). Let (E1, B, π1,Rk1) and (E2, B, π2,Rk2) be
vector bundles and denote the fibers over p ∈ B as E1p and E2p. Their tensor product is
the bundle (E1 ⊗ E2, B, π1 ⊗ π2,Rk1k2) where the total space E1 ⊗ E2 is the union

E1 ⊗ E2 =
⊎
p∈B

E1p ⊗ E2p , (4.3.1)

where (E1⊗E2)p = E1p⊗E2p is the tensor product of the fiber vector spaces E1p and E2p,
and the projection π1 ⊗ π2 : E1 ⊗ E2 → B assigns to e ∈ (E1 ⊗ E2)p the base point p.

The construction of induced charts proceeds essentially in the same way as for the direct sum
discussed in the previous section, and so we will not repeat it here. Instead, we will construct
the coordinate bases. Given bases (ϵµ, µ = 1, . . . , k1) of E1p and (ϵ′µ̄, µ̄ = 1, . . . , k2) of E2p, a
basis of (E1 ⊗E2)p is given by (ϵµ ⊗ ϵ′µ̄), and thus has k1k2 elements. Coordinates on E1 ⊗E2

therefore are of the form (xi, wµµ̄), where the basis expansion takes the form

wµµ̄ϵµ ⊗ ϵ′µ̄ , (4.3.2)

and (xi) are coordinates on the base manifold B. It is thus straightforward to conclude the
following.

Theorem 4.3.1. The tensor product of two vector bundles of rank k1 and k2 is a vector bundle
of rank k1k2.

Proof. ▶. . .◀ ■

Combining this notion with that of the dual bundle, one finds the following.

Theorem 4.3.2. The dual (E1 ⊗ E2)
∗ of a tensor product bundle E1 ⊗ E2 is canonically

isomorphic to E∗1 ⊗ E∗2 .

Proof. ▶. . .◀ ■

Theorem 4.3.3. Let (E1, B, π1,Rk1) and (E2, B, π2,Rk2) be vector bundles over a common
base B. Then the map

⊗ : E1 ×B E2 → E1 ⊗ E2

(v, v′) 7→ v ⊗ v′ (4.3.3)

is a fiber bundle morphism covering the identity.

Proof. ▶. . .◀ ■

Often one considers the tensor product of multiple copies of the same bundle. Since this is a
rather common construction, we give it its own name.

Definition 4.3.2 (Tensor power bundle). Let (E,B, π,Rn) be a vector bundle of rank n.
Its k’th tensor power is the bundle (

⊗k
E,B,

⊗k
π,Rnk) with⊗k

E = E ⊗ . . .⊗ E︸ ︷︷ ︸
k times

. (4.3.4)
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Finally, it is often useful to also include powers of the dual vector bundle E∗ discussed in
section 4.1. Also here we introduce a convenient notation.

Definition 4.3.3 (Tensor bundle). Let (E,B, π,Rn) be a vector bundle of rank n. Its
tensor bundle of type (r, s) for r, s ∈ N is the tensor product bundle

Ers =
⊗r

E ⊗⊗s
E∗ . (4.3.5)

Given coordinates (xi, yµ) on E corresponding to a coordinate basis (ϵµ), the corresponding
coordinates on Ers can therefore be written in the form (xi, zµ1···µr

ν1···νs) and correspond to
a coordinate basis ϵµ1

⊗ . . . ⊗ ϵµr ⊗ ϵ̄ν1 ⊗ . . . ⊗ ϵ̄νs . From these basis expressions, it is also
straightforward to arrive at the following statement.

Theorem 4.3.4. The dual (Ers )∗ of a tensor bundle Ers is canonically isomorphic to Esr .

Proof. This follows immediately from repeatedly applying theorem 4.3.2. ■

We have already encountered a few special cases of tensor bundles. It follows directly from
definition 4.3.3 that E1

0
∼= E and E0

1
∼= E∗. Further, setting r = s = 0, we find the empty

tensor product; this is simply the trivial line bundle E0
0
∼= B × R. Finally, we will encounter

another special case for r = s = 1 in section 4.6.

Sections of the tensor bundle Ers play an important role, and carry various operations. We will
therefore discuss them in detail in chapter 5.

4.4 Exterior power

From the construction of the tensor power bundle shown in the one can easily derive similar
notions. One of the most important, which will be relevant for the construction of differential
forms in chapter 9, is the following.

Definition 4.4.1 (Exterior power bundle). Let (E,B, π,Rn) be a vector bundle of rank
n and denote the fiber over p ∈ B as Ep. Its k’th exterior power is the bundle
(ΛkE,B,Λkπ,R(

n
k)) where the total space ΛkE is the union

ΛkE =
⋃
p∈B

ΛkEp , (4.4.1)

where ΛkEp is the k’th exterior power of the fiber Ep, and the projection Λkπ : ΛkE → B
assigns to α ∈ ΛkEp the base point p.

Recall from linear algebra that the exterior power ΛkV of a vector space V of dimension n with
basis (ϵi, i = 1, . . . , n) is spanned by the vectors

ϵi1 ∧ . . . ∧ ϵik =
∑
σ∈Sk

sgn(σ)ϵiσ(1) ⊗ . . .⊗ ϵiσ(k) , (4.4.2)

where the sum is taken over all permutations σ (elements of the symmetric group Sk permuting
k objects) and sgn(σ) is the signature of σ. It follows that there are

(
n
k

)
linearly independent
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vectors of this type, which constitute a basis

{ϵi1 ∧ . . . ∧ ϵik , 1 ≤ i1 < . . . < ik ≤ n} (4.4.3)

of ΛkV . If V = Ep is a fiber of a vector bundle, we may choose for this purpose an induced
coordinate basis. Following essentially the same construction as in the case of tensor product
bundles and tensor powers, one constructs an induced basis of ΛkEp. It is thus clear that
(ΛkE,B,Λkπ,R(

n
k)) is indeed a vector bundle of rank(

n

k

)
=

n!

k!(n− k)! . (4.4.4)

Its relation to the tensor power bundle is established by the following statement:

Theorem 4.4.1. The exterior power bundle (ΛkE,B,Λkπ,R(
n
k)) is a subbundle of the tensor

power bundle (
⊗k

E,B,
⊗k

π,Rnk), and there exists a surjective vector bundle homomorphism
θ− :

⊗k
E → ΛkE, which can be written in the coordinate basis as

(xi, yµ1···µkϵµ1 ⊗ . . .⊗ ϵµk) 7→ (xi, yµ1···µkϵµ1 ∧ . . . ∧ ϵµk) . (4.4.5)

Proof. ▶. . .◀ ■

Using the definition (4.4.2) of the basis, we can also write the fiber coordinate of the image in
the form

1

k!
yµ1···µkϵµ1

∧ . . . ∧ ϵµk =
1

k!
yµ1···µk

∑
σ∈Sk

sgn(σ)ϵµσ(1) ⊗ . . .⊗ ϵµσ(k)

=
1

k!

(∑
σ∈Sk

sgn(σ)yµσ(1)···µσ(k)

)
ϵµ1 ⊗ . . .⊗ ϵµk

= y[µ1···µk]ϵµ1
⊗ . . .⊗ ϵµk ,

(4.4.6)

where we introduced the notation

y[µ1···µk] =
1

k!

∑
σ∈Sk

sgn(σ)yµσ(1)···µσ(k) . (4.4.7)

4.5 Symmetric power

In analogy to the exterior power of vector bundles, one may also consider their symmetric power,
which is defined as follows.

Definition 4.5.1 (Symmetric power bundle). Let (E,B, π,Rn) be a vector bundle of
rank n and denote the fiber over p ∈ B as Ep. Its k’th symmetric power is the bundle
(Symk E,B, Symk π,R(

n+k−1
k )) where the total space Symk E is the union

Symk E =
⋃
p∈B

Symk Ep , (4.5.1)

where Symk Ep is the k’th symmetric power of the fiber Ep, and the projection Symk π :

Symk E → B assigns to α ∈ Symk Ep the base point p.
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In this case we may use the fact that the symmetric power Symk V of a vector space V of
dimension n with basis (ϵi, i = 1, . . . , n) is spanned by the vectors

ϵi1 ⊙ . . .⊙ ϵik =
∑
σ∈Sk

ϵiσ(1) ⊗ . . .⊗ ϵiσ(k) , (4.5.2)

where also in this case the sum is taken over all permutations σ. One can show that there are(
n+k−1

k

)
linearly independent vectors of this type, which constitute a basis

{ϵi1 ⊙ . . .⊙ ϵik , 1 ≤ i1 ≤ . . . ≤ ik ≤ n} (4.5.3)

of Symk V . Applying this to the fibers of a vector bundle and making use of the induced coordi-
nate basis, in the same way as done for the exterior power, one finds that (Symk E,B, Symk π,R(

n+k−1
k ))

is indeed a vector bundle of rank(
n+ k − 1

k

)
=

(n+ k − 1)!

k!(n− 1)!
. (4.5.4)

It is related to the tensor power bundle as follows:

Theorem 4.5.1. The symmetric power bundle (Symk E,B, Symk π,R(
n+k−1
k )) is a subbundle

of the tensor power bundle (
⊗k

E,B,
⊗k

π,Rnk), and there exists a surjective vector bundle
homomorphism θ+ :

⊗k
E → Symk E, which can be written in the coordinate basis as

(xi, yµ1···µkϵµ1 ⊗ . . .⊗ ϵµk) 7→ (xi, yµ1···µkϵµ1 ⊙ . . .⊙ ϵµk) . (4.5.5)

Proof. ▶. . .◀ ■

Using the definition (4.5.2) of the basis, we can also write the fiber coordinate of the image in
the convenient form

1

k!
yµ1···µkϵµ1

⊙ . . .⊙ ϵµk =
1

k!
yµ1···µk

∑
σ∈Sk

ϵµσ(1) ⊗ . . .⊗ ϵµσ(k)

=
1

k!

(∑
σ∈Sk

yµσ(1)···µσ(k)

)
ϵµ1 ⊗ . . .⊗ ϵµk

= y(µ1···µk)ϵµ1
⊗ . . .⊗ ϵµk ,

(4.5.6)

where we introduced the notation

y(µ1···µk) =
1

k!

∑
σ∈Sk

yµσ(1)···µσ(k) . (4.5.7)

4.6 Homomorphism and endomorphism bundles

Another possible way to obtain a vector space from two given vector spaces V1, V2 is by consid-
ering all linear functions from V1 to V2. Clearly, this is a vector space, denoted Hom(V1, V2),
since any linear combination of linear functions is again a linear function, and the zero element
of this vector space is the function which sends all elements of V1 to the zero element of V2. If
these vector spaces are fibers of vector bundles, it appears natural to define a related notion
also for the whole bundles. We thus define:
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Definition 4.6.1 (Homomorphism bundle). Let (E1, B, π1,Rk1) and (E2, B, π2,Rk2) be
vector bundles and denote the fibers over p ∈ B as E1p and E2p. Their homomorphism bun-
dle is the bundle (Hom(E1, E2), B,Hom(π1, π2),Rk1k2) where the total space Hom(E1, E2)
is the union

Hom(E1, E2) =
⋃
p∈B

Hom(E1p, E2p) , (4.6.1)

where Hom(E1, E2)p = Hom(E1p, E2p) is the space of linear functions from E1p to E2p,
and the projection Hom(π1, π2) : Hom(E1, E2)→ B assigns to e ∈ Hom(E1, E2)p the base
point p.

Of course one still has to show that this is indeed a vector bundle, with the total space being a
manifold and all requirements being satisfied. However, instead of doing this, we will make use
of the following statement, which relates that we essentially already encountered and discussed
this bundle before.

Theorem 4.6.1. Let (E1, B, π1,Rk1) and (E2, B, π2,Rk2) be vector bundles. There exists a
canonical vector bundle isomorphism from the homomorphism bundle (Hom(E1, E2), B,Hom(π1, π2),Rk1k2)
to the tensor product bundle (E2 ⊗ E∗1 , B, π2 ⊗ π̄1,Rk1k2).

Proof. ▶. . .◀ ■

We will not give a full proof here, and a sketch of the proof should be sufficient. The key
ingredient is that there is a canonical vector space isomorphism from Hom(V1, V2) to V2 ⊗ V ∗1
for any pair of vector spaces. This isomorphism can be applied to each fiber of the bundles
constructed above. One then easily checks that this indeed yields a vector bundle isomorphism.
Hence, one may canonically identify these two bundles. Note that in the literature one also
finds the opposite order E∗1 ⊗ E2 of the tensor product; also this is vector bundle isomorphic
to Hom(E1, E2). However, he we prefer the former, since it will allow for a more intuitive
component notation, as we shall see below.

Sections of homomorphism bundles have a few interesting properties. Note that such a section
f : B → Hom(E1, E2) assigns to each point p ∈ B a linear function f(p) : E1p → E2p. Given a
section v : B → E1 of E1 one may then define fv : B → E2 such that

fv : B → E2

p 7→ f(p)(v(p))
. (4.6.2)

It is not difficult to prove that fv is a section of E2. Hence, sections of the homomorphism
bundle allow to relate sections of different vector bundles. This can be put in formal terms in
the following statement:

Theorem 4.6.2. There is a one-to-one correspondence between vector bundle homomorphisms
from (E1, B, π1,Rk1) to (E2, B, π2,Rk2) covering the identity idB on B and sections of the
homomorphism bundle (Hom(E1, E2), B,Hom(π1, π2),Rk1k2) .

Proof. From definition 3.4.1 follows that a vector bundle homomorphism covering the identity
on a common base manifold B is a map θ : E1 → E2 that restricts to a linear map θp = θ|E1p :
E1p → E2p on the fibers over every point p ∈ B. Hence, θp ∈ Hom(E1p, E2p), and so

ϑ : B → Hom(E1, E2)
p 7→ ϑ(p) = θp

(4.6.3)

defines a section of the homomorphism bundle. Conversely, every such section ϑ ∈ Γ(Hom(E1, E2))
defines a vector bundle homomorphism θ : E1 → E2 covering the identity by defining θ(e) =
ϑ(π1(e))e. These two prescriptions are obviously inverse to each other.
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To check the smoothness of the respective maps, consider local trivializations (U, ϕ1) of E1 and
(U, ϕ2) of E2 on a common domain U ⊂ B. ▶. . .◀ ■

If the two bundles are the same, E1 = E2 and π1 = π2, then one has the following special case:

Definition 4.6.2 (Endomorphism bundle). Let (E,B, π,Rk) a vector bundle. Its endo-
morphism bundle is the bundle End(E) = Hom(E,E).

We finally also discuss coordinate bases of the homomorphism bundle. For this purpose, let
(ϵµ, µ = 1, . . . , k1) and (ϵ′µ̄, µ̄ = 1, . . . , k2) denote the coordinate basis of the fibers E1p and
E2p over a point p ∈ B. Then we can construct the basis (ϵ̄µ) of the fiber E∗1p of the dual
bundle, as shown in section 4.1. Using the construction from section 4.3, we further obtain the
basis (ϵ′µ̄ ⊗ ϵ̄µ) of the fibers of the tensor product bundle, which, following theorem 4.6.1, is
canonically isomorphic to the homomorphism bundle. Hence, we may use the same basis and
the canonical isomorphism as a basis on the homomorphism bundle Hom(E1, E2).

Denoting the coordinates on B by (xi), one may denote the coordinates on the homomorphism
bundle by (xi, wµ̄µ). Using the coordinate basis, an element of the fiber over the point with
coordinates (xi) is then expressed as wµ̄µϵ′µ̄ ⊗ ϵ̄µ.
The coordinate expressions above are particularly useful for describing operations on the sections
of the respective bundles, such as the aforementioned application (4.6.2) of a section of the
homomorphism bundle to a section of the first constituting vector bundle. Writing these sections
in coordinates as (xi) 7→ (xi, f µ̄µ) and (xi) 7→ (xi, vµ), respectively, we can write fv as (xi) 7→
(xi, f µ̄µv

µ), where we used the Einstein summation convention, i.e., we take the sum over the
index µ. This follows from the action of the homomorphism,

fv =
(
f µ̄µϵ

′
µ̄ ⊗ ϵ̄µ

)
· (vνϵν)

= f µ̄µv
νϵ′µ̄ ⊗ (ϵ̄µ · ϵν)

= f µ̄µv
νϵ′µ̄δ

µ
ν

= f µ̄µv
µϵ′µ̄ .

(4.6.4)

This notation is also the reason why we choose to write the homomorphism bundle as E2 ⊗E∗1
and not in the opposite order, since it is reminiscent of multiplying a matrix f with a vector v.
More of these constructions are discussed in chapter 5.

4.7 Quotient bundles
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Chapter 5

Tensors

5.1 Tensor fields

Among the different operations on vector bundles we studied in chapter 4, the tensor power
bundle 4.3.2, and more generally the tensor bundle 4.3.3, introduced in section 4.3 play an
important role. We have seen that the symmetric and antisymmetric powers introduced in
sections 4.4 and 4.5 constitute particular subbundles of tensor bundles, while the endomorphism
bundle 4.6.2 is simply identified with E1

1 . We now study the sections of these bundles in detail.
We first introduce a suitable name.

Definition 5.1.1 (Tensor field). A tensor field of type (r, s) in a vector bundle π : E → B
is a section of the tensor bundle Ers . The set of all tensor fields of type (r, s) in E is denoted
Γ(Ers ).

In order to work with tensor fields, it is most convenient to introduce a local basis of the tensor
bundle Ers . This is achieved most easily by using a basis (ϵa) of E. It follows that this basis
induces a dual basis and (ϵ̄a) of E∗, which can then further be used to construct a basis on Ers .
This basis is then given by the elements

ϵa1 ⊗ . . .⊗ ϵar ⊗ ϵ̄b1 ⊗ . . .⊗ ϵ̄bs , (5.1.1)

where each index runs from 1 to dimB, so that the basis has (dimB)r+s elements. Any element
u ∈ Ers can be expanded using this basis in the form

u = ua1···ar b1···bsϵa1 ⊗ . . .⊗ ϵar ⊗ ϵ̄b1 ⊗ . . .⊗ ϵ̄bs , (5.1.2)

with r upper and s lower indices. For a tensor field T ∈ Γ(Ers ), we have such an element for
every p ∈ B, and so we can write it analogously locally as

T = T a1···ar b1···bsϵa1 ⊗ . . .⊗ ϵar ⊗ ϵ̄b1 ⊗ . . .⊗ ϵ̄bs , (5.1.3)

where the components T a1···ar b1···bs are smooth functions on a neighborhood U ⊂ B on which
the basis (ϵa) is defined.

▶Point out special cases?◀

Recall that a real function f ∈ C∞(B,R) is a smooth map f : B → R. However, each real
function uniquely determines a smooth section σ of the trivial line bundle B × R, by setting

σ : B → B × R
p 7→ (p, f(p))

, (5.1.4)
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and conversely, every such section defines a real function f = pr2 ◦σ. In other words, there is
a canonical bijection such that C∞(B,R) ∼= Γ(B × R). Identifying B × R ∼= Ers , we can thus
interpret a real function as a tensor field of type (0, 0) for any vector bundle.

5.2 Product of tensor fields

There are different ways to obtain tensor fields from simpler ones. A rather simple construction
works as follows.

Definition 5.2.1 (Tensor field product). Let π : E → B be a vector bundle and T ∈ Γ(Ers )
and U ∈ Γ(Etu) be tensor fields. Their tensor product is a tensor field T ⊗ U ∈ Γ(Er+ts+u)
such that for each p ∈ B,

(T ⊗ U)(p) = T (p)⊗ U(p) . (5.2.1)

This definition can most easily be understood using a local basis (ϵa) of E. Let T ∈ Γ(Ers ) and
U ∈ Γ(Etu), and write V = T ⊗ U . The tensor product is given by

T ⊗ U =
(
T a1···ar b1···bsϵa1 ⊗ . . .⊗ ϵar ⊗ ϵ̄b1 ⊗ . . .⊗ ϵ̄bs

)
⊗
(
U c1···ctd1···duϵc1 ⊗ . . .⊗ ϵct ⊗ ϵ̄d1 ⊗ . . .⊗ ϵ̄du

)
= T a1···ar b1···bsU

c1···ct
d1···du

ϵa1 ⊗ . . .⊗ ϵar ⊗ ϵ̄b1 ⊗ . . .⊗ ϵ̄bs ⊗ ϵc1 ⊗ . . .⊗ ϵct ⊗ ϵ̄d1 ⊗ . . .⊗ ϵ̄du

(5.2.2)

and yields the components

V a1···ar b1···bs
c1···ct

d1···du = T a1···ar b1···bsU
c1···ct

d1···du . (5.2.3)

One might be worried that the basis elements ϵa and ϵ̄a appear now in “mixed order”, in contrast
to the definition 4.3.3 of the tensor bundle. This is not a problem, since the tensor product
bundles E ⊗E∗ and E∗ ⊗E are canonically isomorphic, so one can simply define a new tensor
field Ṽ such that

Ṽ a1···arc1···ctb1···bsd1···du = V a1···ar b1···bs
c1···ct

d1···du . (5.2.4)

However, this does not mean that changing the order of indices does not change the tensor field
- V and Ṽ carry the same information, but encoded differently. As another simple example,
the tensor fields

Vabϵ̄
a ⊗ ϵ̄b and Vbaϵ̄

a ⊗ ϵ̄b = Vabϵ̄
b ⊗ ϵ̄a (5.2.5)

are (for general Vab) not the same! This will be discussed in more detail in section 5.4.

There is another possibility to understand the tensor product of tensor fields. To see this, recall
that the pair (T,U) with T ∈ Γ(Ers ) and U ∈ Γ(Etu) constitutes a section of the fibered product
Ers ×B Etu, since for each p ∈ B, it defines a pair (T (p), U(p)) with πrs(T (p)) = πtu(U(p)) = p .
This leads to the following statement.

Theorem 5.2.1. The tensor field product ⊗ : Γ(Ers )× Γ(Etu)→ Γ(Er+ts+u) is induced by a fiber
bundle morphism θr,ts,u : Ers ×B Etu → Er+ts+u, such that

T ⊗ U = θr,ts,u ◦ (T,U) (5.2.6)

for all T ∈ Γ(Ers ) and U ∈ Γ(Etu).

Proof. ▶. . .◀ ■

66



As discussed in section 4.2, the fibered product Ers ×B Etu is not equipped with a vector bundle
structure, and so we can only refer to the map θr,ts,u defined above as a finber bundle morphism.
However, one may pose the question whether one can equip Ers ×B Etu with an additional
structure, which allows to obtain further properties of θr,ts,u. A naive approach could be to
introduce a vector bundle structure by replacing Ers ×B Etu with the Whitney sum Ers ⊕ Etu,
and ask whether this turns θr,ts,u into a vector bundle homomorphism. However, it turns out
that this is not the case. ▶. . .◀

5.3 Contraction of tensor fields

After showing a way how to construct higher tensor fields from simpler ones, we also show a
way how to obtain simpler tensor fields.

Definition 5.3.1 (Tensor field contraction). Let π : E → B be a vector bundle and Γ(Ers )
the space of tensors of type (r, s) of E with r, s ≥ 1. The contraction of the k’th and l’th
tensor component, where 1 ≤ k ≤ r and 1 ≤ l ≤ s, is the unique linear function

trkl : Γ(Ers )→ Γ(Er−1s−1 ) , (5.3.1)

such that
trkl (A⊗B ⊗ C ⊗D ⊗ E ⊗ F ) = ⟨B,E⟩A⊗ C ⊗D ⊗ F (5.3.2)

for all A ∈ Γ(Ek−10 ), B ∈ Γ(E1
0), C ∈ Γ(Er−k0 ), D ∈ Γ(E0

l−1), E ∈ Γ(E0
1), F ∈ Γ(E0

s−l).

Also this construction is most easily illustrated using coordinates. Let T ∈ Γ(Ers ) a tensor field
of type (r, s) of E. In a local basis it is expanded as

T = T a1···ar b1···bsϵa1 ⊗ . . .⊗ ϵar ⊗ ϵ̄b1 ⊗ . . .⊗ ϵ̄bs . (5.3.3)

We then apply the relation (5.3.2) from definition 5.3.1 with

A = ϵa1 ⊗ . . .⊗ ϵak−1
, B = ϵak , C = ϵak+1

⊗ . . .⊗ ϵar , (5.3.4a)

D = ϵ̄b1 ⊗ . . .⊗ ϵ̄bl−1 , E = ϵ̄bl , F = ϵ̄bl+1 ⊗ . . .⊗ ϵ̄bs , (5.3.4b)

which yields

trkl
(
ϵa1 ⊗ . . .⊗ ϵar ⊗ ϵ̄b1 ⊗ . . .⊗ ϵ̄bs

)
=

⟨ϵak , ϵ̄bl⟩︸ ︷︷ ︸
=δ

bl
ak

(
ϵa1 ⊗ . . .⊗ ϵ̂ak ⊗ . . .⊗ ϵar ⊗ ϵ̄b1 ⊗ . . .⊗ ̂̄ϵbl ⊗ . . .⊗ ϵ̄bs) , (5.3.5)

where we used the “hat notation” to mark elements which are to be omitted from the tensor
product. Now using the fact that trkl is by definition linear, we can use the basis expansion (5.3.3)
of the tensor field T to obtain Its contraction of the k’th and l’th component then simply takes
the form

trkl T = T a1···ar b1···bs tr
k
l

(
ϵa1 ⊗ . . .⊗ ϵar ⊗ ϵ̄b1 ⊗ . . .⊗ ϵ̄bs

)
= T a1···ar b1···bsδ

bl
ak

(
ϵa1 ⊗ . . .⊗ ϵ̂ak ⊗ . . .⊗ ϵar ⊗ ϵ̄b1 ⊗ . . .⊗ ̂̄ϵbl ⊗ . . .⊗ ϵ̄bs) . (5.3.6)

In other words, the components of trkl T are obtained simply by summation over the k’th upper
and l’th lower indices.

▶Introduce morphism Ers → Er−1s−1 .◀
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5.4 Symmetry decomposition

Definition 5.4.1 (Transpose). ▶. . .◀

5.5 Canonical tensor fields

Being a vector bundle, any tensor bundle, of course, possesses a canonical section, namely the
zero section given in definition 3.3.1. However, there are tensor bundles which possess also
another canonical sections. It turns out that this is the case for tensor bundles Ers with r = s.
The existence of these sections becomes clear by realizing that these are simply tensor powers
of the endomorphism bundle,

Err
∼=
⊗r

End(E) . (5.5.1)
We will therefore start with the latter. Here the existence of a canonical section arises from the
fact that the space of endomorphisms over a vector space possesses a canonical unit element.
This allows us to define the following notion.

Definition 5.5.1 (Unit section). Let (E,B, π,Rk) a vector bundle and End(E) ∼= E1
1 its

endomorphism bundle. The unit section δ ∈ Γ(End(E)) is the section defined by δ(p) =
idEp for all p ∈ B.

It follows from the definition of the homomorphism and endomorphism bundles that this is
indeed a smooth section for every vector bundle E. This can be derived from the following
statement:

Theorem 5.5.1. The one-to-one correspondence given in theorem 4.6.2 relates the unit section
δ ∈ Γ(End(E)) and the identity map idE : E → E.

Proof. Using the notation from the proof of theorem 4.6.2, we set θ = idE . Then on every fiber
Ep with p ∈ B, θ restricts to idEp = δ(p), and so ϑ = δ. Conversely, if we start with ϑ = δ,
then we find

θ(e) = δ(π(e))e = idEπ(e)
e = e , (5.5.2)

and so θ = idE . ■

Hence, for any section v ∈ Γ(E) we have δv = idE ◦v = v. We will encounter other incantations
of the unit section later, e.g., as a vector-valued one-form in chapter 17 or as a tensor field,
canonically identified with a vector bundle isomorphism via theorem 5.5.1, in various places.

Recall given induced coordinates on E, for the endomorphism bundle we have the basis (ϵµ⊗ϵ̄ν),
constructed from the basis (ϵµ) of E and corresponding dual basis (ϵ̄µ) of E∗. In this basis the
unit section δ can be written as

δ = ϵµ ⊗ ϵ̄µ = δµν ϵµ ⊗ ϵ̄ν , (5.5.3)

so that its components are given by the Kronecker symbol

δµν =

{
1 µ = ν ,

0 µ ̸= ν .
(5.5.4)

This is the reason for introducing the notation δ in definition 5.5.1.

Given a canonical section of E1
1 , one can of course obtain sections of its tensor product bundles

▶. . .◀
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Chapter 6

Affine bundles

6.1 Affine bundles

One important feature of a vector space, and hence every fiber of a vector bundle, is the existence
of a distinguished zero element. Often we will encounter bundles whose structure is similar to
that of vector bundles, but for which no such distinguished element exists. In this case the
fibers are not vector spaces, but only affine spaces. Consequently, we may define the following:

Definition 6.1.1 (Affine bundle). A (real) affine bundle of rank k ∈ N is a fiber bundle
(A,B,ϖ,Rk) such that for all p ∈ B the fiber Ap = ϖ−1(p) is a real affine space of
dimension k and such that the restrictions of the local trivializations φ : ϖ−1(U)→ U×Rk
to a fiber Ap for p ∈ U are affine space isomorphisms from Ap to {p} × Rk.

We know from vector bundles that the definition guarantees a compatibility of the algebraic and
geometric structures, in the sense that we may extend the linear vector space operations, which
are defined on each fiber, also to (smooth) sections, and we will obtain (smooth) sections again.
A similar compatibility holds also for affine bundles. However, recall that for an affine space
the operation of addition needs an element of an underlying vector space, and so for every fiber
Ap we must have also a vector space, conventionally denoted A⃗p, so that addition is defined
as a function + : Ap × A⃗p → Ap. It is not surprising that the vector spaces A⃗p constitute the
fibers of a vector bundle. To see this, we first define the following notion.

Definition 6.1.2 (Affine bundle modeled over a vector bundle). A (real) affine bundle
modeled over a vector bundle (E,B, π,Rk) is a fiber bundle (A,B,ϖ,Rk) such that:

1. For all p ∈ B the fiber Ap = ϖ−1(p) is an affine space modeled over the vector space
Ep = π−1(p), i.e., Ep = A⃗p.

2. For each local trivialization (U, ϕ) of E there exists a local trivialization (U,φ) of
A such that for all p ∈ U the restrictions ϕp = (pr2 ◦ϕ)|Ep : Ep → Rk and φp =
(pr2 ◦φ)|Ap : Ap → Rk satisfy

φp(a+ e) = φp(a) + ϕp(e) (6.1.1)

for all a ∈ Ap and e ∈ Ep.
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This definition follows [KSM93, 6.22]; an alternative definition is given in [Sau89, def. 2.4.4],
and we will show their equivalence below. However, note that yet another definition can be
found in [GMS09, sec. 1.1.3] and [Sar13, sec. 1.2], which is not equivalent and, in fact, too
weak to guarantee the relation between the affine bundle and the vector bundle which we will
derive below1.

One may wonder whether such an underlying vector bundle exists for every affine bundle ac-
cording to definition 6.1.1 and whether it is unique. We find that both is true:

Theorem 6.1.1. For every affine bundle (A,B,ϖ,Rk) there exists a unique vector bundle
(A⃗, B, ϖ⃗,Rk) over which it is modeled.

Proof. In order to show its existence, we will now explicitly construct this vector bundle. We
start with the total space, which we denote by A⃗. From the fact that A is an affine bundle
follows that for all p ∈ B, Ap is an affine space. Denoting by A⃗p the underlying vector space,
we define

A⃗ =
⊎
p∈B

A⃗p , (6.1.2)

together with the projection ϖ⃗ such that ϖ⃗−1(p) = A⃗p. To equip A⃗ with the structure of a
manifold, we still need to specify an atlas. For this purpose it is enough to specify the local
trivializations of the bundle ϖ⃗ : A⃗→ B, and then to use induced charts. Here we use the fact
that every element e ∈ A⃗p for some p ∈ B can be written as e = a1 − a2, where a1, a2 ∈ Ap.
Given a local trivialization (U,φ) of ϖ : A→ B, we may thus define

ϕ : ϖ⃗−1(U)→ U × Rk , pr2(ϕ(a1 − a2)) = pr2(φ(a1))− pr2(φ(a2)) , (6.1.3)

One easily checks that ϕ is well-defined, i.e., independent of the choice of a1, and depends only
on the difference a1 − a2, which follows from the fact that φ reduces to an affine morphism on
every fiber Ap. From the same fact further follows that ϕ reduces to a linear function on each
fiber A⃗p. Hence, it equips A⃗ with the structure of a vector bundle.

One now easily checks that, by construction, A⃗ has the two properties given in definition 6.1.2,
since we chose both the fibers A⃗p and the local trivializations just to match these conditions.
We also see that definition 6.1.2 uniquely specifies the fibers and a set of local trivializations,
so that the vector bundle we constructed is indeed the unique vector bundle satisfying these
conditions. ■

Given the statement about the underlying vector bundle, which we will denote A⃗ in the following,
we can now discuss the relation between these two bundles. We find that the following holds:

Theorem 6.1.2. For every affine bundle (A,B,ϖ,Rk) the functions

+ : A×B A⃗ → A
(a, e) 7→ a+ e

(6.1.4)

and
− : A×B A → A⃗

(a1, a2) 7→ a1 − a2
(6.1.5)

are fiber bundle morphisms covering the identity on B.
1The definition in [GMS09, sec. 1.1.3] and [Sar13, sec. 1.2] demands only that each fiber of the affine bundle

is an affine space modeled over the corresponding fiber of the vector bundle, but does not make any reference to
the geometry of the vector bundle. Without taking the geometry into account, any two vector bundles, which
have the same fibers, would be treated alike - for example, a cylinder and a Möbius strip - and the uniqueness
in theorem 6.1.1 does not hold. But the geometry is important when it comes to relating sections and maps on
these bundles, since otherwise theorems like 6.3.3 or 6.4.1 would fail.
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Proof. The proof is very similar to the proof of theorem 3.1.1. For p ∈ B, let U ⊂ B with p ∈ U
such that there exists a chart (U, υ) of B with υ : U → Rn, a local trivialization (U, ϕ) of A with
ϕ : ϖ−1(U)→ U×Rk and the unique local trivialization (U, ϕ⃗) of A⃗ with ϕ⃗ : ϖ⃗−1(U)→ U×Rk
defined such that

pr2(ϕ(a+ e)) = pr2(ϕ(a)) + pr2(ϕ⃗(e)) (6.1.6)

for all a ∈ ϖ−1(U) and e ∈ ϖ⃗−1(U) with ϖ(a) = ϖ⃗(e). This allows us to define induced charts
(X,ψ) of A with X = ϖ−1(U) and

ψ(a) = (υ(ϖ(a)),pr2(ϕ(a))) ∈ Rn × Rk ∼= Rn+k , (6.1.7)

as well as (X⃗, ψ⃗) of A⃗ with X⃗ = ϖ⃗−1(U) and

ψ⃗(e) = (υ(ϖ⃗(e)),pr2(ϕ⃗(e))) ∈ Rn × Rk ∼= Rn+k . (6.1.8)

We will use these components to check that the two functions given above are smooth maps:

First, we construct the set

V = (ϖ ×B ϖ)−1(U) = {(a1, a2) ∈ A×A,ϖ(a1) = ϖ(a2) ∈ U} , (6.1.9)

on which we define an induced chart (V, χ) by

χ : V → Rn+2k

(a1, a2) 7→ (υ(ϖ(a1)),pr2(ϕ(a1)),pr2(ϕ(a2)))
. (6.1.10)

On this chart, the subtraction takes the form

ψ⃗ ◦ − ◦ χ−1 : χ(V ) → ψ(X)
(u, v, w) 7→ (u, v − w) , (6.1.11)

where we used the fact that ϕ restricts to an affine space isomorphism on each fiber, while ϕ⃗ is
defined by 6.1.6, and hence

pr2(ϕ⃗(a1 − a2)) = pr2(ϕ(a1))− pr2(ϕ(a2)) , (6.1.12)

while the base point remains unchanged,

ϖ⃗(a1 − a2) = ϖ(a1) = ϖ(a2) . (6.1.13)

The function (u, v, w) 7→ (u, v − w) is smooth, and so it follows that subtraction is smooth.

We proceed analogously with the addition. Let

W = (ϖ ×B ϖ⃗)−1(U) = {(a, e) ∈ A× A⃗,ϖ(a) = ϖ⃗(e) ∈ U} , (6.1.14)

on which we define an induced chart (W,ω) by

ω : W → Rn+2k

(a, e) 7→ (υ(ϖ(a)),pr2(ϕ(a)),pr2(ϕ⃗(e)))
. (6.1.15)

On this chart, the addition takes the form

ψ ◦+ ◦ ω−1 : ω(W ) → ψ(X)
(u, v, w) 7→ (u, v + w)

, (6.1.16)

where we used the fact that ϕ restricts to an affine space isomorphism on each fiber, while ϕ⃗
restricts to its linear derivative, and hence 6.1.6 holds, while the base point remains unchanged,

ϖ(a+ e) = ϖ(a) = ϖ⃗(e) . (6.1.17)

The function (u, v, w) 7→ (u, v + w) is smooth, and so it follows that addition is smooth.

Finally, we have seen that both for addition and subtraction the base point is unchanged. Hence,
both operations define bundle morphisms covering the identity on B. ■
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Note that also in the proof of the previous theorem we have relied on the fact that the local
trivializations (U, ϕ) and (U, ϕ⃗) of A and A⃗ are related. If this were not the case, the construction
given in the proof would not have been possible. As another application, we will show that every
vector bundle is an affine bundle by itself.

Theorem 6.1.3. Every vector bundle (E,B, π,Rk) is an affine bundle modeled over itself,
E⃗ = E.

Proof. By definition, the fibers Ep for p ∈ B of a vector bundle are vector spaces, and thus
also affine spaces modeled over themselves. Further, the local trivializations (U, ϕ) restrict
to vector space isomorphisms on each fiber, and so φ = ϕ satisfies the requirements given in
definition 6.1.2. ■

6.2 Induced charts and fiber coordinates

Similarly to vector bundles as discussed in section 3.2, one may also in the case of affine bundles
construct a particularly useful set of coordinates by using induced charts. Given an affine bundle
(A,B,ϖ,Rk) with a chart (U,ψ) of B and local trivialization (U,φ), one has the diagram

ϖ−1(U)
φ //

ϖ

��

U × Rk

pr1
yy

pr2 ##
U

ψ

��

Rk

Rm

(6.2.1)

The induced chart (W,ω) of A is thus given by W = φ−1(U × Rk) = ϖ−1(U) and

ω(a) = (ψ(ϖ(a)),pr2(φ(a))) (6.2.2)

for a ∈ W . Since φ restricts to a isomorphisms of affine spaces on every fiber Ap, the same
holds for the combined function

Ap
φ−→ {p} × Rk pr2−−→ Rk (6.2.3)

The virtue of using these induced charts becomes more apparent if we also use the corresponding
induced charts on the underlying vector bundle (A⃗, B, ϖ⃗,Rk), which are given from a local
trivialization (U, ϕ) of A⃗ related to (U,φ) as in definition 6.1.2. In this case we find

(pr2 ◦φ)(a+ e) = (pr2 ◦φ)(a) + (pr2 ◦ϕ)(e) (6.2.4)

for a ∈ Ap, e ∈ A⃗p and p ∈ U .

Finally, denoting the coordinates on B by (xi), the coordinates on A by (xi, yµ) and the coordi-
nates on A⃗ by (xi, y⃗µ), where i = 1, . . . ,m and µ = 1, . . . , k, we find that the bundle morphisms
we encountered in theorem 6.1.2 are expressed in coordinates as

+ : A×B A⃗ → A
(xi, yµ, y⃗µ) 7→ (xi, yµ + y⃗µ)

(6.2.5)

and
− : A×B A → A⃗

(xi, yµ, y′µ) 7→ (xi, yµ − y′µ) . (6.2.6)

Similarly to the case of vector bundles, as shown in theorem 3.2.1 we find:
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Theorem 6.2.1. For the induced affine bundle charts the transition functions are affine trans-
formations of the fiber coordinates.

Proof. The proof is analogous to the proof of theorem 3.2.1, with the only difference being
that for an affine bundle A the respective restrictions ϕ|Ap and ϕ̃|Ap are affine transformations
instead of vector space isomorphisms. Hence, also ϕ̃Ap ◦ (ϕ|Ap)−1 and its inverse are affine
transformations of the fiber coordinates at the point p. ■

6.3 Affine bundle morphisms

As for vector bundles, also affine bundles allow us to define a particular class of bundle mor-
phisms, which preserves not only the fiber bundle structure, but also the affine structure on
each fiber. We define these morphisms as follows.

Definition 6.3.1 (Affine bundle morphism). Let (A1, B1, ϖ1, F1) and (A2, B2, ϖ2, F2) be
affine bundles. A affine bundle morphism (or affine bundle homomorphism) is a bundle
morphism θ : A1 → A2 covering a map ϑ : B1 → B2 such that for each p ∈ B1 the
restriction of θ to the fiber ϖ−1i (p) is an affine function between the affine spaces ϖ−11 (p)
and ϖ−12 (ϑ(p)).

Also in this case we can define an isomorphism as an invertible morphism.

Definition 6.3.2 (Affine bundle isomorphism). An affine bundle isomorphism is a bijective
affine bundle morphism whose inverse is also an affine bundle morphism. If an affine bundle
morphism between two affine bundles exists, these bundles are called isomorphic.

Finally, as seen before, also for affine bundles the following statement holds.

Theorem 6.3.1. Let (Ai, Bi, ϖi, Fi) with i = 1, . . . , 3 be affine bundles and θ : A1 → A2 and
θ′ : A2 → A3 be affine bundle homomorphisms (isomorphisms) covering ϑ : B1 → B2 and
ϑ′ : B2 → B3. Then θ′ ◦ θ : A1 → A3 is an affine bundle homomorphism (isomorphism)
covering ϑ′ ◦ ϑ : B1 → B3.

Proof. ▶. . .◀ ■

We have already seen in the definition of affine bundles that each affine bundle comes with a
unique vector bundle, and that their geometries are closely related to each other. It follows that
also their morphisms are closely related. A particular example for such a relation is shown in
the following statement.

Theorem 6.3.2. Let (A1, B1, ϖ1, F1) and (A2, B2, ϖ2, F2) be affine bundles and θ : A1 → A2

an affine bundle morphism covering a map ϑ : B1 → B2. Then there exists a unique vector
bundle morphism θ⃗ : A⃗1 → A⃗2 covering ϑ such that

θ(a+ e) = θ(a) + θ⃗(e) (6.3.1)

for all (a, e) ∈ A1 ×B1 A⃗1.
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Proof. Let e ∈ A⃗1 with ϖ⃗1(e) = p ∈ B1. Then we can find a, a′ ∈ (A1)p such that a − a′ = e.
We use these to define

θ⃗(e) = θ(a)− θ(a′) ∈ A⃗2 . (6.3.2)

This is defined independently of the choice of the representatives a, a′, since θ is an affine bundle
morphism, and so it restricts to an affine function on every fiber. The latter also implies that
θ⃗ restricts to a linear function on every fiber, and that

ϖ⃗2(θ⃗(e)) = ϖ2(θ(a)) = ϑ(ϖ1(a)) = ϑ(ϖ⃗1(e)) . (6.3.3)

We finally need to show that θ⃗ : A1 → A2 is a smooth map. For e ∈ A⃗1 and p = ϖ⃗1(e) ∈ B1,
we can find an open set U ⊂ B1 such that p ∈ U , as well as a local section α : U → A1. On
ϖ⃗−11 (U), we can then define

α̂ : ϖ⃗1(U) → A1 ×B1
A⃗1

e 7→ (α(ϖ⃗1(e)), e
, (6.3.4)

which is smooth, since it is constructed from smooth maps. This can be composed with the
smooth map + : A1 ×B1

A⃗1 → A1, and then further with θ : A1 → A2. With these we have the
smooth map

θα : ϖ⃗−11 (U) → A2 ×B2
A2

e 7→ (θ(α(ϖ⃗1(e)) + e), θ(α(ϖ⃗1(e))))
. (6.3.5)

Composing with − : A2 ×B2
A2 → A⃗2, we have a smooth map which satisfies

θ(α(ϖ⃗1(e)) + e)− θ(α(ϖ⃗1(e))) = θ⃗(α(ϖ⃗1(e)) + e− α(ϖ⃗1(e))) = θ⃗(e) , (6.3.6)

and so θ⃗ is smooth. ■

The unique vector bundle morphism θ⃗ constructed in the previous theorem has its own name,
and we define as follows.

Definition 6.3.3 (Linear derivative). Given an affine bundle morphism θ : A1 → A2,
the unique vector bundle morphism θ⃗ : A⃗1 → A⃗2 from theorem 6.3.2 is called the linear
derivative of θ.

The construction is illustrated in figure 6.1.

6.4 Sections of affine bundles

The fact that every fiber Ap = ϖ−1(p) of an affine bundle is an affine space modeled over the
vector space Ep = π−1(p) allows for two operations. Given elements a ∈ Ap and e ∈ Ep, one
has their sum a+e ∈ Ap. Similarly, given two elements a1, a2 ∈ Ap their difference a1−a2 ∈ Ep
is defined. As it is also the case with linear operations on vector bundles, one may extend these
operations to sections of the respective bundles, due to the fact that the affine and differentiable
structures are compatible by the definition of an affine bundle. Hence, the following holds:

Theorem 6.4.1. Let (E,B, π,Rk) be a vector bundle and (A,B,ϖ,Rk) an affine bundle mod-
eled over E. Then the following objects,

1. for smooth sections ς ∈ Γ(A) and σ ∈ Γ(E) the sum ς + σ ∈ Γ(A),

2. for smooth sections ς1, ς2 ∈ Γ(A) the difference ς1 − ς2 ∈ Γ(E),
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B1 B2
p ϑ(p)

a

a+ e

e

e

θ(a)

θ(a+ e)

θ⃗(e)

θ⃗(e)

ϑ

θ

θ⃗

A1

A2

A⃗1

A⃗2

ϖ1 ϖ2

π1 π2

+ +

Figure 6.1: Construction of the linear derivative of an affine bundle morphism.

which are defined pointwise, are smooth sections.

Proof. The pair (ς, σ) : B → A ×B E is a smooth section of a fibered product. Since + :
A ×B E → A is a smooth fiber bundle morphism covering the identity, their composition is a
smooth section of A. The same argument holds for ς1 − ς2. ■

Note that in the previous statement we could also have used local sections, provided that they
are defined on the same domain. For affine bundles, however, we have the following statement.

Theorem 6.4.2. Every affine bundle has a global section.

Proof. ▶. . .◀ ■

Note that there is an important difference with vector bundles. For the latter, there always
exists a canonical, a priori uniquely defined global section, namely the zero section 3.3.1. For
affine bundles, no such canonical section exists. To gain more insight into the space Γ(A) of
sections of an affine bundle, we show the following.

Theorem 6.4.3. Let (E,B, π,Rk) be a vector bundle and (A,B,ϖ,Rk) an affine bundle mod-
eled over E. Then there exists a one-to-one correspondence between global sections ς : B → A
of A and affine bundle isomorphisms θ : E → A covering the identity whose linear derivative is
θ⃗ = idE.

Proof. In this construction we follow theorem 6.1.3 and understand E as an affine bundle
modeled over itself. Given a section ς : B → A, one can define a map θ : E → A as

θ(e) = ς(π(e)) + e . (6.4.1)

The sum is well-defined, since
ϖ(ς(π(e))) = π(e) , (6.4.2)
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and so both lie in fibers over the same base point π(e). Now again

ϖ(θ(e)) = π(e) , (6.4.3)

and so we find ϖ ◦ θ = π, as necessary for a bundle morphism covering the identity. To show
that it is an affine bundle morphism, we must check that it restricts to an affine function on
every fiber. Let ẽ ∈ Eπ(e). Then we have

θ(e+ ẽ) = ς(π(e)) + e+ ẽ = θ(e) + ẽ , (6.4.4)

and so a displacement ẽ on the left hand side results in a displacement ẽ on the right hand side;
since the latter depends linearly on the former, θ restricts to an affine function on every fiber.
In fact, this linear relation is the identity, and so θ⃗ = idE . Further, from the smoothness of
ς, π and the addition follows that also θ is smooth, since it is a combination of smooth maps.
Finally, it is bijective, and we can explicitly give its inverse as

θ−1(a) = a− ς(ϖ(a)) (6.4.5)

for all a ∈ A. One checks analogously that also this is an affine bundle morphism. Hence, θ is
an affine bundle isomorphism.

Conversely, given an affine bundle morphism θ : E → A covering the identity on B whose linear
derivative is θ⃗ = idE , one can define

ς = θ ◦ 0 , (6.4.6)

where 0 : B → E denotes the distinguished zero section of E. This is a smooth section, since
both θ and 0 are smooth, and

ϖ ◦ θ ◦ 0 = π ◦ 0 = idB , (6.4.7)

since 0 is a section and θ covers the identity. Finally, one easily checks that this construction
reverses the construction of θ from ς given in the first part of the proof, establishing the one-
to-one correspondence between these two objects. ■

B

A

E = A⃗

ϖ

π

+

ς

ς + σ

σ

Figure 6.2: Relation between sections ς : B → A and ς + σ : B → A of an affine bundle
ϖ : A→ B and σ : B → E of the underlying vector bundle π : E → B.
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B

A

E = A⃗

ϖ

π

θ

ς
θ(e)

e

Figure 6.3: Relation between a section ς : B → A of an affine bundle ϖ : A→ B and an affine
bundle morphism θ : E → A from the underlying vector bundle π : E → B to A which satisfies
θ⃗ = idE .
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Chapter 7

Tangent bundle and vector fields

7.1 Derivations and tangent spaces

Every manifold is naturally equipped with a number of structures. One of the most basic and
important structures is the tangent bundle. Geometrically it can be seen as the space of all
vectors tangent to a manifold. In physics it appears most naturally in the context of mechanics:
if the space of all possible positions of a point mass is modeled as a manifold, then its velocity is
an element of the tangent bundle. The space of all tangent vectors at a given point is called the
tangent space, and it can be defined in a number of different, but equivalent ways. Here we use
a particularly simple definition in terms of derivations, and provide its geometric interpretation
a bit later.

Definition 7.1.1 (Derivation). Let M be a smooth manifold and p ∈M . A derivation at
p is a linear function D : C∞(M,R)→ R such that it satisfies the Leibniz rule

D(fg) = D(f)g(p) + f(p)D(g) (7.1.1)

for all f, g ∈ C∞(M,R).

Recall that C∞(M,R) denotes the space of smooth maps f : M → R. We remark that we
could have chosen to work with manifolds of class Ck with finite k > 0 instead, and considered
the larger space of functions Ck(M,R). However, this poses some technical difficulties, which
would require us to work with germs instead of maps. We avoid this here by working in the
smooth category.

Further, note that we demand that a derivation D is linear, which means that for any f, g ∈
C∞(M,R) and λ, µ ∈ R we have

D(λf + µg) = λD(f) + µD(g) . (7.1.2)

Together with the Leibniz rule, this has an important consequence.

Theorem 7.1.1. For any c ∈ R and derivation D at p ∈M holds

D(fc) = 0 , (7.1.3)

where fc :M → R, p 7→ c is the constant function.

Proof. For any g ∈ C∞(M,R) holds

cD(g) = D(cg) = D(fcg) = D(fc)g(p) + fc(p)D(g) = D(fc)g(p) + cD(g) . (7.1.4)
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In particular, we can choose g(p) ̸= 0, and solve this equation for D(fc) = 0. ■

One easily checks the following:

Theorem 7.1.2. The derivations at a point p ∈ M of a manifold M , equipped with addition
and scalar multiplication defined pointwise as

(D1 +D2)(f) = D1(f) +D2(f) and (λD)(f) = λD(f) , (7.1.5)

form a vector space.

Proof. It is known from linear algebra that the pointwise sum and scalar multiple of linear
functions is again a linear function. To check the Leibniz rule, we calculate

(D1 +D2)(fg) = D1(fg) +D2(fg)

= D1(f)g(p) + f(p)D1(g) +D2(f)g(p) + f(p)D2(g)

= (D1(f) +D2(f))g(p) + f(p)(D1(g) +D2(g))

= (D1 +D2)(f)g(p) + f(p)(D1 +D2)(g)

(7.1.6)

and

(λD)(fg) = λD(fg)

= λ(D(f)g(p) + f(p)D(g))

= (λD)(f)g(p) + f(p)(λD)(g) ,

(7.1.7)

showing that also the Leibniz rule holds. ■

This now leads us to the following definition.

Definition 7.1.2 (Tangent space). Let M be a smooth manifold and p ∈ M . The set of
all derivations at p, equipped with addition and scalar multiplication defined as in theo-
rem 7.1.2, is called the tangent space at p and denoted TpM .

A question which arises immediately is whether this vector space has finite dimension, and how
this depends on the manifold M . This is answered by the following statement:

Theorem 7.1.3. Let M be a smooth manifold of dimension n. For each p ∈ M , the tangent
space TpM is a real vector space of dimension n = dimM .

Proof. Let (U, ϕ) be a chart such that p ∈ U . Since ϕ(U) is open, we can find ϵ > 0 such that

V = {x ∈ Rn, ∥x− ϕ(p)∥ < ϵ} ⊂ ϕ(U) . (7.1.8)

Now consider a function f ∈ C∞(M,R), and write

F : V → R
x 7→ (f ◦ ϕ−1)(x) . (7.1.9)

Note that F ∈ C∞(V,R). Using Hadamard’s lemma we can write any smooth function F on V
in the form

F (x) = F (x0) + (xa − xa0)F̃a(x) , (7.1.10)

where x0 = ϕ(p) and F̃a are smooth functions on V . We can now define

ϕa0 : ϕ−1(V ) → R
q 7→ ϕa(q)− ϕa(p) = ϕa(q)− xa0

, (7.1.11)
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as well as
f̃a = F̃a ◦ ϕ : ϕ−1(V ) → R

q 7→ F̃a(ϕ(q))
. (7.1.12)

From these definitions follows that

f(q) = F (ϕ(q)) = F (x0) + ϕa0(q)F̃a(ϕ(q)) = f(p) + ϕa0(q)f̃a(q) . (7.1.13)

Now let D be a derivation at p. From the Leibniz rule and theorem 7.1.1 follows

D(f) = D(ϕa0 f̃a) = D(ϕa0)f̃a(p) + ϕa0(p)D(f̃a) = D(ϕa0)f̃a(p) , (7.1.14)

using ϕa0(p) = 0 in the last step. Note that the second factor is independent of D, and so
the action of D on any function is fully determined by the n real numbers ua = D(ϕa0) which
determine its action on ϕa0 . Now using the fact that

f̃a(p) = F̃a(x0) =
∂

∂xa
F (x)

∣∣∣∣
x=x0

, (7.1.15)

we can thus uniquely express every derivation as

D : f 7→ D(f) =

n∑
a=1

ua
∂

∂xa
(f ◦ ϕ−1)(x)

∣∣∣∣
x=ϕ(p)

(7.1.16)

with u ∈ Rn. Using theorem 7.1.2, this is obviously linear, and so it follows that TpM is a
vector space of dimension n. ■

The definition of the tangent space via derivations is probably the most intrinsic, as it does not
refer to charts (even though we used them for the proof above). There are other, equivalent
definitions. The following one, given in [Lan85, ch. II, § 2] shows more intuitively the vector
space structure, and how the notion of tangent vectors is related to the atlas of a manifold
which defines its geometry.

Definition 7.1.3 (Tangent vector). Let M be a manifold of class Ck with k ≥ 1 of
dimension n and A its atlas, as well as p ∈ M . A tangent vector is an equivalence class
[U, ϕ, u] of triples (U, ϕ, u), where (U, ϕ) ∈ A is a chart with p ∈ U and u ∈ Rn, where two
triples (U, ϕ, u) and (V, ψ, v) are regarded equivalent if and only if

D(ψ ◦ ϕ−1)ϕ(p)(u) = v , (7.1.17)

where D denotes the Jacobian.

In this definition it is less obvious that the tangent vector is an object which is intrinsic to the
manifold M and “attached” to p. We can relate this definition to the previous one as follows:

Theorem 7.1.4. Let M be a manifold of class Ck and dimension dimM = n with k ≥ 1 and
p ∈M . There exists a one-to-one correspondence between tangent vectors at p and derivations
at p.

Proof. In theorem 7.1.3 we have seen that for each p ∈ M a chart (U, ϕ) with p ∈ U induces a
linear bijection between TpM and Rn, which assigns to D ∈ TpM the element u ∈ Rn defined
by the relation (7.1.16). Let [U, ϕ, u] be the tangent vector defined by the representative triple
(U, ϕ, u). Another triple (V, ψ, v) defines the same tangent vector [V, ψ, v] = [U, ϕ, u] if and only
if

va = ub
∂

∂xb
ψa(ϕ−1(x))

∣∣∣∣
x=ϕ(p)

. (7.1.18)
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Note that D acts on a function f ∈ C∞(M,R) as

D(f) = ua
∂

∂xa
(f ◦ ϕ−1)(x)

∣∣∣∣
x=ϕ(p)

= ua
∂

∂xa
(f ◦ ψ−1 ◦ ψ ◦ ϕ−1)(x)

∣∣∣∣
x=ϕ(p)

= ua
∂

∂xa
ψb(ϕ−1(x))

∣∣∣∣
x=ϕ(p)

∂

∂yb
(f ◦ ψ−1)(y)

∣∣∣∣
y=ψ(p)

= vb
∂

∂yb
(f ◦ ψ−1)(y)

∣∣∣∣
y=ψ(p)

,

(7.1.19)

where the last equality holds if and only if the equality (7.1.18) holds. Hence, [V, ψ, v] = [U, ϕ, u]
if and only if (U, ϕ, u) and (V, ψ, v) define the same derivation D ∈ TpM . ■

Making use of this one-to-one correspondence, we will therefore use the words derivation and
tangent vector interchangeably, since they denote equivalent objects. Using their representation
as vectors u = uaea ∈ Rn defined by a chart, we can also pictorially visualize them as arrows,
whose length and direction represents its components, as shown in figure 7.1. Also the vector
space operations are straightforward to visualize using the arrow representation. Figure 7.2
shows the sum of two tangent vectors, while figure 7.3 shows the multiplication by a scalar.

x0

Figure 7.1: Visualization of tangent vectors as arrows.

ξ

η
ξ + η

x0

Figure 7.2: Visualization of the sum of two tangent vectors.

−ξ 2ξξx0

Figure 7.3: Visualization of scalar multiples of a tangent vector.
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7.2 Tangent bundle

We have now defined an n-dimensional vector space at each point p ∈ M . It now becomes
natural to consider these vector spaces to be fibers of a vector bundle over M . We define this
vector bundle as follows.

Definition 7.2.1 (Tangent bundle). The tangent bundle of a manifold M of dimension n
is the vector bundle (TM,M, τ,Rn), whose total space is the disjoint union

TM =
⊎
p∈M

TpM , (7.2.1)

and the projection is the function τ : TM →M such that τ(ξ) = p for ξ ∈ TpM .

It is important to note that we take the disjoint union of all tangent spaces, i.e., we consider
elements of TM to be different if they are taken from the tangent spaces TpM and TqM at
different points p ̸= q. For example, the function D : C∞(M,R) → R, f 7→ 0 is obviously a
derivation both at p and q, and it would be contained only once in TM if we would naively
take the union of all tangent spaces as defined at the beginning of this section. However, by
taking the disjoint union, the elements of TM are actually pairs (p,D) of a point p ∈M and a
derivation D ∈ TpM , such that (p,D) ̸= (q,D). The projection τ is then simply the function
τ : (p,D) 7→ p.

In order to constitute a vector bundle, the total space TM must, of course, carry the structure
of a manifold. Also in order to be uniquely defined, this manifold structure must follow from
the manifold structure on M . Given an atlas A on M , we can construct an atlas on TM as
follows.

Let p ∈M and (U, ϕ) ∈ A be a chart in an atlas A of M such that p ∈ U . Define Ũ = τ−1(U) ⊂
TM and let ϕ̃ : Ũ → R2n the function that assigns to (p,D) ∈ Ũ the pair consisting of ϕ(p) and
u ∈ Rn such that the relation (7.1.16) holds. Apply this procedure to every chart in A. One
easily checks that this yields an atlas Ã of TM .

Finally, we also need to show that (TM,M, τ,Rn) is indeed a vector bundle of rank n = dimM .
This can be done as follows.

For p ∈M , let (U, ϕ) be a chart of M such that p ∈ U . Define a function ϕ̂ : τ−1(U)→ U ×Rn
such that ϕ̂(p,D) = (p, u) and u ∈ Rn as in (7.1.16). One can easily show that ϕ̂ has the
properties listed in the definition 3.1.1 of a vector bundle.

The charts (Ũ, ϕ̃) on TM defined above have another nice property. Given two tangent vectors
(p,D1) and (p,D2) at the same point p ∈M and constants λ1 and λ2, they satisfy

ϕ̃(p, λ1D1 + λ2D2) = (ϕ(p), λ1u1 + λ2u2) , (7.2.2)

i.e., they are linear in the fiber coordinates. Given the canonical basis (ea, a = 1, . . . , n) they
therefore define a basis

∂a = ϕ̃−1(ϕ(p), ea) ∈ TpM , a = 1, . . . , n (7.2.3)

for each tangent space TpM , which we call the coordinate basis induced by the chart (U, ϕ) on
M . In most cases these are the most convenient coordinates on TM . If the point p ∈ M is
fixed, they allow to write a tangent vector ξ ∈ TpM in the form ξ = ξa∂a, where we also use
the Einstein summation convention that the occurrence of an upper and a lower index implies
a sum over all values that this index takes. However, note that this notation “hides” the chart
(U, ϕ) - it is implicit in the (chart-dependent) basis ∂a. This becomes clear if we recall that ξ
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defines a derivation on functions, which is now expressed as

ξ(f) = ξa∂af =

n∑
a=1

ξa
∂(f ◦ ϕ−1)(x)

∂xa

∣∣∣∣
x=ϕ(p)

. (7.2.4)

The right hand side of this equation shows that the basis vectors ∂a, and therefore the compo-
nents ξa, depend on the choice of the chart, while the total expression ξ(f) is independent of
this choice.

7.3 Tangent vectors of curves

We now come to more practical aspects of the tangent bundle, which are closer to physics. One
of the most important aspects is the tangent vector of a curve, which can be interpreted as the
velocity of a point mass along its trajectory and which is defined as follows.

Definition 7.3.1 (Tangent vector of a curve). Let γ ∈ C∞(R,M) be a curve on a manifold
M . Its tangent vector at t ∈ R is the derivation γ̇(t) ∈ Tγ(t)M defined by

γ̇(t)(f) = (f ◦ γ)′(t) (7.3.1)

for f ∈ C∞(M,R).

Frequently we need to consider a reparametrization of a curve, i.e., a change of the curve
parameter. This can be seen as a special case of defining a curve γ̃ = γ ◦ u with u ∈ C∞(R,R).
We find that the following holds.

Theorem 7.3.1. Let γ ∈ C∞(R,M) be a curve on a manifold M and u ∈ C∞(R,R). For the
curve γ̃ = γ ◦ u holds ˙̃γ(t) = u′(t)γ̇(u(t)) for all t ∈ R.

Proof. Using the fact that for any f ∈ C∞(M, ) the composition f ◦ γ ∈ C∞(R,R), we can use
the well-known chain rule to calculate

˙̃γ(t)(f) = (f ◦ γ ◦ u)′(t) = u′(t)(f ◦ γ)′(u(t)) = u′(t)γ̇(u(t))(f) . (7.3.2)
■

Another possibility to obtain a new curve from a known one is the composition φ◦γ ∈ C∞(R, N)
for γ ∈ C∞(R,M) and φ ∈ C∞(M,N). Its tangent vectors will be discussed in section 10.2.

We are also interested in a coordinate description, so we will work in local coordinates (xa)
defined by a chart (U, ϕ), such that γ(t) ∈ U . For a curve γ ∈ C∞(R,M) we then obtain
the coordinate expression t 7→ (ϕ ◦ γ)(t), which assigns to each t ∈ R a point x = (xa, a =
1, . . . , n) ∈ Rn. Using the same coordinate chart, a function f ∈ C∞(M,R) is expressed as
x 7→ (f ◦ ϕ−1)(x). The composition f ◦ γ : R→ R is thus expressed as f ◦ ϕ−1 ◦ ϕ ◦ γ. By the
chain rule we then have

γ̇(t0)(f) = (f ◦ γ)′(t0)
= (f ◦ ϕ−1 ◦ ϕ ◦ γ)′(t0)

=

n∑
a=1

∂(f ◦ ϕ−1)(x)
∂xa

∣∣∣∣
x=γ(t0)

· ∂(ϕ ◦ γ)
a(t)

∂t

∣∣∣∣
t=t0

.

(7.3.3)

Of course this is a rather lengthy and cumbersome notation, and so one usually uses a shorter
notation, in particular in the physics literature. Recall that we made use of the coordinate
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basis (7.2.3) of the tangent space in order to express the application (7.2.4) of a tangent vector
to a function. Using the coordinate basis ∂a of Tγ(t)M , one conveniently expresses the tangent
vector as γ̇(t) = γ̇a(t)∂a in components γ̇a(t). Further, one usually omits the map ϕ in the
coordinate expression of the curve, and writes γa(t) instead of (ϕ ◦ γ)a(t). This notation is not
only shorter, but also has the convenient property that

γ̇a(t) =
d

dt
γa(t) . (7.3.4)

Hence, written in components the tangent vector is nothing but the ordinary derivative with
respect to the curve parameter t. However, one must still keep in mind that both sides of this
equation depend on the choice of the chart (although the equality holds in any chart).

We conclude this section with another helpful construction which we will use later. Note that
for each t ∈ R the tangent vector γ̇(t) of a curve γ ∈ C∞(R,M) on M is an element of Tγ(t)M .
Hence, the curve γ defines a function t 7→ γ̇(t), which deserves its own name.

Definition 7.3.2 (Canonical lift of a curve). Let γ ∈ C∞(R,M) be a curve on a manifold
M . Its canonical lift is the curve γ̇ : t 7→ γ̇(t) on TM .

Using the induced charts on TM it is not difficult to check that the canonical lift is indeed an
element of C∞(R, TM). Also it follows immediately that τ ◦ γ̇ = γ.

7.4 Vector fields

If we consider a fluid instead of a point mass, we have a velocity at each point of the fluid, so
we need to assign a tangent space element to every point. We already encountered this type of
assignment and called it a section. Sections of the tangent bundle are so important that they
deserve their own name.

Definition 7.4.1 (Vector field). A vector field on a manifold M is a section of the tangent
bundle TM . The space of all vector fields on M is denoted Γ(TM) or Vect(M).

Let X ∈ Vect(M). If we use local coordinates (xa) defined by a chart (U, ϕ) on M , which
further induces a chart (Ũ, ϕ̃) on TM with coordinates (xa, va), then the coordinate expression

ϕ̃ ◦X ◦ ϕ−1 : ϕ(U)→ R2n (7.4.1)

assigns to each x ∈ ϕ(U) a pair (x, v). Writing v = vaea in the canonical basis of Rn, and using
the coordinate basis ∂a of TpM with ϕ(p) = x, we can write X(p) = Xa(p)∂a. Extending this
notation, we can write the whole vector field as X = Xa∂a. Note that when evaluating the
vector field at a point p to obtain X(p), one has to take both the coordinate expression Xa and
the basis vector ∂a at this point p.

Since a vector field assigns to any point of a manifold a derivation at that point, we can define
the following construction.

Definition 7.4.2 (Action of a vector field on a function). Let M be a manifold, X ∈
Vect(M) a vector field on M and f ∈ C∞(M,R) a real function on M . For each p ∈ M ,
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the vector field X defines a derivation X(p) ∈ TpM . Via these derivations X acts on f ,
i.e., it defines a real function Xf ∈ C∞(M,R) given by

(Xf)(p) = X(p)(f) (7.4.2)

for all p ∈M .

We illustrate this definition using local coordinates (xa). In these coordinates the vector field
X takes the form Xa∂a, and Xf = Xa∂af , which should be read in the obvious way:

(Xf)(p) = Xa(p)(∂af)(p) . (7.4.3)

Some more properties follow from the definition:

• Xf is R-linear in the first argument:

(λX + µY )f = λ(Xf) + µ(Y f) for λ, µ ∈ R . (7.4.4)

• Xf is R-linear in the second argument:

X(λf + µg) = λ(Xf) + µ(Xg) for λ, µ ∈ R . (7.4.5)

• Xf satisfies the Leibniz rule for the second argument:

X(fg) = (Xf)g + f(Xg) . (7.4.6)

7.5 Commutator of vector fields

The action of vector fields on functions, which form a vector space, gives us a hint that the
set Vect(M) can be equipped with more structure, turning it into an algebra. We define this
structure as follows.

Definition 7.5.1 (Commutator of vector fields). LetM be a manifold andX,Y ∈ Vect(M)
vector fields. Their commutator is the unique vector field [X,Y ] ∈ Vect(M) such that for
all f ∈ C∞(M,R),

[X,Y ]f = X(Y f)− Y (Xf) . (7.5.1)

Of course one must check that such a unique vector field [X,Y ] really exists, i.e., that the
definition above assigns to each point p ∈ M an element in TpM , i.e., a derivation at p. It is
clear from the definition above that

[X,Y ](p) : C∞(M,R) → R
f 7→ ([X,Y ]f)(p)

(7.5.2)

is a linear function. To see that it is a derivation, one calculates

[X,Y ](fg) = X(Y (fg))− Y (X(fg))

= X((Y f)g + f(Y g))− Y ((Xf)g − f(Xg))
= (X(Y f))g + (Y f)(Xg) + (Xf)(Y g) + f(X(Y g))

− (Y (Xf))g − (Xf)(Y g)− (Y f)(Xg)− f(Y (Xg))

= ([X,Y ]f)g + f([X,Y ]g) .

(7.5.3)
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Evaluating this at p we find

([X,Y ](fg))(p) = ([X,Y ]f)(p)g(p) + f(p)([X,Y ]g)(p) . (7.5.4)

This is exactly the Leibniz rule (7.1.1) for a derivation D = [X,Y ](p).

If we express the vector fields X = Xa∂a and Y = Y a∂a in a coordinate basis, we can use the
product rule for derivatives on Rn to see that

[X,Y ]f = Xa∂a(Y
b∂bf)− Y a∂a(Xb∂bf)

= (Xa∂aY
b − Y a∂aXb)∂bf

= [X,Y ]b∂bf .

(7.5.5)

This gives us an explicit formula for the components [X,Y ]a in these coordinates. This formula
has the same form in all coordinate systems, since we have made no reference to particular
coordinates in the definition of [X,Y ]. Another property of the commutator is now easy to
show.

Theorem 7.5.1. The set Vect(M) of vector fields on a manifold M carries the structure of a
real Lie algebra, with the Lie bracket given by the commutator.

Proof. It follows from the linearity of Xf in the first argument that Vect(M) is a real vector
space. The same property implies that the commutator [X,Y ] is linear in both arguments.
Further, one can see immediately from the definition that it is antisymmetric. Finally, we check
the Jacobi identity

0
?
= [X, [Y,Z]]f + [Y, [Z,X]]f + [Z, [X,Y ]]f

= X(Y (Zf))−X(Z(Y f))− Y (Z(Xf)) + Z(Y (Xf)) + Y (Z(Xf))− Y (X(Zf))

− Z(X(Y f)) +X(Z(Y f)) + Z(X(Y f))− Z(Y (Xf))−X(Y (Zf)) + Y (X(Zf)) .

(7.5.6)

One easily checks that this indeed vanishes. ■

Here we have used the term Lie algebra in the usual sense as an algebra whose product (the
Lie bracket) is antisymmetric and satisfies the Jacobi identity. We will see later that there is a
much deeper connection between vector fields and Lie algebras when we come to the discussion
of Lie groups in chapter 15. Another useful formula is the following.

Theorem 7.5.2. The commutator of vector fields satisfies the Leibniz rule

[X, fY ] = (Xf)Y + f [X,Y ] (7.5.7)

for all X,Y ∈ Vect(M) and f ∈ C∞(M,R).

Proof. Acting with [X, fY ] on another function g ∈ C∞(M,R) we find

[X, fY ]g = X(f(Y g))− fY (Xg)

= (Xf)(Y g) + fX(Y g)− fY (Xg)

= ((Xf)Y + f [X,Y ])g . ■

(7.5.8)

7.6 Distributions

86



Chapter 8

Cotangent bundle and covector
fields

8.1 Ideals of functions and cotangent spaces

We now come to a concept which is somehow dual to the tangent bundle. While we have
defined elements of the tangent bundle as derivations, which act on functions f ∈ C∞(M,R),
elements of the cotangent bundle can be defined as equivalence classes of functions, where two
functions are regarded equivalent if and only if they yield the same value if we act on them with
a derivation. This will be formalized in our definition of the cotangent space.

Definition 8.1.1 (Cotangent space). LetM be a manifold and p ∈M . Let Ip ⊂ C∞(M,R)
be the ideal of real functions f on M for which f(p) = 0 and I2p ⊂ Ip the ideal generated
by functions fg with f, g ∈ Ip. Both Ip and I2p are vector spaces, and I2p is a subspace of
Ip. The cotangent space T ∗pM at p is the quotient vector space Ip/I2p .

Recall that an element of the quotient vector space Ip/I2p is defined as the equivalence class

[f ]p = {g ∈ Ip, f − g ∈ I2p} , (8.1.1)

i.e., two functions f, g ∈ Ip belong to the same equivalence class, [f ]p = [g]p, if and only if
f − g ∈ I2p . We call f a representative of the class [f ]p. As it was also the case for the tangent
space, it is not obvious whether T ∗pM is of finite dimension. In fact, the following holds, and
this time we will prove it using Hadamard’s lemma.

Theorem 8.1.1. Let M be a manifold of dimension dimM = n and p ∈ M . The cotangent
space T ∗pM is a vector space of dimension n.

Proof. Let (U, ϕ) be a chart such that p ∈ U . Since ϕ(U) is open, we can find ϵ > 0 such that

V = {x ∈ Rn, ∥x− ϕ(p)∥ < ϵ} ⊂ ϕ(U) . (8.1.2)

Now consider a function f ∈ Ip, and write

F : V → R
x 7→ (f ◦ ϕ−1)(x) . (8.1.3)
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Note that F ∈ C∞(V,R). Using Hadamard’s lemma we can write any smooth function F on V
in the form

F (x) = F (x0) + (xa − xa0)F̃a(x) , (8.1.4)

where x0 = ϕ(p) and F̃a are smooth functions on V . Since we have chosen f ∈ Ip, it follows
that

F (x0) = (f ◦ ϕ−1)(ϕ(p)) = f(p) = 0 , (8.1.5)

and therefore
F (x) = (xa − xa0)F̃a(x) . (8.1.6)

We now want to determine which functions f ∈ Ip belong to I2p . For this purpose, let us first
recall that every component ϕa of a chart ϕ : U → Rn defines a smooth function ϕa : U → R
with

ϕa ◦ ϕ−1 : V → R
x 7→ xa

, (8.1.7)

and let us define

ϕa0 : ϕ−1(V ) → R
q 7→ ϕa(q)− ϕa(p) = ϕa(q)− xa0

. (8.1.8)

Clearly, we have ϕa0(p) = 0 and thus ϕa0 ∈ Ip. Let us now first assume that F̃a(x0) = 0, and
define

f̃a = F̃a ◦ ϕ : ϕ−1(V ) → R
q 7→ F̃a(ϕ(q))

. (8.1.9)

Assuming F̃a(x0) = 0, we have f̃a(p) = 0, and thus f̃a ∈ Ip. It then follows that

f(q) = F (ϕ(q)) = ϕa0(q)F̃a(ϕ(q)) = ϕa0(q)f̃a(q) , (8.1.10)

and so f is a sum of products of functions ϕa0 , f̃a ∈ Ip, and thus f ∈ I2p . Conversely, let us
assume that f = gh with functions g, h ∈ Ip, and define G = g ◦ϕ−1 and H = h ◦ϕ−1 as above.
Then we have

F (x) = G(x)H(x) = (xa − xa0)(xb − xb0)G̃a(x)H̃b(x) = (xa − xa0)F̃a(x) , (8.1.11)

and thus F̃a(x0) = 0. Hence, we have shown that f ∈ I2p if and only if F̃a(x0) = 0. Since the
expansion (8.1.6) is linear in F̃a, it further follows that for any two functions f, f ′ ∈ Ip we have
f − f ′ ∈ I2p , and thus [f ]p = [f ′]p, if and only if F̃a(x0) = F̃ ′a(x0). Hence, the equivalence class
[f ]p is uniquely determined by F̃a(x0) ∈ Rn. In particular, choosing

f ′ : U → R
q 7→ f̃a(p)ϕ

a
0(q) = F̃a(x0)ϕ

a
0(q)

, (8.1.12)

we have [f ]p = [f ′]p. We can thus write every equivalence class [f ]p uniquely as

[f ]p = [f ′]p = [F̃a(x0)ϕ
a
0 ]p = F̃a(x0)[ϕ

a
0 ]p = f̃a(p)[ϕ

a
0 ]p , (8.1.13)

in terms of constant coefficients f̃a(p) with respect to a basis ([ϕa0 ]p). Hence, T ∗pM = Ip/I
2
p is

a vector space of dimension dimM = n. ■

It is conventional to denote the coordinate basis elements [ϕa0 ]p of T ∗pM introduced above by
dxa. Note that both the components F̃a(x0) and the basis vectors dxa depend on the choice of
the chart (U, ϕ). This leaves us with the question how to calculate the components F̃a(x0) for
a given function f . Using the expansion (8.1.6) one easily checks that

∂

∂xa
(f ◦ ϕ−1)(x)

∣∣∣∣
x=ϕ(p)

=
∂

∂xa
F (x)

∣∣∣∣
x=x0

=
∂

∂xa

[
(xb − xb0)F̃b(x)

]∣∣∣∣
x=x0

= F̃a(x0) .

(8.1.14)
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Hence, the components F̃a(x0) are simply the directional derivatives ∂af we introduced when
we discussed the tangent bundle, and so we can write

[f ]p = ∂af dx
a , (8.1.15)

where it is understood that ∂a is the coordinate basis of TpM . We will see later that this
coincidence is a consequence of the relation between the tangent and cotangent bundles.

The aforementioned construction also offers a possibility to pictorially visualize cotangent vec-
tors. Note that within a chart a cotangent vector defines a linear function

F̂ (x) = (xa − xa0)F̃a(x0) = (xa − xa0)
∂

∂xa
F (x)

∣∣∣∣
x=x0

, (8.1.16)

which is the unique linear function with F̂ (x0) = 0, whose partial derivatives at x0 agree
with that of F , and vice versa. The level sets of this function are parallel hyperplanes (i.e.,
spaces of codimension 1), with the hyperplane passing through x0 representing the value 0, and
hyperplanes are more dense if the magnitude of the cotangent vector is larger. One may therefore
visualize a cotangent vector as a stack of hyperplanes, with their orientation and density (inverse
distance) representing orientation and magnitude of the covector. This is shown in figure 8.1. In
fact, one may also draw only the hyperplanes F̂ (x) = 0 and F̂ (x) = 1 and omit all others, since
their location follows by linearity; this is used in [Bur85, HO01, Jan21]. Another possible way
to depict the magnitude is to encode it in the size of the drawn hyperplane element; however,
this is less intuitive in terms of its geometric interpretation.

F̂ (x) = −3

F̂ (x) = −2

F̂ (x) = −1

F̂ (x) = 0

F̂ (x) = 1

F̂ (x) = 2

F̂ (x) = 3

x0

Figure 8.1: Visualization of a cotangent vector as a stack of hyperplanes. In this picture the
chart (and hence the manifold) has dimension 3, and so the hyperplanes have are actual planes
of dimension 2.

Using the visualization of cotangent vectors as hyperplanes defined by the level sets of a linear
function F̂ , we can also easily visualize the vector space structure of the cotangent space. If two
covectors are represented by linear functions F̂ and Ĝ, their sum is represented by F̂+Ĝ; its level
sets are shown in figure 8.2. Similarly, we can visualize the scalar multiplication. Figure 8.3
shows the multiplication by 2. Note that this moves the hyperplanes twice as close to each
other, since the magnitude of a covector is encoded in the density, i.e., the inverse distance of
the hyperplanes. Finally, figure 8.4 shows the negative of a covector, which simply reverses the
stack of hyperplanes.
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x0 F̂
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Figure 8.2: Visualization of the sum of two covectors, represented by the level sets (hyperplanes)
of the linear functions F̂ and Ĝ. Each level set of F̂ + Ĝ passes through the intersections of
level sets of F̂ and Ĝ whose sum equals the value of F̂ + Ĝ.

8.2 Cotangent bundle

We can proceed similarly to the construction of the tangent bundle and assemble the cotangent
spaces to form the cotangent bundle.

Definition 8.2.1 (Cotangent bundle). The cotangent bundle of a manifold M of dimension
n is the vector bundle (T ∗M,M, τ̄,Rn), whose total space is the disjoint union

T ∗M =
⊎
p∈M

T ∗pM , (8.2.1)

and the projection is the function τ̄ : T ∗M →M such that τ̄(α) = p for α ∈ T ∗pM .

Also here we take the disjoint union, in full analogy to the construction of the tangent bundle,
even though this is not really necessary here: two arbitrary covectors [f ]p and [g]q are always
distinct for distinct points p ̸= q. Of course one still has to provide an atlas on T ∗M in order to
turn it into a manifold, and construct the local trivializations in order to show that it is indeed
a vector bundle of rank n over M . We will not prove this here, since the construction proceeds
in full analogy to the tangent bundle, but now using the coordinate basis dxa instead of ∂a.

We finally remark that in contrast to the tangent bundle TM , where the coordinate basis (∂a)
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Figure 8.3: Visualization of the multiplication of a cotangent vector by a scalar. In place of
level set to the value F̂ (x) = 1 we find that 2F̂ has the value 2F̂ (x) = 2. We thus find that the
level sets (hyperplanes) of 2F̂ are twice as dense as those of F̂ .

carries a lower index and we introduced coordinates (xa, va), the coordinate basis (dxa)on T ∗M
carries an upper index, and so one would introduce coordinates (xa, pa) on T ∗M and write a
cotangent vector as pa dxa, making use of the Einstein summation convention. Again, this is
not by accident, or a matter of inconvenience, but simply a consequence of the fact that tangent
and cotangent bundles are duals.

8.3 Covector fields

Sections of the cotangent bundle are of similar importance as sections of the tangent bundle,
and also deserve their own name. Hence, we introduce the following notion.

Definition 8.3.1 (Covector field). A covector field (or 1-form) on a manifold M is a
section of the cotangent bundle T ∗M . The space of all covector fields on M is denoted
Γ(T ∗M) or Ω1(M).

The term one-form and the notation Ω1(M) will become clear in the next chapter, when we
discuss general k-forms, with 0 ≤ k ≤ dimM . As it was also the case with vector fields, we
can use coordinates (xa) to write a covector field in the form ω = ωa dx

a, where the component
functions ωa are smooth. Note that dxa now denotes a covector field, while in the previous
section it was used to denote a single covector at a fixed point p ∈ M . We also encountered
this ambiguity of notation with the symbol ∂a, and so one must be careful whenever it is being
used.
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Figure 8.4: Visualization of the negative of a cotangent vector by a scalar, which reverses the
stack of hyperplanes.

8.4 Total differential

There is a particular class of covector fields which are obtained from real functions by an
operation which we define as follows.

Definition 8.4.1 (Total differential). Let M be a manifold and f ∈ C∞(M,R) a function
on M . Its total differential is the covector field

df : M → T ∗M
p 7→ [f − f(p)]p (8.4.1)

which assigns to each point p ∈M the equivalence class [f −f(p)]p ∈ T ∗pM of f −f(p) ∈ Ip
modulo I2p .

To clarify this definition, recall that we defined the tangent space T ∗pM at p ∈M as the quotient
space Ip/I2p , where Ip is the ideal of functions which vanish at p. We can therefore specify an
element of T ∗pM by providing an element of Ip, i.e., by a representative. Note that in general
a function f ∈ C∞(M,R) will not be in Ip, but the function f̃ : q 7→ f(q) − f(p) satisfies
f̃ = f − f(p) ∈ Ip. This is the function we choose as the representative. Of course one still
has to prove that df is indeed a (smooth) section, but we will omit the formal proof here, and
instead simply state the following.

Theorem 8.4.1. The total differential is a linear function d : C∞(M,R) → Ω1(M) which
satisfies the Leibniz rule,

d(fg) = df g + f dg (8.4.2)

for f, g ∈ C∞(M,R).

Proof. We restrict ourselves to proving linearity and the Leibniz rule here, and omit the proof
of smoothness. Let f, g ∈ C∞(M,R) and µ, ν ∈ R, and define h = µf + νg. For p ∈M we then
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have

dh(p) = [h− h(p)]p
= [µf + νg − µf(p)− νg(p)]p
= µ[f − f(p)]p + ν[g − g(p)]p
= µdf(p) + ν dg(p) ,

(8.4.3)

which shows that d is linear. Now let h = fg instead, which yields

dh(p) = [h− h(p)]p
= [fg − f(p)g(p)]p
= [fg − f(p)g(p)− (f − f(p))(g − g(p))]p
= [fg(p) + f(p)g − 2f(p)g(p)]p

= [f − f(p)]pg(p) + f(p)[g − g(p)]p ,

(8.4.4)

where we used the fact that (f − f(p))(g − g(p)) ∈ I2p , so that we may add it to obtain
another representative of the same equivalence class. This shows that also the Leibniz rule is
satisfied. ■

Another important relation besides the linearity and the Leibniz rule is the following, which
can be understood as a chain rule.

Theorem 8.4.2. Let M be a manifold, f ∈ C∞(M,R) a function on M and u ∈ C∞(R,R).
Then for all p ∈M holds

d(u ◦ f)(p) = u′(f(p))df(p) . (8.4.5)

Proof. Let p ∈M . Following Hadamard’s lemma, we can write u in the form

u(x) = u(f(p)) + (x− f(p))ũ(x) , (8.4.6)

and we use the abbreviations U = u ◦ f and Ũ = ũ ◦ f . Then we have

dU(p) = [U − U(p)]p

= [(f − f(p))Ũ ]p

= [(f − f(p))Ũ(p)− (f − f(p))(Ũ − Ũ(p))]p

= Ũ(p)[(f − f(p))]p
= u′(f(p))df(p) ,

(8.4.7)

where we used the fact that Ũ − Ũ(p) ∈ Ip and

u′(f(p)) = (f(p)− f(p))ũ′(f(p)) + ũ(f(p)) = ũ(f(p)) = Ũ(p) . (8.4.8)
■

Another possibility to obtain a new function from a known one is the composition f ◦ φ ∈
C∞(M,R) for φ ∈ C∞(M,N) and f ∈ C∞(N,R). Its differential will be discussed in sec-
tion 11.3.

We finally express df in the coordinate basis (dxa). Using the coordinate expression (8.1.15)
we see that this is simply

df = ∂af dx
a , (8.4.9)

which looks identical to (8.1.15), but where the (ambiguous) notation is now supposed to denote
the action of the coordinate vector field ∂a on f .
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8.5 Duality of tangent and cotangent bundles

When we defined the cotangent space and cotangent bundle we already had some hints that
there is a duality between the tangent and cotangent bundles. We now make this precise and
discuss this topic in detail. We start by proving the following theorem.

Theorem 8.5.1. The tangent space TpM and the cotangent space T ∗pM at any point p on a
manifold M are dual vector spaces.

Proof. To show that TpM is the dual vector space of T ∗pM , we need to show that there is an
isomorphism θ : TpM → (T ∗pM)∗, which we construct as follows. Recall that the elements of
T ∗pM = Ip/I

2
p are equivalence classes [f ]p = f + I2p of functions f ∈ Ip. For such an equivalence

class [f ]p ∈ T ∗pM and a derivation D ∈ TpM we define

θ(D) : T ∗pM → R
[f ]p 7→ D(f)

. (8.5.1)

We still need to check that this is well-defined and does not depend on the choice of the
representative f . Since derivations are linear functions, this is equivalent to showing that D
vanishes on I2p . Since the elements of I2p are products of functions f, g ∈ Ip, we have

D(fg) = D(f)g(p) + f(p)D(g) = 0 , (8.5.2)

since f(p) = g(p) = 0. Further, we see that θ(D) is linear, since

θ(D)(λ[f ]p + µ[g]p) = θ(D)([λf + µg]p)

= D(λf + µg)

= λD(f) + µD(g)

= λθ(D)([f ]p) + µθ(D)([g]p) .

(8.5.3)

To see that θ is an isomorphism of the vector spaces TpM and (T ∗pM)∗, we need to show that
it is linear and possesses an inverse. Linearity follows from

θ(λD1 + µD2)([f ]p) = λD1(f) + µD2(f) = λθ(D1)([f ]p) + µθ(D2)([f ]p) . (8.5.4)

We finally show the existence of an inverse ϑ : (T ∗pM)∗ → TpM by explicit construction. Let
α ∈ (T ∗pM)∗ and define

ϑ(α) : C∞(M,R)→ R, f 7→ α([f − f(p)]p) (8.5.5)

To see that ϑ(α) is a derivation, we check its linearity

ϑ(α)(λf + µg) = α([λ(f − f(p)) + µ(g − g(p))]p)
= α(λ[f − f(p)]p + µ[g − g(p)]p)
= λα([f − f(p)]p) + µα([g − g(p)]p)
= λϑ(α)(f) + µϑ(α)(g)

(8.5.6)

and product rule

ϑ(α)(fg) = α([fg − f(p)g(p)]p)
= α([(f − f(p))(g − g(p)) + f(p)(g − g(p)) + (f − f(p))g(p)]p)
= f(p)α([g − g(p)]p) + α([f − f(p)]p)g(p)
= f(p)ϑ(α)(g) + ϑ(α)(f)g(p) .

(8.5.7)

We finally need to check that the functions θ and ϑ defined above are inverses of each other.
We first check that

θ(ϑ(α))([f ]p) = ϑ(α)(f) = α([f − f(p)︸︷︷︸
=0

]p) = α([f ]p) (8.5.8)
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for α ∈ (T ∗pM)∗ and f ∈ Ip. Conversely, for D ∈ TpM and f ∈ C∞(M,R) we have

ϑ(θ(D))(f) = θ(D)([f − f(p)]p) = D(f − f(p)) . (8.5.9)

To see that the latter equals D(f), we need to show that a derivation D vanishes on a constant
function c. This follows from the linearity of D together with the product rule, since

D(c)f = D(cf)− cD(f) = cD(f)− cD(f) = 0 (8.5.10)

for all f ∈ C∞(M,R). We have thus shown that θ and ϑ are indeed inverses of each other, so
that TpM ∼= (T ∗pM)∗. Since T ∗pM is a finite-dimensional real vector space of dimension dimM ,
which we have shown using Hadamard’s lemma, it follows that also (T ∗pM)∗ and thus TpM are
real vector spaces of dimension dimM . Finally, since the double dual V ∗∗ of a finite-dimensional
vector space V is again isomorphic to V , it follows that also T ∗pM ∼= (TpM)∗. ■

This rather lengthy proof was necessary since we provided an own definition for both tangent
and cotangent spaces. The advantage of the approach we used here is that it gave us a deeper
understanding of the structure of these spaces and an interpretation for their elements in terms
of functions on the manifold, which will be useful during the remainder of the lecture course.
Instead of explicitly writing the isomorphisms θ and ϑ constructed above, we will simply write

⟨D,u⟩ = θ(D)(u) (8.5.11)

for the canonical pairing between D ∈ TpM and u ∈ T ∗pM . To visualize this pairing, we can
make use of the visualizations of tangent vectors and cotangent vectors shown in figure 7.1 and
figure 8.1, respectively. Drawing both visualizations in one diagram, as shown in figure 8.5,
with a common origin for the tangent vector arrow and the hyperplane stack, the endpoint of
the arrow marks a hyperplane, corresponding to a level set of F̂ . The corresponding value of F̂
denotes the value of D(f) = ⟨D, [f ]p⟩. Using the same method, one can visualize the linearity
of the canonical pairing in each argument, as shown in figures 8.6, 8.7 and 8.8.

F̂ (x) = −3

F̂ (x) = −2

F̂ (x) = −1

F̂ (x) = 0

F̂ (x) = 1

F̂ (x) = 2

F̂ (x) = 3

D

x0

D(f) = 2

Figure 8.5: Visualization of the canonical pairing between a vector and a covector.

In the literature one often finds another approach, which simply defines the cotangent bundle
as the dual of the tangent bundle. So far, we have shown only that the tangent and cotangent
spaces at each point p ∈ M are dual vector spaces. We will now go one step further and show
that also the geometry of the tangent and cotangent bundles is related, by proving the following
statement:
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Figure 8.6: Visualization of the addition rule D(f + g) = D(f) +D(g).

Theorem 8.5.2. The cotangent bundle T ∗M of a manifold M is the dual bundle of the tangent
bundle TM (and vice versa).

Proof. Recall that the local trivializations of TM and T ∗M are defined by the coordinate bases
(∂a) and (dxa) constructed from charts (U, ϕ). The former is constructed such that for a tangent
vector v ∈ TpM at a point p ∈M and a function f ∈ C∞(M,R) holds v(f) = va∂af , while we
expressed a cotangent vector [f ]p ∈ T ∗pM as ∂afdxa. It thus follows directly that

va∂bf⟨∂a,dxb⟩ = ⟨va∂a, ∂bfdxb⟩
= ⟨v, [f ]p⟩
= v(f)

= va∂af

= va∂bfδ
b
a ,

(8.5.12)

so that ⟨∂a,dxb⟩ = δba. Hence, the coordinate basis (∂a) of TpM and (dxa) of T ∗pM at any point
p ∈M are dual bases. Since these bases define the local trivializations, following section 4.1 we
find that TM and T ∗M are dual vector bundles. ■

Given this result, we can now also make use of the canonical pairing 4.1.2 and write

⟨X,ω⟩(p) = ⟨X(p), ω(p)⟩ (8.5.13)

for X ∈ Γ(TM) and ω ∈ Γ(T ∗M). A useful example of this operation is obtained if the covector
field is given as the total differential of a function, which leads to the following relation:

Theorem 8.5.3. Let M be a manifold, f ∈ C∞(M,R) a function on M and X ∈ Vect(M) a
vector field on M . Then Xf = tr11(X ⊗ df) = ⟨X,df⟩.

Proof. It is clear from the definition of a tensor contraction that tr11(X ⊗df) = ⟨X,df⟩. To see
that this also equals Xf , recall from definition 7.4.2 that for every p ∈M we obtain (Xf)(p) by
applying the derivation v = X(p) ∈ TpM to f . Further, df is defined for all p as the equivalence
class df(p) = [f − f(p)]p ∈ T ∗pM = Ip/I

2
p . Finally, the pairing ⟨v, [f − f(p)]p⟩ is given by v(f),

which completes the proof. ■
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Figure 8.7: Visualization of the addition rule (D1 +D2)(f) = D1(f) +D2(f).

There is an even faster way to see this using coordinates, where one easily reads off

⟨X,df⟩ = ⟨Xa∂a, ∂bf dx
b⟩

= Xa∂bf⟨∂a,dxb⟩
= Xa∂bfδ

b
a

= Xa∂af

= Xf

(8.5.14)

8.6 Tensors over the tangent bundle

The tangent and cotangent bundles we introduced so far are the building blocks of another
structure, called tensor bundles, which we will frequently encounter during the remainder of the
course and extensively use in physics. In fact, physical quantities are usually modeled by tensor
fields on a spacetime manifold, i.e., sections of a tensor bundle. In this section we will explain
this notion. We begin with the following definition:

Definition 8.6.1 (Tensor bundle of the tangent bundle). Let M be a manifold. The tensor
bundle of type (r, s) for r, s ∈ N is the tensor product bundle

T rsM = TM ⊗ . . .⊗ TM︸ ︷︷ ︸
r times

⊗T ∗M ⊗ . . .⊗ T ∗M︸ ︷︷ ︸
s times

. (8.6.1)

This is of course simply the definition of the tensor bundle 4.3.3, where we use the vector
bundle E = TM . Note that it is conventional to denote this bundle as T rsM (and not TMr

s , as
one might naively expect), which is the reason for pointing out its definition separately in this
section. Also the following fact about the tensor bundle now directly follows from our more
general knowledge on the dimensions of the tangent and cotangent bundles, as well as tensor
product bundles; see definitions 4.3.1, 7.2.1 and 8.2.1.
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Figure 8.8: Visualization of the multiplication rule (2D)(f) = D(2f) = 2D(f).

Theorem 8.6.1. The tensor bundle T rsM as defined above is a vector bundle of rank (dimM)r+s

over M .

Proof. By construction, the tangent bundle is a vector bundle of rank dimM . The same holds
for the cotangent bundle. By repeatedly applying theorem 4.3.1 one finds that the rank of T rsM
is (dimM)r+s. ■

The rank of the tensor bundle can also be seen by introducing coordinates (xa) on M . For
any point p ∈ M we then have the coordinate bases (∂a) of TpM and (dxa) of T ∗pM . The
corresponding coordinate basis of T rs pM is then given by the elements

∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs , (8.6.2)

where each index runs from 1 to dimM , so that the basis has (dimM)r+s elements. Any
element V ∈ T rs pM can be expanded using this basis in the form

V = V a1···ar b1···bs∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs , (8.6.3)

with r upper and s lower indices.

Now it is also clear that vector fields are tensor fields of type (1, 0), while covector fields are
tensor fields of type (0, 1). In the same spirit as with general tensor fields discussed in section 5.1,
we can also regard real functions as tensor fields of rank (0, 0) in the tangent bundle. In physics,
a tensor field of type (0, 0) is also called a scalar field.

Finally, we point out that tensor fields, which are sections of T rsM , are of course a special case
of the more general case of tensor fields we discussed intensively in chapter 5. In particular, all
operations we have defined on general tensor fields apply to those for the tangent bundle, and
one finds the same canonical tensor fields.
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Chapter 9

Differential forms

9.1 Antisymmetric tensors and differential forms

In section 4.4 we already discussed the exterior power bundle, whose sections can be seen as
totally antisymmetric tensors. We now come to a particularly useful class of such bundles,
which are constructed from the cotangent bundle. Its sections are called differential forms and
play a role for calculating derivatives and integrals. We start with their formal definition.

Definition 9.1.1 (Differential form). A differential form of rank k (or k-form) on a mani-
fold M is a section of the exterior power bundle ΛkT ∗M for k ∈ N. The space of all k-forms
on M is denoted Ωk(M), while the space of all differential forms is denoted

Ω•(M) =

dimM⊕
k=0

Ωk(M) . (9.1.1)

The space Ω•(M), whose elements are formal sums of differential forms of any degree k, is
useful to describe operators which act on all differential forms, irrespective of their degree.
However, in practice one rarely considers linear combinations of differential forms with different
degree, and only works with “homogeneous” elements, which belong to a particular subspace
Ωk(M) ⊂ Ω•(M).

Given coordinates (xa) on M , we can use the coordinate basis covector fields (dxa) to construct
a basis of ΛkT ∗M with basis elements of the form dxa1 ∧ . . .∧ dxak , as shown in section 4.4. A
differential form ω ∈ Ωk(M) can thus be expressed in the form

ω =
1

k!
ωa1···akdx

a1 ∧ . . . ∧ dxak , (9.1.2)

where the components are totally antisymmetric, ωa1···ak = ω[a1···ak]. It thus becomes clear that
a k-form is simply a totally antisymmetric tensor field of type (0, k). Here we used the bracket
notation (4.4.7) introduced in section 4.4.

There are some special cases. For k = 0 we have Λ0T ∗M ∼=M ×R, so that a 0-form is simply a
real function and Ω0(M) ∼= C∞(M,R). We also encountered Λ1T ∗M ∼= T ∗M , so that a 1-form
is the same as a covector field. This justifies the notation Ω1(M) for the space of covector fields
introduced in the last lecture. Finally, for k = dimM , we get again a vector bundle of rank 1,
as for k = 0. However, these vector bundles are in general not isomorphic!

In the following we will study a few operations on differential forms and their properties.
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9.2 Exterior product

Recall from linear algebra that given a vector space V , the exterior algebra defines a wedge
product

∧ : ΛkV × ΛlV → Λk+lV
(u, v) 7→ u ∧ v , (9.2.1)

which acts on basis vectors in the obvious way,

(ei1 ∧ . . . ∧ eik) ∧ (ej1 ∧ . . . ∧ ejl) = ei1 ∧ . . . ∧ eik ∧ ej1 ∧ . . . ∧ ejl , (9.2.2)

and is linear in both u and v. Pointwise application of the wedge product to differential forms
allows us to define the following:

Definition 9.2.1 (Exterior product). Let M be a manifold and α ∈ Ωk(M) and β ∈
Ωl(M). Their exterior product (or wedge product) is the differential form α∧ β ∈ Ωk+l(M)
such that for all p ∈M holds

(α ∧ β)(p) = α(p) ∧ β(p) . (9.2.3)

Using coordinates (xa), we have

α ∧ β =
1

k!l!
(αa1···akdx

a1 ∧ . . . ∧ dxak) ∧ (βb1···bldx
b1 ∧ . . . ∧ dxbl)

=
1

k!l!
α[a1···akβb1···bl]dx

a1 ∧ . . . ∧ dxak ∧ dxb1 ∧ . . . ∧ dxbl .

(9.2.4)

The antisymmetrization comes from the fact that the wedge product of the basis elements (dxa)
is totally antisymmetric.

The following properties of the exterior product follow directly from the properties of the wedge
product.

Theorem 9.2.1. For α ∈ Ωk(M), β ∈ Ωl(M) and γ ∈ Ωr(M), the exterior product satisfies:

1. Graded anticommutativity:
α ∧ β = (−1)klβ ∧ α . (9.2.5)

2. Associativity:
α ∧ (β ∧ γ) = (α ∧ β) ∧ γ = α ∧ β ∧ γ . (9.2.6)

3. R-linearity in each factor.

Proof. ▶. . .◀ ■

A special case is given if k = 0 or l = 0. In this case one of the terms in the exterior product is
a real function f ∈ C∞(M,R), and the exterior product reduces to the ordinary product

f ∧ α = α ∧ f = fα. (9.2.7)
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9.3 Exterior derivative

We have seen in section 8.4 that the total differential df of a function f ∈ Ω0(M) ∼= C∞(M,R)
is a covector field, and hence a 1-form. The total differential can thus be viewed as a function
d : Ω0(M)→ Ω1(M), which is a special case of the following construction.

Definition 9.3.1 (Exterior derivative). For a manifold M , the exterior derivative d :
Ωk(M)→ Ωk+1(M) for all k ∈ N is the unique linear function such that:

• df is the total differential for any f ∈ Ω0(M) ∼= C∞(M,R).

• d(dω) = 0 for any ω ∈ Ωk(M).

• d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ for α ∈ Ωp(M) and β ∈ Ωq(M), where p, q ∈ N.

In coordinates (xa) we can write a k-form as ω = 1
k!ωa1···akdx

a1∧. . .∧dxak and use the definition
above to derive the formula

dω =
1

k!
d(ωa1···akdx

a1 ∧ . . . ∧ dxak)

=
1

k!
d(ωa1···ak) ∧ dxa1 ∧ . . . ∧ dxak

+
1

k!
ωa1···ak

k∑
i=1

(−1)i−1dxa1 ∧ . . . ∧ dxai−1 ∧ d(dxai) ∧ dxai+1 ∧ . . . ∧ dxak

=
1

k!
∂[bωa1···ak]dx

b ∧ dxa1 ∧ . . . ∧ dxak ,

(9.3.1)

where the antisymmetrization in the last line again comes from the total antisymmetry of the
wedge product.

The following notions are closely related to the exterior derivative.

Definition 9.3.2 (Closed form). A k-form ω ∈ Ωk(M) on a manifold M is called closed if
dω = 0.

Definition 9.3.3 (Exact form). A k-form ω ∈ Ωk(M) on a manifold M is called exact if
there exists a (k − 1)-form σ ∈ Ωk−1(M) such that dσ = ω.

Now the following statement is straightforward.

Theorem 9.3.1. Every exact form is closed.

Proof. This follows immediately from the fact that d2 = 0. ■

The converse, however, is not true: not every closed form is exact. In fact, there is a deep
connection between the question which closed forms are exact and the topology of a manifold,
known under the keyword of de Rham cohomology. We will not pursue this topic here. However,
it is helpful to remark that the differential forms form a cochain complex

0→ Ω0(M)
d−→ Ω1(M)

d−→ . . .
d−→ ΩdimM (M)

d−→ 0 , (9.3.2)
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which means that for any of the spaces Ωk(M) in this diagram the image of the homomorphism
on the left (which is given by the exact k-forms) is contained in the kernel of the homomorphism
on the right (which is given by the closed k-forms). This is a consequence of theorem 9.3.1 and
hence of d2 = 0.

9.4 Interior product

Also the pairing ⟨X,ω⟩ between a vector field X ∈ Vect(M) and a covector field ω ∈ Ω1(M)
introduced in the previous lecture is a special case of a more general construction, which we
discuss in this section and which is defined as follows.

Definition 9.4.1 (Interior product). For a manifold M , the interior product ι : Vect(M)×
Ωk+1(M)→ Ωk(M) is the unique function such that for any X ∈ Vect(M):

• ιXα = ⟨X,α⟩ for α ∈ Ω1(M).

• ιX(λα+ µβ) = λιXα+ µιXβ for λ, µ ∈ R and α, β ∈ Ωk+1(M).

• ιX(α ∧ β) = (ιXα) ∧ β + (−1)pα ∧ (ιXβ) for α ∈ Ωp(M) and β ∈ Ωq(M), where
p, q ∈ N.

Instead of writing ιXω for the interior product, it is also common to write X ¬ ω. We will use
both notations interchangeably, depending on which one is more convenient.

For a vector field X = Xa∂a and a differential form ω = 1
k!ωa1···akdx

a1 ∧ . . . ∧ dxak expressed
in coordinates (xa) we can directly use the properties given in the definition above to read off
the coordinate formula

ιXω =
1

k!
ιXb∂b(ωa1···akdx

a1 ∧ . . . ∧ dxak)

=
1

k!
Xbωa1···ak

k∑
i=1

(−1)i−1⟨∂b,dxai⟩dxa1 ∧ . . . ∧ dxai−1 ∧ dxai+1 ∧ . . . ∧ dxak

=
1

k!
ωa1···ak

k∑
i=1

(−1)i−1Xaidxa1 ∧ . . . ∧ dxai−1 ∧ dxai+1 ∧ . . . ∧ dxak

=
1

(k − 1)!
Xa1ωa1···akdx

a2 ∧ . . . ∧ dxak ,

(9.4.1)

where the last line follows from the fact that we took the components ωa1···ak to be totally
antisymmetric. Repeating this process k times, we find the helpful formula

ιXk · · · ιX1
ω = Xa1

1 · · ·Xak
k ωa1···ak . (9.4.2)

In particular, if one chooses for the vector fields the coordinate basis vector fields, one finds

ι∂ak · · · ι∂a1ω = ωa1···ak . (9.4.3)

This antisymmetry also plays a role in the following statement.

Theorem 9.4.1. For X,Y ∈ Vect(M) and ω ∈ Ωk(M) the interior product satisfies ιX(ιY ω) =
−ιY (ιXω).

Proof. ▶. . .◀ ■
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We will not prove this here, and instead present another theorem, which can be helpful in
practical calculations.

Theorem 9.4.2. Given a k-form ω ∈ Ωk(M) and k + 1 vector fields X0, . . . Xk ∈ Vect(M),
the exterior derivative, interior product and Lie bracket are related by

ιXk · · · ιX0
dω =

k∑
i=0

(−1)iXi

(
ιXk · · · ιXi+1

ιXi−1
· · · ιX0

ω
)

+

k−1∑
i=0

k∑
j=i+1

(−1)i+jιXk · · · ιXj+1
ιXj−1

· · · ιXi+1
ιXi−1

· · · ιX0
ι[Xi,Xj ]ω . (9.4.4)

Proof. ▶. . .◀ ■

For a 1-form ω ∈ Ω1(M) this formula reduces to

ιY ιXdω = X(ιY ω)− Y (ιXω)− ι[X,Y ]ω

= X(⟨Y, ω⟩)− Y (⟨X,ω⟩)− ⟨[X,Y ], ω⟩ . (9.4.5)

Finally, we mention another helpful formula regarding the inner product with the commutator
of two vector fields:

Theorem 9.4.3. For X,Y ∈ Vect(M) and ω ∈ Ωk(M) the interior product with [X,Y ] is given
by

ι[X,Y ]ω = dιXιY ω + ιXdιY ω − ιY dιXω − ιY ιXdω . (9.4.6)

Proof. ▶. . .◀ ■

As we will see in section 16.5, this is closely related to the commutator of the interior product
and the Lie derivative.

9.5 Vector-valued differential forms

Definition 9.5.1 (Vector-valued differential form). Let (E,B, π,Rn) be a vector bundle.
A differential k-form with values in E is a section of the bundle E ⊗ΛkT ∗B. The space of
all E-valued k-forms is denoted Ωk(B,E). If E = B × V is a trivial bundle whose fiber is
the vector space V , also the notation Ωk(B, V ) is used.
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Chapter 10

Differential and pushforward

10.1 Differential and pushforward

The tensor bundles we have discussed in the previous sections, including the special cases of
tangent and cotangent bundles, belong to a particular class called natural bundles. These
bundles allow relating elements of their total spaces if only a map between their base spaces is
given. One of these operations, which applies to the tangent bundle, can be defined as follows.

Definition 10.1.1 (Differential and pushforward). Let M and N be manifolds and φ :
M → N a smooth map. The differential of φ is the smooth map φ∗ : TM → TN which
assigns to a tangent vector v ∈ TpM at p ∈M (which is a derivation at p acting on functions
on M) its pushforward φ∗(v) ∈ Tφ(p)N (derivation at φ(p) ∈ N acting on functions on N)
along φ defined by

φ∗(v)(f) = v(f ◦ φ) (10.1.1)

for f ∈ C∞(N,R).

To see that this definition makes sense and indeed yields a map φ∗ : TM → TN one of course
needs to check, following definition 7.1.1, that φ∗(v) as defined above is a derivation and that
φ∗ is smooth. It is not very difficult to check this, as we will see by proving an even stronger
statement.

Theorem 10.1.1. The differential φ∗ : TM → TN of a smooth map φ : M → N is a vector
bundle homomorphism covering φ.

Proof. We first need to check that for every p ∈M and v ∈ TpM we indeed have φ∗(v) ∈ Tφ(p)N ,
so that φ∗ is a bundle morphism covering φ. In other words, we must check that φ∗(v) is a
derivation at φ(p). First, φ∗(v) is clearly linear, since precomposition with φ is linear, i.e.,

(µf + νg) ◦ φ = µ(f ◦ φ) + ν(g ◦ φ) (10.1.2)

for µ, ν ∈ R and f, g ∈ C∞(N,R) and v is linear. Further, the Leibniz rule follows from

φ∗(v)(fg) = v((fg) ◦ φ)
= v((f ◦ φ)(g ◦ φ))
= v(f ◦ φ)g(φ(p)) + f(φ(p))v(g ◦ φ)
= φ∗(v)(f)g(φ(p)) + f(φ(p))φ∗(v)(g) .

(10.1.3)
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Hence, φ∗(v) ∈ Tφ(p)N . We then check that this map is linear on every fiber. Given another
vector w ∈ TpM at the same point p ∈M we have

φ∗(µv + νw)(f) = (µv + νw)(f ◦ φ)
= µv(f ◦ φ) + νw(f ◦ φ)
= µφ∗(v)(f) + νφ∗(w)(f) ,

(10.1.4)

and so it is indeed linear. Finally, we also need to check its smoothness. However, since
this proof makes use of charts, we defer it to section 10.3, where we derive its coordinate
representation. ■

This of course raises the question, whether and under which circumstances the differential
becomes a vector bundle isomorphism. To answer it, we first prove the following statement
which further relates the differential of a map to the properties of derivatives, by showing that
it satisfies a generalization of the chain rule.

Theorem 10.1.2. Let M,N,O be manifolds and φ1 :M → N and φ2 : N → O smooth maps.
Then their differentials satisfy

(φ2 ◦ φ1)∗ = φ2∗ ◦ φ1∗ . (10.1.5)

Proof. Let f ∈ C∞(O,R) be a function on O and v ∈ TM . It follows that

φ2∗(φ1∗(v))(f) = φ1∗(v)(f ◦ φ2)

= v((f ◦ φ2) ◦ φ1)

= v(f ◦ (φ2 ◦ φ1))

= (φ2 ◦ φ1)∗(v)(f) ,

(10.1.6)

using the fact that map composition ◦ is associative. ■

Since the identity map on every manifold acts as a neutral element in map composition, one may
of course assume that the differential maps this element to the corresponding neutral element
in the composition of vector bundle morphisms between tangent bundles. This is indeed the
case, as one can easily show also explicitly.

Theorem 10.1.3. Let M be a manifold and idM :M →M the identity on M . Its differential
is given by (idM )∗ = idTM .

Proof. Given any vector v ∈ TM and a function f ∈ C∞(M,R) one has

(idM )∗(v)(f) = v(f ◦ idM ) = v(f) . (10.1.7)

Since this holds for any function f , and a tangent vector is uniquely characterized by its action
on functions, it follows that (idM )∗(v) = v, and thus (idM )∗ = idTM . ■

With these two statements it is now straightforward to prove the following.

Theorem 10.1.4. The differential φ∗ : TM → TN of a smooth map φ : M → N is a vector
bundle isomorphism if and only if φ is a diffeomorphism.

Proof. If φ∗ is a vector bundle isomorphism, then it is invertible and its inverse is also a
vector bundle isomorphism. But then also the covered map φ must be invertible and have a
smooth inverse, and thus be a diffeomorphism. Conversely, given a diffeomorphism φ, both its
differential φ∗ and the differential (φ−1)∗ are vector bundle homomorphisms. One finds that
the latter is the inverse of the former, since

(φ−1)∗ ◦ φ∗ = (φ−1 ◦ φ)∗ = (idM )∗ = idTM , (10.1.8)

using the previous two statements. Hence, φ∗ is a vector bundle isomorphism. ■
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Another class of maps which is worth studying if given by constant maps. In this case we find
the following.

Theorem 10.1.5. Let M,N be manifolds, q ∈ N and φq : M → N, p 7→ q the constant map
which maps every point p ∈M to the same point q. Then its differential is given by

φq∗ : TM → TN
v 7→ 0 ∈ TqN . (10.1.9)

Proof. Let f ∈ C∞(N,R), p ∈M and v ∈ TpM . Then we have

φq∗(v)(f) = v(f ◦ φq) = 0 , (10.1.10)

since
f ◦ φq : M → R

p 7→ f(q)
(10.1.11)

is a constant function, and so any derivation acts trivially as of theorem 7.1.1. ■

The previous examples of diffeomorphisms and the constant function are in a certain sense ex-
tremes: while the differential of a diffeomorphism is bijective and thus preserves the information
given by a tangent vector, the differential of a constant function sends all tangent vectors to the
same zero element and thus discards all information. The following notion gives a measure for
the amount of information, i.e., the number of vector components in a given basis, is preserved.

Definition 10.1.2 (Rank). Let M,N be manifolds and φ : M → N a smooth map. For
p ∈M , the rank of φ in p is the rank of its differential φ∗ in p. A map is of constant rank
if it has the same rank in all points p ∈M .

Maps of constant rank play an important role when it comes to defining certain subbundles of
vector bundles, as we will see later.

10.2 Pushforward and curves

Although the definition 10.1.1 is probably the most clear and practical from an algebraic point
of view, it is not very intuitive from a geometric perspective. We will therefore also discuss how
the pushforward relates to the other definitions of tangent vectors we have given. The most
geometric picture is given by that of the tangent vector of a curve discussed in section 7.3, and
which leads us to the following statement.

Theorem 10.2.1. Let M and N be manifolds, γ ∈ C∞(R,M) a curve on M and φ :M → N
a smooth map. Then the pushforward φ∗(γ̇(t)) is given by

φ∗(γ̇(t)) = Γ̇(t) , (10.2.1)

where Γ = φ ◦ γ ∈ C∞(R, N).

Proof. First, note that by definition 7.3.1 we have γ̇(t) ∈ Tγ(t)M and Γ̇(t) ∈ TΓ(t)N = Tφ(γ(t))N ,
and so the base points γ(t) and Γ(t) are indeed related by φ. Following definition 10.1.1 we
then find

φ∗(γ̇(t))(f) = γ̇(t)(f ◦ φ)
= (f ◦ φ ◦ γ)′(t)
= (f ◦ Γ)′(t)
= Γ̇(t)(f)

(10.2.2)
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for any f ∈ C∞(N,R). Since this holds for any smooth function f , and a tangent vector is
uniquely defined by its base point and action on functions, we conclude that φ∗(γ̇(t)) = Γ̇(t). ■

R

γ̇(t)

Γ̇(t)

γ(t)
Γ(t)φ

γ Γ = φ ◦ γ

M N

Figure 10.1: Illustration of the pushforward of the tangent vector of a curve. At each point γ(t)
the tangent vector γ̇(t) is mapped to the corresponding tangent vector of the composed curve
Γ = φ ◦ γ.

This is illustrated in figure 10.1. With this knowledge, the next statement follows immediately.

Theorem 10.2.2. Let M and N be manifolds, γ ∈ C∞(R,M) a curve on M and φ :M → N
a smooth map. The canonical lift Γ̇ ∈ C∞(R, TN) of Γ = φ ◦ γ is given by Γ̇ = φ∗ ◦ γ̇, where
γ̇ ∈ C∞(R, TM) is the canonical lift of γ.

Proof. This follows immediately from definition 7.3.2 and theorem 10.2.1. ■

With the pushforward, we can also find this helpful statement on canonical lifts of curves.

Theorem 10.2.3. A curve Γ : R→ TM is the canonical lift, Γ = γ̇, of a curve γ : R→ M if
and only if τ∗ ◦ Γ̇ = Γ.

Proof. For a curve γ, we have that the projection of its canonical lift along τ : TM →M recovers
the original curve, τ ◦ γ̇, and so Γ can only be the canonical lift of τ ◦ Γ. The canonical lift of
τ ◦ Γ is τ∗ ◦ Γ̇, according to theorem 10.2.2, and this agrees with Γ if and only if τ∗ ◦ Γ̇ = Γ. ■

10.3 Pushforward and charts

To get a better picture of the differential and the pushforward, we can write them in coordinates.
In order to clearly distinguish between coordinate dependent and independent quantities, we
explicitly write out all involved charts. Consider p ∈ M and v ∈ TpM . On N we pick a chart
(V, χ) such that φ(p) ∈ V . We then pick a chart (U,ψ) on M such that p ∈ U and U ⊂ φ−1(V ).
(Note that we can always obtain such a chart by choosing an arbitrary chart (U ′, ψ′) around
p and defining U = U ′ ∩ φ−1(V ) and ψ = ψ′|U .) Denote the induced charts on TM and TN ,
which are obtained from the coordinate bases corresponding to (U,ψ) and (V, χ), by (Ũ, ψ̃) and
(Ṽ, χ̃). We further denote by (xa) the corresponding coordinates on M and (yµ) the coordinates
on N , as well as by (xa, x̄a) and (yµ, ȳµ) the induced coordinates on TM and TN . We use
different indices (Latin for M and Greek for N) here to distinguish between objects living on
different manifolds, and to make clear that Latin indices run from 1 to m = dimM , while Greek
indices run from 1 to n = dimN . In these coordinates a map φ :M → N is expressed by

φ̂ = χ ◦ φ ◦ ψ−1 : ψ(U) → Rn
x 7→ y = φ̂(x)

, (10.3.1)
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where we introduced the abbreviation φ̂.

Now let v ∈ TpM be a tangent vector and g ∈ C∞(M,R) be a smooth function on M . The
induced chart (Ũ, ψ̃) is defined such that Ũ = τ−1(U), where τ : TM → M is the tangent
bundle projection, and

ψ̃ : Ũ → R2m

v 7→ (ψ(τ(v)), ψ̄(v))
, (10.3.2)

where ψ̄(v) ∈ Rm follows from

v(g) = ψ̄a(v)
∂

∂xa
(g ◦ ψ−1)(x)

∣∣∣∣
x=ψ(τ(v))

. (10.3.3)

In other words, in the coordinate basis ∂a of TpM , v is written as v = va∂a = ψ̄a(v)∂a. In the
same fashion one constructs the induced chart (Ṽ, χ̃) on TN .

Now let f ∈ C∞(N,R) and g = f ◦φ. Our aim is to derive the coordinate expression for φ∗(v),
i.e., the expression

χ̃(φ∗(v)) = (χ(τ ′(φ∗(v))), χ̄(φ∗(v))) = (χ(φ(τ(v))), χ̄(φ∗(v))) , (10.3.4)

where τ ′ : TN → N denotes the tangent bundle projection and we used the fact that φ∗ is a
vector bundle homomorphism in the first component of this tuple. For the second component
χ̄(φ∗(v)) we make use of the definition

(φ∗(v))(f) = v(f ◦ φ)

= ψ̄a(v)
∂

∂xa
(f ◦ φ ◦ ψ−1)(x)

∣∣∣∣
x=ψ(τ(v))

= ψ̄a(v)
∂

∂xa
(f ◦ χ−1 ◦ χ ◦ φ ◦ ψ−1)(x)

∣∣∣∣
x=ψ(τ(v))

= ψ̄a(v)
∂

∂xa
(f ◦ χ−1 ◦ φ̂)(x)

∣∣∣∣
x=ψ(τ(v))

= ψ̄a(v)
∂

∂xa
φ̂µ(x)

∣∣∣∣
x=ψ(τ(v))︸ ︷︷ ︸

=χ̄µ(φ∗(v))

∂

∂yµ
(f ◦ χ−1)(y)

∣∣∣∣
y=χ(φ(τ(v)))

= χ̄µ(φ∗(v))
∂

∂yµ
(f ◦ χ−1)(y)

∣∣∣∣
y=χ(φ(τ(v)))

,

(10.3.5)

using the chain rule for functions φ̂ and f ◦ χ−1 defined on subsets of Euclidean spaces. This
allows us to simply read off

χ̄(φ∗(v)) = ψ̄a(v)
∂

∂xa
φ̂(x)

∣∣∣∣
x=ψ(τ(v))

= Dφ̂(ψ(τ(v))) · ψ̄(v) . (10.3.6)

Here Dφ̂(x) denotes the Jacobian of φ̂ at x ∈ ψ(U). If the charts are clear from the context, one
often omits them and identifies the points on the manifold with their coordinates, so that the
map φ is simply expressed as the assignment x 7→ y. Following this convention, the pushforward
is also written as

φ∗(v) = φ∗(v
a∂a) = va

∂yµ

∂xa
∂µ , (10.3.7)

where ∂a and ∂µ are the coordinate bases of TpM and Tφ(p)N induced by their respective charts.
Its application to a function f is then written as

φ∗(v)(f) = v(f ◦ φ) = va∂af(y(x)) = va
∂yµ

∂xa
∂µf(y) . (10.3.8)
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The appearance of the Jacobian also explains the name differential for the map φ∗, as it is
basically some kind of derivative of φ. This relates to our previous finding 10.1.2 that the
differential itself satisfies a chain rule.

The coordinate description found above finally also allows us to relate the pushforward also to
the third interpretation of a tangent vector in terms of equivalence classes related to charts,
which we gave in definition 7.1.3. ▶. . .◀

10.4 Immersions

The property of the differential to assign to each map a vector bundle homomorphism, which
restricts to a linear function on each fiber, allows us to classify maps by the properties of these
linear functions, and thus make use of the tools of linear algebra. We start this study by defining
the following class of maps.

Definition 10.4.1 (Immersion). A map φ : M → N between two manifolds M and N is
called an immersion if and only if for each p ∈ M the restriction φ∗p : TpM → Tφ(p)N of
the differential φ∗ : TM → TN to TpM is injective.

Before we come to examples for immersions which we have actually already encountered, we
discuss them more generally. Recall that both for maps in general, as well as for diffeomorphisms
in particular, we have found that their composition yields again a map, or a diffeomorphism,
respectively. The same statement holds also for immersions, as we shall see next.

Theorem 10.4.1. Let M,N,O be manifolds and φ : M → N and ψ : N → O immersions.
Then also ψ ◦ φ :M → O is a immersion.

Proof. Let p ∈M . Since φ is an immersion, any distinct u1, u2 ∈ TpM will have distinct images
v1 = φ∗(u1), v2 = φ∗(u2) ∈ Tφ(p)N . Since also ψ is an immersion, these have distinct images
w1 = ψ∗(v1), w2 = ψ∗(v2) ∈ Tψ(φ(p))O. Hence,

w1 = ψ∗(φ∗(u1)) = (ψ ◦ φ)∗(u1) and w2 = ψ∗(φ∗(u2)) = (ψ ◦ φ)∗(u2) (10.4.1)

are distinct, and so ψ ◦ φ is an immersion. ■

One may of course ask whether also the converse is true, and one can draw any conclusions
about the individual maps φ and ψ if ψ ◦ φ is an immersion. It turns out that this is indeed
the case.

Theorem 10.4.2. Let M,N,O be manifolds and φ : M → N and ψ : N → O maps such that
ψ ◦ φ :M → O is an immersion. Then also φ is an immersion.

Proof. Let p ∈ M and u1, u2 ∈ TpM two distinct tangent vectors. Since we assumed ψ ◦ φ to
be an immersion, it follows that

w1 = ψ∗(φ∗(u1)) = (ψ ◦ φ)∗(u1) ̸= (ψ ◦ φ)∗(u2) = ψ∗(φ∗(u2)) = w2 (10.4.2)

are distinct. Hence, also v1 = φ∗(u1) and v2 = φ∗(u2) must be distinct. Since this holds for all
p ∈M and distinct u1, u2 ∈ TpM , it follows that φ is an immersion. ■

We will make use of this result when we show for a few classes of maps that they are immersions.
However, we start with a simpler example; see also theorem 10.5.3 for a related statement.
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Theorem 10.4.3. Every diffeomorphism is an immersion.

Proof. Recall from theorem 10.1.4 that the differential φ∗ of a map φ is a vector bundle iso-
morphism if and only if φ is a diffeomorphism. In this case, φ∗ restricts to a vector space
isomorphism on every fiber, and is therefore in particular injective, so that φ is a immersion. ■

For a diffeomorphism, we know that both the properties of surjectivity and injectivity on every
fiber are satisfied. This is not surprising, since a diffeomorphism is bijective by definition, and
also its inverse is a diffeomorphism. As one may expect, this changes as soon as one considers
maps which do not possess an inverse. Nevertheless, one can still find situations in which
immersions occur. A simple example are product manifolds. We start with the following basic
observation.

Theorem 10.4.4. Let M,N be manifolds and M ×N their product. Then for every q ∈ N the
map

φq : M → M ×N
x 7→ (x, q)

(10.4.3)

is an immersion.

Proof. Consider the projection pr1 : M ×N →M , and note that pr1 ◦φq = idM . The identity
idM is a diffeomorphism, and hence an immersion. Following theorem 10.4.2, also φq is an
immersion. ■

In the previous example, instead of fixing a point q ∈ N , we could also have considered an
arbitrary smooth map f :M → N , and then shown that φf :M →M ×N, p 7→ (p, f(p)) is an
immersion, as we will do next.

Theorem 10.4.5. Let M,N be manifolds and M×N their product. Then for map f :M → N
the map

φf : M → M ×N
x 7→ (x, f(x))

(10.4.4)

is an immersion.

Proof. The proof proceeds in full analogy to the preceding one. Consider the projection pr1 :
M ×N → M , and note that pr1 ◦φf = idM . The identity idM is a diffeomorphism, and hence
an immersion. Following theorem 10.4.2, also φf is an immersion. ■

According to theorem 2.3.2, the map φf from the previous example is simply a section of the
trivial fiber bundle (M ×N,M,pr1, N). Instead of restricting ourselves to sections of a trivial
bundle, we can also go one step further and consider sections of general fiber bundles. Here we
work with local sections, since global sections may not exist for a given bundle.

Theorem 10.4.6. Let (E,B, π, F ) be a fiber bundle. Every local section σ : U → E with
U ⊆ B is an immersion.

Proof. The proof essentially follows again the same line of argument as before, using the fact
that the projection π : E → B satisfies π ◦ σ = idU . Now idU = idM |U is a diffeomorphism,
and hence an immersion. It thus follows from theorem 10.4.2 that also σ is an immersion. ■

The previous examples show the full virtue of theorem 10.4.2. In order to show that a map φ
is an immersion, one finds a map ψ of which it is known that ψ ◦ φ is an immersion.
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10.5 Submersions

We now come to a closely related concept, which is in some sense dual to the previously
introduced notion of an immersion. It can be defined as follows.

Definition 10.5.1 (Submersion). A map φ :M → N between two manifolds M and N is
called a submersion if and only of for each p ∈ M the restriction φ∗p : TpM → Tφ(p)N of
the differential φ∗ : TM → TN to TpM is surjective.

While for an immersion we demanded that it restricts to an injective linear function on every
tangent space, we thus now consider the case of surjective functions. It turns out that many
properties of submersions are very similar to those of immersions, as we will show in this section.
We first study the composition of submersions.

Theorem 10.5.1. Let M,N,O be manifolds and φ : M → N and ψ : N → O submersions.
Then also ψ ◦ φ :M → O is a submersion.

Proof. Let p ∈M . Since ψ is a submersion, for every u ∈ Tψ(φ(p))O there exists some v ∈ Tφ(p)N
such that ψ∗(v) = u. Since also φ is a submersion, there further exists w ∈ TpM such that
φ∗(w) = v, and therefore

(ψ ◦ φ)∗(w) = ψ∗(φ∗(w)) = ψ∗(v) = u , (10.5.1)

and so ψ ◦ φ is a submersion. ■

Again as in the case of immersions, one may ask for a converse statement, which allows to
draw conclusions on the individual maps φ and ψ from their composition, in analogy to the-
orem 10.4.2. It turns out that this is indeed the case, but only under certain circumstances.
This will be formulated as follows.

Theorem 10.5.2. Let M,N,O be manifolds and φ : M → N and ψ : N → O maps such that
ψ ◦ φ :M → O is a submersion and φ is surjective. Then also ψ is a submersion.

Proof. Let q ∈ N . Since φ is surjective, there exists a p ∈M such that φ(p) = q. Since ψ ◦φ is
a submersion, it follows that (ψ ◦ φ)∗|TpM is surjective, i.e., for every u ∈ Tψ(φ(p))O = Tψ(q)O
there exists w ∈ TpM such that ψ∗(φ∗(w)) = u. Defining v = φ∗(w), we have thus found an
element v ∈ TqN such that ψ∗(v) = u. Since this holds for all q ∈ N and u ∈ Tψ(q)O, it follows
that ψ is a submersion. ■

Note that the assumption that φ is surjective is crucial in the proof above. The reason is that
in order to show that ψ is a submersion, we must show that the restriction of ψ∗ to the tangent
space TqN is surjective for all q ∈ N . But in order to find a preimage v ∈ TqN , we made use of
φ∗, and this is possible only if q belongs to the image φ(M) ⊆ N of φ. Hence, we must demand
that this image φ(M) contains all of N , i.e., that φ is surjective. Compare this with the related
statement 10.4.2, where no such restriction is needed. The reason is that here we must check
that the restriction of φ∗ to TpM for all p ∈ M is injective, and in order to show that, we
require that p lies in the domain of ψ ◦ φ. However, this is the case by definition, and so no
restriction is needed. Another notable difference with theorem 10.4.2 is that for submersions
we conclude on the properties of the second map ψ, while for immersions we conclude on the
first map φ.

By definition, a map is a submersion if and only if the restriction of its differential to any fiber
is surjective. The latter is in particular true if it is a vector bundle isomorphism, as in the case
of the diffeomorphism, as we have also discussed in the case of immersions in theorem 10.4.3.
The latter is therefore easy to prove.
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Theorem 10.5.3. Every diffeomorphism is a submersion.

Proof. The proof proceeds in full analogy to the proof of theorem 10.4.3, by again using the
fact that for a diffeomorphism φ, the differential φ∗ restricts to a vector space isomorphism on
every fiber, and is therefore in particular surjective on every fiber. ■

Another important class of submersions, which we discuss now, is given by projections. We first
start with the most simple case, given by the projection of a product manifold. We find that
the following holds.

Theorem 10.5.4. Let M,N be manifolds and M × N their product. Then the projections
pr1 :M ×N →M and pr2 :M ×N → N are submersions.

Proof. Here we will restrict ourselves to the map pr1 : M × N → M , since the proof for pr2
proceeds in full analogy. Let (p, q) ∈ M ×N . To show that pr1∗ : T (M ×N) → TM restricts
to a surjective linear map on T(p,q)(M ×N), consider the map

φq : M → M ×N
x 7→ (x, q)

. (10.5.2)

This map satisfies, of course, φq(p) = (p, q) and pr1 ◦φq = idM . From the latter now follows

pr1∗ ◦φq∗ = (pr1 ◦φq)∗ = idM∗ = idTM . (10.5.3)

Given any vector v ∈ TpM , we can thus define w = φq∗(v) ∈ T(p,q)(M × N), and it satisfies
pr1∗(w) = v. Hence, the restriction of pr1∗ to T(p,q)(M ×N) is surjective. Since this holds for
all (p, q) ∈M ×N , it follows that pr1 :M ×N →M is a submersion. ■

Recall that locally any fiber bundle takes the form of a product, through its local trivializations.
Since the differential of a map depends only on its local properties, one may therefore expect
that also the projection of a fiber bundle is a submersion. This can be shown as follows.

Theorem 10.5.5. Let (E,B, π, F ) be a fiber bundle. The projection π : E → B is a submer-
sion.

Proof. There are different possibilities to prove this statement, either by constructing a similar
argument as in the proof of the preceding theorem 10.5.4, or by using its result together with
the properties of the local trivializations. Here we start with the former. Let e ∈ E and
π(e) = p ∈ B. Using theorem 2.3.1, we can construct a local section as follows. Let (U, ϕ) with
p ∈ U ⊂ B and ϕ : π−1(U) → U × F a local trivialization around p, and construct a local
section σ by defining

σ : U → E
x 7→ ϕ−1(x,pr2(ϕ(e)))

. (10.5.4)

This is a local section, since ϕ(e) ∈ U × F , and so pr2(ϕ(e)) ∈ F , and

π ◦ σ = pr1 ◦ϕ ◦ σ = idU . (10.5.5)

Further, it satisfies

σ(p) = ϕ−1(p,pr2(ϕ(e))) = ϕ−1(π(e),pr2(ϕ(e))) = ϕ−1(pr1(ϕ(e)),pr2(ϕ(e))) = ϕ−1(ϕ(e)) = e .
(10.5.6)

Now we can further proceed in full analogy to the proof of theorem 10.5.4. Given v ∈ TpB, we
define w = σ∗(v) ∈ TeE. Since π ◦σ = idU = idM |U , it follows that π∗(w) = v. Since this holds
for all v ∈ TpB, it follows that π∗|TeE is surjective. Further, this can be done for all e ∈ E, and
so π is a submersion.

Alternatively, one can also use theorem 10.5.4 directly for the proof. ▶. . .◀ ■
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The previous examples exhibit some sense of duality between immersions and submersions.
While sections of fiber bundles constitute immersions, projections are submersions. Also note
that in order to prove the statements for submersions, we needed significantly more work than
for the corresponding statements for immersions. The reason is that while for immersions we
could make use of theorem 10.4.2, while the related theorem 10.5.2 for submersions is not
helpful here, since we have no surjective map to compose with. Instead, we had to choose a
different, non-surjective map for any point we considered, and used the existence of such maps,
or constructed them explicitly.

Finally, we come to the coordinate representation of submersions. Here we find that the follow-
ing theorem holds.

Theorem 10.5.6. Let M,N be manifolds and φ : M → N a submersion. For every p ∈ M ,
there exist charts (U,ψ) of M with p ∈ U and (V, χ) of N with φ(U) ⊂ V , such that χ◦φ◦ψ−1 :
ψ(U)→ χ(V ) is given by the ordinary orthogonal projection

(x1, . . . , xn, xn+1, . . . xm) 7→ (x1, . . . , xn) , (10.5.7)

where m = dimM and n = dimN .

Proof. ▶. . .◀ ■
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Chapter 11

Pullback

11.1 Pullback of functions

While the pushforward transfers objects (vectors) along a map in the same direction as the
map points, the pullback works in the opposite direction and transfers objects (sections of
bundles) from the target manifold to the source manifold. We have already encountered this
in section 2.9 in the discussion of pullback bundles, where sections of arbitrary bundles can be
pulled back. For particular cases, it is also possible to consider the pullback to bundles which
are not pullback bundles. In fact, there are different notions of such pullbacks, depending on
the type of object to which it is applied. The simplest possible case is the pullback of a function.

Definition 11.1.1 (Pullback of a function). Let M and N be manifolds and φ : M → N
a smooth map. The pullback of a function f ∈ C∞(N,R) to M along φ is the function
φ∗(f) = f ◦ φ ∈ C∞(M,R).

It is clear that φ∗(f) is a smooth function on M , since the composition of smooth maps is
smooth.

11.2 Pullback of covector fields

A slightly more sophisticated type of pullback is defined as follows.

Definition 11.2.1 (Pullback of a covector field). Let M and N be manifolds and φ :M →
N a smooth map. The pullback of a covector field ω ∈ Ω1(N) to M along φ is the covector
field φ∗(ω) ∈ Ω1(M) such that for all p ∈M and v ∈ TpM holds

⟨v, φ∗(ω)(p)⟩ = ⟨φ∗(v), ω(φ(p))⟩ . (11.2.1)

Note that there is a fundamental difference between the pullback and the pushforward, besides
the fact that they transfer objects in different directions: while the pushforward takes single
tangent vectors from TM to TN , the pullback takes whole sections of T ∗N to sections of T ∗N .
This can be understood as follows.
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A map φ : M → N assigns to each point p ∈ M a point φ(p) ∈ N , but this map is in general
not surjective or injective. Given a single vector v ∈ TpM , the pushforward yields a single
vector φ∗(v) ∈ Tφ(p)N . However, we cannot use the pushforward and apply it to a vector field
X ∈ Vect(M) to obtain a vector field on Y ∈ Vect(N), because the latter would be a map
Y : N → TN which assigns a unique vector to each q ∈ N . But the pushforward does not yield
any vector at points q ∈ N which lie outside the image of φ. Further, if φ is not injective, it
maps different vectors X(p) and X(p′) with φ(p) = φ(p′) = q into TqN , so that Y (q) would not
be uniquely defined.

The converse holds for the pullback. We cannot pull a single covector α ∈ T ∗qN back to M ,
because q may lie outside the image of φ and thus have no preimage at all, or may have multiple
preimages. But if we have a covector field ω ∈ Ω1(N), which assigns a covector ω(q) to each
point q ∈ N , we can obtain a covector field φ∗(ω) ∈ Ω1(M) as follows. We need to construct a
section of T ∗M , which assigns to each p ∈ M a covector φ∗(ω)(p) ∈ T ∗pM . Here we make use
of the fact that TpM and T ∗pM are dual vector spaces, so that we can identify such a covector
with a linear function on TpM . To construct such a function, we take a vector v ∈ TpM and
push it (linearly) to a vector φ∗(v) ∈ Tφ(p)N . Now we use the covector ω(φ(p)) ∈ T ∗φ(p)N ,
which is a linear function on Tφ(p)N . This is exactly the construction given in the definition of
the pullback.

To illustrate this definition we write the pullback in coordinates. Let (xa) be coordinates on M
and (yα) coordinates on N , as in the previous section. Using these coordinates a covector field
ω ∈ Ω1(N) takes the form ωαdy

α, while a vector v ∈ TxM can be written as v = va∂a. The
definition of the pullback then reads

⟨v, φ∗(ω)(x)⟩ = ⟨φ∗(v), ω(φ(x))⟩ = φ∗(v)
αωα(y(x)) = va

∂yα

∂xa
ωα(y(x)) , (11.2.2)

so that φ∗(ω) can be written in coordinates in the form

φ∗(ω)(x) = ωα(y(x))
∂yα

∂xa
dxa . (11.2.3)

11.3 Pullback of differential forms

We now have pullbacks of 0-forms (real functions) and 1-forms (covector fields) on N . One
may already guess that this procedure can be extended to arbitrary k-forms on N . For this
purpose, recall that an element of ΛkT ∗qN can be viewed as an alternating multilinear form on
TqN , i.e., a function from TqN × . . . × TqN to R which is linear in each argument and totally
antisymmetric with respect to permutations of its arguments. With this in mind we can define
the pullback of a differential form as follows.

Definition 11.3.1 (Pullback of a differential form). Let M and N be manifolds and φ :
M → N a smooth map. The pullback of a k-form ω ∈ Ωk(N) to M along φ is the k-form
φ∗(ω) ∈ Ωk(M) such that for all p ∈M and v1, . . . , vk ∈ TpM holds

φ∗(ω)(p)(v1, . . . , vk) = ω(φ(p))(φ∗(v1), . . . , φ∗(vk)) . (11.3.1)

Again one easily checks that this definition indeed yields a k-form on M . Also the coordinate
expression can be easily derived. Following the same procedure as above one easily sees that

φ∗(ωα1···αkdy
α1 ∧ . . . ∧ dyαk) = ωα1···αk

∂yα1

∂xa1
· · · ∂y

αk

∂xak
dxa1 ∧ . . . ∧ dxak . (11.3.2)

A bit less obvious are the following very useful properties of the pullback of differential forms.
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Theorem 11.3.1. Let M and N be manifolds and φ : M → N a smooth map. For any
differential forms α ∈ Ωk(N), β ∈ Ωl(N) on N the pullback satisfies

φ∗(α) ∧ φ∗(β) = φ∗(α ∧ β) and d(φ∗(α)) = φ∗(dα) . (11.3.3)

Proof. ▶. . .◀ ■

The proof is rather lengthy, but simple, so we will not discuss it here.

11.4 Pullback of covariant tensor fields

We finally generalize the pullback even further. In a similar way as an element of ΛkT ∗qN can
be regarded as an alternating multilinear form on TqN , an element of

⊗k
T ∗qN corresponds

to a (general) multilinear form on TqN . This allows us to extend the pullback to covariant
tensor fields, i.e., tensor fields of type (0, k). In fact, the definition is identical to the case of a
differential form.

Definition 11.4.1 (Pullback of a covariant tensor field). Let M and N be manifolds and
φ : M → N a smooth map. The pullback of a covariant tensor field A ∈ Γ(T 0

kN) to
M along φ is the covariant tensor field φ∗(A) ∈ Γ(T 0

kM) such that for all p ∈ M and
v1, . . . , vk ∈ TpM holds

φ∗(A)(p)(v1, . . . , vk) = A(φ(p))(φ∗(v1), . . . , φ∗(vk)) . (11.4.1)

It should be clear now that this is indeed a tensor field of type (0, k) onM and that its coordinate
expression is given by

φ∗(Aα1···αkdy
α1 ⊗ . . .⊗ dyαk) = Aα1···αk

∂yα1

∂xa1
· · · ∂y

αk

∂xak
dxa1 ⊗ . . .⊗ dxak . (11.4.2)
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Chapter 12

Diffeomorphisms and coordinate
transformations

12.1 Pullback along diffeomorphisms

We have seen in the previous sections that the ways we can transfer objects along an arbitrary
smooth map φ : M → N are limited since φ is in general neither injective nor surjective. We
can remove these limitations by taking φ to be a diffeomorphism, i.e., a bijective map whose
inverse is again smooth. In this case the differential φ∗ : TM → TN becomes a vector bundle
isomorphism, and we can make use of various derived vector bundle isomorphisms to transfer
single tensors and tensor fields freely between both manifolds. This will be done in this section.
We start be defining the pullback of a vector field.

Definition 12.1.1 (Pullback of a vector field). Let M and N be manifolds and φ :M → N
a diffeomorphism. The pullback of a vector field X ∈ Vect(N) to M along φ is the vector
field φ∗(X) ∈ Vect(M) such that φ∗(X)(p) = φ−1∗ (X(φ(p))) for each p ∈M .

In the definition we have explicitly used the inverse of φ∗, which should remind us that this
construction is valid only if φ is a diffeomorphism. In coordinates (xa) on M and (ya) on N
(where we now use the same type of letters for the indices, because diffeomorphic manifolds
necessarily have the same dimension) we find that

φ∗(X) = Xa ∂x
b

∂ya
∂b , (12.1.1)

which follows from the rule for the derivative of inverse functions on Rn. Since we can now
pull back both vector and covector fields, we can also pull back arbitrary tensor fields. The
definition is as follows.

Definition 12.1.2 (Pullback of a tensor field). Let M and N be manifolds and φ :M → N
a diffeomorphism. The pullback of tensor fields on N to tensor fields on M is defined as the
linear function φ∗ : Γ(T rsN)→ Γ(T rsM) that for any r vector fields X1, . . . , Xr ∈ Vect(N)
and s 1-forms ω1, . . . , ωs ∈ Ω1(N) holds

φ∗(X1⊗ . . .⊗Xr⊗ω1⊗ . . .⊗ωs) = φ∗(X1)⊗ . . .⊗φ∗(Xr)⊗φ∗(ω1)⊗ . . .⊗φ∗(ωs) . (12.1.2)
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Using the definitions of the pullbacks of various tensor fields, one can now derive the following
property.

Theorem 12.1.1. The pullback along a diffeomorphism commutes with the contraction of a
tensor field, i.e., φ∗(trkl T ) = trkl φ

∗(T ).

Proof. We use the same notation as in definition 12.1.2 and start with the case T = X ⊗ ω,
where X ∈ Vect(N) and ω ∈ Ω1(N). In this case the only possible contraction has k = l = 1
and reads tr11(X ⊗ ω) = ⟨X,ω⟩. For every p ∈ M we have φ∗(X)(p) = φ−1∗ (X(φ(p))). By the
definition of the pullback, we then have

tr11 φ
∗(X ⊗ ω)(p) = ⟨φ∗(X)(p), φ∗(ω)(p)⟩

= ⟨X(φ(p)), ω(φ(p))⟩
= (tr11(X ⊗ ω))(φ(p))
= φ∗(tr11(X ⊗ ω))(p) ,

(12.1.3)

where the latter follows from the pullback of a scalar function. Since this holds for all p ∈ M ,
we conclude

tr11 φ
∗(X ⊗ ω) = φ∗(tr11(X ⊗ ω)) . (12.1.4)

This is now easily extended to the contraction of a general tensor product, since

trkl (T ⊗X ⊗ U ⊗ ω ⊗ V ) = ⟨X,ω⟩(T ⊗ U ⊗ V ) , (12.1.5)

where k and l are chosen such that the contraction is over X and ω, since

trkl φ
∗(T ⊗X ⊗ U ⊗ ω ⊗ V ) = trkl (T

′ ⊗X ′ ⊗ U ′ ⊗ ω′ ⊗ V ′)
= ⟨X ′, ω′⟩(T ′ ⊗ U ′ ⊗ V ′)
= ⟨X,ω⟩′(T ′ ⊗ U ′ ⊗ V ′)
= φ∗(⟨X,ω⟩(T ⊗ U ⊗ V ))

= φ∗(trkl (T ⊗X ⊗ U ⊗ ω ⊗ V )) ,

(12.1.6)

where we abbreviated T ′ = φ∗(T ), and analogously for the other fields. Finally, since the
pullback is linear by definition, this result holds for any linear combination of tensor products,
and hence for any tensor field. ■

This can also be seen from the coordinate expression of the pullback. In coordinates we find
for a tensor field A ∈ Γ(T rsN) the pullback

φ∗(Aa1···ar b1···bs∂
′
a1 ⊗ . . .⊗ ∂′ar ⊗ dyb1 ⊗ . . .⊗ dybs)

= Aa1···ar b1···bs
∂xc1

∂ya1
· · · ∂x

cr

∂yar
∂yb1

∂xd1
· · · ∂y

bs

∂xds
∂c1 ⊗ . . .⊗ ∂cr ⊗ dxd1 ⊗ . . .⊗ dxds , (12.1.7)

where we wrote (∂′a) for the coordinate basis of TyN . For the contraction, using

∂xc

∂ya
∂yb

∂xc
= δba , (12.1.8)

one sees that it commutes with the pullback.

12.2 Coordinate transformations

The transformations using diffeomorphisms shown in the previous section entail the following
two special cases if the source and target manifolds are the same, M = N :
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• If we can use a single chart (U,ψ) to describe the diffeomorphism (for example, if U =M
is the whole manifold or if φ maps U to itself), then we may use the same coordinates (xa)
to describe points and their images. A point p with coordinates ψa(p) = xa is mapped to
a (in general different) point p′ = φ(p) with coordinates ψa(p′) = x′a. We can apply this
diffeomorphism to a tensor field A and obtain its pullback A′ = φ∗(A). The components
of this (in general different) tensor field are given by

A′c1···crd1···ds(p) = Aa1···ar b1···bs(p
′)
∂xc1

∂x′a1
· · · ∂x

cr

∂x′ar
∂x′b1

∂xd1
· · · ∂x

′bs

∂xds
. (12.2.1)

Since points change, p ̸= p′ in general, this transformation is usually called an active
diffeomorphism.

• Another special case is obtained if we use two different charts (U,ψ) and (V, χ), and hence
different coordinates (xa) and (ya), to describe tensor fields at the same point p ∈ U ∩ V ,
while the diffeomorphism we consider is the identity φ = idM . In this case points and
tensor fields stay the same, since φ(p) = p and φ∗A = A, but their coordinate expressions
change. This means that we express tensor fields in a different basis

∂′a1⊗. . .⊗∂′ar⊗dyb1⊗. . .⊗dybs =
∂xc1

∂ya1
· · · ∂x

cr

∂yar
∂yb1

∂xd1
· · · ∂y

bs

∂xds
∂c1⊗. . .⊗∂cr⊗dxd1⊗. . .⊗dxds

(12.2.2)
at the same point p. Such a pure coordinate transformation is also called a passive
diffeomorphism, since it does not change points or tensor fields, but only their coordinate
description.

We see that both types of transformations are described by the same general formula (12.1.7).
This is not very surprising. Given an active diffeomorphism φ : M → M and a chart (U,ψ),
we may define a new chart (V, χ) by ψ = χ ◦ φ, such that ψ(p) = χ(p′). Then we find that the
coordinate expression of a tensor field A at a point p′ in the chart (V, χ) is exactly the same as
that of its pullback A′ = φ∗A at the original point p, but using the different chart (U,ψ), which
follows from the fact that both are given by (ψ−1)∗A′ = (ψ−1)∗φ∗A = (χ−1)∗A.

12.3 Background independence

The notions of active and passive diffeomorphisms often lead to confusion, in particular regard-
ing the question whether a given physical theory is invariant under active or passive coordinate
transformations. With the notions introduced in the previous section, we may clarify this issue.

119



ψ = χ ◦ φ χ

φ

p p′ = φ(p)

ψ(p) = χ(p′)

Rn

M

A1

A2

Ã1

Ã2

Figure 12.1: Relation between active and passive diffeomorphisms.
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Chapter 13

Submanifolds

13.1 Immersed submanifolds

13.2 Embedded submanifolds

Definition 13.2.1 (Embedded submanifold). Let M be a manifold of dimension n. A
subset S ⊂ M is called an embedded submanifold of dimension k if for each p ∈ M there
exists a chart (U, ϕ) of M with p ∈ U such that S ∩ U = ϕ−1(Rk), where we identify
Rk = {viei ∈ Rn | vi = 0∀n > k}.

Theorem 13.2.1. Let M,N be manifolds and φ : M → N a map of constant rank. Then for
each q ∈ N , φ−1(q) is an embedded submanifold of M .

Proof. ▶. . .◀ ■

Theorem 13.2.2. Let M,N be manifolds and φ :M → N a submersion. Then for each q ∈ N ,
φ−1(q) is an embedded submanifold of M .

Proof. ▶. . .◀ ■

Theorem 13.2.3. Let π : E → B be a fiber bundle. For each p ∈ B, the fiber Ep = π−1(p) is
an embedded submanifold of E.

Proof. ▶. . .◀ ■

13.3 Bundles over submanifolds

13.4 Foliations
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Chapter 14

Manifolds with boundary and
corners

14.1 Manifolds with boundary

Definition 14.1.1 (Chart with boundary). Let M be a set. A chart (with boundary) of
dimension n ∈ N on M is a pair (U, ϕ), where U ⊂ M is a subset of M and ϕ : U →
{Rn|x1 ≥ 0} is an injective function, such that the image ϕ(U) ⊂ {Rn|x1 ≥ 0} is open.

Definition 14.1.2 (Interior and boundary). Let M be a manifold with boundary. A point
p ∈M is called:

1. interior point, if there exists a chart (U, ϕ) such that ϕ1(u) ̸= 0,

2. boundary point, if there exists a chart (U, ϕ) such that ϕ1(u) = 0.

The set of all interior points of M is called its interior and denoted M◦, while the set of
all boundary points is called its boundary and denoted ∂M .

Theorem 14.1.1. If a point p ∈ M of a manifold with boundary M is a boundary (interior)
point with respect to some chart, it is a boundary (interior) point with respect to all charts in
which it is contained.

Proof. ▶. . .◀ ■

Theorem 14.1.2. A manifold with boundary M is the disjoint union of its interior and its
boundary, M =M◦ ⊎ ∂M .

Proof. ▶. . .◀ ■
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14.2 Manifolds with corners

Definition 14.2.1 (Chart with corners). Let M be a set. A chart (with corners) of
dimension n ∈ N onM is a pair (U, ϕ), where U ⊂M is a subset ofM and ϕ : U → {Rn|x1 ≥
0∧ . . . xn ≥ 0} is an injective function, such that the image ϕ(U) ⊂ {Rn|x1 ≥ 0∧ . . . xn ≥ 0}
is open.
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Chapter 15

Lie groups and actions

15.1 Lie groups

In this section we will introduce manifolds which carry an additional algebraic structure, namely
that of a group. In order to work with this structure, it must be compatible with the manifold
structure. We make this precise in the following definition.

Definition 15.1.1 (Lie group). A Lie group is a manifold G which carries the structure
of a group, such that the group multiplication · : G×G→ G and the inverse •−1 : G→ G
are smooth maps.

This compatibility condition is a bit similar to the compatibility condition for vector bundles,
where we wanted the vector space operations (addition and scalar multiplication) to be smooth
operations. There are many examples for Lie groups which frequently appear in physics:

Example 15.1.1. The group (R,+) of real numbers with the addition as group operation is
a Lie group of dimension 1.

Example 15.1.2. The complex numbers z ∈ C with |z| = 1 and group operation the mul-
tiplication is a Lie group of dimension 1 which is diffeomorphic to the circle S1. It is also
denoted U(1).

Example 15.1.3. The following matrix groups for n, p, q ∈ N are Lie groups, where the group
multiplication is given by matrix multiplication:

• The (real) general linear group GL(n,R) (or simply GL(n)) of real invertible n × n
matrices is a Lie group of dimension n2.

• The complex general linear group GL(n,C) of complex invertible n× n matrices is a
Lie group of dimension 2n2.

• The (real) special linear group SL(n,R) (or simply SL(n)) of real invertible n × n
matrices with determinant 1 is a Lie group of dimension n2 − 1.

• The complex special linear group SL(n,C) of complex invertible n × n matrices with
determinant 1 is a Lie group of dimension 2n2 − 2.
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• The orthogonal group O(n) of real n × n matrices such that AAt = 1 is a Lie group
of dimension n(n− 1)/2.

• The indefinite orthogonal group O(p, q) with n = p+q of real n×n matrices such that
AηAt = η, where

η = diag(−1, . . . ,−1︸ ︷︷ ︸
p times

, 1, . . . ,−1︸ ︷︷ ︸
q times

) , (15.1.1)

is a Lie group of dimension n(n− 1)/2.

• The special orthogonal group SO(n) of real n × n matrices with determinant 1 such
that AAt = 1 is a Lie group of dimension n(n− 1)/2.

• The indefinite special orthogonal group SO(p, q) with n = p+ q of real n× n matrices
with determinant 1 such that AηAt = η is a Lie group of dimension n(n− 1)/2.

• The (real) symplectic group Sp(2n,R) (or simply Sp(n)) of real 2n× 2n matrices such
that AΩAt = Ω, where

Ω =

(
0 1n

−1n 0

)
, (15.1.2)

is a Lie group of dimension n(2n+ 1).

• The complex symplectic group Sp(2n,C) of complex 2n × 2n matrices such that
AΩAt = Ω is a Lie group of dimension 2n(2n+ 1).

• The unitary group U(n) of complex n× n matrices such that AA† = 1 is a Lie group
of dimension n2.

• The special unitary group SU(n) of complex n× n matrices with determinant 1 such
that AA† = 1 is a Lie group of dimension n2 − 1.

Note that the dimensions listed here are the real dimensions, i.e., the dimensions of G as
real manifolds. The group SO(1, 3) is also called the Lorentz group.

The aforementioned matrix groups play a particularly important role in physics. Of comparable
importance are their inhomogeneous extensions.

Example 15.1.4. Let G be one of the matrix groups defined above, whose elements are
n × n matrices with entries in K (either R or C). Then G acts from the left on Kn via
multiplication from the left. On the space Kn ×G define a product such that

· : (Kn ×G)× (Kn ×G) → Kn ×G
((v,A), (w,B)) 7→ (v +Aw,AB)

. (15.1.3)

We may also express this multiplication law by writing the group elements as block matrices
in the form (

A v
0 1

)
·
(
B w
0 1

)
=

(
AB v +Aw
0 1

)
. (15.1.4)

The resulting group is called the semidirect product, denoted Kn⋊G, and is also a Lie group.
For the matrix groups mentioned above, it is conventionally denoted by prepending the letter
“I” (for inhomogeneous) to the name of the group, e.g., the group ISO(1, 3) = R4 ⋊SO(1, 3)
is called the Poincaré group.
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15.2 Lie group homomorphisms

In order to relate different Lie groups to each other, we need the same compatibility condition
for homomorphisms between Lie groups.

Definition 15.2.1 (Lie group homomorphism / isomorphism). Let G,H be Lie groups. A
Lie group homomorphism from G to H is a smooth map φ : G → H such that φ(gg′) =
φ(g)φ(g′) for all g, g′ ∈ G. If it is also a diffeomorphism, it is called a Lie group isomorphism.

Note that it is sufficient to demand compatibility with the group multiplications and smooth
structures; the following two properties then follow.

Theorem 15.2.1. Let G,H be Lie groups and φ : G→ H a Lie group homomorphism. Then
φ(eG) = eH and φ(g−1) = φ(g)−1 for all g ∈ G.

Proof. First, from the property of the unit elements follows

eH = φ(g)−1φ(g) = φ(g)−1φ(geG) = φ(g)−1φ(g)φ(eG) = φ(eG) , (15.2.1)

and thus further

φ(g)−1 = φ(g)−1eH = φ(g)−1φ(eG) = φ(g)−1φ(gg−1) = φ(g)−1φ(g)φ(g−1) = φ(g−1)
(15.2.2)

for all g ∈ G. ■

There are numerous homomorphisms and isomorphisms between the groups given in the exam-
ples above.

Example 15.2.1. The map φ : R→ U(1), x 7→ eix is a Lie group homomorphism.

Example 15.2.2. The map φ : U(1)→ SO(2) defined by

φ(z) =

(
Re(z) Im(z)
−Im(z) Re(z)

)
(15.2.3)

is a Lie group isomorphism.

Lie group isomorphisms have various applications. A particularly interesting class of isomor-
phisms arise when both groups are identical, G1 = G2 = G. Such kind of isomorphisms deserve
their own name.

Definition 15.2.2 (Lie group automorphism). Let G be a Lie group. An automorphism
of G is a Lie group isomorphism φ : G→ G. The group of all Lie group automorphisms of
G is denoted Aut(G).

We remark that under certain circumstances Aut(G) also has the structure of a Lie group, but
this is not always the case. The following class of automorphisms will be relevant for our later
constructions:
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Definition 15.2.3 (Inner automorphism). Let G be a Lie group and g ∈ G. The inner
automorphism αg ∈ Aut(G) induced by g is defined such that for all h ∈ G holds αg(h) =
ghg−1.

One easily checks that indeed for all g ∈ G the map αg : G → G is an automorphism, i.e., it
satisfies αg(hh′) = αg(h)αg(h

′) for all h, h′ ∈ G.

15.3 Lie group actions

A familiar concept from algebra is that of the action of a group on a set. Since we are working
with Lie groups here, we are in particular interested how a Lie group can act on a manifold.
Again we demand compatibility of the differentiable and algebraic structures, as in the following
definition.

Definition 15.3.1 (Lie group action). Let G be a Lie group with unit element e ∈ G
and M a manifold. A left Lie group action is a smooth map ϕ : G ×M → M such that
ϕ(e, x) = x and ϕ(gh, x) = ϕ(g, ϕ(h, x)) for all g, h ∈ G and x ∈ M . A right Lie group
action is a smooth map θ : M ×G→ M such that θ(x, e) = x and θ(x, gh) = θ(θ(x, g), h)
for all g, h ∈ G and x ∈M . We also introduce the notations

ϕx : G → M
g 7→ ϕ(g, x)

,
ϕg : M → M

x 7→ ϕ(g, x)
, (15.3.1a)

θx : G → M
g 7→ θ(x, g)

,
θg : M → M

x 7→ θ(x, g)
(15.3.1b)

for all g ∈ G and x ∈M .

We also say that a group G acts from the left / right on a manifold M . The following statement
follows immediately from the definition above.

Theorem 15.3.1. Let ϕ : G ×M → M be a left Lie group action. For each g ∈ G the map
ϕg : x 7→ ϕ(g, x) is a diffeomorphism on M with inverse given by (ϕg)−1 = ϕg

−1

. The same
holds for right Lie group actions.

Proof. The maps M → G×M,x 7→ (g, x) and ϕ : G×M →M , and hence also their composition
ϕg is smooth. Further,

(ϕg
−1 ◦ ϕg)(x) = ϕ(g−1, ϕ(g, x)) = ϕ(g−1g, x) = ϕ(e, x) = x , (15.3.2)

and so (ϕg)−1 = ϕg
−1

. Exchanging g and g−1, one finds that also ϕg
−1

is smooth. Hence, ϕg is
a diffeomorphism. ■

We further distinguish between different types of Lie group actions.

Definition 15.3.2 (Types of Lie group actions). Let G be a Lie group and M a manifold.
A left Lie group action ϕ : G×M →M is called . . .
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• . . . transitive if for all x, y ∈M there exists a g ∈ G such that ϕ(g, x) = y.

• . . . effective (or faithful) if for all distinct g, h ∈ G there exists x ∈ M such that
ϕ(g, x) ̸= ϕ(h, x).

• . . . free if for all distinct g, h ∈ G and for all x ∈M holds ϕ(g, x) ̸= ϕ(h, x).

The same naming is used for right Lie group actions.

It follows immediately that every free action is also effective. Of course there are many examples
of group actions which appear in physics.

Example 15.3.1. Each of the matrix groups G from example 15.1.3 in the previous section
acts from the left on Rn (or Cn in the case of matrix groups over the complex numbers) via
multiplication. This group action is effective, but neither transitive nor free.

Example 15.3.2. Every Lie groupG acts on itself from the left by left multiplication ϕ(g, x) =
gx and from the right by right multiplication θ(x, g) = xg. Both actions are free and
transitive.

The last example is of particular interest, because it is a property of every Lie group. The
diffeomorphisms obtained from these actions deserve their own names.

Definition 15.3.3 (Translation maps). Let G be a Lie group. For g ∈ G the left translation
is the map Lg : G→ G, h 7→ gh, while the right translation is the map Rg : G→ G, h 7→ hg.

We further introduce the following concepts, which will help us analyze the structure of Lie
group actions. Here we define them for left Lie group actions, but their definition for right Lie
group actions is completely analogous.

Definition 15.3.4 (Invariant subset). Let ϕ : G×M → M be a left Lie group action. A
subset U ⊆ M is called invariant under ϕ if and only if ϕ(g, x) ∈ U for every g ∈ G and
x ∈ U .

Of particular importance is a special case of the invariant subset, known as the orbit. It is
defined as follows.

Definition 15.3.5 (Orbit). Let ϕ : G ×M → M be a left Lie group action. For x ∈ M
the orbit is the set

Oϕx = {ϕ(g, x), g ∈ G} ⊆M . (15.3.3)

We clarify the special role of the orbit as an invariant subset in the following few statements,
which are closely related to each other. First, we show that orbits are invariant subsets.
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Theorem 15.3.2. Let ϕ : G×M → M be a left Lie group action. For every x ∈ M the orbit
Oϕx ⊆M is an invariant subset under ϕ.

Proof. Let y ∈ Oϕx . Then, by definition of the orbit, there exists g ∈ G such that y = ϕ(g, x).
For g′ ∈ G, we then have

ϕ(g′, y) = ϕ(g′, ϕ(g, x)) = ϕ(g′g, x) ∈ Oϕx . (15.3.4)

This holds for all y ∈ Oϕx and g′ ∈ G, and so Oϕx is an invariant subset. ■

In fact, we can even use orbits to classify invariant subsets. This can be stated as follows.

Theorem 15.3.3. Let ϕ : G×M →M be a left Lie group action. A set U ⊆M is an invariant
subset under ϕ if and only if Oϕx ⊆ U for every x ∈ U .

Proof. By definition, U is an invariant subset if and only if ϕ(g, x) ∈ U for all g ∈ G and x ∈ U ,
hence if and only if for all x ∈ U holds:

U ⊇ {ϕ(g, x), g ∈ G} = Oϕx . (15.3.5)
■

The previous statement suggests that a group action allows us to divide M into distinct orbits.
This can most comprehensively be stated as follows.

Theorem 15.3.4. A group action ϕ : G ×M → M equips M with an equivalence relation ϕ∼
defined such that x ϕ∼ y if and only if x ∈ Oϕy .

Proof. According to the definition above, we write x ϕ∼ y if and only if there exists g ∈ G such
that x = ϕ(g, y). Obviously, ϕ∼ is reflexive, since x = ϕ(e, x), and so x

ϕ∼ x. Further, it is
symmetric, since x = ϕ(g, y) implied y = ϕ(g−1, x) and vice versa. Finally, it is transitive, since
from x = ϕ(g, y) and y = ϕ(h, z) for x, y, z ∈M and g, h ∈ G follows

x = ϕ(g, ϕ(h, z)) = ϕ(gh, z) , (15.3.6)

and so x ϕ∼ y and y ϕ∼ z implies x ϕ∼ z. ■

So far we have focused only on the fact that ϕ is a group action, but not made use of the
additional structure implied by the condition that it is a Lie group action. We now take this
additional structure into account as well. This allows us to show the following.

Theorem 15.3.5. Let ϕ : G×M → M be a left Lie group action. For every x ∈ M the orbit
Oϕx ⊆M is an immersed submanifold.

Proof. ▶. . .◀ ■

We now come back to definition 15.3.2 of different classes of Lie group actions. It turns out
that we can also make use of the notion of the orbit here.

Theorem 15.3.6. A left Lie group action ϕ : G×M →M is transitive if and only if the orbit
satisfies Oϕx =M for some (and hence for all) x ∈M .

Proof. ϕ is transitive if for all x, y ∈ M there exists g ∈ G such that y = ϕ(g, x), and hence
y ∈ Oϕx . ■
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Next, we come to a notion which is in some sense dual to that of the orbit. While the orbit
answers the questions which points can be reached from a given point x ∈ M by acting with
all group elements, the following notion answers the questions which group elements leave the
point x unchanged.

Definition 15.3.6 (Stabilizer). Let ϕ : G×M →M be a left Lie group action. For x ∈M
the stabilizer is the subgroup

Sϕx = {g ∈ G |ϕ(g, x) = x} ⊆ G . (15.3.7)

As the definition already suggests, the stabilizer is a subgroup. We prove this together with
another property, which follows from the topological properties of Lie group actions.

Theorem 15.3.7. Let ϕ : G × M → M be a left Lie group action. For every x ∈ M the
stabilizer Sϕx ⊆M is a closed subgroup of G.

Proof. For fixed x ∈M , the map ϕx : G→M, g 7→ ϕ(g, x) is continuous. Further, {x} ⊂M is
closed. Hence, Sϕx = ϕ−1x ({x}) is also closed. Further, for g, g′ ∈ Sϕx , one has

ϕ(gg′, x) = ϕ(g, ϕ(g′, x)) = ϕ(g, x) = x , (15.3.8)

as well as
ϕ(g−1, x) = ϕ(g−1, ϕ(g, x)) = ϕ(g−1g, x) = ϕ(e, x) = x , (15.3.9)

where e ∈ G is the unit element. Thus, gg′ ∈ Sϕx and g−1 ∈ Sϕx , and so Sϕx is a subgroup. ■

Now we can also use the stabilizer in order to characterize the different types of group actions,
which we introduced in definition 15.3.2. We start with the notion of a free action.

Theorem 15.3.8. A left Lie group action ϕ : G×M →M is free if and only if Sϕx = {e} for
all x ∈M .

Proof. If ϕ is free, then for all x ∈M and g ∈ G \ {e} holds

ϕ(g, x) ̸= ϕ(e, x) = x , (15.3.10)

and so Sϕx = {e}. Conversely, if Sϕx = {e} for all x ∈M , then for all distinct g, h ∈ G holds

ϕ(g−1, ϕ(h, x)) = ϕ(g−1h, x) ̸= x = ϕ(e, x) = ϕ(g−1g, x) = ϕ(g−1, ϕ(g, x)) , (15.3.11)

and hence also ϕ(g, x) ̸= ϕ(h, x), so that ϕ is free. ■

We then continue with the notion of an effective action, which is a weaker condition.

Theorem 15.3.9. A left Lie group action ϕ : G×M →M is effective if and only if⋂
x∈M
Sϕx = {e} . (15.3.12)

Proof. If ϕ is effective, then for every g ∈ G \ {e} there exists x ∈M such that

ϕ(g, x) ̸= ϕ(e, x) = x , (15.3.13)

and so g /∈ Sϕx . On the other hand, e ∈ Sϕx for all x ∈M , and so (15.3.12) follows. Conversely,
if (15.3.12) holds, then for all distinct g, h ∈ G there exists x ∈M such that g−1h /∈ Sϕx , so that

ϕ(g−1, ϕ(h, x)) = ϕ(g−1h, x) ̸= x = ϕ(e, x) = ϕ(g−1g, x) = ϕ(g−1, ϕ(g, x)) , (15.3.14)

and hence also ϕ(g, x) ̸= ϕ(h, x), so that ϕ is effective. ■
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There is another notion which is in some sense “dual” to that of the stabilizer. For the latter we
have fixed a point x ∈M and posed the question which group elements g ∈ G leave this point
unchanged. Conversely, we may also fix an element g ∈ G and pose the question which points
x ∈M are left unchanged by this group element. This leads to the following definition.

Definition 15.3.7 (Fixed point). Let ϕ : G ×M → M be a left Lie group action and
g ∈ G. A fixed point of g is an element x ∈ M satisfying ϕ(g, x) = x. The set of all fixed
points of g is the fixed point set

Fϕg = {x ∈M |ϕ(g, x) = x} . (15.3.15)

Given that the fixed point set is closely related to the stabilizer, it is not surprising that it also
allows us to express the two aforementioned conditions on Lie group actions. First, we discuss
this for a free Lie group action.

Theorem 15.3.10. A left Lie group action ϕ : G ×M → M is free if and only if Fϕg = ∅ for
all g ∈ G \ {e}.

Proof. If ϕ is free, then for all x ∈M and g ∈ G \ {e} holds

ϕ(g, x) ̸= ϕ(e, x) = x , (15.3.16)

and so x /∈ Fϕg ; hence, Fϕg = ∅. Conversely, if Fϕg = ∅, then for all distinct g, h ∈ G and x ∈M
holds x /∈ Fϕg−1h. Thus,

ϕ(g−1, ϕ(h, x)) = ϕ(g−1h, x) ̸= x = ϕ(e, x) = ϕ(g−1g, x) = ϕ(g−1, ϕ(g, x)) , (15.3.17)

and hence also ϕ(g, x) ̸= ϕ(h, x), so that ϕ is free. ■

For an effective Lie group action, a similar statement holds.

Theorem 15.3.11. A left Lie group action ϕ : G×M →M is effective if and only if Fϕg ̸=M
for all g ∈ G \ {e}.

Proof. If ϕ is effective, then for every g ∈ G \ {e} there exists x ∈M such that

ϕ(g, x) ̸= ϕ(e, x) = x , (15.3.18)

and so x /∈ Fϕg ; hence, Fϕg ̸= M . Conversely, if Fϕg ̸= M for all g ∈ G \ {e}, then for distinct
g, h ∈ G there exists x ∈M \ Fϕg−1h, for which holds

ϕ(g−1, ϕ(h, x)) = ϕ(g−1h, x) ̸= x = ϕ(e, x) = ϕ(g−1g, x) = ϕ(g−1, ϕ(g, x)) , (15.3.19)

and hence also ϕ(g, x) ̸= ϕ(h, x), so that ϕ is effective. ■

We illustrate these notions with an example.

Example 15.3.3. Let ϕ : SO(3)×R3 → R3 be the left action given by matrix multiplication.
Then we have the following relations:

1. For x ∈ R3 with x ̸= 0 the orbit is the sphere with radius ∥x∥ around the origin. For
x = 0 the orbit contains only the origin itself.
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2. For x ∈ R3 with x ̸= 0 the stabilizer is the subgroup of rotations around the axis xR.
For x = 0 the stabilizer is SO(3) itself.

3. For g ∈ SO(3) with g ̸= e the fixed point set is the axis of rotation of g. For g = e the
fixed point set is R3 itself.

It follows that ϕ is effective, but neither transitive nor free.

We finally discuss the question how we can obtain another Lie group action from a given one,
together with a Lie group homomorphism:

Theorem 15.3.12. Let ϕ : H ×M → M a left action (θ : M ×H → M a right action) of a
Lie group H on a manifold M and φ : G→ H a Lie group homomorphism. Then

ϕ̃(g, x) = ϕ(φ(g), x) , θ̃(x, g) = θ(x, φ(g)) (15.3.20)

defines a left action (right action) of G on M .

Proof. We show the proof for a left action; the proof for a right action proceeds analogously.
First, we check that

ϕ̃(eG, x) = ϕ(φ(eG), x) = ϕ(eH , x) = x (15.3.21)
for all x ∈ M , where eG and eH are the unit elements of G and H, respectively. Further, we
have

ϕ̃(gg′, x) = ϕ(φ(gg′), x) = ϕ(φ(g)φ(g′), x) = ϕ(φ(g), ϕ(φ(g′), x)) = ϕ̃(g, ϕ̃(g′, x)) . (15.3.22)

Finally, ϕ̃ = ϕ ◦ (φ, idM ) is a composition of smooth maps, and hence smooth. ■

15.4 Quotient spaces

In theorem 15.3.4 we have shown that the action ϕ of a Lie group G on a manifold M induces
an equivalence relation on M , whose equivalence classes are the orbits Oϕx for x ∈ M . It is
thus possible to define a quotient space, i.e., the space of all orbits of ϕ. We now come to the
question under which circumstances this quotient space carries the structure of a manifold.

Theorem 15.4.1. Let ϕ : G×M →M a left Lie group action which is free and proper. Then
the space of orbits of ϕ carries the structure of a smooth manifold, such that the projection
x 7→ Oϕx is a smooth, surjective submersion.

Proof. ▶. . .◀ ■

Definition 15.4.1 (Coset space). Let G be a Lie group and H ⊂ G a closed subgroup.
The left coset of g ∈ G is the equivalence class

gH = {gh, h ∈ H} ⊂ G , (15.4.1)

while its right coset is
Hg = {hg, h ∈ H} ⊂ G . (15.4.2)

The left coset space G/H is the space of all left cosets,

G/H = {gH, g ∈ G} , (15.4.3)

while the right coset space H\G is

H\G = {Hg, g ∈ G} . (15.4.4)
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In other words, the coset gH is the orbit of g under the right action G ×H → G, (g, h) 7→ gh
of H on G, while G/H is the corresponding orbit space. The same holds for right cosets.

Theorem 15.4.2. Let G be a Lie group and H ⊂ G a closed subgroup. Then the coset spaces
G/H and H\G carry the structure of smooth manifolds, such that the projections g 7→ gH and
g 7→ Hg are smooth, surjective submersions.

Proof. ▶. . .◀ ■

Theorem 15.4.3 (Orbit-stabilizer theorem). Let ϕ : G×M →M a left action of a Lie group
G on a manifold M and x ∈M . Then Oϕx ∼= G/Sϕx .

Proof. ▶. . .◀ ■

15.5 Equivariant maps

Often one needs to relate different manifolds which carry actions of the same Lie group. For
this purpose it is useful to introduce a particular class of maps between such manifolds. These
maps will be defined as follows.

Definition 15.5.1 (Equivariant map). Let G be a Lie group and M,N manifolds which
carry Lie group actions of G. A map φ : M → N is called G-equivariant if for all g ∈ G
and x ∈M

• φ(ρM (g, x)) = ρN (g, φ(x)) if both ρM : G ×M → M and ρN : G ×N → N are left
actions,

• φ(θM (x, g)) = θN (φ(x), g) if both θM : M ×G→ M and θN : N ×G→ N are right
actions,

• φ(ρM (g, x)) = θN (φ(x), g−1) if ρM : G×M →M is a left action and θN : N×G→ N
is a right action,

• φ(θM (x, g)) = ρN (g−1, φ(x)) if θM :M×G→M is a right action and ρN : G×N → N
is a left action.

We denote the space of space of G-equivariant maps by C∞G (M,N).

This can be illustrated by a simple example.

Example 15.5.1. Consider the Lie group G = SO(3). Let M = R3 × R3 with left action
ρM (g, (x, y)) = (gx, gy) and N = R3 with left action ρN (g, x) = gx, where gx denotes the
multiplication of a matrix and a vector. Then the cross product × : R3 × R3 → R3 is an
equivariant map.

We can also visualize this notion in terms of commutative diagrams. Let us first assume the
case of two left actions ρM , ρN . Further, denote by (idG, φ) the map

(idG, φ) : G×M → G×N
(g, x) 7→ (g, φ(x))

. (15.5.1)
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Then φ is equivariant if and only if the diagram

G×M (idG,φ)//

ρM

��

G×N
ρN

��
M

φ
// N

(15.5.2)

commutes. Analogously, for two right actions θM , θN one demands that the diagram

M ×G (φ,idG)//

θM
��

N ×G
θN
��

M
φ

// N

(15.5.3)

commutes. For the mixed cases, one has to replace the identity idG by the inversion map •−1
and swap the order of the pairs (x, g) to (g, x) and vice versa.

One may ask why it is necessary to take the inverse group element in the mixed case, where
one has a left Lie group action on one manifold and a right action on the other. This can be
seen from the properties of Lie group actions, from which follows

θN (φ(x), (gh)−1) = φ(ρM (gh, x))

= φ(ρM (g, ρM (h, x)))

= θN (φ(ρM (h, x)), g−1)

= θN (θN (φ(x), h−1), g−1)

= θN (φ(x), h−1g−1)

= θN (φ(x), (gh)−1) .

(15.5.4)

We see that by taking the inverse, the first and the last line are consistent without imposing any
restrictions on the Lie group actions or the equivariant map. If we had not taken the inverse,
we would have obtained

θN (φ(x), gh) = φ(ρM (gh, x))

= φ(ρM (g, ρM (h, x)))

= θN (φ(ρM (h, x)), g)

= θN (θN (φ(x), h), g)

= θN (φ(x), hg)

(15.5.5)

instead, which can be satisfied only if θN (y, gh) = θN (y, hg) for all y in the image of φ, and
which does not hold for general Lie group actions.

15.6 Lie algebras

So far we have introduced the basic structure of Lie groups and their actions on manifolds. We
now consider particular classes of vector fields and differential forms on Lie groups, which play
an important role in physics. We start with the following definition.

Definition 15.6.1 (Invariant vector field). Let G be a Lie group. A vector field X on G
is called left invariant if its pullback along the diffeomorphism Lg for all g ∈ G satisfies
L∗g(X) = X. Similarly, it is called right invariant if R∗g(X) = X for all g ∈ G.
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Note that in general the left- and right invariant field vector fields on a Lie group are not the
same, unless the group is abelian. We illustrate this with an example.

Example 15.6.1 (Invariant vector fields on the one-dimensional affine group). We consider
the group G = IGL(1,R) = R⋊GL(1,R) of affine transformations of the real line. We can
make use of the block form (15.1.4) to write the group elements in the form

g =

(
x y
0 1

)
(15.6.1)

with x, y ∈ R and x ̸= 0. This allows us to use (x, y) ∈ R \ {0} × R as coordinates on a
global chart of G. In these coordinates, the left and right translations are given by

L(x̃,ỹ) : G → G
(x, y) 7→ (xx̃, yx̃+ ỹ)

(15.6.2)

and
R(x̃,ỹ) : G → G

(x, y) 7→ (xx̃, xỹ + y)
. (15.6.3)

Introducing coordinates (x, y, u, v) on TG such that a tangent vector is written as u∂x+v∂y ∈
T(x,y)G, the differentials of these maps are given by

L(x̃,ỹ)∗ : TG → TG
(x, y, u, v) 7→ (xx̃, yx̃+ ỹ, x̃u, x̃v)

(15.6.4)

and
R(x̃,ỹ)∗ : TG → TG

(x, y, u, v) 7→ (xx̃, xỹ + y, x̃u, ỹu+ v)
. (15.6.5)

We then construct the invariant vector fields as follows. Let ũ∂x + ṽ∂y ∈ T(1,0)G be a
tangent vector at the unit element (1, 0), which we write in coordinates as (1, 0, ũ, ṽ). We
then define vector fields X(ũ,ṽ), Y(ũ,ṽ) ∈ Vect(G) such that

X(ũ,ṽ) : G → TG
(x, y) 7→ L(x,y)∗(ũ∂x + ṽ∂y) = (x, y, xũ, xṽ)

(15.6.6)

and
Y(ũ,ṽ) : G → TG

(x, y) 7→ R(x,y)∗(ũ∂x + ṽ∂y) = (x, y, xũ, yũ+ ṽ)
. (15.6.7)

To show that X(ũ,ṽ) is left invariant, let us define

(x′, y′) = L(x̃,ỹ)(x, y) = (xx̃, yx̃+ ỹ) ⇒ (x, y) =

(
x′

x̃
,
y′ − ỹ
x̃

)
. (15.6.8)

The pullback L∗(x̃,ỹ)X(ũ,ṽ) of X(ũ,ṽ) along L(x̃,ỹ), evaluated at (x, y), is given by

(
L∗(x̃,ỹ)X(ũ,ṽ)

)
(x, y) = (∂x, ∂y) ·

(
∂x
∂x′

∂x
∂y′

∂y
∂x′

∂y
∂y′

)
·
(
Xx

(ũ,ṽ)(x
′, y′)

Xy
(ũ,ṽ)(x

′, y′)

)

= (∂x, ∂y) ·
(

1
x̃ 0
0 1

x̃

)
·
(
x′ũ
x′ṽ

)
= xũ∂x + xṽ∂y

= X(ũ,ṽ)(x, y) ,

(15.6.9)

so that X(ũ,ṽ) is indeed left invariant. Similarly, if we define

(x′, y′) = R(x̃,ỹ)(x, y) = (xx̃, xỹ + y) ⇒ (x, y) =

(
x′

x̃
, y′ − x′ ỹ

x̃

)
, (15.6.10)
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we find that(
R∗(x̃,ỹ)Y(ũ,ṽ)

)
(x, y) = (∂x, ∂y) ·

(
∂x
∂x′

∂x
∂y′

∂y
∂x′

∂y
∂y′

)
·
(
Y x(ũ,ṽ)(x

′, y′)
Y y(ũ,ṽ)(x

′, y′)

)

= (∂x, ∂y) ·
(

1
x̃ 0

− ỹx̃ 1

)
·
(

x′ũ
y′ũ+ ṽ

)
= xũ∂x + (yũ+ ṽ)∂y

= Y(ũ,ṽ)(x, y) ,

(15.6.11)

and hence Y(ũ,ṽ) is indeed right invariant.

x

y

−1 0 1 2

−1

0

1

Figure 15.1: Example of a left and right invariant vector field on the affine group G = IGL(1,R);
see example 15.6.1 for an explanation of the coordinates. Even though X(1,1/2) (blue) and
Y(1,1/2) (red) agree at the unit element (1, 0), they differ almost everywhere else.

From the fact that diffeomorphisms preserve the Lie bracket follows the following property.

Theorem 15.6.1. Let X,Y be left (right) invariant vector fields on a Lie group G. Then also
their Lie bracket [X,Y ] is left (right) invariant.

Proof. ▶. . .◀ ■

In the following we will use the standard convention and work with left invariant vector fields
in order to be consistent with the literature. The statement above then tells us that the
left invariant vector fields together with the Lie bracket form a Lie algebra, which plays a
fundamental role.

Definition 15.6.2 (Lie algebra). Let G be a Lie group. Its Lie algebra is the Lie algebra
g = Lie(G) defined by the left invariant vector fields together with the Lie bracket of vector
fields.
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The question arises whether this Lie algebra is finite-dimensional, and what is its dimension.
The following theorem answers both of these questions.

Theorem 15.6.2. The Lie algebra g of a Lie group G is canonically isomorphic as a vector
space to the tangent space TeG at the unit element e ∈ G.

Proof. This is easy to see. Given a left-invariant vector field X, one can simply evaluate it at e
to obtain X(e) ∈ TeG. Conversely, given v ∈ TeG, one can uniquely construct a left invariant
vector field X as X(g) = Lg∗(v) ∈ TgG. ■

It thus follows immediately that the dimension of the Lie algebra g is the same as the dimension
of the Lie group G, and we can simply identify g and TeG. This allows us to construct the Lie
algebras of the matrix groups shown in the first section.

Example 15.6.2. The Lie algebras of the matrix groups for n ∈ N are as follows, where the
Lie bracket [A,B] is given by the matrix commutator AB −BA:

• The (real) general linear algebra gl(n,R) (or simply gl(n)) of real n× n matrices is a
Lie algebra of dimension n2.

• The complex general linear algebra gl(n,C) of complex n × n matrices is a complex
Lie algebra of complex dimension n2, or a real Lie algebra of real dimension 2n2.

• The (real) special linear algebra sl(n,R) (or simply sl(n)) of real, trace-free n × n
matrices is a Lie algebra of dimension n2 − 1.

• The complex special linear algebra sl(n,C) of complex, trace-free n × n matrices is
a complex Lie algebra of complex dimension n2 − 1, or a real Lie algebra of real
dimension 2n2 − 2.

• The orthogonal algebra o(n), which is the same as the special orthogonal algebra so(n),
of real, antisymmetric n× n matrices, A = −At, is a Lie algebra of dimension n(n−
1)/2.

• The indefinite orthogonal algebra o(p, q) with n = p + q, which is the same as the
indefinite special orthogonal algebra so(p, q), of real n × n matrices satisfying A =
−ηAtη, is a Lie algebra of dimension n(n− 1)/2.

• The (real) symplectic algebra sp(2n,R) (or simply sp(2n)) of real 2n × 2n matrices
satisfying ΩA+AtΩ = 0 is a Lie algebra of dimension n(2n+ 1).

• The complex symplectic algebra sp(2n,C) of complex 2n×2n matrices satisfying ΩA+
AtΩ = 0 is a complex Lie algebra of dimension n(2n + 1), or a real Lie algebra of
dimension 2n(2n+ 1).

• The unitary algebra u(n) of complex, anti-hermitian n × n matrices, A = −A†, is a
Lie algebra of dimension n2.

• The special unitary algebra su(n) of complex, anti-hermitian n×n matrices, A = −A†,
with trace 0 is a Lie algebra of dimension n2 − 1.

15.7 Exponential map

To further explore the relationship between Lie groups and their Lie algebras, we define the
following.
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Definition 15.7.1 (One-parameter subgroup). A one-parameter subgroup of a Lie group
G is a Lie group homomorphism φ : (R,+)→ G.

In other words, a one-parameter subgroup is a curve φ on G such that φ(s+ t) = φ(s)φ(t) for
all s, t ∈ R. In particular it follows that φ(0) = e is the unit element of G. A one-parameter
subgroup thus defines an element φ̇(0) ∈ TeG ∼= g. The following theorem states that also the
converse is true.

Theorem 15.7.1. Let G be a Lie group and X ∈ g a left invariant vector field. Then there
exists a unique one-parameter subgroup φX such that φ̇X(t) = X(φX(t)) for all t ∈ R.

Proof. ▶. . .◀ ■

The proof is a bit lengthy, but simple, so we will omit it here. This theorem allows us to finally
define another important concept.

Definition 15.7.2 (Exponential map). Let G be a Lie group and g its Lie algebra. The
exponential map is the map

exp : g → G
X 7→ φX(1)

, (15.7.1)

where φX is the unique one-parameter subgroup such that φ̇X(t) = X(φX(t)) for all t ∈ R.

We will continue with a few properties of the exponential map.

Theorem 15.7.2. The exponential map satisfies:

• It maps the zero element 0 ∈ g to the unit e of the Lie group: exp(0) = e.

• For all X ∈ g holds exp(−X) = exp(X)−1.

• For all X ∈ g and s, t ∈ R holds exp((s+ t)X) = exp(sX) exp(tX).

Proof. ▶. . .◀ ■

One may be tempted to conclude that the usual law for the exponential function of complex
numbers holds, so that one may simply replace the exponential of the sum of two Lie algebra
elements by the product of their exponentials. However, this is not the case for general Lie
algebras - one has exp(X + Y ) ̸= exp(X) exp(Y ) in general! Instead, one has to apply the
Baker-Campbell-Hausdorff formula.

15.8 Lie algebra homomorphisms

As with Lie groups, given two Lie algebras g1, g2, the question arises which maps between them
preserve not only the underlying manifold structure, in this case inherited from the fiber of the
tangent bundle over the unit element, but also the algebraic structure. For such kind of maps
we introduce the following terminology.
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Definition 15.8.1 (Lie algebra homomorphism / isomorphism). Let g1 and g2 be Lie
algebras. A Lie algebra homomorphism from g1 to g2 is a smooth, linear map φ : g1 → g2
such that φ([X,Y ]) = [φ(X), φ(Y )] for all X,Y ∈ g1. If it is also a diffeomorphism, it is
called a Lie algebra isomorphism.

As with Lie group isomorphisms, also Lie algebra isomorphisms have various applications. Again
we consider which class of isomorphisms arises when both algebras are identical, g1 = g2 = g:

Definition 15.8.2 (Lie algebra automorphism). Let g be a Lie algebra. An automorphism
of g is a Lie algebra isomorphism φ : g → g. The group of all Lie algebra automorphisms
of g is denoted Aut(g).

Since we derived Lie algebras from Lie groups, one may naturally expect that also Lie group
homomorphisms induce Lie algebra homomorphisms between their corresponding Lie algebras.
We now show that this is indeed the case.

Theorem 15.8.1. Let G1, G2 be Lie groups and ϕ : G1 → G2 a Lie group homomorphism.
Then φ = ϕ∗|e1 : Te1G1 → Te2G2 is a Lie algebra homomorphism, and φ is a Lie algebra
isomorphism if and only if ϕ is a Lie group isomorphism.

Proof. Note first that a Lie group homomorphism ϕ : G1 → G2 in particular satisfies ϕ(e1) = e2.
Thus, the differential ϕ∗ maps Te1G1

∼= g1 to Te2G2
∼= g2, and we made use of this fact when

we identified the Lie algebras with the tangent spaces of the unit elements in the statement of
the theorem. ▶. . .◀ ■

15.9 Adjoint representation

A particularly important class of Lie algebra automorphisms, which we will use later, can be
constructed from the inner automorphisms αg of a Lie group by application of theorem 15.8.1.
We can thus define the following notion:

Definition 15.9.1 (Adjoint representation). For a Lie group G, the adjoint representation
is the map Ad : G→ Aut(g) defined by Adg = αg∗.

One easily checks that for all g ∈ G the map Adg : g → g is indeed an automorphism, i.e., it
satisfies Adg[X,Y ] = [Adg(X),Adg(Y )] for all X,Y ∈ g.

15.10 Lie algebra valued differential forms

To further study Lie groups and their properties, it is often useful to work with differential
k-forms, which do not yield a real number when they are evaluated at k vectors at a point, but
to an element of a Lie algebra. In this section we introduce these objects and discuss a number
of operations acting on them. We start with a formal definition.
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Definition 15.10.1 (Lie algebra valued differential form). Let M be a manifold and g be
a Lie algebra. The space Ωk(M, g) of Lie algebra valued differential k-forms is the space
Γ(E ⊗ΛkT ∗M) of sections of the tensor product bundle E ⊗ΛkT ∗M , where E =M × g is
the trivial bundle with base M and fiber g.

Given a basis (eµ) of g and coordinates (xa) on M , one can thus write a g-valued k-form
ω ∈ Ωk(M, g) as

ω = ωµeµ =
1

k!
ωµa1···akeµ ⊗ dxa1 ∧ . . . ∧ dxak , (15.10.1)

thus generalizing the basis expansion (9.1.2) of ordinary differential forms. A number of opera-
tions which are defined on differential forms, in particular those which are linear in their single
argument, can be extended to act on Lie algebra valued forms by acting component-wise on
each component ωµ. This includes:

1. the exterior derivative dω,

2. the interior product ιXω with a vector field X ∈ Vect(M),

3. the pullback φ∗(ω) along a map φ : N →M ,

4. the Lie derivative LXω along a vector field X ∈ Vect(M).

More care must be taken for the exterior product ω∧σ, which is linear in each of its arguments
by definition. The only possible generalization to a component-wise operation arising from
this linearity is to allow one of the two factors ω, σ to take values in a Lie algebra, while the
other one remains an ordinary differential form. More often, however, one encounters a product
involving two Lie algebra valued differential forms. It can formally be defined as follows.

Definition 15.10.2 (Lie algebra valued exterior product). Let M be a manifold and g be a
Lie algebra. The exterior product of Lie algebra valued forms is the unique bilinear function
[• ∧ •] : Ωk(M, g) × Ωl(M, g) → Ωk+l(M, g), such that for all α ∈ Ωk(M), β ∈ Ωl(M) and
a, b ∈ g holds

[(a⊗ α) ∧ (b⊗ β)] = [a, b]⊗ (α ∧ β) . (15.10.2)

Here we make use of the fact that any Lie algebra is equipped with the bilinear Lie bracket
[•, •] : g × g → g, which can be used to combine two elements into one. The notation [• ∧ •]
we introduced here shows that both an exterior product and this Lie bracket are involved. In
other literature one also finds simply the bracket notation [•, •] here. Demanding linearity in
the definition above ensures that the operation is defined on the whole space of Lie algebra
valued differential forms by linear extension from the basis elements. Given

ω =
1

k!
ωµa1···akeµ ⊗ dxa1 ∧ . . . ∧ dxak ∈ Ωk(M, g) , (15.10.3a)

σ =
1

l!
σµa1···aleµ ⊗ dxa1 ∧ . . . ∧ dxal ∈ Ωl(M, g) , (15.10.3b)

one has

[ω∧σ] = 1

k!l!
ωµa1···akσ

ν
b1···bl [eµ, eν ]⊗dxa1∧. . .∧dxak∧dxb1∧. . .∧dxbl ∈ Ωk+l(M, g) . (15.10.4)

From the properties of the exterior product and the Lie bracket follow a number of useful
relations also for the Lie algebra valued exterior product, which we summarize as follows:
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Theorem 15.10.1. The Lie algebra valued exterior product satisfies the graded antisymmetry

[ω ∧ σ] = −(−1)kl[σ ∧ ω] (15.10.5)

and graded Jacobi identity

[ω ∧ [σ ∧ τ ]] = [[ω ∧ σ] ∧ τ ] + (−1)kl[σ ∧ [ω ∧ τ ]] (15.10.6)

for ω ∈ Ωk(M, g), σ ∈ Ωl(M, g) and τ ∈ Ωm(M, g).

Proof. Since the Lie algebra valued exterior product is linear in each argument, it suffices to
show these relations for tensor products of the form ω = a⊗α, σ = b⊗ β and τ = c⊗ γ, where
α ∈ Ωk(M), β ∈ Ωl(M), γ ∈ Ωm(M) and a, b, c ∈ g, and then to conclude by linearity. For
the first relation, the symmetry properties of the ordinary exterior product and the Lie bracket
then yield

[(a⊗α)∧(b⊗β)] = [a, b]⊗(α∧β) = −[b, a]⊗(−1)kl(β∧α) = −(−1)kl[(a⊗α)∧(b⊗β)] . (15.10.7)

Similarly, one calculates the Jacobi identity as

[(a⊗ α) ∧ [(b⊗ β) ∧ (c⊗ γ)]] = [a, [b, c]]⊗ (α ∧ β ∧ γ)
= −([b, [c, a]] + [c, [a, b]])⊗ (α ∧ β ∧ γ)
= ([[a, b], c] + [b, [a, c]])⊗ (α ∧ β ∧ γ)
= [[a, b], c]⊗ (α ∧ β ∧ γ) + [b, [a, c]]⊗ (α ∧ β ∧ γ)
= [[a, b], c]⊗ (α ∧ β ∧ γ) + [b, [a, c]]⊗ (−1)kl(β ∧ α ∧ γ)
= [[(a⊗ α) ∧ (b⊗ β)] ∧ (c⊗ γ)]
+ (−1)kl[(b⊗ β) ∧ [(a⊗ α) ∧ (c⊗ γ)]] . ■

(15.10.8)

Another comment regarding the relation to the exterior derivative and the interior product is
in order. Since these act component-wise on the differential form part only while leaving the
Lie algebra part inert, they satisfy the usual relations

d[ω ∧ σ] = [dω ∧ σ] + (−1)k[ω ∧ dσ] (15.10.9)

and
ιX [ω ∧ σ] = [ιXω ∧ σ] + (−1)k[ω ∧ ιXσ] (15.10.10)

for ω ∈ Ωk(M, g), σ ∈ Ωl(M, g) and X ∈ Vect(M). Also note that for Lie algebra valued
one-forms ω, σ ∈ Ω1(M, g) and vector fields X,Y ∈ Vect(M) we have

ιY ιX [ω ∧ σ] = [ιXω, ιY σ]− [ιY ω, ιXσ] . (15.10.11)

In particular, for ω = σ thus follows

ιY ιX [ω ∧ ω] = [ιXω, ιY ω]− [ιY ω, ιXω] = 2[ιXω, ιY ω] . (15.10.12)

To illustrate the Lie algebra valued exterior product, we finally consider the case of matrix Lie
algebras, such as those given in example 15.6.2.

Example 15.10.1. For a matrix Lie algebra g ⊂Mn,n, one can represent elements a, b ∈ g by
their matrix components aµν , bµν . The Lie bracket is given by the commutator, and thus
has components

[a, b]µν = aµρb
ρ
ν − bµρaρν . (15.10.13)
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When considering Lie algebra valued differential forms ω ∈ Ωk(M, g) and σ ∈ Ωl(M, g), each
matrix component represents an ordinary differential form, and instead of the commutative
product of real numbers one has the graded exterior product, hence

[ω ∧ σ]µν = ωµρ ∧ σρν − ωρν ∧ σµρ = ωµρ ∧ σρν − (−1)klσµρ ∧ ωρν . (15.10.14)

In the literature, one sometimes finds the indices omitted, and simply reads [ω ∧ σ] =
ω ∧ σ − (−1)klσ ∧ ω, where matrix multiplication is implied; we do not use such notation
here to avoid confusion. In particular, for ω = σ one has

[ω ∧ ω]µν =
(
1− (−1)k2

)
ωµρ ∧ ωρν , (15.10.15)

where the factor in brackets equals 0 if k is even and 2 if k is odd.

15.11 Maurer-Cartan form

We now come to a particular example for a Lie algebra valued differential form, as discussed in
the previous section. It is canonically defined on any Lie group as follows.

Definition 15.11.1 (Maurer-Cartan form). Let G be a Lie group with Lie algebra g. Its
Maurer-Cartan form is the g-valued one-form µ ∈ Ω1(G, g) such that for all g ∈ G and
v ∈ TgG the element X = µ(g)(v) ∈ g ⊂ Vect(G) is the unique left invariant vector field
satisfying X(g) = v.

A few explanations are in order. Since the Maurer-Cartan form µ is a g-valued one-form, it can
be seen as a map µ : TG → g which is linear on every fiber, or in other words a linear map
µ(g) : TgG → g for each g ∈ G. In our definition we have identified g with the left invariant
vector fields on G, and so this linear map is the unique inverse of the evaluation map

•(g) : g → TgG
X 7→ X(g)

. (15.11.1)

Alternatively, one may identify g with the tangent space TeG; the Maurer-Cartan form is then
defined as µ(g)(v) = (Lg−1∗v) ∈ TeG. Again we see that this mirrors the definition of the
left-invariant vector fields X, since these satisfy

X(g) = Lg∗(X(e)) . (15.11.2)

It follows from these properties that the Maurer-Cartan form is itself left-invariant; one can
prove this and another equivariance property as follows.

Theorem 15.11.1. The Maurer-Cartan form µ on any Lie group G satisfies the equivalence
properties

L∗g(µ) = µ , R∗g(µ) = Adg−1 ◦µ (15.11.3)

for all g ∈ G.

Proof. Here we will use the identification of the Lie algebra g with the tangent space TeG. Let
h ∈ G and v ∈ ThG. Then we have Lg(h) = gh and thus

L∗g(µ)(v) = µ(Lg∗(v)) = L(gh)−1∗(Lg∗(v)) = Lh−1∗(v) = µ(v) , (15.11.4)
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where we used the property that the left translation is a left action and thus satisfies

L(gh)−1 ◦ Lg = Lh−1g−1 ◦ Lg = Lh−1 . (15.11.5)

Similarly, for the right translations we have Rg(h) = hg, so that we find

R∗g(µ)(v) = µ(Rg∗(v))

= L(hg)−1∗(Rg∗(v))

= Lg−1∗(Rg∗(Lh−1∗(v)))

= αg−1∗(Lh−1∗(v))

= Adg−1(µ(v)) ,

(15.11.6)

where we now used the fact that left and right translations commute to write

L(hg)−1 ◦Rg = Lg−1h−1 ◦Rg = Lg−1 ◦Rg ◦ Lh−1 , (15.11.7)

as well as the definition 15.2.3 of the inner automorphism

αg−1 = Rg = Lg−1 ◦Rg (15.11.8)

and the adjoint representation
Adg−1 = αg−1∗

∣∣
TeG

. (15.11.9)

The latter applies since µ(v) ∈ TeG. ■

Another interesting consequence is the following:

Theorem 15.11.2. The Maurer-Cartan form µ is a Lie algebra homomorphism on the left-
invariant vector fields, i.e., it satisfies

ι[X,Y ]µ = [ιXµ, ιY µ] (15.11.10)

for all left-invariant vector fields X,Y ∈ Vect(G).

Proof. Given a left-invariant vector field X ∈ g, it follows that ιXµ ∈ Ω0(G, g) is the constant
Lie algebra valued function g 7→ X which assigns X ∈ g to every g ∈ G. The bracket on the
right hand side is thus to be interpreted pointwise, as

[ιXµ, ιY µ](g) = [(ιXµ)(g), (ιY µ)(g)] = [X,Y ] = (ι[X,Y ]µ)(g) . (15.11.11)

Since this holds for all g ∈ G, the statement follows. ■

This can now immediately be used to prove the following important property of the Maurer-
Cartan form.

Theorem 15.11.3. The Maurer-Cartan form µ satisfies the Maurer-Cartan equation

dµ+
1

2
[µ ∧ µ] = 0 . (15.11.12)

Proof. Let X,Y ∈ g be two left-invariant vector fields on G. From the relation (9.4.5), which
holds for arbitrary vector fields and one-forms, follows by component-wise linear extension to
Lie algebra valued forms:

ιY ιXdµ = X(ιY µ)− Y (ιXµ)− ι[X,Y ]µ . (15.11.13)

Since we have chosen X,Y to be left-invariant, it follows that ιXµ and ιY µ are constant, and
so their derivatives along X and Y vanish,

X(ιY µ) = Y (ιXµ) = 0 . (15.11.14)
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Further, using the homomorphism property (15.11.10) and the property (15.10.12) of the exte-
rior product of Lie algebra valued differential forms we have

ι[X,Y ]µ = [ιXµ, ιY µ] =
1

2
ιY ιX [µ ∧ µ] . (15.11.15)

This implies

ιY ιX

(
dµ+

1

2
[µ ∧ µ]

)
= 0 . (15.11.16)

Since the left-invariant vector fields span the tangent space at every point, and this equation
involves only the pointwise values of the vector fields through the interior product, but not their
derivatives, it follows that the two-form in brackets must vanish identically. ■

We can use this definition to construct a coordinate expression for the Maurer-Cartan form on
matrix Lie groups, such as those given in example 15.1.3.

Example 15.11.1 (Maurer-Cartan form on matrix Lie groups). Let G ⊂ Mn,n be a matrix
group, and introduce the matrix components (gab) as coordinates on Mn,n. By imposing
suitable restrictions on them, we obtain coordinates on G. For a fixed g ∈ G, the left
translation Lg : g̃ 7→ gg̃ can be written as g̃ab 7→ gacg̃

c
b. It thus follows that the pushforward

of a tangent vector v = vab∂a
b ∈ TgG along Lg−1 is given by

µ(g)(v) = Lg−1∗(v) = (g−1)acv
c
b∂a

b ∈ TeG ∼= g . (15.11.17)

Thus, the Maurer-Cartan form is given by µ(g)ab = (g−1)ac dgcb. One often finds the
shorthand notation µ = g−1 dg.

15.12 Fundamental vector fields

We finally define a helpful class of vector fields, which are defined by a group action G on a
manifold M . For this purpose, recall that the Lie algebra g = LieG of a Lie group G is given
by the left invariant vector fields on G. These vector fields define vector fields on P as follows.

Definition 15.12.1 (Fundamental vector fields). Let G be a Lie group with Lie algebra g
and M a manifold M . For a left action ϕ : G ×M → M and a left invariant vector field
X ∈ g we define the fundamental vector field X̃ as the map

X̃ : M → TM
x 7→ (ϕx)∗(−X(e))

, (15.12.1)

where ϕx : G→M, g 7→ ϕ(g, x). For a right action θ :M ×G→M , we instead define

X̃ : M → TM
x 7→ (θx)∗(X(e))

, (15.12.2)

where θx : G→M, g 7→ θ(x, g).

To see that X̃ is indeed a vector field, we have to check that τ ◦ X̃ = idM , where τ : TM →M
is the tangent bundle projection, and so X̃(x) ∈ TxM for all x ∈ M . To see this, note first
that X(e) ∈ TeG. Further, the differentials of ϕx and θx cover their respective defining maps,
so that

τ(X̃(x)) = τ((ϕx)∗(−X(e)) = ϕx(τ̂(−X(e))) = ϕx(e) = ϕ(e, x) = x , (15.12.3)
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where we wrote τ̂ : TG → G for the tangent bundle projection of G. Analogously, one checks
the case of a right group action θ.

The fundamental vector fields satisfy an important relation.

Theorem 15.12.1. The function •̃ : g→ Vect(M), which assigns to every Lie algebra element
its fundamental vector field with respect to a given action on M , is a Lie algebra homomorphism,
i.e.,

[̃X,Y ] = [X̃, Ỹ ] (15.12.4)

for all X,Y ∈ g.

Proof. ▶. . .◀ ■

Here the square brackets on the left hand side denote the Lie bracket of g, i.e., the commutator
of left invariant vector fields on G, while the square brackets on the right hand side denote the
commutator of vector fields on M . The proof is not difficult, but we will omit it here.
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Chapter 16

Lie derivative and flow

16.1 Flows of vector fields

In section 15.3 we have discussed the action of Lie groups on manifolds. We will now restrict
ourselves to the action of a particular group, namely that of the real line (R,+). This is in fact
an important special case, since any one-parameter subgroup φ : R→ G of a Lie group G acting
on a manifold M induces an action of (R,+) on M , and all of these actions together describe
(locally) the action of G. To study the local behavior of Lie group actions, and in particular
those of (R,+), we start with a definition.

Definition 16.1.1 (Integral curve). Let M be a manifold and X a vector field on M . An
integral curve of X is a curve γ ∈ C∞((a, b),M) with a, b ∈ R such that γ̇(t) = X(γ(t)) for
all t ∈ (a, b).

Figure 16.1: A vector field and some of its integral curves.
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By making use of the canonical lift from definition 7.3.2, we may also state that an integral
curve of a vector field X is a curve γ such that γ̇ = X ◦ γ. One may ask whether such integral
curves exist for any vector field. This is indeed the case, and is guaranteed by the following
theorem, which comes from the theory of differential equations.

Theorem 16.1.1. Let M be a manifold and X a vector field on M . For each x ∈ M there
exists an open set U ⊂ M containing x, ϵ > 0 and a map γ : (−ϵ, ϵ) × U → M, (t, y) 7→ γy(t)
such that for all y ∈ U the curve γy is an integral curve of X with γy(0) = y.

Proof. ▶. . .◀ ■

A case of particular interest is given when an integral curve can be defined for all on R. For
this case we define the following notion.

Definition 16.1.2 (Complete vector field). A vector field X on a manifold M is called
complete if for each x ∈M there exists an integral curve γ ∈ C∞(R,M) of X with γ(0) = x.

Note that not every vector field is complete, as the following example shows.

Example 16.1.1. Let M = (0, 1)× (0, 1) and X = ∂1. This vector field is not complete.

M

x1

x2

0

0

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1

1
U

x

x1 x1 + ϵx1 − ϵ

γy

γy′

y

y′

X

γ(b)γ(a)

≥ ϵ ϵ ϵ ≥ ϵ

Figure 16.2: The vector field X = ∂1 on the manifold M = (0, 1)× (0, 1) is not complete, since
any integral curve γ has maximal domain (a, b) ⊂ R with b− a ≤ 1, which cannot be extended
to R. However, around every point x ∈ M exists an open set U = (x1 − ϵ, x1 + ϵ) × (0, 1),
where ϵ = 1

2 min(x1, 1−x1), so that through every y ∈ U one can find an integral curve γy with
domain at least (−ϵ, ϵ) and γ(0) = y. Note that ϵ depends only on x, but not on y, and that
the integral curves do not necessarily lie inside of U .

Given a complete vector field, we can define the following notion.
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Definition 16.1.3 (Flow). Let M be a manifold and X a complete vector field on M .
The flow of X is the unique map ϕ : R ×M → M such that for each x ∈ M the map
ϕ•(x) : R→M is an integral curve of X and ϕ0(x) = x.

In fact, the flow can also be defined locally for a non-complete vector field. In this case it is
simply a map from an open subset U ∈ R ×M to M , where {0} ×M ⊂ U . The flow has a
number of nice properties, one of which can be written most nicely for complete vector fields.

t

x1
x̃1

−1 −0.5 0 0.5 1

0

0

0.5

0.5

1

1

U

Figure 16.3: Visualization of the (local) flow (x̃1, x̃2) = ϕt(x
1, x2) = (x1 + t, x2) of the vector

field X = ∂1 on M = (0, 1)× (0, 1) and its domain U = {(t, x) ∈ R×M, 0 < x1 + t < 1}. The
coordinate x2 is not shown to simplify the diagram.

Theorem 16.1.2. The flow of a complete vector field X is both a left and a right Lie group
action of (R,+) on M .

Proof. Since (R,+) is abelian, every left action is also a right action. We thus simply have to
check that ϕ : R ×M → M is a smooth map such that ϕs+t(x) = ϕs(ϕt(x)) for all s, t ∈ R
and x ∈ M . We will not check the smoothness here. For fixed t ∈ R and x ∈ M the maps
γ1 : s 7→ ϕs+t(x) and γ2 : s 7→ ϕs(ϕt(x)) define curves on M . For these curves we have

γ̇1(s) = X(ϕs+t(x)) = X(γ1(s)) , (16.1.1a)
γ̇2(s) = X(ϕs(ϕt(x))) = X(γ2(s)) , (16.1.1b)

so that both of them are integral curves of X. Further, they have the same initial point
γ1(0) = ϕt(x) = γ2(0). Since integral curves are unique, it thus follows that γ1(s) = γ2(s) for
all s ∈ R, and therefore ϕs+t(x) = ϕs(ϕt(x)). ■

In fact, the relation ϕs+t(x) = ϕs(ϕt(x)) holds also for local flows, whenever both sides are
well-defined. This will be sufficient for the constructions in this chapter. However, note that
the flow is a group action only for complete vector fields.

16.2 Lie derivative of tensor fields

Using the tools from the previous section we can now define a useful and important object in
differential geometry; see [Yan57] for a thorough treatment.
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Definition 16.2.1 (Lie derivative). Let T ∈ Γ(T rsM) be a tensor field and X ∈ Vect(M)
a vector field on a manifold M . Let ϕ : R ×M ⊇ U → M be the flow of X. The Lie
derivative of T with respect to X is the tensor field defined by

LXT = lim
t→0

ϕ∗tT − T
t

. (16.2.1)

p ϕt(p)

ϕt(p)

T (p)

ϕ∗tT (p)

ϕ∗tT (p)

T (ϕt(p))

T (ϕt(p))

ϕ∗tϕ∗t

T π T π

T π

ϕ
M

T rsM

Figure 16.4: Illustration of the Lie derivative. For every t, pull back the tensor field T from
ϕt(p) along ϕt. Evaluating this tensor field ϕ∗tT at p yields an element ϕ∗tT (p) ∈ T rs pM . These
elements form a curve t 7→ ϕ∗tT (p). The derivative of this curve with respect to t at t = 0 is the
Lie derivative LXT (p).

We see that the Lie derivative can be seen as the infinitesimal change of the tensor field T along
the flow of X: starting from a point x ∈M one follows the flow line of X, takes the tensor field
at that point ϕt(x), pulls it back along ϕt to obtain a tensor at the original point x and then
measures how much this tensor at x changes with t. Note that for this it is not enough to know
only the integral curve along which to move, but also the flow ϕ in a neighborhood around p is
needed, since the pullback ϕ∗t depends on the derivatives of ϕ.

Of course one has to show that the limit (16.2.1) really exists and that it yields a smooth tensor
field. Instead of proving this here in a rigorous, coordinate-free way, we only illustrate the
definition and derive the coordinate expression of the Lie derivative.

Using coordinates (xa) on M , let X = Xa∂a be a vector field and

T = T a1···ar b1···bs∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs . (16.2.2)

Writing the pullback ϕ∗tT in the same coordinates as

ϕ∗tT = T ′t = T ′a1···art b1···bs∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs . (16.2.3)

With this notation the coordinate expression for the Lie derivative takes the form

(LXT )a1···ar b1···bs(x) = lim
t→0

T ′a1···art b1···bs(x)− T a1···ar b1···bs(x)
t

=
d

dt
T ′a1···art b1···bs(x)

∣∣∣∣
t=0

.

(16.2.4)
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To evaluate this derivative, recall that the pullback of a tensor field by a diffeomorphism is
given by

T ′a1···art b1···bs(x) = T c1···crd1···ds(x
′
t(x))

∂xa1

∂x′c1t
(x′t(x)) · · ·

∂xar

∂x′crt
(x′t(x))

∂x′d1t
∂xb1

(x) · · · ∂x
′ds
t

∂xbs
(x) ,

(16.2.5)
where we wrote the flow ϕ of X in the form x′t(x). It is related to the vector field X via the
flow equation

Xa(x) =
d

dt
x′at (x)

∣∣∣∣
t=0

. (16.2.6)

This equation together with the chain rule is used to evaluate

d

dt
T a1···ar b1···bs(x

′
t(x))

∣∣∣∣
t=0

= Xc(x)∂cT
a1···ar

b1···bs(x) . (16.2.7)

From the fact that partial derivatives commute follows that

d

dt

∂x′bt
∂xa

(x)

∣∣∣∣
t=0

= ∂a
d

dt
x′bt (x)

∣∣∣∣
t=0

= ∂aX
b(x) . (16.2.8)

To evaluate the remaining term, we further use the fact that ϕ−1t = ϕ−t, from which follows
that

∂xa

∂x′bt
(x′t(x)) =

∂x′a−t
∂xb

(x′t(x)) . (16.2.9)

When we differentiate this term with respect to t, we must pay attention that it appears both
in the argument x′t(x) and explicitly in the function ∂x′a−t/∂xb itself, so that we obtain the two
terms

d

dt

∂x′a−t
∂xb

(x′t(x))

∣∣∣∣
t=0

=
d

dt

∂x′a−t
∂xb

(x′0(x))

∣∣∣∣
t=0

+
∂

∂xc

∂x′a0
∂xb

(x)
d

dt
x′ct (x)

∣∣∣∣
t=0

=
d

dt

∂x′a−t
∂xb

(x)

∣∣∣∣
t=0

+ ∂cδ
a
bX

c
t (x) .

(16.2.10)

The second term vanishes, since the Kronecker symbol δab is constant, and so ∂cδab = 0. For the
first term, we can change the order of differentiation and find

d

dt

∂x′a−t
∂xb

(x)

∣∣∣∣
t=0

=
∂

∂xb
d

dt
x′a−t(x)

∣∣∣∣
t=0

= −∂bXa(x) . (16.2.11)

Putting everything together we finally find the coordinate expression for the Lie derivative as

(LXT )a1···ar b1···bs = Xc∂cT
a1···ar

b1···bs
− ∂cXa1T ca2···ar b1···bs − . . .− ∂cXarT a1···ar−1c

b1···bs
+ ∂b1X

cT a1···ar cb2···bs + . . .+ ∂bsX
cT a1···ar b1···bs−1c .

(16.2.12)

The Lie derivative of tensor fields has a few helpful and important properties. We start with a
few properties which concern its application to tensor fields, which are constructed from other
tensor fields, as follows.

Theorem 16.2.1. Let M be a manifold, S, T tensor fields on M , X a vector field on M ,
µ, ν ∈ R and k, l ∈ R. The Lie derivative satisfies:

1. Linearity in the tensor fields:

LX(µS + νT ) = µLXS + νLXT . (16.2.13)

2. Leibniz rule:
LX(S ⊗ T ) = (LXS)⊗ T + S ⊗ (LXT ) . (16.2.14)
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3. Compatibility with contraction:

LX(trkl T ) = trkl (LXT ) . (16.2.15)

Proof. These properties are easily derived from the properties of the pullback of tensor fields.
The first property follows immediately from the linearity of the pullback, while the third one
follows from the fact that it commutes with the contraction. Finally, the second one follows
from the Leibniz rule

d

dt
(ϕ∗t (S)⊗ ϕ∗t (T ))

∣∣∣∣
t=0

=
d

dt
ϕ∗t (S)

∣∣∣∣
t=0

⊗ ϕ∗0(T ) + ϕ∗0(S)⊗
d

dt
ϕ∗t (T )

∣∣∣∣
t=0

=
d

dt
ϕ∗t (S)

∣∣∣∣
t=0

⊗ T + S ⊗ d

dt
ϕ∗t (T )

∣∣∣∣
t=0

,

(16.2.16)

using ϕ0 = idM . ■

These properties are easily illustrated using the coordinate expression 16.2.12. First, note that
the latter is linear in the components of the tensor field T . To illustrate the Leibniz rule for the
tensor product, consider a vector field Y = Y a∂a and a one-form ω = ωadx

a. In this case the
Lie derivative reads

LX(Y ⊗ ω) = LX(Y aωb∂a ⊗ dxb)

= [Xc∂c(Y
aωb)− ∂cXaY cωb + ∂bX

cY aωc]∂a ⊗ dxb

= [Xc∂cY
aωb − ∂cXaY cωb +XcY a∂cωb + ∂bX

cY aωc]∂a ⊗ dxb

= LXY ⊗ ω + Y ⊗ LXω .

(16.2.17)

Finally, for the contraction, consider a tensor field T = T ab∂a ⊗ dxb, and observe that

tr11 LXT = tr11 LX(T ab∂a ⊗ dxb)

= tr11[(X
c∂cT

a
b − ∂cXaT cb + ∂bX

cT ac)∂a ⊗ dxb]

= Xc∂cT
d
d − ∂cXdT cd + ∂dX

cT dc

= Xc∂cT
d
d

= LX tr11 T .

(16.2.18)

Further, we may also construct a new vector field from other vector fields. Also the Lie deriva-
tives with respect to these different vector fields are related, as we show below.

Theorem 16.2.2. Let M be a manifold, T a tensor field on M , X,Y vector fields on M and
µ, ν ∈ R. The Lie derivative satisfies:

1. Linearity in the vector fields:

LµX+νY T = µLXT + νLY T . (16.2.19)

2. Commutator:
L[X,Y ]T = LXLY T − LY LXT . (16.2.20)

In other words, the Lie derivative is a Lie algebra homomorphism from the Lie algebra Vect(M)
of vector fields on M to the algebra of linear operators acting on tensor fields on M , where the
latter is equipped with the commutator as Lie bracket.

Proof. ▶. . .◀ ■

▶Show in coordinates.◀

In the following sections, we will discuss a few examples for the Lie derivative of particular
tensor fields.
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16.3 Lie derivative of real functions

The simplest possible tensor field is of course a tensor field of type (0, 0), which is the same as
a real function. In this case the Lie derivative has a very simple form.

Theorem 16.3.1. For a function f ∈ C∞(M,R) the Lie derivative with respect to a vector
field X is given by

LXf = Xf . (16.3.1)

Proof. For a function f the pullback along the flow ϕ of X is given by

(ϕ∗t f)(p) = f(ϕt(p)) (16.3.2)

for every p ∈M and t ∈ R, such that (t, p) lies in the domain of ϕ. Denoting by γp : t 7→ ϕt(p)
the flow line which passes through p at t = 0, we thus have

(LXf)(p) =
d

dt
(ϕ∗t f)(p)

∣∣∣∣
t=0

=
d

dt
f(ϕt(p))

∣∣∣∣
t=0

=
d

dt
f(γp(t))

∣∣∣∣
t=0

= γ̇p(0)(f) = X(p)(f) ,

(16.3.3)
where we used the definition of the tangent vector of a curve and the flow γ̇p(0) = X(p). Since
this holds for all p ∈M , one has LXf = Xf . ■

In other words, the Lie derivative of a function reduces to the action of a vector field. From
this follow a few useful properties of the Lie derivative in this special case.

Theorem 16.3.2. For a vector field X ∈ Vect(M) and real functions f, g ∈ C∞(M,R) on a
manifold M the Lie derivative satisfies:

1. Leibniz rule:
LX(fg) = LXf · g + f · LXg . (16.3.4)

2. Multiplication of the vector field:

LgXf = g · LXf . (16.3.5)

Proof. The Leibniz rule follows immediately from the Leibniz rule for tensor fields, since for real
functions we simply have f⊗g = fg. The second property follows from the fact that (gX)(p) =
g(p)X(p) and hence ((gX)f)(p) = g(p)(Xf)(p) for all p ∈ M , since the multiplication is
performed pointwise. ■

It is important to note that the second property holds only for functions, i.e., tensors of rank
(0, 0), and not for other tensor fields.

16.4 Lie derivative of vector fields

As the next example we discuss the Lie derivative of vector fields. Also in this case it reduces
to a familiar object as follows.

Theorem 16.4.1. For a vector field Y ∈ Vect(M) the Lie derivative with respect to a vector
field X is given by

LXY = [X,Y ] . (16.4.1)
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Proof. From the fact that the Lie derivative of a tensor fields yields a tensor field of the same
rank follows that LXY is again a vector field. Hence, it is fully determined by its action on
functions. Let f ∈ C∞(M,R). Then we have

(LXY )f =
d

dt
ϕ∗tY

∣∣∣∣
t=0

f

=
d

dt
(ϕ∗tY )f

∣∣∣∣
t=0

=
d

dt
(Y (f ◦ ϕ−1t )) ◦ ϕt

∣∣∣∣
t=0

=
d

dt
(Y (f ◦ ϕ−t)) ◦ ϕt

∣∣∣∣
t=0

=
d

dt
(Y f) ◦ ϕt

∣∣∣∣
t=0

+
d

dt
Y (f ◦ ϕ−t)

∣∣∣∣
t=0

=
d

dt
ϕ∗t (Y f)

∣∣∣∣
t=0

− Y d

dt
ϕ∗t f

∣∣∣∣
t=0

= LX(Y f)− Y LXf
= X(Y f)− Y (Xf)

= [X,Y ]f . ■

(16.4.2)

From the fact that Vect(M) together with the Lie bracket forms a Lie algebra one can derive
the following properties of the Lie derivative of vector fields.

Theorem 16.4.2. For vector fields X,Y, Z ∈ Vect(M) on a manifold M the Lie derivative
satisfies:

1. Antisymmetry:
LXY = −LYX . (16.4.3)

2. Jacobi identity:
LX [Y,Z] = [LXY,Z] + [Y,LXZ] . (16.4.4)

Proof. These follow directly from the identification 16.4.1 of the Lie derivative with the com-
mutator of vector fields and the statement 7.5.1 that the latter equips the vector fields with the
structure of a Lie algebra, so that the antisymmetry and Jacobi identity hold. ■

The second relation can be brought into various different forms.

16.5 Lie derivative of differential forms

Another special case for the Lie derivative which we discuss in this chapter is the Lie derivative
of differential forms. Also in this case there exists a helpful formula for the Lie derivative in
terms of objects we have already previously encountered.

Theorem 16.5.1. For a k-form ω ∈ Ωk(M) with k ≥ 1 the Lie derivative with respect to a
vector field X is given by “Cartan’s magic formula”

LXω = ιXdω + dιXω . (16.5.1)

Proof. One can use the fact that any differential form can be constructed as a linear combination
of exterior products of zero-forms and (exact) one-forms, for example by decomposing it using
a partition of unity, and expressing each component in coordinates in the form (9.1.2), where
the coordinates and the coefficients of the differential form can be regarded as zero-forms. This
allows us to perform the proof inductively in three steps:
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1. Let f ∈ Ω0(M) be a real function. Then ιXf = 0 and ιXdf = Xf . Since also LXf = Xf ,
the formula holds for zero-forms.

2. For a general k-form ω, we find

LXdω = lim
t→0

ϕ∗tdω − dω

t
= lim
t→0

dϕ∗tω − dω

t
= d lim

t→0

ϕ∗tω − ω
t

= dLXω , (16.5.2)

using the properties 11.3.1 of the pullback of a differential form, and the fact that dif-
ferentiation with respect to the parameter t and the partial derivatives constituting d
commute. Assuming that Cartan’s magic formula holds for ω, we then have

LXdω = dLXω
= d(ιXdω + dιXω)

= dιXdω

= dιXdω + ιXddω ,

(16.5.3)

and so it holds for dω as well. Hence, setting ω = f ∈ Ω0(M), it holds in particular for
all exact one-forms df .

3. Finally, one can show that

LX(ω ∧ σ) = (LXω) ∧ σ + ω ∧ (LXσ) (16.5.4)

for any exterior product of two differential forms ω and σ, by again using the proper-
ties 11.3.1, and following exactly the same steps as in the proof of the equality (16.2.14).
Assuming that Cartan’s magic formula holds for ω and σ, one thus has

LX(ω ∧ σ) = (LXω) ∧ σ + ω ∧ (LXσ)
= (ιXdω + dιXω) ∧ σ + ω ∧ (ιXdσ + dιXσ)

= ιXd(ω ∧ σ) + dιX(ω ∧ σ) ,
(16.5.5)

where the intermediate steps taken to obtain the last line, which involve only the prop-
erties of the interior product and exterior derivative, are shown in detail in the proof of
theorem 16.5.2.

Now using the fact that any differential form can be composed as a linear composition of exterior
products of zero-forms and exact one-forms, and that Cartan’s magic formula is linear on both
sides and holds for any of these building blocks, we conclude that it holds for all differential
forms. ■

Cartan’s magic formula turns out to be a special case of a more general class of operators acting
on differential forms, called graded derivations; these will be discussed in full detail in chapter 17,
where we also proof a more general statement. One can directly use the formula 16.5.1 and the
properties of the operations on differential forms to derive the following properties of the Lie
derivative.

Theorem 16.5.2. For vector fields X,Y ∈ Vect(M), differential forms ω ∈ Ωk(M), σ ∈ Ωl(M)
and functions f ∈ C∞(M,R) on a manifold M the Lie derivative satisfies:

1. Compatibility with exterior derivative:

dLXω = LXdω . (16.5.6)

2. Leibniz rule with exterior product:

LX(ω ∧ σ) = (LXω) ∧ σ + ω ∧ (LXσ) . (16.5.7)
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3. Relation with interior product:

ι[X,Y ]ω = LXιY ω − ιY LXω = ιXLY ω − LY ιXω . (16.5.8)

4. Distribution law:
LfXω = fLXω + df ∧ ιXω . (16.5.9)

Proof. The first two statements have been shown explicitly in the proof of theorem 16.5.1; Given
that Cartan’s magic formula is now proven, we can also show them as well as the remaining
statements as follows:

1. Keeping in mind that d2 = 0, we have

dLXω = d(ιXdω + dιXω) = dιXdω = ιXddω + dιXdω = LXdω . (16.5.10)

2. By direct calculation, we have

LX(ω ∧ σ) = ιXd(ω ∧ σ) + dιX(ω ∧ σ)
= ιX [dω ∧ σ + (−1)kω ∧ dσ] + d[ιXω ∧ σ + (−1)kω ∧ ιXσ]
= ιXdω ∧ σ − (−1)kdω ∧ ιXσ + (−1)kιXω ∧ dσ + ω ∧ ιXdσ

+ dιXω ∧ σ − (−1)kιXω ∧ dσ + (−1)kdω ∧ ιXσ + ω ∧ dιXσ

= ιXdω ∧ σ + ω ∧ ιXdσ + dιXω ∧ σ + ω ∧ dιXσ

= (LXω) ∧ σ + ω ∧ (LXσ) .

(16.5.11)

3. Comparing (16.5.1) with the relation (9.4.6), one immediately obtains

ι[X,Y ]ω = dιXιY ω + ιXdιY ω − ιY dιXω − ιY ιXdω = LXιY ω − ιY LXω . (16.5.12)

Alternatively, one may change the order of the interior products, which yields a minus
sign, to obtain

ι[X,Y ]ω = −dιY ιXω + ιXdιY ω − ιY dιXω + ιXιY dω = ιXLY ω − LY ιXω . (16.5.13)

4. Using ιfXω = fιXω, we have

LfXω = ιfXdω + dιfXω

= fιXdω + d(fιXω)

= fιXdω + df ∧ ιXω + fdιXω

= fLXω + df ∧ ιXω . ■

(16.5.14)

Note in particular that if ω is a zero-form, one has ιXω = 0, and so the last relation reduces
to (16.3.5).

16.6 Lie derivative of endomorphisms

We then come to the Lie derivative of sections of the homomorphism bundle End(TM) =
Hom(TM, TM) ∼= TM ⊗ T ∗M . As for the other cases, the Lie derivative LXF of a section
F ∈ Γ(End(TM)) of this bundle is again a tensor field of the same type. Further, recall from
section 4.6 that one can apply such a section to a vector field Y ∈ Vect(M). One may naturally
ask whether it is possible to express (LXF )Y in terms of FY . This is indeed the case, and we
state as follows.
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Theorem 16.6.1. Given vector fields X,Y ∈ Vect(M) and a section F ∈ Γ(End(TM)) of the
endomorphism bundle, the Lie derivative satisfies

(LXF )Y = [X,FY ]− F [X,Y ] . (16.6.1)

Proof. Viewing F as a section of TM ⊗ T ∗M , one can express FY by first taking the tensor
product F ⊗ Y ∈ Γ(TM ⊗ T ∗M ⊗ TM), and then contracting the second upper with the first
lower index, FY = tr21(F ⊗ Y ). The latter commutes with the Lie derivative, while the former
obeys the Leibniz rule, so that one finds

LX(tr21(F ⊗ Y )) = tr21(LXF ⊗ Y ) + tr21(F ⊗ LXY ) = (LXF )Y + F (LXY ) . (16.6.2)

Solving for the first term on the right hand side and using theorem 16.4.1 one finds

(LXF )Y = LX(FY )− F (LXY ) = [X,FY ]− F [X,Y ] . (16.6.3)
■

This formula is easily illustrated in coordinates (xa). Writing

X = Xa∂a , Y = Y a∂a , F = F ab∂a ⊗ dxb , (16.6.4)

one has

[X,FY ]− F [X,Y ] = [Xb∂b(F
a
cY

c)− F bcY c∂bXa − F ab(Xc∂cY
b − Y c∂cXb)]∂a

= (Xb∂bF
a
c − ∂bXaF bc + ∂cX

bF ab)Y
c∂a ,

(16.6.5)

since the derivatives acting on the components of Y cancel. The term in brackets corresponds
to the Lie derivative

LXF = (Xc∂cF
a
b − ∂cXaF cb + ∂bX

cF ac)∂a ⊗ dxb , (16.6.6)

as follows from the relation (16.2.12).
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Chapter 17

Graded derivations

17.1 Graded derivations

We have encountered several operations which act on differential forms, such as the exterior
derivative, interior product and Lie derivative. We will now show that these are special cases of
a more general set of operations, essentially following the treatment in [KSM93, sec. 8]. Other
references are [SLK14] and [Ant03, ch. 11]. We define these operations as follows.

Definition 17.1.1 (Graded derivation). Let M be a manifold and Ω•(M) the differential
forms on M . A graded derivation of degree n ∈ Z on M is a linear function D : Ω•(M)→
Ω•(M) such that for all ω ∈ Ωk(M), σ ∈ Ωl(M) holds Dω ∈ Ωk+n(M) and

D(ω ∧ σ) = Dω ∧ σ + (−1)knω ∧Dσ . (17.1.1)

The space of all graded derivations of degree n on M is denoted Dern Ω(M), and the space
of all derivations is denoted Der•Ω(M).

In fact, we have already encountered several graded derivations. This we can state as follows.

Theorem 17.1.1. The following operations are graded derivations on the differential forms on
a manifold M :

1. The exterior derivative d is a graded derivation of degree 1.

2. For any vector field X ∈ Vect(M), the interior product ιX is a graded derivation of degree
−1.

3. For any vector field X ∈ Vect(M), the Lie derivative LX is a graded derivation of degree
0.

Proof. The three mentioned operations are linear by definition. They further satisfy:

1. By definition 9.3.1, the exterior derivative increases the degree of a form by 1 and satisfies
the graded Leibniz rule.

2. By definition 9.4.1, the same holds for the interior product, except that it decreases the
degree of a form by 1.
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3. The Lie derivative of a tensor field is a section of the same bundle as the original vector
field, and hence the degree does not change. The graded Leibniz rule (which is just the
Leibniz rule, since n = 0 is even), follows from theorem 16.5.2. ■

In the definition 17.1.1 we have allowed arbitrary integers as the degree of a graded derivation.
One may ask whether any non-trivial derivations exist for any given degree. Before answering
this question, we will show a helpful statement, which we will also be able to use later.

Theorem 17.1.2. Any graded derivation D ∈ Der• Ω(M) is uniquely determined by its action
on smooth functions f ∈ Ω0(M) and their differentials df .

Proof. Recall that we can write any differential k-form ω in a basis expansion of the form (9.1.2),
where the coefficients ωa1···ak are zero-forms while the basis elements dxa are one-forms, which
can be seen as the differentials of the coordinate functions. Since the action of a graded deriva-
tion on the exterior product of differential forms is uniquely determined by the action on the
individual factors, it follows that it is uniquely determined by the action on the coefficient
zero-forms and differentials of coordinate functions. ■

We can now use this result in the following proof.

Theorem 17.1.3. Any graded derivation D ∈ Dern Ω(M) of degree n on a manifold of dimen-
sion dimM = m with n < −1 or n > m is trivial.

Proof. For n > m it follows that Dω ∈ Ωk+n(M) for a k-form ω ∈ Ωk(M) has k + n > m and
must therefore vanish. Similarly, for n < −1 follows that D must act trivially on Ω0(M) and
Ω1(M), and hence must be trivial by theorem 17.1.2. ■

17.2 Graded commutator

One may pose the question how the space of graded derivations can be described and whether it
carries any structure. The latter is indeed the case. To see this, we continue with the following
statement.

Theorem 17.2.1. For any derivations D ∈ Derm Ω(M) and D′ ∈ DernΩ(M), one has

D ◦D′ − (−1)mnD′ ◦D ∈ Derm+nΩ(M) . (17.2.1)

Proof. The expression given above is obviously linear, since the composition of linear functions
is linear, and increases the degree of a form by m+ n. This leaves to check the graded Leibniz
rule, which reads

DD′(ω ∧ σ)− (−1)mnD′D(ω ∧ σ) = D[D′ω ∧ σ + (−1)knω ∧D′σ]
− (−1)mnD′[Dω ∧ σ + (−1)kmω ∧Dσ]

= DD′ω ∧ σ + (−1)m(k+n)D′ω ∧Dσ
+ (−1)knDω ∧D′σ + (−1)k(m+n)ω ∧DD′σ
− (−1)mnD′Dω ∧ σ − (−1)knDω ∧D′σ
− (−1)m(k+n)D′ω ∧Dσ − (−1)km+kn+mnω ∧D′Dσ

= (DD′ − (−1)mnD′D)ω ∧ σ
+ (−1)k(m+n)ω ∧ (DD′ − (−1)mnD′D)σ

= [D,D′]ω ∧ σ + (−1)k(m+n)ω ∧ [D,D′]σ
(17.2.2)

for ω ∈ Ωk(M) and σ ∈ Ωl(M). Hence, it is a graded derivation of degree m+ n. ■
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The expression given in the previous theorem carries a name and notation.

Definition 17.2.1 (Graded commutator). Let D ∈ Derm Ω(M) and D′ ∈ DernΩ(M) be
two graded derivations on a manifold M . Their graded commutator is the graded derivation

[D,D′] = D ◦D′ − (−1)mnD′ ◦D ∈ Derm+nΩ(M) . (17.2.3)

With this definition in place, we can now study the algebraic structure of the space of derivations.
We find the following statement.

Theorem 17.2.2. The space

DerΩ(M) =
⊕
n∈Z

Dern Ω(M) (17.2.4)

of graded derivations on a manifold M together with the graded commutator is a graded Lie
algebra, i.e., the graded commutator is bilinear and satisfies:

1. graded antisymmetry:
[D1, D2] = −(−1)n1n2 [D2, D1] , (17.2.5)

2. graded Jacobi identity:

[D1, [D2, D3]] = [[D1, D2], D3] + (−1)n1n2 [D2, [D1, D3]] , (17.2.6)

where D1 ∈ Dern1
Ω(M), D2 ∈ Dern2

Ω(M), D3 ∈ Dern3
Ω(M).

Proof. Bilinearity is obvious from the definition 17.2.1, and so we will only check the symmetry
and the Jacobi identity. For the former we find by direct computation:

[D1, D2] = D1 ◦D2 − (−1)n1n2D2 ◦D1

= −(−1)n1n2(D2 ◦D1 − (−1)n1n2D1 ◦D2)

= −(−1)n1n2 [D2, D1] .

(17.2.7)

Similarly, we find the Jacobi identity

[D1, [D2, D3]] = D1 ◦ [D2, D3]− (−1)n1(n2+n3)[D2, D3] ◦D1

= D1 ◦D2 ◦D3 − (−1)n2n3D1 ◦D3 ◦D2

− (−1)n1(n2+n3)(D2 ◦D3 ◦D1
:::::::::::

− (−1)n2n3D3 ◦D2 ◦D1)

= D1 ◦D2 ◦D3 − (−1)n1n2D2 ◦D1 ◦D3. . . . . . . . . . . . . . .

− (−1)(n1+n2)n3(D3 ◦D1 ◦D2 − (−1)n1n2D3 ◦D2 ◦D1)

+ (−1)n1n2(D2 ◦D1 ◦D3. . . . . . . . . . . . . . . − (−1)n1n3D2 ◦D3 ◦D1
:::::::::::

)

− (−1)n2n3(D1 ◦D3 ◦D2 − (−1)n1n3D3 ◦D1 ◦D2)

= [D1, D2] ◦D3 − (−1)(n1+n2)n3D3 ◦ [D1, D2]

+ (−1)n1n2(D2 ◦ [D1, D3]− (−1)n2(n1+n3)[D1, D3] ◦D2)

= [[D1, D2], D3] + (−1)n1n2 [D2, [D1, D3]] ,

(17.2.8)

where dotted and dashed terms cancel each other, and we have used different underlines for the
remaining, matching terms for clarity. ■
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In fact, we have already encountered an example for the graded commutator of derivations,
namely the following.

Theorem 17.2.3. For any vector fields X,Y ∈ Vect(M), the graded commutators are given
by:

[d,d] = 0 , (17.2.9a)
[ιX , ιY ] = 0 , (17.2.9b)

[LX ,LY ] = L[X,Y ] , (17.2.9c)
[ιX ,d] = LX , (17.2.9d)
[LX ,d] = 0 , (17.2.9e)
[LX , ιY ] = ι[X,Y ] . (17.2.9f)

Proof. By direct calculation with ω ∈ Ωk(M) we find:

1. For the exterior derivative holds

[d,d]ω = ddω + ddω = 0 . (17.2.10)

2. The interior product satisfies

[ιX , ιY ]ω = ιXιY ω + ιY ιXω , (17.2.11)

since it is antisymmetric.

3. For the Lie derivative one finds

[LX ,LY ]ω = LXLY ω − LY LXω = L[X,Y ]ω , (17.2.12)

using the commutator (16.2.20).

4. The interior product and exterior derivative yield

[ιX ,d]ω = ιXdω + dιXω = LXω (17.2.13)

due to Cartan’s formula (16.5.1).

5. The Lie derivative and exterior derivative commute,

[LX ,d]ω = LXdω − dLXω = 0 , (17.2.14)

as given by equation (16.5.6) .

6. Finally, for the Lie derivative and exterior product one has

[LX , ιY ]ω = LXιY ω − ιY LXω = ι[X,Y ]ω , (17.2.15)

due to the rule (16.5.8). ■

We will use this result in section 17.5 in order to generalize the notion of the Lie derivative.

17.3 Algebraic derivations

We now come to a particular class of graded derivations, namely those which vanish if they
are applied to a scalar function, i.e., to an element f ∈ Ω0(M) ∼= C∞(M,R). We denote these
derivations as follows.
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Definition 17.3.1 (Algebraic derivation). A graded derivation D ∈ Dern Ω(M) of degree
n on a manifold M is called algebraic if it satisfies Df = 0 for all f ∈ Ω0(M). The space of
all algebraic derivations of degree n is denoted Der0nΩ(M), while the space of all algebraic
derivations is denoted Der0• Ω(M).

The question arises whether the algebraic graded derivations are closed under taking the graded
commutator, and thus form a graded Lie subalgebra. This is indeed the case, which we see as
follows.

Theorem 17.3.1. The graded commutator [D,D′] of two algebraic graded derivations D,D′ is
again algebraic.

Proof. By definition, we have

[D,D′]f = DD′f − (−1)mnD′Df = 0 (17.3.1)

for D ∈ Der0m Ω(M) and D′ ∈ Der0nΩ(M) . ■

We have already encountered a class of algebraic graded derivations. By definition, the interior
product ιXf of a vector field X ∈ Vect(M) and a function f ∈ Ω0(M) vanishes, and thus
turns ιX into an algebraic graded derivation of degree −1. We now construct an extension of
the interior product. Instead of vector fields X ∈ Vect(M) = Ω0(M,TM), we shall consider
arbitrary vector-valued differential forms. For these we can define as follows.

Definition 17.3.2 (Insertion operator). Let M be a manifold. The insertion operator is
the function

ι : Ωk(M,TM)× Ωl(M) → Ωk+l−1(M)
(K,ω) 7→ ιKω

, (17.3.2)

such that for any K ∈ Ωk(M,TM), ω ∈ Ωl(M) and vector fields X1, . . . , Xk+l−1 ∈ Vect(M)
holds

ιKω(X1, . . . , Xk+l−1) =

1

k!(l − 1)!

∑
σ∈Sk+l−1

sgn(σ)ω(K(Xσ(1), . . . , Xσ(k)), Xσ(k+1), . . . , Xσ(k+l−1)) . (17.3.3)

Besides the name insertion operator [KSM93, sec. 7.7], also the name substitution operator
(see [SLK14, rem. 3.3.29] or [Ant03, sec. 11.1.E]) is used in the literature. From its definition, we
can find a helpful formula by first considering the case k = 0, where we K = X ∈ Ω0(M,TM) =
Vect(M) is a vector field. In this case we have that

ιXω(X1, . . . , Xl−1) =
1

(l − 1)!

∑
σ∈Sl−1

sgn(σ)ω(X,Xσ(1), . . . , Xσ(l−1)) = ω(X,X1, . . . , Xl−1)

(17.3.4)
is the usual interior product. Setting

X = K(Xσ(1), . . . , Xσ(k)) (17.3.5)

in the general formula, we find
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ιKω(X1, . . . , Xk+l−1) =

1

k!(l − 1)!

∑
σ∈Sk+l−1

sgn(σ)
[
K(Xσ(1), . . . , Xσ(k))

¬ ω
]
(Xσ(k+1), . . . , Xσ(k+l−1)) . (17.3.6)

The question arises whether also ιK for K ∈ Ωk(M,TM) is an algebraic graded derivation. We
answer this question together with an even stronger statement, claiming that every algebraic
graded derivation is of the form ιK .

Theorem 17.3.2. The insertion operator ι establishes a one-to-one correspondence between
vector-valued k-forms K ∈ Ωk(M,TM) on a manifold M and algebraic graded derivations
D ∈ Der0k−1 Ω(M).

Proof. We proceed in three steps:

1. Let K ∈ Ωk(M,TM) be a vector-valued k-form and denote by ιK the insertion operator
from definition 17.3.3. This operator obviously acts linearly on differential forms ω ∈
Ωl(M), and yields a differential form ιKω ∈ Ωk+l−1(M). To see that it is indeed a graded
derivation, we still need to check the Leibniz rule. For ω ∈ Ωl(M), σ ∈ Ωm(M) we have

ιK(ω ∧ σ)(X1, . . . , Xk+l+m−1) =
1

k!(l +m− 1)!
·∑

σ∈Sk+l+m−1

sgn(σ)
[
K(Xσ(1), . . . , Xσ(k))

¬ (ω ∧ σ)
]
(Xσ(k+1), . . . , Xσ(k+l+m−1)) .

(17.3.7)

We then consider the differential form in square brackets, which is given by

KX
¬ (ω ∧ σ) = (KX

¬ ω) ∧ σ + (−1)lω ∧ (KX
¬ σ)

= (KX
¬ ω) ∧ σ + (−1)l(−1)l(m−1)(KX

¬ σ) ∧ ω
= (KX

¬ ω) ∧ σ + (−1)lm(KX
¬ σ) ∧ ω ,

(17.3.8)

where we abbreviated
KX = K(Xσ(1), . . . , Xσ(k)) . (17.3.9)

Substituting back into the defining formula for the insertion operator, and factoring out
the second factor, we thus obtain

ιK(ω ∧ σ) = ιKω ∧ σ + (−1)lmιKσ ∧ ω
= ιKω ∧ σ + (−1)lm(−1)l(k+m−1)ω ∧ ιKσ
= ιKω ∧ σ + (−1)l(k−1)ω ∧ ιKσ .

(17.3.10)

Hence, ιK ∈ Derk−1 Ω(M) is a derivation of degree k − 1. Finally, ιKf = 0 for any
f ∈ Ω0(M), and so ιK ∈ Der0k−1 Ω(M) is an algebraic derivation.

2. To show the converse direction, let D ∈ Der0k−1 Ω(M) be an algebraic derivation. Let K ∈
Ωk(M,TM) be the unique vector-valued k-form such that for all one-forms ω ∈ Ω1(M)
and vector fields X1, . . . , Xk ∈ Vect(M) holds

ω(K(X1, . . . , Xk)) = (Dω)(X1, . . . , Xk) . (17.3.11)

To see that this is well-defined, we have to show that the left hand side is linear (with
respect to multiplication by functions f ∈ C∞(M)) in ω and X1, . . . , Xk, as well as
antisymmetric in the latter. For the vector fields this is obvious, since Dω ∈ Ωk(M). For
ω, one uses the fact that D is an algebraic derivation, and so

D(fω) = Df ∧ ω + fDω = fDω . (17.3.12)
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Hence, K indeed defines a vector-valued k-form. One also sees from definition 17.3.2 that
the left hand side is simply

ω(K(X1, . . . , Xk)) = ιKω(X1, . . . , Xk) , (17.3.13)

as intended. Hence, we have Dω = ιKω. Since this holds for all one-forms ω, and an
algebraic derivation is uniquely defined by its action on one-forms, it follows that D = ιK .

3. We finally need to show that the vector-valued k-form K constructed above is unique. If
we have K ′ ∈ Ωk(M,TM) with ιK′ = D = ιK , then it follows immediately from the last
equation that

ω(K ′(X1, . . . , Xk)) = ιK′ω(X1, . . . , Xk) = ιKω(X1, . . . , Xk) = ω(K(X1, . . . , Xk))
(17.3.14)

for all one-form ω and vector fields X1, . . . , Xk, and so K = K ′. ■

Hence, we can identify the space of algebraic graded derivations with the space of vector-valued
differential forms. To illustrate this construction, we take a look at a particular example. Recall
that the tensor product bundle Ω1(M,TM) ∼= TM ⊗ T ∗M ∼= End(TM) admits in particular
the unit section δ, given in definition 5.5.1 by the identity map idTxM on every tangent space.
In this case we find the following result.

Theorem 17.3.3. For the unit section δ ∈ Ω1(M,TM) and ω ∈ Ωk(M) holds ιδω = kω.

Proof. By direct calculation we find

ιδω(X1, . . . , Xk) =
1

(k − 1)!

∑
σ∈Sk

sgn(σ)ω(Xσ(1), . . . , Xσ(k))

=
k!

(k − 1)!
ω(X1, . . . , Xk)

= kω(X1, . . . , Xk) . ■

(17.3.15)

Also here we find in particular that for k = 0 the result vanishes, so that it is indeed an algebraic
graded derivation. Another helpful set of formulas is the following.

Theorem 17.3.4. For all K ∈ Ωk(M,TM), ω ∈ Ωl(M) and f ∈ C∞(M) holds

ιfKω = ιK(fω) = fιKω . (17.3.16)

Proof. This follows immediately by direct calculation from the definition 17.3.2. ■

17.4 Nijenhuis-Richardson bracket

We have seen in section 17.3 that the algebraic graded derivations, together with their graded
commutator, form a graded Lie algebra. Further, we have seen that there is a one-to-one
correspondence between such algebraic graded derivations and vector-valued differential forms.
Via this one-to-one correspondence, we may equip the space of vector-valued differential forms
itself with an algebra structure, simply by defining an algebra relation as follows.

Definition 17.4.1 (Nijenhuis-Richardson bracket). Let M be a manifold and K ∈
Ωk(M,TM), L ∈ Ωl(M,TM) vector-valued differential forms on M . Their Nijenhuis-
Richardson bracket (or algebraic bracket) is the unique vector-valued form [K,L]∧ ∈
Ωk+l−1(M,TM) such that

ι[K,L]∧ = [ιK , ιL] . (17.4.1)
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This is well-defined, since the right hand side is, by construction, an algebraic graded derivation,
and so there indeed exists a unique vector-valued form [K,L]∧ ∈ Ωk+l−1(M,TM), which follows
from the fact that ι is an isomorphism of vector spaces. The Nijenhuis-Richardson bracket turns
ι into an isomorphism of graded Lie algebras. Here the algebra structure on Ω•(M,TM) has
the following properties.

Theorem 17.4.1. The Nijenhuis-Richardson bracket equips the space

Ω•(M,TM) =

dimM⊕
k=0

Ωk(M,TM) (17.4.2)

of vector-valued differential forms on a manifold M with the structure of a graded Lie algebra,
such that:

1. graded antisymmetry:

[K1,K2]
∧ = −(−1)(k1−1)(k2−1)[K2,K1]

∧ , (17.4.3)

2. graded Jacobi identity:

[K1, [K2,K3]
∧]∧ = [[K1,K2]

∧,K3]
∧ + (−1)(k1−1)(k2−1)[K2, [K1,K3]

∧]∧ , (17.4.4)

where K1 ∈ Ωk1(M,TM),K2 ∈ Ωk2(M,TM),K3 ∈ Ωk3(M,TM).

Proof. This follows directly from the definition 17.4.1 of the Nijenhuis-Richardson bracket,
from the fact that ι is a vector space isomorphism and that ιKi is a graded derivation of degree
ki − 1. ■

One may pose the question whether the Nijenhuis-Richardson bracket of two vector-valued
differential forms can also be expressed directly in terms of operators acting on these forms,
without resorting to the graded commutator. It turns out that this is indeed the case. However,
in order to arrive at this result, we need another definition, which we state as follows.

Definition 17.4.2 (Insertion in vector-valued forms). Let M be a manifold and K ∈
Ωk(M,TM) a vector-valued differential form. The insertion operator ιK : Ωl(M) →
Ωk+l−1(M) is extended to act on vector-valued differential forms ιK : Ωl(M,TM) →
Ωk+l−1(M,TM) such that for all L ∈ Ωl(M,TM) and vector fields X1, . . . , Xk+l−1 ∈
Vect(M) holds

ιKL(X1, . . . , Xk+l−1) =

1

k!(l − 1)!

∑
σ∈Sk+l−1

sgn(σ)L(K(Xσ(1), . . . , Xσ(k)), Xσ(k+1), . . . , Xσ(k+l−1)) . (17.4.5)

In other words, we define the insertion operator to act on vector-valued forms by acting exactly
as in definition 17.3.2, with the only difference that (17.3.3) takes values in R, while (17.4.5)
takes values in TM . We give a simple example.

Theorem 17.4.2. Let δ ∈ Ω1(M,TM) be the unit section and K ∈ Ωk(M,TM). Then the
insertion operator satisfies

ιδK = kK , ιKδ = K . (17.4.6)
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Proof. By direct calculation we find

ιδK(X1, . . . , Xk) =
1

(k − 1)!

∑
σ∈Sk

sgn(σ)K(Xσ(1), . . . , Xσ(k))

=
k!

(k − 1)!
K(X1, . . . , Xk)

= kK(X1, . . . , Xk) ,

(17.4.7)

as well as

ιKδ(X1, . . . , Xk) =
1

k!

∑
σ∈Sk

sgn(σ)δ(K(Xσ(1), . . . , Xσ(k)))

=
1

k!

∑
σ∈Sk

sgn(σ)K(Xσ(1), . . . , Xσ(k))

= K(X1, . . . , Xk) . ■

(17.4.8)

As with the usual insertion operator, the following holds.

Theorem 17.4.3. For all K ∈ Ωk(M,TM), L ∈ Ωl(M,TM) and f ∈ C∞(M) holds

ιfKL = ιK(fL) = fιKL . (17.4.9)

Proof. This follows immediately by direct calculation from the definition 17.4.2. ■

With this definition in place, we can now give an explicit formula for the Nijenhuis-Richardson
bracket.

Theorem 17.4.4. Let M be a manifold and K ∈ Ωk(M,TM), L ∈ Ωl(M,TM) vector-valued
differential forms on M . Their Nijenhuis-Richardson bracket satisfies

[K,L]∧ = ιKL− (−1)(k−1)(l−1)ιLK . (17.4.10)

Proof. Let ω ∈ Ω1(M) be a one-form. Then we have

[ιK , ιL]ω = ιKιLω − (−1)(k−1)(l−1)ιLιKω
= ιιKLω − (−1)(k−1)(l−1)ιιLKω .

(17.4.11)

Since an algebraic derivation is uniquely determined by its action on one-forms, the statement
follows. ■

It is also instructive to calculate a simple example.

Theorem 17.4.5. The Nijenhuis-Richardson bracket of any vector-valued differential form K ∈
Ωk(M,TM) with the unit section δ ∈ Ω1(M,TM) satisfies [δ,K]∧ = (k − 1)K.

Proof. For ω ∈ Ωl(M) we have

ι[δ,K]∧ω = [ιδ, ιK ]ω

= ιδιKω − (−1)0·(k−1)ιKιδω
= (k + l − 1)ιKω − lιKω
= (k − 1)ιKω ,

(17.4.12)

where we used the fact that ιδ and ιK are graded derivations of degree 0 and k−1, respectively,
the graded commutator 17.2.1, the insertion 17.3.3 of the unit section and the fact that ιKω ∈
Ωk+l−1(M). Hence, by the uniqueness of the Nijenhuis-Richardson bracket, we have [δ,K]∧ =
(k − 1)K. ■
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As mentioned in definition 17.4.1, the Nijenhuis-Richardson bracket is also called algebraic
bracket. This relates to the fact that its value is determined by the values of the vector-valued
forms only at the point where it is evaluated, but not on their derivatives. This is formally
expressed by the following statement.

Theorem 17.4.6. For all K ∈ Ωk(M,TM), L ∈ Ωl(M,TM) and f ∈ C∞(M) holds

[fK,L]∧ = [K, fL]∧ = f [K,L]∧ . (17.4.13)

Proof. From theorem 17.4.4 and theorem 17.4.3 follows

[fK,L]∧ = ιfKL− (−1)(k−1)(l−1)ιL(fK) = f(ιKL− (−1)(k−1)(l−1)ιLK) = f [K,L]∧ (17.4.14)

and

[K, fL]∧ = ιK(fL)−(−1)(k−1)(l−1)ιfLK = f(ιKL−(−1)(k−1)(l−1)ιLK) = f [K,L]∧ . (17.4.15)
■

17.5 Nijenhuis-Lie derivative

In definition 17.3.2 we have defined the insertion operator as a generalization of the interior
product from definition 9.4.1: instead of taking a vector field in order to obtain a graded
derivation on the space of differential forms, it takes a vector-valued differential form. One may
ask whether also the Lie derivative, which similarly takes a vector field and yields a derivation
on the space of differential forms following theorem 17.1.1, can be generalized to vector-valued
differential forms instead of vector fields. A hint towards a positive answer to this question
comes from theorem 17.2.3, which expresses the Lie derivative as a graded commutator. A
straightforward generalization arises from replacing the interior product in the commutator by
the insertion operator. Hence, we arrive at the following definition.

Definition 17.5.1 (Nijenhuis-Lie derivative). Let M be a manifold and K ∈ Ωk(M,TM)
a vector-valued differential form of degree k on M . Its Nijenhuis-Lie derivative (or Lie
derivation) is the derivation

LK = [ιK ,d] ∈ Derk Ω(M) . (17.5.1)

Obviously, LK is a graded derivation of degree k. Also the special case k = 0 reduces straight-
forwardly to the well-known Lie derivative.

Theorem 17.5.1. Let M be a manifold and X ∈ Vect(M) = Ω0(M,TM) a vector field on
M . Then the Nijenhuis-Lie derivative reduces to the ordinary Lie derivative LX on differential
forms.

Proof. This follows from the fact that in this case the insertion operator in definition 17.5.1
reduces to the interior product, so that theorem 17.2.3 applies. ■

From the usual Lie derivative we know that it commutes with the exterior derivative. Since
both the Lie derivative and the exterior derivative are derivations, this statement refers to their
graded commutator. We introduce the following nomenclature for this class of derivations.

Definition 17.5.2 (Lie derivation). A derivation D ∈ DernΩ(M) of degree n is called a
Lie derivation if and only if [D,d] = 0. The space of all Lie derivations of degree n is
denoted DerdnΩ(M), while the space of all Lie derivations is denoted Derd• Ω(M).
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In the following we will study the properties of Lie derivations. Recall from theorem 17.1.2 that
any graded derivation is uniquely determined by their action on functions and their differentials.
For Lie derivatives, an even stronger statement holds.

Theorem 17.5.2. Any Lie derivation D ∈ Derd• Ω(M) is uniquely determined by its action on
smooth functions f ∈ Ω0(M).

Proof. For D ∈ DerdnΩ(M) it follows from [D,d] = 0 that

D ◦ d = (−1)nd ◦D . (17.5.2)

The action of D on the differential df of f ∈ Ω0(M) is thus given by

Ddf = (−1)ndDf , (17.5.3)

and thus uniquely determined by the action of D on f . Hence, also D is uniquely determined
by its action on functions. ■

We have previously seen that the commutator of algebraic derivations is again algebraic. We
now ask whether this applies also to Lie derivations.

Theorem 17.5.3. The graded commutator [D,D′] of two Lie derivations D,D′ is again a Lie
derivation.

Proof. From the graded Jacobi identity for D ∈ Derdk Ω(M) and D ∈ Derdl Ω(M) follows

[d, [D,D′]] = [[d, D], D′] + (−1)kl[D′, [d, D′]] = 0 . (17.5.4)
■

We may now ask whether also the Nijenhuis-Lie derivative is a Lie derivation. As we have seen
for the insertion operator in theorem 17.3.2, an even stronger statement holds, and we find that
this is also the case for the Nijenhuis-Lie derivative. We formulate this as follows.

Theorem 17.5.4. The Nijenhuis-Lie derivative L establishes a one-to-one correspondence be-
tween vector-valued k-forms K ∈ Ωk(M,TM) on a manifold M and Lie derivations D ∈
Derdk Ω(M).

Proof. The proof will be done in three steps:

1. Let K ∈ Ωk(M,TM). Then its Nijenhuis-Lie derivative satisfies

LK = [ιK ,d] ∈ Derk Ω(M) , (17.5.5)

since ιK ∈ Derk−1 Ω(M) and d ∈ Der1 Ω(M). The commutator with d reads

[LK ,d] = [[ιK ,d],d]

= [ιK ,d] ◦ d− (−1)kd ◦ [ιK ,d]
=
(
ιK ◦ d− (−1)k−1d ◦ ιK

)
◦ d− (−1)kd ◦

(
ιK ◦ d− (−1)k−1d ◦ ιK

)
= −(−1)k−1d ◦ ιK ◦ d− (−1)kd ◦ ιK ◦ d
= 0 ,

(17.5.6)

and so LK ∈ Derdk Ω(M).

2. To show the converse direction, let D ∈ Derdk Ω(M) and define K ∈ Ωk(M,TM) as the
vector-valued k-form which assigns to vector fieldsX1, . . . , Xk the vector fieldK(X1, . . . , Xk)
acting on functions by

K(X1, . . . , Xk)(f) = (Df)(X1, . . . , Xk) . (17.5.7)
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Note that the right hand side indeed defines the action of a vector field on f , since D is
linear and satisfies the Leibniz rule, and the insertion of vector fields in the k-form Df is
linear. To see that D is the Nijenhuis-Lie derivative of K, we calculate

(LKf)(X1, . . . , Xk) = (ιKdf)(X1, . . . , Xk)

= K(X1, . . . , Xk)
¬ df

= K(X1, . . . , Xk)(f)

= (Df)(X1, . . . , Xk).

(17.5.8)

Since LK and D are Lie derivations, and thus uniquely determined by their action on
functions, it follows that LK = D.

3. We finally need to show that K above is the unique vector-valued k-form whose Nijenhuis-
Lie derivative is D. Let K ′ ∈ Ωk(M,TM) such that LK′ = D = LK . From the derivation
above then follows

K(X1, . . . , Xk)(f) = (Df)(X1, . . . , Xk) = K ′(X1, . . . , Xk)(f). (17.5.9)

Since this holds for all functions f , we see that

K(X1, . . . , Xk) = K ′(X1, . . . , Xk) (17.5.10)

is the same vector field. Since this holds for all vector fields X1, . . . , Xk, we find that
K = K ′. ■

To study an explicit case, we may consider the same example as for the insertion operator, and
pose the question what is the Nijenhuis-Lie derivative with respect to the canonical unit section
of Ω1(M,TM). Here we find the following result.

Theorem 17.5.5. For the unit section δ ∈ Ω1(M,TM) holds Lδ = d.

Proof. By direct calculation, we find

Lδω = [ιδ,d]ω

= ιδdω − dιδω

= (k + 1)dω − kdω
= dω

(17.5.11)

for ω ∈ Ωk(M), where we use the result 17.3.3 and the fact that dω ∈ Ωk+1(M), since d is a
graded derivation of degree 1. ■

We know that the ordinary Lie derivative satisfies a number of useful formulas for its commutator
with itself or the interior product, as well as multiplication with scalar functions. Here we take
a look at the latter, and calculate the following.

Theorem 17.5.6. For all K ∈ Ωk(M,TM), ω ∈ Ωl(M) and f ∈ C∞(M) holds

LK(fω) = LKf ∧ ω + fLKω (17.5.12)

and
LfKω = fLKω + (−1)kdf ∧ ιKω . (17.5.13)

Proof. By direct calculation and using theorem 17.3.4 we find

LK(fω) = [ιK ,d](fω)

= ιKd(fω)− (−1)k−1dιK(fω)

= ιK(df ∧ ω + fdω)− (−1)k−1d(fιKω)
= ιKdf ∧ ω + (−1)k−1df ∧ ιKω + fιKdω − (−1)k−1(df ∧ ιKω + fdιKω)

= ιKdf ∧ ω + f [ιKdω − (−1)k−1dιKω]
= LKf ∧ ω + fLKω

(17.5.14)
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and

LfKω = [ιfK ,d]ω

= ιfKd(fω)− (−1)k−1dιfKω
= fιKd(fω)− (−1)k−1d(fιKω)
= fιKd(fω)− (−1)k−1(df ∧ ιKω + fdιKω)

= f [ιKd(fω)− (−1)k−1 + dιKω] + (−1)kdf ∧ ιKω
= fLKω + (−1)kdf ∧ ιKω . ■

(17.5.15)

17.6 Frölicher-Nijenhuis bracket

We have seen in section 17.4 that the insertion operator allows to identify the graded algebra
of algebraic graded derivations with the vector-valued differential forms, where the algebra
structure on the latter is given by the Nijenhuis-Richardson bracket. In section 17.5 we have
seen that also the Nijenhuis-Lie derivative establishes an isomorphism between vector spaces,
namely between graded derivations which commute with the exterior derivative and, again,
vector-valued differential forms. We now promote also this vector space isomorphism to an
isomorphism of graded Lie algebras. We thus need to define a graded Lie bracket on the space
Ω•(M,TM), which is obtained by carrying the graded commutator over using the Nijenhuis-Lie
derivative, in analogy to definition 17.4.1. Hence, we define this bracket as follows.

Definition 17.6.1 (Frölicher-Nijenhuis bracket). Let M be a manifold and K ∈
Ωk(M,TM), L ∈ Ωl(M,TM) vector-valued differential forms on M . Their Frölicher-
Nijenhuis bracket JK,LK ∈ Ωk+l(M,TM) is defined such that

LJK,LK = [LK ,LL] . (17.6.1)

To see that this is well-defined, we must check that such an element JK,LK exists and is unique.
To see that this is the case, note that both LK and LL commute with d, as a consequence of
theorem 17.5.4. From the graded Jacobi identity then follows

[d, [LK ,LL]] = [[d,LK ],LL] + (−1)kl[LK , [d,LL]] = 0 . (17.6.2)

Hence, also their graded commutator commutes with d. Thus, again by theorem 17.5.4, a unique
element JK,LK with the desired properties indeed exists, and we can conclude as follows.

Theorem 17.6.1. The Frölicher-Nijenhuis bracket equips the space

Ω•(M,TM) =

dimM⊕
k=0

Ωk(M,TM) (17.6.3)

of vector-valued differential forms on a manifold M with the structure of a graded Lie algebra,
such that:

1. graded antisymmetry:
JK1,K2K = −(−1)k1k2JK2,K1K , (17.6.4)

2. graded Jacobi identity:

JK1, JK2,K3KK = JJK1,K2K,K3K + (−1)k1k2JK2, JK1,K3KK , (17.6.5)
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where K1 ∈ Ωk1(M,TM),K2 ∈ Ωk2(M,TM),K3 ∈ Ωk3(M,TM).

Proof. This follows directly from the definition 17.6.1 of the Frölicher-Nijenhuis bracket, from
the fact that L is a vector space isomorphism and that LKi is a graded derivation of degree
ki. ■

So far, the Frölicher-Nijenhuis bracket appears similar to the Nijenhuis-Richardson bracket.
They differ, however, by the fact that the Frölicher-Nijenhuis bracket is not algebraic, in contrast
to the Nijenhuis-Richardson bracket. This can be seen as follows.

Theorem 17.6.2. For all K ∈ Ωk(M,TM), L ∈ Ωl(M,TM) and f ∈ C∞(M) holds

▶ . . . ◀ (17.6.6)

Proof. With the help of theorem 17.5.6, we apply the commutator to a function g ∈ C∞(M)
and calculate

[LfK ,LL]g = LfKLLg − (−1)klLLLfKg
= fLKLLg + (−1)kdf ∧ ιKLLg − (−1)klLL[fLKg + (−1)ldf ∧ ιLg]
= fLKLLg + (−1)kdf ∧ ιKLLg − (−1)kl(LLfLKg + fLLLKg)
= f [LK ,LL]g + (−1)kdf ∧ ιKLLg − (−1)klLLfLKg

(17.6.7)

■

As in the case of the Nijenhuis-Richardson bracket, we provide an explicit formula also for the
Frölicher-Nijenhuis bracket. Here we make use of the fact that it is bilinear and that we can
write any vector-valued differential form as a linear combination of tensor products ω⊗X, where
ω is a differential form and X is a vector field. For terms of this form we find the following
expression for the Frölicher-Nijenhuis bracket.

Theorem 17.6.3. Let ω ∈ Ωk(M), σ ∈ Ωl(M) be differential forms and X,Y ∈ Vect(M) be
vector fields. The Frölicher-Nijenhuis bracket of their tensor products is given by

Jω ⊗X,σ ⊗ Y K =

ω ∧ σ ⊗ [X,Y ] + ω ∧ LXσ ⊗ Y − LY ω ∧ σ ⊗X + (−1)k(dω ∧ ιXσ ⊗ Y + ιY ω ∧ dσ ⊗X) .
(17.6.8)

Proof. For a function f ∈ Ω0(M) we find

[Lω⊗X ,Lσ⊗Y ]f = Lω⊗XLσ⊗Y f − (−1)klLσ⊗Y Lω⊗Xf
= Lω⊗X [Y (f)σ]− (−1)klLσ⊗Y [X(f)ω]

= X(Y (f))ω ∧ σ + Y (f)
[
ω ∧ ιXdσ − (−1)k−1d(ω ∧ ιXσ)

]
− (−1)kl

{
Y (X(f))σ ∧ ω +X(f)

[
σ ∧ ιY dω − (−1)l−1d(σ ∧ ιY ω)

]}
= [X,Y ](f)ω ∧ σ + Y (f)

[
ω ∧ ιXdσ − (−1)k−1dω ∧ ιXσ + ω ∧ dιXσ

]
− (−1)klX(f)

[
σ ∧ ιY dω − (−1)l−1dσ ∧ ιY ω + σ ∧ dιY ω

]
= [X,Y ](f)ω ∧ σ + Y (f)

[
ω ∧ LXσ + (−1)kdω ∧ ιXσ

]
− (−1)klX(f)

[
σ ∧ LY ω + (−1)ldσ ∧ ιY ω

]
= [X,Y ](f)ω ∧ σ + Y (f)ω ∧ LXσ −X(f)LY ω ∧ σ
+ (−1)k [Y (f)dω ∧ ιXσ +X(f)ιY ω ∧ dσ] ,

(17.6.9)

from which the statement follows. ■
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As a particularly simple example, we may calculate the Frölicher-Nijenhuis bracket of an arbi-
trary vector-valued differential form and the unit section as follows.

Theorem 17.6.4. The Frölicher-Nijenhuis bracket of any vector-valued differential form K ∈
Ωk(M,TM) with the unit section δ ∈ Ω1(M,TM) vanishes, Jδ,KK = 0.

Proof. By definition of the Frölicher-Nijenhuis bracket we have

LJδ,KK = [Lδ,LK ] = [d,LK ] = 0 , (17.6.10)

using theorems 17.5.5 and 17.5.4. Hence, by the uniqueness of the Frölicher-Nijenhuis bracket,
we have Jδ,KK = 0. ■

Another case of particular interest is given if K,L ∈ Ω1(M,TM) are vector-valued differential
one-forms. In this case the formula from theorem 17.6.3 allows us to derive the following result.

Theorem 17.6.5. Let K,L ∈ Ω1(M,TM) be vector-valued differential one-forms and X,Y ∈
Vect(M) be vector fields. Then the Frölicher-Nijenhuis bracket satisfies

JK,LK(X,Y ) =

[KX,LY ] + [LX,KY ] + (KL+LK)[X,Y ]−K([LX, Y ] + [X,LY ])−L([KX,Y ] + [X,KY ]) .
(17.6.11)

Proof. We will calculate the commutator

[LK ,LL]f = LKLLf + LLLKf (17.6.12)

for a function f ∈ Ω0(M), which yields a two-form, and apply it to two vector fields X,Y ∈
Vect(M). For the first term we obtain

(LKLLf)(X,Y ) = (LKιLdf)(X,Y )

= (ιKdιLdf − dιKιLdf)(X,Y )

= (dιLdf)(KX,Y )− (dιLdf)(KY,X)− (dιKιLdf)(X,Y )

= (KX)(⟨LY,df⟩)− Y (⟨LKX, df⟩)− ⟨L[KX,Y ],df⟩
− (KY )(⟨LX,df⟩) +X(⟨LKY,df⟩) + ⟨L[KY,X],df⟩
−X(⟨LKY,df⟩) + Y (⟨LKX, df⟩) + ⟨LK[X,Y ],df⟩

= (KX)((LY )(f))− (KY )((LX)(f))

− (L[KX,Y ])(f) + (L[KY,X])(f) + (LK[X,Y ])(f) .

(17.6.13)

The second term is identical, with K and L exchanged. Combining them we obtain

LKLLf + LLLKf = [KX,LY ](f) + [LX,KY ](f)

− (L[KX,Y ])(f)− (L[X,KY ])(f) + (LK[X,Y ])(f)

− (K[LX, Y ])(f)− (K[X,LY ])(f) + (KL[X,Y ])(f) .

(17.6.14)

We see that the vector field acting on f is the one given in the theorem. ■

In particular, for K = L we have the following result.

Theorem 17.6.6. Let K ∈ Ω1(M,TM) be a vector-valued differential one-form and X,Y ∈
Vect(M) be vector fields. Then the Frölicher-Nijenhuis bracket satisfies

1

2
JK,KK(X,Y ) = [KX,KY ] +K2[X,Y ]−K([KX,Y ] + [X,KY ]) . (17.6.15)

Proof. This follows directly from theorem 17.6.5 for K = L. ■
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The expression we encountered here has several interesting applications, which we will encounter
later. It thus deserves its own name, and we have the following definition.

Definition 17.6.2 (Nijenhuis tensor). Let K ∈ Ω1(M,TM) be a vector-valued differential
one-form. Its Nijenhuis tensor is the vector-valued differential two-form

NK =
1

2
JK,KK . (17.6.16)

Another special case we remark is obtained if K = Z ∈ Ω0(M,TM) = Vect(M) is a vector field,
while again L ∈ Ω1(M,TM) as in the previous examples. In this case we find the following
relation.

Theorem 17.6.7. Let L ∈ Ω1(M,TM) be a vector-valued differential one-form and X,Z ∈
Vect(M) be vector fields. Then the Frölicher-Nijenhuis bracket satisfies

JZ,LK(X) = (LZL)X = [Z,LX]− L[Z,X] . (17.6.17)

Proof. By direct calculation for a function f ∈ Ω0(M) we obtain

([LZ ,LL]f)(X) = (LZLLf − LLLZf)(X)

= (LZιLdf − LL(Z(f)))(X)

= (ιZdιLdf + dιZιLdf − ιLd(Z(f)))(X)

= (dιLdf)(Z,X) +X((LZ)(f))− (LX)(Z(f))

= Z(⟨LX,df⟩)−X(⟨LZ,df⟩)− (⟨L[Z,X],df⟩) +X((LZ)(f))− (LX)(Z(f))

= [Z,LX](f)− (L[Z,X])(f) ,

(17.6.18)

which yields the desired result. ■

Finally, we discuss the case of two vector fields.

Theorem 17.6.8. Let X,Y ∈ Ω0(M,TM) = Vect(M) be vector fields. Then the Frölicher-
Nijenhuis bracket reduces to the Lie bracket,

JX,Y K = [X,Y ] . (17.6.19)

Proof. This can be obtained by direct calculation using the explicit formula in theorem 17.6.3
for setting ω = σ ∈ Ω0(M) to be the constant function p 7→ 1, in which case only the first term
is non-vanishing and gives the desired result. Alternatively, one may use the definition of the
Frölicher-Nijenhuis bracket, the fact that for vector fields the Nijenhuis-Lie derivative reduces
to the ordinary Lie derivative and the commutator is given by theorem 16.2.1. ■

17.7 Graded algebra of derivations

We have seen in section 17.3 that any algebraic graded derivation D on a manifold M can
uniquely be identified with a vector-valued form K through the insertion operator as D = ιK .
It turns out that this result may be generalized to arbitrary, i.e., also non-algebraic graded
derivations. This can be seen as follows.

Theorem 17.7.1 (Frölicher-Nijenhuis). Let D ∈ Derk Ω(M) be a derivation of degree k on M .
Then there exist unique elements K ∈ Ωk(M,TM) and L ∈ Ωk+1(M,TM) such that

D = LK + ιL . (17.7.1)
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Proof. For D ∈ Derk Ω(M), define K ∈ Ωk(M,TM) by the relation (17.5.7). It was shown
in the proof of theorem 17.5.4 that K is the unique vector-valued k-form such that for any
function f holds LKf = Df . As a consequence, D − LK acts trivially on functions, and so it
is an algebraic derivation. Following theorem 17.3.2 it then follows that there exists a unique
L ∈ Ωk+1(M,TM) such that D − LK = ιL. ■

A particular consequence is that the algebra of graded derivations decomposes in the form

Der•Ω(M) = Der0•Ω(M)⊕Derd• Ω(M) , (17.7.2)

or
Dern Ω(M) = Der0nΩ(M)⊕DerdnΩ(M) , (17.7.3)

if we restrict to graded derivations of degree n. Since any derivation can uniquely be expressed
in terms of vector-valued differential forms K,L following theorem 17.7.1, one may ask whether
there exists any formula to express these two vector-valued differential forms for, e.g., the
graded commutator [D,D′] of two graded derivations, in terms of the vector-valued differential
forms defining the individual derivations D,D′. In fact, we have already encountered two
special cases of this formula. If both D and D′ are algebraic, i.e., their Nijenhuis-Lie derivative
part vanishes, our question is answered by the formula (17.4.1), which defines the Nijenhuis-
Richardson bracket. Similarly, if both D and D′ are given by pure Nijenhuis-Lie derivatives
without an algebraic part, the defining relation (17.6.1) of the Frölicher-Nijenhuis bracket allows
us to express their graded commutator again as a Nijenhuis-Lie derivative. Making use of the
fact that the graded commutator is bilinear, we are thus only left with the mixed case, i.e.,
how to express the graded commutator of a Nijenhuis-Lie derivative and an algebraic graded
derivation using the decomposition (17.7.1). We find the following answer to this question.

Theorem 17.7.2. Let M be a manifold and K ∈ Ωk(M,TM), L ∈ Ωl(M,TM) vector-valued
differential forms on M . Then the mixed commutator satisfies

[LK , ιL] = ιJK,LK − (−1)k(l−1)LιLK . (17.7.4)

Proof. We will follow the procedure outlined in theorem 17.7.1. First, we apply the left hand
side to a function f ∈ Ω0(M). This yields

[LK , ιL]f = LKιLf − (−1)k(l−1)ιLLKf
= −(−1)k(l−1)ιLιKdf

= −(−1)k(l−1)ιιLKdf

= −(−1)k(l−1)LιLKf ,

(17.7.5)

which shows the correctness of the second term. We now subtract this term and apply the result
to df , recalling that an algebraic derivation is uniquely determined by its action on differentials
of functions. Then we find(

[LK , ιL] + (−1)k(l−1)LιLK
)
df =

(
LKιL − (−1)k(l−1)ιLLK + (−1)k(l−1)LιLK

)
df

= LKιLdf − (−1)klιLdLKf + (−1)kl+l−1dLιLKf
= LKιLdf − (−1)kl

(
ιLdLKf − (−1)l−1dιLLKf

)
= LKLLf − (−1)klLLLKf
= [LK ,LL]f
= LJK,LKf

= ιJK,LKdf ,

(17.7.6)

which proves the correctness of the first term. ■
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With these results in place, we have now revealed the full structure of the algebra graded
derivations. We conclude as follows.

Theorem 17.7.3. The graded derivations Der•Ω(M) on a manifold M of dimension dimM =
m decompose as

Der• Ω(M) =

m−1⊕
k=−1

Der0k Ω(M)⊕
m⊕
k=0

Derdk Ω(M) , (17.7.7)

where
Der0k Ω(M) ∼= Ωk+1(M,TM) , Derdk Ω(M) ∼= Ωk(M,TM) , (17.7.8)

with the identification given by the insertion operator 17.3.2 and the Nijenhuis-Lie deriva-
tive 17.5.1, respectively, and their graded commutator satisfies[

Der0•Ω(M),Der0•Ω(M)
]
⊆ Der0• Ω(M) , (17.7.9a)[

Derd• Ω(M),Derd• Ω(M)
]
⊆ Derd• Ω(M) , (17.7.9b)

[Derk Ω(M),Derl Ω(M)] ⊆ Derk+l Ω(M) (17.7.9c)

for all allowed values of k and l.

Proof. The identification (17.7.8) is established by theorems 17.3.2 and 17.5.4. The decompo-
sition follows from theorem 17.7.1, together with theorem 17.1.3, the fact that the degree k of
vector-valued differential forms on M satisfies 0 ≤ k ≤ m, as well as the two previously men-
tioned theorems establishing their identification with graded derivations of a particular degree.
Finally, the relations (17.7.9) follow from theorems 17.3.1, 17.5.3 and 17.2.1 . ■
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Chapter 18

Multivector fields

18.1 Schouten-Nijenhuis bracket
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Chapter 19

Natural bundles over fiber bundles

19.1 Natural bundles over product manifolds

The most simple example of a fiber bundle, which we introduced as a motivating example in
section 2.1, is that of a trivial fiber bundle, so that its total space is that of the direct product
M ×N of two manifolds M,N . In this case there are two projection maps pr1 : M ×N → M
and pr2 : M × N → N , which allow us to identify certain bundles over the total space with
bundles constructed from those over the individual factor manifolds. To study this relationship,
we first consider a single tangent space.

Theorem 19.1.1. Let M,N be manifolds and M × N their direct product. For each p ∈ M
and q ∈ N , there exists a canonical vector space isomorphism T(p,q)(M ×N) ∼= TpM ⊕ TqN .

Proof. Let w ∈ T(p,q)(M × N), and consider the differentials pr1∗ : T (M × N) → TM and
pr2∗ : T (M × N) → TN of the projections pr1 : M × N → M and pr2 : M × N → N .
From pr1(p, q) = p and pr2(p, q) = q follows pr1∗(w) ∈ TpM and pr2∗(w) ∈ TqN , so that
(pr1∗(w),pr2∗(w)) ∈ TpM ⊕ TqN . This map is linear, since it is linear in each component, and
therefore linear with respect to the vector space structure on the direct sum.

Conversely, let u ∈ TpM and v ∈ TqN , so that (u, v) ∈ TpM⊕TqN . Consider the constant maps
µq : M → M × N, x 7→ (x, q) and νp : N → M × N, y 7→ (p, y). Then µq(p) = νp(q) = (p, q),
and thus µq∗(u) + νp∗(v) ∈ T(p,q)(M ×N). Also this map is linear by construction, since it is
the sum of two linear maps on the two constituting subspaces TpM and TqN of TpM ⊕ TqN .

Finally, we need to show that each linear map constructed above is the inverse of the other.
First, for u ∈ TpM and v ∈ TqN we set w = µq∗(u) + νp∗(v). We can use the linearity of the
pushforward to show that

pr1∗(w) = pr1∗(µq∗(u) + νp∗(v))

= pr1∗(µq∗(u)) + pr1∗ νp∗(v))

= (pr1 ◦µq)∗(u) + (pr1 ◦νp)∗(v)
= idM∗(u) + ϕp∗(v)

= u ,

(19.1.1)

where we denoted
ϕp : N → M

q 7→ p
(19.1.2)

the constant function, so that ϕp∗(v) = 0 according to theorem 10.1.5. Analogously, one
shows that pr2∗(w) = v. It thus follows that for each pair (u, v) ∈ TpM ⊕ TqN there exists
w = µp∗(u)+νq∗(v) such that (pr1∗(w),pr2∗(w)) = (u, v), and so (pr1∗,pr2∗) is surjective. Now
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using the fact that

dimT(p,q)(M ×N) = dimM ×N = dimM + dimN = dimTpM + dimTqN = dimTpM ⊕ TqN
(19.1.3)

follows that it must also be injective, and thus bijective. Hence, we have constructed a linear
bijection, and thus a vector space isomorphism, from T(p,q)(M ×N) to TpM ⊕ TqN . ■

Having established the relation above, we can now conclude on the structure of the tangent
bundle.

Theorem 19.1.2. Let M,N be manifolds and M × N their direct product. There exists a
canonical vector bundle isomorphism T (M ×N) ∼= pr∗1 TM ⊕ pr∗2 TN .

Proof. We start by discussing the structure of the given pullback bundles. By definition, the
elements of pr∗1 TM are the pairs ((p, q), u) ∈ (M ×N)× TM such that

p = pr1(p, q) = τM (u) , (19.1.4)

where τM : TM →M is the tangent bundle projection. ▶. . .◀ ■

19.2 Vertical tangent bundle

Often one considers tangent vectors to the total space E of a fiber bundle (E,B, π, F ). Since
E is equipped with some additional structure in this case, the same holds also for its tangent
bundle TE. In particular, we can find a particular type of tangent vectors, which we define as
follows.

Definition 19.2.1 (Vertical tangent space). Let (E,B, π, F ) be a fiber bundle and e ∈ E.
A derivation v ∈ TeE is called vertical if and only if π∗(v) = 0. The space VeE = ker(π∗|TeE)
of all vertical tangent vectors at e is called the vertical tangent space over e.

It is clear from the definition that the vertical tangent space VeE at e ∈ E is a vector space, as
it arises as the kernel of a linear function, and so naturally the question for the dimension of
this space arises. This can easily be found as follows.

Theorem 19.2.1. Let (E,B, π, F ) be a fiber bundle and e ∈ E. The vertical tangent space
VeE is a vector subspace of the tangent space TeE with dimension dimVeE = dimF .

Proof. Recall from theorem 10.5.5 that the projection π : E → B of a fiber bundle is a sub-
mersion. Hence, the restriction of its differential π∗ to TeE is a surjective linear function onto
Tπ(e)B. Since VeE is the kernel of this map, it follows that the dimensions are related by

dimVeE = dimker(π∗|TeE)
= dimTeE − dim im(π∗|TeE)
= dimTeE − dimTπ(e)B

= dimE − dimB

= dimF. ■

(19.2.1)

Given a vector space VeE in every point e ∈ E of a manifold E, one may attempt to construct
a vector bundle. This will be defined as follows.
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Definition 19.2.2 (Vertical tangent bundle). Let (E,B, π, F ) be a fiber bundle with
dimF = n. The vertical tangent bundle of E is the vector bundle (V E,E, ν,Rn), whose
total space is the disjoint union

V E =
⊎
e∈E

VeE , (19.2.2)

and the projection is the function ν : V E → E such that ν(v) = e for v ∈ VeE.

In order to define the structure of the vector bundle, one also needs to specify the local triv-
ializations. In this case one can use the fact that TE, also being a vector bundle, is already
equipped with local trivializations. Furthermore, since E is a total space of a fiber bundle, it is
equipped with induced charts. Using these to define the trivializations of TE, one can obtain
the following result, hence also defining the trivializations of V E.

Theorem 19.2.2. The vertical tangent bundle V E of a fiber bundle (E,B, π, F ) is a subbundle
of rank dimF of the tangent bundle TE.

Proof. Let e ∈ E. Then there exists an induced chart (W,ω) around e, which gives rise to
adapted coordinates (xa, yµ) on W ⊂ E. ▶. . .◀ ■

Having defined the vector bundle structure of V E and its relation with TE, one can consider
sections of these bundles. As for TE, these deserve a particular name, which we define as
follows.

Definition 19.2.3 (Vertical vector field). Let (E,B, π, F ) be a fiber bundle and V E its
vertical tangent bundle. A section X : E → V E is called a vertical vector field.

In order to study the properties of vertical vector fields, it is helpful to find another character-
ization of vertical vectors. One easily shows the following relation:

Theorem 19.2.3. Let (E,B, π, F ) be a fiber bundle and v ∈ TE. Then v is vertical, v ∈ V E,
if and only if v(f ◦ π) = 0 for all f ∈ C∞(B,R).

Proof. Using the definition 10.1.1 of the differential, we have

v(f ◦ π) = π∗(v)(f) . (19.2.3)

If v is vertical, we have π∗(v) = 0, and so also v(f ◦ π) = 0 for all f ∈ C∞(B,R). Conversely,
if the latter holds, then π∗(v)(f) vanishes for all f ∈ C∞(B,R). However, this implies that
π∗(v) = 0, and so v ∈ VeE. ■

One now easily sees that the action of a vertical vector field X on a function f ◦ π with
f ∈ C∞(B,R) vanishes, i.e., yields the zero function 0 ∈ C∞(E,R), since for each e ∈ E,
X(p) ∈ VeE is vertical, and hence

(X(f ◦ π))(e) = X(e)(f ◦ π) = 0 (19.2.4)

for all e ∈ E. This has an interesting consequence.

Theorem 19.2.4. The commutator of vertical vector fields is vertical.
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Proof. Let X,Y ∈ Γ(V E) be vertical vector fields. At every point e ∈ E and for every function
f ∈ C∞(B,R) we find

[X,Y ](e)(f ◦ π) = X(e)Y (e)(f ◦ π)− Y (e)X(e)(f ◦ π) = 0 , (19.2.5)

and so [X,Y ] is vertical. ■

Theorem 19.2.5. The vertical tangent bundle of a fiber bundle π : E → B defines a foliation
on E, whose leaves are the fibers of π : E → B.

Proof. ▶. . .◀ ■

19.3 Horizontal cotangent bundle

After constructing a subbundle of the tangent bundle over the total space of a fiber bundle, we
can now turn our attention to the cotangent bundle. Also in this case we can find a particular
subbundle, which is defined by the bundle projection. Here we employ the following definition
for its fibers.

Definition 19.3.1 (Horizontal cotangent space). Let (E,B, π, F ) be a fiber bundle and
e ∈ E. A covector α ∈ T ∗eE is called horizontal if and only if ⟨v, α⟩ = 0 for all vertical
vectors v ∈ VeE. The space H∗eE of all horizontal covectors at e is called the horizontal
cotangent space over e.

Again it is clear that each space H∗eE is a vector space, and so we will determine its dimension
as follows.

Theorem 19.3.1. Let (E,B, π, F ) be a fiber bundle and e ∈ E. The horizontal cotangent space
H∗eE is a vector subspace of the cotangent space T ∗eE with dimension dimH∗eE = dimB.

Proof. Keeping in mind that covectors α ∈ T ∗eE can be seen as linear functions α : TeE → R,
there exists a function

ρ : T ∗eE → (VeE)∗

α 7→ α|VeE
. (19.3.1)

This function ρ is obviously linear and surjective, and has ker ρ = H∗eE. It follows that

dimH∗eE = dimker ρ = dimT ∗eE − dim(VeE)∗ = dimE − dimF = dimB . (19.3.2)
■

Now it is straightforward to define a fiber bundle as follows.

Definition 19.3.2 (Horizontal cotangent bundle). Let (E,B, π, F ) be a fiber bundle with
dimB = n. The horizontal cotangent bundle of E is the vector bundle (H∗E,E, ν̄,Rn),
whose total space is the disjoint union

H∗E =
⊎
e∈E

H∗eE , (19.3.3)

and the projection is the function ν̄ : H∗E → E such that ν̄(α) = e for α ∈ H∗eE.
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As for the vertical tangent bundle, the local trivializations are defined by a suitable restriction
of the local trivializations of the containing bundle, which is the cotangent bundle T ∗E in this
case. One may expect that also in this case one obtains a subbundle. This can be shown as
follows.

Theorem 19.3.2. The horizontal cotangent bundle H∗E of a fiber bundle (E,B, π, F ) is a
subbundle of rank dimB of the cotangent bundle T ∗E.

Proof. ▶. . .◀ ■

Now we have a vector bundle ν̄ : H∗E → E, whose rank is given by dimB. Note that one can
obtain another vector bundle with the same base and dimension from the (co)tangent bundle
TB and T ∗B via pullback along π, and so one may ask whether these bundles are related. We
now show that this is the case.

Theorem 19.3.3. The horizontal cotangent bundle H∗E of a fiber bundle (E,B, π, F ) is canon-
ically isomorphic to the pullback bundle π∗T ∗B.

Proof. ▶. . .◀ ■

Note that this construction is possible for the horizontal cotangent bundle, but not for the
vertical tangent bundle. For the latter, however, we will encounter a similar procedure in the
case of vector bundles in section 19.8.

Definition 19.3.3 (Horizontal covector field). Let (E,B, π, F ) be a fiber bundle and H∗E
its horizontal cotangent bundle. A section ω : E → H∗E is called a horizontal covector
field.

19.4 Horizontal differential forms

Definition 19.4.1 (Horizontal differential form). Let (E,B, π, F ) be a fiber bundle. A
horizontal differential form of rank k (or π-horizontal k-form) on E is a section of the
exterior power bundle ΛkH∗E for k ∈ N.

19.5 Horizontal and vertical tensors

19.6 Bundles over fibered products

Theorem 19.6.1. Let (E1, B, π1, F1) and (E2, B, π2, F2) be fiber bundles and (E1×BE2, B, π, F1×
F2) their fibered product. For each e1 ∈ E1 and e2 ∈ E2) with π1(e1) = π2(e2) there exists a
canonical vector space isomorphism

T(e1,e2)(E1 ×B E2) ∼= ker(π1 ◦ pr1−π2 ◦ pr2)|(e1,e2)
= {w ∈ T(e1,e2)(E1 × E2) |π1∗(pr1∗(w)) = π2∗(pr2∗(w))} . (19.6.1)

Proof. ▶. . .◀ ■
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Theorem 19.6.2. Let (E1, B, π1, F1) and (E2, B, π2, F2) be fiber bundles and (E1×BE2, B, π, F1×
F2) their fibered product. There exists a canonical vector bundle isomorphism

T (E1 ×B E2) ∼= ker ι∗(π1 ◦ pr1−π2 ◦ pr2) = {w ∈ ι∗T (E1 ×E2) |π1∗(pr1∗(w)) = π2∗(pr2∗(w))} ,
(19.6.2)

where ι : E1 ×B E2 ↪→ E1 × E2 is the canonical inclusion.

Proof. ▶. . .◀ ■

Theorem 19.6.3. Let (E1, B, π1, F1) and (E2, B, π2, F2) be fiber bundles and (E1×BE2, B, π, F1×
F2) their fibered product. For each e1 ∈ E1 and e2 ∈ E2) with π1(e1) = π2(e2) there exists a
canonical vector space isomorphism V(e1,e2)(E1 ×B E2) ∼= Ve1E1 ⊕ Ve2E2.

Proof. ▶. . .◀ ■

Theorem 19.6.4. Let (E1, B, π1, F1) and (E2, B, π2, F2) be fiber bundles and (E1×BE2, B, π, F1×
F2) their fibered product. There exists a canonical vector bundle isomorphism V (E1 ×B E2) ∼=
pr∗1 V E1 ⊕ pr∗2 V E2.

Proof. ▶. . .◀ ■

19.7 Bundles over pullback bundles

Theorem 19.7.1. Let (E,B, π, F ) be a fiber bundle, M a manifold and ψ :M → B a map, as
well as (ψ∗E,M,ψ∗π, F ) the pullback bundle. For each m ∈ M and e ∈ E with ψ(m) = π(e)
there exists a canonical vector space isomorphism

T(m,e)ψ
∗E ∼= ker(ψ∗ ◦ pr1∗−π∗ ◦ pr2∗)|(m,e)

= {w ∈ T(m,e)(M × E) |ψ∗(pr1∗(w)) = π∗(pr2∗(w))} . (19.7.1)

Proof. ▶. . .◀ ■

Theorem 19.7.2. Let (E,B, π, F ) be a fiber bundle, M a manifold and ψ :M → B a map, as
well as (ψ∗E,M,ψ∗π, F ) the pullback bundle. There exists a canonical vector bundle isomor-
phism

Tψ∗E ∼= ker ι∗(ψ∗◦pr1∗−π∗◦pr2∗) = {w ∈ ι∗T (M×E) |ψ∗(pr1∗(w)) = π∗(pr2∗(w))} , (19.7.2)

where ι : ψ∗E ↪→M × E is the canonical inclusion.

Proof. ▶. . .◀ ■

Theorem 19.7.3. Let (E,B, π, F ) be a fiber bundle, M a manifold and ψ :M → B a map, as
well as (ψ∗E,M,ψ∗π, F ) the pullback bundle. For each m ∈ M and e ∈ E with ψ(m) = π(e)
there exists a canonical vector space isomorphism V(m,e)ψ

∗E ∼= VeE.

Proof. ▶. . .◀ ■

Theorem 19.7.4. Let (E,B, π, F ) be a fiber bundle, M a manifold and ψ :M → B a map, as
well as (ψ∗E,M,ψ∗π, F ) the pullback bundle. There exists a canonical vector bundle isomor-
phism V ψ∗E ∼= pr∗2 V E.

Proof. ▶. . .◀ ■

181



19.8 Bundles over vector bundles

So far we have not assumed that the fiber bundles (E,B, π, F ) over which we constructed vertical
and horizontal bundles have any particular structure. Now we come to the particular case of
vector bundles, so that each fiber carries the structure of a vector space, which is preserved
under local trivializations. In this case, we find the following property of the vertical tangent
bundle.

Theorem 19.8.1. The vertical tangent bundle V E of a vector bundle (E,B, π,Rk) is canoni-
cally isomorphic to the pullback bundle π∗E.

Proof. First, note that V E and π∗E have the same base manifold E. We will construct a vector
bundle isomorphism between these bundles covering the identity idE on E by showing that for
each e ∈ E there is a canonical vector space isomorphism between the fibers VeE and (π∗E)e.
Denote b = π(e), and let ẽ ∈ Eb. Then consider the curve

γ : R → E
t 7→ e+ tẽ

, (19.8.1)

which is well-defined since both e and ẽ lie in the same vector space Eb. Clearly, this curve
is vertical, since π(γ(t)) = b for all t ∈ R, and γ(0) = e. Hence, also its tangent vector
v = γ̇(0) ∈ VeE is vertical. Doing this for all ẽ ∈ Eb defines a map (π∗E)e ∼= Eb → VeE, where
the former two fiber spaces are isomorphic due to the construction of the pullback bundle.
▶Show isomorphism.◀ ■

19.9 Homogeneity and the Liouville vector field

In the following, we will frequently encounter objects, such as functions and tensor fields, which
are homogeneous in the sense that they are invariant under a particular group action, up to a
constant factor. These objects will be defined on the total space of a vector bundle, on which
also the mentioned group action is (canonically) defined as follows.

Definition 19.9.1 (Dilatation). Let (E,B, π,Rk) be a vector bundle. The one-parameter
diffeomorphism group χ of dilatations is the Lie group action of (R,+) on E defined by

χ : R× E → E
(λ, v) 7→ χλ(v) = eλv

. (19.9.1)

Note that this definition covers only dilatations by a positive factor, which is usually sufficient.
One may also consider reflections, by including the action of the group Z2 = {1,−1}, where the
action is defined by (g, v) 7→ gv. However, this will not be necessary for our purposes, unless
explicitly noted. In particular, in will not be relevant for the following definition.

Definition 19.9.2 (Liouville vector field). Let (E,B, π,Rk) be a vector bundle. The
Liouville vector field is the generating vector field c ∈ Vect(E) of the dilatations χ.

In other words, the Liouville vector field is the unique vector field which has the dilatations as
its flow, as detailed in section 16.1. To further illustrate the Liouville vector field, it is useful to
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derive its coordinate expression. For this purpose, let (ϵµ, µ = 1, . . . , k) be a basis of the fiber
Ep for p ∈ B, so that an element of the fiber can be expressed as y = yµϵµ. The dilatations can
then be expressed in the form χ : (λ, yµϵµ) 7→ eλyµϵµ. To derive an expression for the Liouville
vector field, we consider this mapping as a curve with parameter λ, which passes through a
fixed point y for λ = 0. From this we obtain

c(y) =
∂

∂λ

(
eλyµ

)∣∣∣∣
λ=0

∂

∂yµ
= yµ

∂

∂yµ
. (19.9.2)

Note that this coordinate expression is independent of the choice of the basis (ϵµ).

The dilatations, and hence also the Liouville vector field, find application in the definition of
homogeneous structures on vector bundles. The most common case is that of homogeneous
tensors, which we define as follows.

Definition 19.9.3 (Homogeneity). Let (E,B, π,Rk) be a vector bundle. A tensor field (or
tensor density) Q on E is called (positively) homogeneous of order r if and only if

χ∗λQ = erλQ (19.9.3)

for all λ ∈ R.

Note that some authors define a different order of homogeneity. In [MA94, BM07], the order
of homogeneity for vector fields and contravariant tensor fields differs from the one introduced
here by one, while for functions and differential forms no such difference is introduced.

Again we consider only positive dilatations, and so the precise notion we defined is that of
positive homogeneity. Another important aspect in this definition is the fact that χλ : E → E
is a diffeomorphism, and so we can take the pullback of an arbitrary tensor field, following
definition 12.1.2. Further, the fact that χ is the flow of the Liouville vector field allows to relate
this definition to that of the Lie derivative as shown in section 16.2. One obtains the following
relation.

Theorem 19.9.1. A tensor field Q on the total space E of a vector bundle is homogeneous of
order r if and only if LcQ = rQ.

Proof. Let Q be a r-homogeneous tensor field according to definition 19.9.3. By direct calcula-
tion following definition 16.2.1 of the Lie derivative one finds that

LcQ = lim
λ→0

χ∗λQ−Q
λ

= lim
λ→0

erλQ−Q
λ

=
d

dλ
erλQ

∣∣∣∣
λ=0

= rQ ,

(19.9.4)

where the step from the first to the second line follows from the assumption that Q is homoge-
neous of order r.

Conversely, let Q be a tensor field of rank (k, l) on E such that LcQ = rQ. For y ∈ E, consider
the two functions

ϕy : R → T kl yE

λ 7→ erλQ(y)
(19.9.5)

and
ψy : R → T kl yE

λ 7→ (χ∗λQ)(y)
. (19.9.6)
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Setting λ = 0, we find
ϕy(0) = Q(y) = ψy(0) . (19.9.7)

Further, for their first derivatives we find

ψ′y(λ) =
d

dλ
(χ∗λQ)(y)

= lim
λ̃→0

(χ∗
λ+λ̃

Q)(y)− (χ∗λQ)(y)

λ̃

= χ∗λ

(
lim
λ̃→0

χ∗
λ̃
Q−Q
λ̃

)
(y)

= (χ∗λLcQ)(y)

= r(χ∗λQ)(y)

= rψy(λ) ,

(19.9.8)

while also
ϕ′y(λ) =

d

dλ
erλQ(y) = rerλQ(y) = rϕy(λ) . (19.9.9)

Hence, ϕy and ψy are both solutions to the same first order differential equation with the same
initial value, and so they must be identical. Hence,

(χ∗λQ)(y) = ψy(λ) = ϕy(λ) = erλQ(y) (19.9.10)

for all y ∈ E and λ ∈ R, so that Q is r-homogeneous. ■

Recalling the Leibniz rule (16.2.14) from theorem 16.2.1, one now readily concludes that homo-
geneity must be an additive property. This can be stated as follows.

Theorem 19.9.2. Let Q,Q′ be homogeneous tensor fields of order r, r′, respectively. Then
their tensor product is homogeneous of order r + r′.

Proof. From the Leibniz rule (16.2.14) follows

Lc(Q⊗Q′) = (LcQ)⊗Q′ +Q⊗ (LcQ
′)

= (rQ)⊗Q′ +Q⊗ (r′Q′)

= (r + r′)(Q⊗Q′) . ■

(19.9.11)

A number of similar relations can be derived in the same fashion, and we list them here for
reference. We start with the following rule for differential forms, which is derived in full analogy
to the previous one.

Theorem 19.9.3. Let ω ∈ Ωk(E), ω′ ∈ Ωk
′
(E) be homogeneous differential forms of order r, r′,

respectively. Then their exterior product is homogeneous of order r + r′.

Proof. From the Leibniz rule (16.5.7) follows

Lc(ω ∧ ω′) = (Lcω) ∧ ω′ + ω ∧ (Lcω
′)

= (rω) ∧ ω′ + ω ∧ (r′ω′)

= (r + r′)(ω ∧ ω′) . ■

(19.9.12)

A similar rule can be derived for the exterior derivative.

Theorem 19.9.4. Let ω ∈ Ωk(E) be a homogeneous differential form of order r. Then also
the exterior derivative dω is homogeneous of order r.
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Proof. From the relation (16.5.6) between the Lie derivative and exterior derivative follows

Lcdω = dLcω = r dω . (19.9.13)
■

Next, we come to vector fields, where we can formulate the following rule.

Theorem 19.9.5. Let X,Y ∈ Vect(E) be homogeneous vector fields of order r, r′, respectively.
Then their commutator is homogeneous of order r + r′.

Proof. From the Jacobi identity (16.4.4) follows

Lc[X,Y ] = [LcX,Y ] + [X,LcY ]

= [rX, Y ] + [X, r′Y ]

= (r + r′)[X,Y ] . ■

(19.9.14)

The relation proven above can be seen as a special case of the following rule, which generalizes
the vector field Y to an arbitrary tensor field.

Theorem 19.9.6. Let X ∈ Vect(E) be a homogeneous vector field of order r and Q a homo-
geneous tensor field of order r′ on E. Then the Lie derivative LXQ is homogeneous of order
r + r′.

Proof. From the commutator rule (16.2.20) of Lie derivatives follows

LcLXQ = L[c,X]Q+ LXLcQ

= LrXQ+ LX(r′Q)

= rLXQ+ r′LXQ
= (r + r′)LXQ+ r′LXQ . ■

(19.9.15)

Finally, relating vector fields and differential forms we obtain the following relation.

Theorem 19.9.7. Let ω ∈ Ωk(E) be a homogeneous differential form of order r and X ∈
Vect(E) a homogeneous vector field of order r′. Then the interior product ιXω is homogeneous
of order r + r′.

Proof. From the relation (16.5.8) between the Lie derivative and interior product follows

LcιXω = ι[c,X]ω + ιXLcω

= ιr′Xω + rιXω

= (r + r′)ιXω . ■

(19.9.16)

The relation shown in theorem 19.9.1 has a number of interesting special cases. The most simple
one is obtained in case of a tensor field of rank (0, 0), i.e., a real function f ∈ C∞(E,R). In
this case the theorem reduces to the following.

Theorem 19.9.8 (Euler’s homogeneous function theorem). A function f ∈ C∞(E,R) on the
total space E of a vector bundle is homogeneous of order r if and only if cf = rf .

Proof. This is a direct consequence and special case of theorem 19.9.1 for a tensor field of rank
(0, 0). ■

Another case which can easily be derived and understood is the following.

Theorem 19.9.9. The Liouville vector field c is homogeneous of order 0.
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Proof. This follows from the Lie derivative for vector fields, which yields

Lcc = [c, c] = 0 . (19.9.17)
■

It is instructive to recall the coordinate expression (19.9.2) for the Liouville vector field. While
its components yµ in the given coordinates are obviously homogeneous of degree 1, since they
scale linearly with a dilatation, it follows using theorem 19.9.2 that the coordinate vector fields
∂/∂yµ must be homogeneous of order -1, which can also be shown by direct calculation. Finally,
we come to another simple example.

Theorem 19.9.10. Let (E,B, π,Rk) be a vector bundle and ω ∈ Ωp(B) a p-form on the base
manifold B. Then π∗ω ∈ Ωp(E) is a 0-homogeneous p-form on the total space E.

Proof. The Liouville vector field c is a vertical vector field on E, and so its flow χ preserves the
fibers. Hence, π ◦ χλ = π for all λ ∈ R. From the chain rule for the pullback then follows

χ∗λπ
∗ω = (π ◦ χλ)∗ω = π∗ω = e0λπ∗ω . (19.9.18)

■

The last theorem is an example for a more general class of objects, which are defined on the
base manifold B alone, and then lifted to a 0-homogeneous object the total space E. We will
encounter further such objects in later sections.
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Chapter 20

Bundles with structure groups

20.1 Principal fiber bundles

We will now come to a class of fiber bundles which are of particular importance. They have the
property that they carry the action of a Lie group, which is compatible with the fiber bundle
structure, i.e., preserves the fibers. In addition, each fiber is diffeomorphic to the acting Lie
group. We define this class of fiber bundles as follows.

Definition 20.1.1 (Principal fiber bundle). Let G be a Lie group. A principal G-bundle
(or principal fiber bundle with structure group G) is a fiber bundle π : P →M with a right
Lie group action · : P ×G→ P which preserves the fibers and acts freely and transitively
on them.

We clarify a few notions used in this definition. A group action is fiber preserving if for all
p ∈ P and g ∈ G holds π(p) = π(p · g), i.e., p and p · g lie in the same fiber of P . Further, the
action should be free and transitive on the fibers, which means that for each p, p′ ∈ P which lie
in the same fiber, π(p) = π(p′), there exists a unique g ∈ G such that p′ = p · g.
To get a better understanding of the geometry of principal bundles, it is helpful to discuss their
local trivializations. As with any fiber bundle, they encode most of the geometric structure,
and are a key ingredient in constructing adapted coordinates. For principal fiber bundles they
have a particularly nice property, which we may state as follows.

Theorem 20.1.1. Let π : P →M be a principal G-bundle and U ⊂M a trivializing subset of
M . Then there exists a one-to-one correspondence between local trivializations ϕ : π−1(U) →
U ×G and local sections σ ∈ Γ|U (P ).

Proof. We only sketch the proof and omit showing smoothness of the involved maps. Let
σ ∈ Γ|U (P ) be a local section. For p ∈ π−1(U) with π(p) = x ∈ U , define ϕ(p) = (x, g) such
that g ∈ G is the unique element such that p = σ(x) ·g. This defines a bijection between π−1(U)
and U × G. It can be shown to be a diffeomorphism by using the smoothness of σ and the
group action on P .

Conversely, starting from a local trivialization ϕ : π−1(U)→ U×G we can define a local section
σ ∈ Γ|U (P ) by σ(x) = ϕ−1(x, e), where e ∈ G is the unit element. This is obviously a smooth
section. One now easily checks that this construction and the construction from the first half of
this proof are indeed inverses of each other, and thus establish a one-to-one correspondence. ■
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This theorem has an interesting and important consequence for the existence of global sections,
which can be stated as follows.

Theorem 20.1.2. A principal fiber bundle is trivial if and only if it admits a global section.

Proof. Let π : P → M be a principal G-bundle with Lie group G. If P is a trivial fiber
bundle, then there exists a diffeomorphism ϕ : M × G → P such that π ◦ ϕ = prM . Then
σ :M → P, x 7→ ϕ(x, e) is a global section, where e ∈ G is the unit element.

Conversely, let σ : M → P be a global section of an arbitrary principal G-bundle π : P → M .
Then every p ∈ P can uniquely be written in the form p = σ(x) · g for some x ∈M and g ∈ G.
One easily checks that the map ϕ : M ×G → P, (x, g) 7→ σ(x) · g is a diffeomorphism, so that
P is a trivial fiber bundle. ■

An important example of a principal bundle is that of a coset space G/H, which we discuss
in detail in section 41.1, following definition 15.4.1. Here we restrict ourselves to studying the
fundamental vector fields, which we introduced in section 15.12, in the case that G and H are
matrix groups. Then we can explicitly construct the fundamental vector fields as follows:

Example 20.1.1 (Fundamental vector fields on coset bundles of matrix groups). Let G ⊂
Mn,n be a matrix group (for example, one of the classical groups from example 15.1.3) and
H ⊂Mn,n a closed subgroup. Since both of them can be written in form of n×n-matrices in
Mn,n, we can see both G and H as submanifolds of Mn,n and use the matrix components as
coordinates, on which we place suitable restrictions. We denote these coordinates by (gab)
on G and (hab) on H, where a, b,= 1, . . . , n. In these coordinates the unit element e ∈ H
has the form hab = δab. An element X ∈ h = LieH of the Lie algebra of H is a left invariant
vector field on H, which is uniquely defined by its value at e. Using the coordinates on H,
this value can be written as

X(e) = Xa
b
∂

∂hab
, (20.1.1)

where the matrix Xa
b is given by the matrix representation of the Lie algebra element (see

example 15.6.2 for the classical matrix Lie algebras). To calculate its fundamental vector
field, we consider the right Lie group action G ×H ∋ (g, h) 7→ g · h = gh ∈ G of H on G.
In coordinates it takes the form

(gab, h
a
b) 7→ (gach

c
b) . (20.1.2)

For a fixed element g ∈ G the pushforward of X(e) ∈ TeH to TgG is then given by

(Rg)∗(X(e)) = (Rg)∗

(
Xa

b
∂

∂hab

)
= Xa

b
∂

∂hab
(gceh

e
d)

∣∣∣∣
h=e

∂

∂gcd

= Xa
bg
c
eδ
e
aδ
b
d

∂

∂gcd

= gacX
c
b
∂

∂gab

= (gX)ab
∂

∂gab
.

(20.1.3)

This can nicely be generalized to other principal bundles, if the structure group is a matrix
group.
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Example 20.1.2 (Fundamental vector fields for matrix groups). Let G ⊂ Mn,n be a matrix
group and π : P →M a principal G-bundle. We use the same matrix component coordinates
(gab) on G as in the previous example. On an open subset U ⊂M we can find an equivariant
local trivialization ϕ : π−1(U) → U × G. Writing the induced coordinates on π−1(U) as
(xµ, pab), where (xµ) are coordinates on U and (pab) denotes the matrix components on G,
we find that the right action of the structure group is given by

((xµ, pab), g
a
b) 7→ (xµ, pacg

c
b) , (20.1.4)

i.e., by right multiplication of the matrix component coordinates. For a fixed p ∈ π−1(U)
and X ∈ TeG we then have the fundamental vector field

(Rp)∗(X(e)) = (Rp)∗

(
Xa

b
∂

∂gab

)
= Xa

b
∂

∂gab
(pceg

e
d)

∣∣∣∣
g=e

∂

∂pcd

= Xa
bp
c
eδ
e
aδ
b
d

∂

∂pcd

= gacX
c
b
∂

∂gab

= (pX)ab
∂

∂pab
,

(20.1.5)

so that the coordinate expression essentially looks the same as in the case of coset bundles.

In the case of a principal bundle, the fundamental vector fields have an interesting property.

Theorem 20.1.3. For each p ∈ P , the fundamental vector fields on the principal G-bundle
π : P → M define a vector space isomorphism between the Lie algebra g of G and the vertical
tangent space VpP .

This means that at each point p ∈ P we can canonically identify vertical vectors, i.e., vectors
ξ ∈ TpP which satisfy π∗(ξ) = 0, with Lie algebra elements of g and vice versa. Further, this
allows us to relate the values of fundamental vector fields at different points on the same fiber,
which we state as follows.

Theorem 20.1.4. The fundamental vector fields satisfy

X̃(p · g) = Rg∗
(
Ãdg(X)(p)

)
. (20.1.6)

Proof. First note that

Rp·g(h) = p · gh = p · αg(h)g = (Rg ◦Rp ◦ αg)(h) (20.1.7)

for all p ∈ P and g, h ∈ G. By direct calculation we then find

X̃(p · g) = Rp·g∗ (X(e))

= (Rg ◦Rp ◦ αg)∗(X(e))

= Rg∗(R
p
∗(Adg(X(e))))

= Rg∗
(
Ãdg(X)(p)

) (20.1.8)

for all p ∈ P , g ∈ G and X ∈ g. ■

Theorem 20.1.5. The fibered product P1 ×M P2 of a principal G1-bundle π1 : P1 →M and a
principal G2-bundle π2 : P2 →M is a principal (G1 ×G2)-bundle.

Proof. ▶. . .◀ ■
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20.2 Principal bundle morphisms

There are different possibilities which allow us to relate principal bundles to each other. The
most general is to consider two principal bundles with arbitrary, and hence potentially different
structure groups. In this case we must also relate the different structure groups to each other.
Here this relation is given by a Lie group homomorphism. We thus define the following notion.

Definition 20.2.1 (Principal bundle morphism). Let π : P →M be a principal G-bundle
and ϖ : Q→ N a principal H-bundle. A principal bundle morphism is a bundle morphism
ϕ : P → Q together with a Lie group homomorphism θ : G → H such that ϕ(p · g) =
ϕ(p) · θ(g) for all p ∈ P and g ∈ G.

Recall that the definition 2.7.1 of a bundle morphism also entails a map ϕ̃ : M → N relating
the base manifolds, which is said to be covered by the bundle morphism. The additional
requirement for a principal bundle morphism that there exists a Lie group homomorphism
θ : G → H intertwining the group actions on the fibers of P and Q can be expressed by
enlarging the diagram (2.7.1) and demanding that the following diagram commutes:

P ×G ϕ×θ //

·
��

Q×H
·
��

P
ϕ //

π

��

Q

ϖ

��
M

ϕ̃ // N

(20.2.1)

A more pictorial visualization is shown in figure 20.1. Here a group element g ∈ G acts on the
preimage p ∈ P to yield a new element p · g ∈ P within the same fiber. The map ϕ : P → Q,
which maps p to ϕ(p), then maps p · g to ϕ(p) · θ(g).

p

p · g

ϕ(p)

ϕ(p · g) = ϕ(p) · θ(g)

• · g • · θ(g)

M N

P Q

π(p) ϖ(ϕ(p)) = ϕ̃(π(p))

π ϖϕ

ϕ̃

Figure 20.1: Visualization of a principal bundle morphism. If one translates the preimage by
p 7→ p · g, the image follows and gets translated by ϕ(p) 7→ ϕ(p) · θ(g).

A special case is found if both bundles have the same structure group. In this case we may
additionally demand that the homomorphism between the structure groups is the identity. We
thus define the following notion.
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Definition 20.2.2 (Principal G-bundle morphism). Let π : P → M and ϖ : Q → N be
principal G-bundles. A principal G-bundle morphism is a bundle morphism ϕ : P → Q
which is equivariant, i.e., such that ϕ(p · g) = ϕ(p) · g for all p ∈ P and g ∈ G.

To see how the notion of equivariance arises, observe that the upper part of the commutative
diagram (20.2.1), which represents the defining property of a principal bundle morphism, simply
reduces to the diagram (15.5.3) representing an equivariant map, in case the group homomor-
phism θ is the identity. Going one step further, and demanding that the occurring maps are
diffeomorphisms, we arrive at the following notion.

Definition 20.2.3 (Principal G-bundle isomorphism). Let π : P →M and ϖ : Q→ N be
principalG-bundles. A principal G-bundle isomorphism is a bundle isomorphism ϕ : P → Q
which is equivariant, i.e., such that ϕ(p · g) = ϕ(p) · g for all p ∈ P and g ∈ G. If a principal
G-bundle isomorphism exists, then the two bundles are called isomorphic.

20.3 Associated fiber bundles

In this section we introduce another notion, which is of particular importance in physics. The
basic idea behind this construction is to replace the fiber of a principal bundle by another fiber
which carries an action of the same Lie group. The resulting bundle, which we call associated
to the original principal bundle, is defined as follows.

Definition 20.3.1 (Associated fiber bundle). Let G be a Lie group and π : P → M a
principal G-bundle. Further, let F be a manifold together with a left Lie group action
ρ : G× F → F . Consider the right action on the Cartesian product P × F given by

(p, f) · g = (p · g, ρ(g−1, f)) . (20.3.1)

Let P ×ρ F be the set of orbits of this right action and denote the orbit of (p, f) ∈ P × F
by [p, f ]. Finally, let πρ : P ×ρ F → M be the projection map given by πρ([p, f ]) = π(p).
Then P ×ρ F is called the fiber bundle associated to P via the action ρ.

One can now easily check that for every x ∈ M the fiber π−1ρ (x) = Px ×ρ F is diffeomorphic
to F . To see this, and to understand how these fibers are related to each other, we need to
find local trivializations. This can be done most easily by using the fact that π : P → M is a
(principal) fiber bundle, so that we can use its trivializations. Hence, let us begin with a local
trivialization ϕ : π−1(U) → U × G of a trivializing subset U ⊂ M . Following theorem 20.1.1
this is equivalent to a local section σ ∈ Γ|U (P ), and so we will make use of this section. Let

[p, f ] = {(p · g, ρ(g−1, f)), g ∈ G} ∈ π−1ρ (U) ⊂ P ×ρ F (20.3.2)

be an element of the associated fiber bundle, which is defined as the orbit of the action (20.3.1)
of G on P × F which passes through (p, f) ∈ π−1(U)× F . Let x = π(p). By the properties of
the principal bundle, there exists a unique g ∈ G such that σ(x) = p · g. Using the fact that
the orbit also contains the point

(p · g, ρ(g−1, f)) = (σ(x), ρ(g−1, f)) , (20.3.3)
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π πρ

M

P P ×ρ F

x

p

(p, f) 7→ p
(p, f) 7→ [p, f ]

Px × F

Px

(P ×ρ F )x

{p} × F

Figure 20.2: Concept of an associated fiber bundle. The elements of the fibers (P ×ρ F )x are
orbits of the action of the structure group on the product space Px × F .

and hence
[p, f ] = [σ(x), ρ(g−1, f)] , (20.3.4)

we obtain a unique element ρ(g−1, f) ∈ F . This element is independent of the original choice
of the representative (p, f), and depends only on the orbit [p, f ], which intersects {σ(x)} × F
in exactly one point by construction, as illustrated in 20.2. It is thus well-defined to define
ϕρ([p, f ]) = (x, ρ(g−1, f)) ∈ U × F . One can also explicitly construct the inverse as ϕ−1ρ :
U × F → π−1ρ (U), (x, f) 7→ [σ(x), f ]. Thus, (U, ϕρ) constitutes a local trivialization of P ×ρ F .

The illustration in figure 20.2 shows that the fibers Px ×F of the bundle π ◦ pr1 : P ×F →M ,
whose quotient by the group action of G gives the associated bundle P ×ρ F , are isomorphic
to the product Px × (Px ×ρ F ). This suggests that the bundle π ◦ pr1 : P × F → M might be
related to the fibered product P ×M (P ×ρ F ). We now show that this is indeed the case.

Theorem 20.3.1. Let P be a principal G-bundle and ρ : G × F → F a left action of G on a
manifold F . Then the following hold:

1. The fibered product π ×M πρ : P ×M (P ×ρ F ) → M is canonically isomorphic to the
bundle π ◦ pr1 : P × F →M .

2. pr1 : P ×M (P ×ρ F )→ P is trivial.

3. pr2 : P ×M (P ×ρ F )→ P ×ρ F is a principal G-bundle.

Proof. Recall from section 2.8 that the elements of P ×M (P ×ρ F ) are pairs (p, [p′, f ′]) such
that π(p) = πρ([p

′, f ′]) = π(p′) = x for some x ∈ M . Since both p and p′ belong to the same
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fiber Px, there exists a unique g ∈ G such that p′ = p · g, and so we can choose a particular
representative

[p′, f ′] = [p · g, ρ(g−1, f)] = [p, f ] , (20.3.5)

which uniquely determines the element f ∈ F . Hence, we can write each element (p, [p′, f ′]) ∈
P ×M (P ×ρ F ) uniquely as ϑ(p, f), where we defined

ϑ : P × F → P ×M (P ×ρ F )
(p, f) 7→ (p, [p, f ])

. (20.3.6)

Clearly, ϑ is bijective, and it is smooth since it is a composition of smooth maps given by the
projection (p, f) 7→ p onto the first factor of P ×F and the quotient (p, f) 7→ [p, f ] of the action
of G on P × F . Finally, we have

(π ×M πρ)(ϑ(p, f)) = (π ×M πρ)(p, [p, f ]) = π(p) = π(pr1(p, f)) , (20.3.7)

showing that ϑ is a fiber bundle isomorphism, and it is canonically defined. This proves the
first proposition, and we can make use of ϑ to prove the remaining propositions.

For the second proposition, we have

pr1(ϑ(p, f)) = pr1(p, [p, f ]) = p = pr(p, f) , (20.3.8)

and so ϑ is also a bundle isomorphism for the bundles pr1 : P ×M (P ×ρ F ) and pr1 : P × F .
The latter is a trivial bundle, and so also the former must be trivial.

Finally, for the third proposition, we have

pr2(ϑ(p, f)) = pr2(p, [p, f ]) = [p, f ] , (20.3.9)

and so ϑ is also a bundle morphism relating pr2 : P×M (P×ρF ) to the projection (p, f) 7→ [p, f ].
The latter defines a principal G-bundle, and hence does also the former. ■

It is also helpful to see what happens if one restricts the local trivialization (U, ϕρ) we constructed
on the associated bundle to a single fiber Px ×ρ F over x ∈ U . In this case one does not need
to specify a local section of P , but only a single point p ∈ P . We can use this to explicitly
construct a diffeomorphism as follows.

Definition 20.3.2 (Fiber diffeomorphism). Let π : P → M be a principal G-bundle and
πρ : P ×ρ F → M an associated bundle with fiber F . For p ∈ P the diffeomorphism
[p] : F → Pπ(p) ×ρ F, f 7→ [p, f ] is called the fiber diffeomorphism of p.

One can see that this is related to the previously defined local trivialization ϕρ by setting
p = σ(x), so that g = e becomes the unit element. It is now easy to see the following property
of the fiber diffeomorphisms.

Theorem 20.3.2. For every p ∈ P , g ∈ G and f ∈ F the fiber diffeomorphism defined above
satisfies

[p · g](f) = [p](ρ(g, f)) . (20.3.10)

Proof. By definition of the orbits [p, f ] we have

[p · g](f) = [p · g, f ] = [p, ρ(g, f)] = [p](ρ(g, f)) , (20.3.11)

by direct calculation. ■
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With the help of this property we can now understand the structure of the space Γ(P ×ρ F ) of
sections of an associated fiber bundle.

Theorem 20.3.3. There is a one-to-one correspondence between sections σ ∈ Γ(P ×ρ F ) of an
associated fiber bundle P ×ρ F and G-equivariant maps ϕ ∈ C∞G (P, F ).

Proof. Let σ ∈ Γ(P ×ρ F ) be a section of P ×ρ F . We then define a map ϕ by

ϕ : P → F
p 7→ [p]−1(σ(π(p)))

. (20.3.12)

This map is well-defined, since σ(π(p)) ∈ Pπ(p)×ρF and [p] : F → Pπ(p)×ρF is a diffeomorphism,
and thus possesses an inverse. It is G-equivariant, since for all g ∈ G:

ϕ(p · g) = [p · g]−1(σ(π(p · g))) = ρ(g−1, [p]−1(σ(π(p)))) = ρ(g−1, ϕ(p)) . (20.3.13)

Conversely, let ϕ ∈ C∞G (P, F ) be an equivariant map. For x ∈ M choose p ∈ π−1(x) ⊂ P and
define σ(x) = [p, ϕ(p)]. This definition is independent of the choice of p, since for any other
p′ = p · g we have

[p′, ϕ(p′)] = [p · g, ϕ(p · g)] = [p · g, ρ(g−1, ϕ(p))] = [p, ϕ(p)] . (20.3.14)

It is easy to check that σ defines a section of P ×ρ F . ■

20.4 Associated vector bundles

A particularly common case is given if the fiber space F is a vector space and the action
ρ : G× F → F is linear in its second argument, i.e., it is given by a linear representation of G
on the vector space F . In this case one may ask whether the linear structure of F is preserved
and carries over to the fibers of the constructed associated bundle. We show that this is indeed
the case:

Theorem 20.4.1. If F is a vector space of dimension k and ρ a linear representation of G,
then the associated bundle P ×ρ F is a vector bundle of rank k.

Proof. First, we need to check that there is a vector space structure on each fiber Px ×ρ F
with x ∈ M , which is inherited from the vector space structure on F . Consider two elements
[p, v], [p, w] ∈ Px ×ρ F , where we used the fact that we can use the same element p to select
representatives of the equivalence classes [p, v] and [p, w], since they belong to the same fiber.
One can then define their sum and scalar multiple with λ, µ ∈ R as

λ[p, v] + µ[p, w] = [p, λv + µw] , (20.4.1)

where on the right hand side we use the vector space structure on F . Note that this is inde-
pendent of the choice of the representative, since for any other representative p · g with g ∈ G
we have

λ[p, v] + µ[p, w] = λ[p · g, ρ(g−1, v)] + µ[p · g, ρ(g−1, w)]
= [p · g, λρ(g−1, v) + µρ(g−1, w)]

= [p · g, ρ(g−1, λv + µw)]

= [p, λv + µw] ,

(20.4.2)

using the fact that we chose ρ to be a linear representation of G on F . Further, we also
need to check that the local trivializations of P ×ρ F restrict to vector space isomorphisms on
every fiber. For this purpose we can use the fact that the restriction of the local trivialization
ϕρ : π−1ρ (U) → U × F we constructed earlier from a section σ : U → P on a set U ⊂ M to a
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single fiber over x ∈ U are simply given by the fiber diffeomorphisms [p]−1 : Px×ρ F → F with
p = σ(x). These fiber diffeomorphisms are bijective by construction, and obviously linear, since

[p](λv + µw) = [p, λv + µw] = λ[p, v] + µ[p, w] = λ[p](v) + µ[p](w) (20.4.3)

by definition of the vector space structure. It follows that P ×ρ F is indeed a vector bundle. ■

Recall from chapter 4 that a number of constructions which are known for vector spaces can also
be applied to vector bundles, in particular the dual, direct sum and tensor product. It is known
from representation theory that if the vector spaces to which these operations are applied carry
linear representations of a group, then the vector spaces obtained from these operations also
carry representations. Again one may ask whether this can be used also for associated vector
bundles. We now show that this is indeed the case.

Theorem 20.4.2. If F, F ′ are vector spaces and ρ, ρ′ linear representations of G on F and F ′,
respectively, then the associated bundles are related by

(P ×ρ F )∗ ∼= P ×ρ̄ F ∗ , (20.4.4)

(P ×ρ F )⊕ (P ×ρ′ F ′) ∼= P ×ρ⊕ρ′ (F ⊕ F ′) (20.4.5)

and
(P ×ρ F )⊗ (P ×ρ′ F ′) ∼= P ×ρ⊗ρ′ (F ⊗ F ′) , (20.4.6)

where ρ̄ is the dual representation on the dual vector space F ∗ and ρ ⊕ ρ′ and ρ ⊗ ρ′ are the
direct sum and tensor product of the representations ρ and ρ′, and ∼= denotes that there exist
canonical vector bundle isomorphisms.

Proof. This proof proceeds in two steps. First, we have to show that the fibers of the respective
bundles agree with each other, and then ▶. . .◀ ■

20.5 Associated affine bundles

Similarly to the case of linear representations on a vector space, one may also consider affine
representations on an affine space. One may expect that in this case the associated fiber bundle
will be an affine bundle. We now show that this is indeed the case.

Theorem 20.5.1. If F is an affine space of dimension k modeled over the vector space F⃗ and
ρ an affine representation of G with linear derivative ρ⃗ acting on F⃗ , then the associated bundle
P ×ρ F is a affine bundle of rank k modeled over the vector bundle P ×ρ⃗ F⃗ .

Proof. The proof is similar to that of theorem 20.4.1. We first show that there is an affine
structure on each fiber, Px ×ρ F , which is inherited from the affine structure on F . Let p ∈ P
with π(p) = x ∈ M , which we use to express to elements [p, a] ∈ Px ×ρ F and [p, v] ∈ Px ×ρ⃗ F⃗
by representatives a ∈ F and v ∈ F⃗ . We define their sum as

[p, a] + [p, v] = [p, a+ v] , (20.5.1)

using the fact that F is an affine space modeled over F⃗ . This definition is independent of the
choice of the representative, since for any other representative p · g we find

[p, a] + [p, v] = [p · g, ρ(g−1, a)] + [p · g, ρ⃗(g−1, v)]
= [p · g, ρ(g−1, a) + ρ⃗(g−1, v)]

= [p · g, ρ(g−1, a+ v)]

= [p, a+ v] ,

(20.5.2)

195



using the fact that ρ is an affine representation with linear derivative ρ⃗. Hence, Px×ρ F carries
the structure of an affine space modeled over the vector space Px ×ρ⃗ F⃗ . Further, we check
that the local trivializations of P ×ρ F restrict to affine space isomorphisms on every fiber. We
make again use of the fact that the restriction of the local trivialization ϕρ : π−1ρ (U)→ U × F
constructed from a section σ : U → P on a set U ⊂ M to a single fiber over x ∈ U is given by
the fiber diffeomorphisms [p]−1 : Px ×ρ F → F with p = σ(x). These fiber diffeomorphisms are
bijective by construction and satisfy

[p](a+ v) = [p, a+ v] = [p, a] + [p, v] = [p](a) + [p](v) (20.5.3)

by definition of the affine space structure. It follows that P ×ρ F is indeed an affine bundle
modeled over the vector bundle P ×ρ⃗ F⃗ . ■

20.6 Reduction of the structure group

In the previous sections we have mostly discussed maps between bundles which have the same
structure group. We now come to a different class of maps, which can be used to relate bundles
with different structure groups. These different structure groups still need to be related to
each other, and this relation will be given by a group homomorphism. We define the following
notion, following [Bau14, sec. 2.5].

Definition 20.6.1 (Reduction of a principal bundle). Let π : P → M be a principal
bundle with structure group G and λ : H → G a Lie group homomorphism. A λ-reduction
of this bundle consists of a principal H-bundle χ : Q→M and a map f : Q→ P such that
π ◦ f = χ and f(q · h) = f(q) · λ(h) for all q ∈ Q and h ∈ H.

To see the similarity between this definition and the definition 20.2.1 of a principal bundle
morphism, observe that we may summarize the maps appearing in definition 20.6.1 in the
following commutative diagram:

Q×H f×λ //

·
��

P ×G
·
��

Q
f //

χ

##

P

π

{{
M

(20.6.1)

By comparison with the diagram (20.2.1) defining a principal bundle morphisms, we see that
the map f in definition 20.6.1 constitutes a principal bundle morphism covering the identity on
the base manifold M .

Despite being called a “reduction”, the group H does not have to be “smaller”, i.e., a subgroup of
G. There are important examples in physics, where H is, e.g., a double cover of G, which leads
to spin groups and spin bundles, as we discuss in chapter 45. However, there are also numerous
examples with H being a (closed) subgroup of G, and λ being the canonical inclusion. In this
case we can find another possibility to express a reduction of the structure group, namely as a
section of a particular associated bundle. This follows from the following theorem.

Theorem 20.6.1. Let π : P → M be a principal bundle with structure group G and H ⊂ G
a closed subgroup. Then there exists a one-to-one correspondence between reductions of P with
respect to the canonical inclusion H ↪→ G and global sections of the associated bundle P×ρG/H,
where ρ : G×G/H → G/H is the action of G on the coset space via left multiplication.
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Proof. Here we make use of theorem 20.3.3 which states that we may equivalently express
sections σ ∈ Γ(P ×ρ G/H) by equivariant maps ϕ ∈ C∞G (P,G/H). Hence, we will show
that there exists a one-to-one correspondence between principal bundle reductions and such
equivariant maps.

Consider first an equivariant map ϕ ∈ C∞G (P,G/H). Then we define the set

Q = {p ∈ P, ϕ(p) = eH} ⊂ P (20.6.2)

as those elements of P which are mapped to the coset eH belonging to the unit element e ∈ G,
together with the canonical inclusion Q ↪→ P and projection χ = π|Q : Q→M . To see that H
acts from the right on Q, we use the equivariance of ϕ and the group action on P to find

ϕ(q · h) = h−1ϕ(q) = h−1eH = eH , (20.6.3)

so that q · h ∈ Q for all q ∈ Q and h ∈ H. To see that this action is free and transitive on
the fibers, let q, q′ ∈ Q with χ(q) = χ(q′). Since P is a principal bundle, there exists a unique
group element g ∈ G such that q′ = q · g. Using the equivariance of ϕ we have

eH = ϕ(q′) = ϕ(q · g) = g−1ϕ(q) = g−1eH = g−1H , (20.6.4)

which means that e and g−1 define the same coset, and so g ∈ H. Hence, for every q, q′ ∈ Q
with χ(q) = χ(q′), there exists a unique h ∈ H such that q′ = q ·h. This shows that χ : Q→M
is indeed a principal fiber bundle with structure group H. One now easily checks that the
inclusion Q ↪→ P defines a reduction satisfying the properties given in definition 20.6.1.

To check the converse direction, let χ : Q → M be a principal H-bundle, where H ⊂ G is
a closed subgroup, and f : Q → P a reduction of the principal bundle π : P → M . For
(q, p) ∈ Q ×M P , i.e., χ(q) = π(p), define ϕ̂(q, p) ∈ G as the unique element g ∈ G such that
p · g = f(q). Given another element q′ = q · h ∈ Q within the same fiber, we have

p · ϕ̂(q′, p) = f(q′) = f(q · h) = f(q) · h = p · gh , (20.6.5)

and so
ϕ̂(q · h, p) = ϕ̂(q, p)h (20.6.6)

with h ∈ H. Hence, ϕ̂(q′, p) and ϕ̂(q, p) define the same coset, ϕ̂(q′, p)H = ϕ̂(q, p)H. Since
the coset is independent of q, we thus obtain a map ϕ : P → G/H. To see that this map is
equivariant, let p′ = p · g ∈ P with g ∈ G. Then we have

p · gϕ̂(q, p′) = p′ · ϕ̂(q, p′) = f(q) = p · ϕ̂(q, p) , (20.6.7)

and so
ϕ(p · q) = ϕ(p′) = ϕ̂(q, p′)H = g−1ϕ̂(q, p)H = g−1ϕ(p) , (20.6.8)

which shows that ϕ is indeed equivariant, ϕ ∈ C∞G (P,G/H).

One still needs to show that, starting from an equivariant map, constructing a reduction and
again an equivariant map, one re-obtains the same equivariant map one has started from; and
similarly, that starting from a reduction, one re-obtains the same reduction (up to isomorphism).
We will not prove this here, but the proof is straightforward. ■

Recall that not every fiber bundle admits global sections. This statement also holds for the
associated fiber bundle P ×ρG/H we encountered in theorem 20.6.1. Hence, we conclude that,
given a closed subgroup H ⊂ G, not every principal G-bundle π : P → M may be reduced to
H. More generally, one finds that also for other homomorphisms λ : H → G, bundle reductions
may not exist in general, and may impose additional conditions on π : P → M , sometimes
related to the topology of M , which play an important role in physics.

We finally mention a few examples of reductions of principal bundles which we will encounter
later and study in detail. These include unit frame bundles in section 24.1, oriented frame
bundles in section 24.2, normalized frame bundles in section 24.3, orthonormal frame bundles
in section 31.4, symplectic frame bundles in section 35.6, complex frame bundles in section 43.4
and spin bundles in section 45.5.
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20.7 Extension of the structure group

We have seen in the previous section how a reduction of the structure group, given by a Lie
group homomorphism, defines a relation between principal bundles, in form of a principal bundle
homomorphism. We now come to a construction which is essentially the inverse of the principal
bundle reduction, and we mostly follow [Bau14, sec. 2.5]. This is based on the following
definition.

Definition 20.7.1 (Extension of a principle bundle). Let χ : Q → M be a principal
fiber bundle with structure group H and λ : H → G a Lie group homomorphism. The
λ-extension of Q is the bundle π : P →M defined by

P = Q×ρ G , (20.7.1)

where ρ : H ×G→ G is the left action defined by

ρ : H ×G → G
(h, g) 7→ λ(h)g

. (20.7.2)

The extension of principal bundles has several important properties, which allow us to relate it
to the reduction shown in the previous section. The most elementary is the following.

Theorem 20.7.1. The λ-extension π : P → M constructed in definition 20.7.1 is a principal
G-bundle.

Proof. We have to show that G acts from the right on P , and that this action preserves the
fibers and is free and transitive on them. For q ∈ Q and g, g′ ∈ G we define this right action by

[q, g] · g′ = [q, gg′] . (20.7.3)

Note that this is independent of the choice of the representative q, since for q′ = q · h with
h ∈ H we have

[q′, ρ(h−1, g)] · g′ = [q · h, λ(h)−1g] · g′ = [q · h, λ(h)−1gg′] = [q′, ρ(h−1, gg′)] . (20.7.4)

Further, it obviously defines a right action. This action is transitive, since for any [q, g] and
[q, g′] we have

[q, g] = [q, g′] · g′−1g , (20.7.5)

and free, since g′−1g in the equation above is the unique element of G which satisfies this
equation. Hence, it defines P as a principal G-bundle. ■

Given the λ-extension of a principal bundle, one may wonder whether and how it is possible
to obtain a λ-reduction, and how this relates to the origin bundle Q. We see that this can be
defined as follows.

Theorem 20.7.2. Let π : P →M be the λ-extension of χ : Q→M and

f : Q → P
q 7→ [q, e]

, (20.7.6)

where e ∈ G is the unit element. Then f defines a λ-reduction of P .

Proof. We first check that f is a bundle map covering the identity on M . This follows from the
relation

(π ◦ f)(q) = π([q, e]) = χ(q) (20.7.7)
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for all q ∈ Q. Further, it is a principal bundle homomorphism, since for any h ∈ H we have

f(q · h) = [q · h, e] = [q, λ(h)e] = [q, e] · λ(h) = f(q) · λ(h) . (20.7.8)
■

The statement above hence allows us to obtain a λ-reduction from the λ-extension. Now we
pose the question whether also the converse is true, i.e., whether every λ-reduction can be
related to or obtained from a λ-extension. This is indeed the case, up to isomorphism, which
we show as follows.

Theorem 20.7.3. Let π : P →M be a principal G-bundle and f : Q→ P a λ-reduction of P .
Then P is isomorphic to the λ-extension of Q.

Proof. We sketch the proof by explicitly constructing the bundle isomorphism and showing that
it is bijective. We define

ψ : Q×ρ G → P
[q, g] 7→ f(q) · g . (20.7.9)

To see that this is well-defined, let h ∈ H and consider

ψ([q · h, λ(h)−1g]) = f(q · h) · λ(h)−1g = f(q) · λ(hh−1)g = f(q) · g = ψ([q, g]) , (20.7.10)

so that it is independent of the representative q. The map ψ is injective, since for any g′ ∈ G
with g ̸= g′ we have

ψ([q, g′]) = f(q) · g′ ̸= f(q) · g = ψ([q, g]) , (20.7.11)

since the action of G on the fibers of P is free. Finally, ψ is surjective, since for any p ∈ P
we can choose q ∈ Qπ(p) and define g ∈ G as the unique element satisfying p = f(q) · g. This
element exists, since G acts transitively on the fibers of P , and so we have p = ψ([q, g]). ■
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Chapter 21

Jet manifolds and jet bundles

21.1 Contact and jets

In the previous lectures we have learned that tangent and cotangent vectors generalize the
notions of the derivative of a function. Tangent vectors naturally appear as derivatives of
curves γ ∈ C∞(R,M), while cotangent vectors appear as total derivatives of real functions
f ∈ C∞(M,R). We have also seen that the differential φ∗ of a map φ ∈ C∞(M,N) further
generalizes this notion to maps between arbitrary manifolds. We now wish to generalize this
notion to higher derivatives. In other words, we will generalize the notion of Taylor polynomials.
These generalizations are called jets. In the most simple case of functions f ∈ C∞(R,R) they
turn out to be exactly the Taylor polynomials. To arrive at this result, we start with the
following definition.

Definition 21.1.1 (Contact on C∞(R,R)). Two local functions (U, f), (V, g) ∈ C∞t (R,R)
with t ∈ R are said to have r-contact at t for r ∈ N, written as (U, f)

t,r∼ (V, g), if and only
if

f (k)(t) = g(k)(t) for all k ∈ {0, . . . , r} . (21.1.1)

Note that we have used local functions as discussed in section 1.4 here, as it will turn out to
be more convenient later. This is sufficient for our purpose, since the value and derivatives of
a function f at t only depend on the behavior of f on an arbitrarily small neighborhood of t,
and we don’t even need f to be defined anywhere outside this neighborhood. In the following,
we want to take equivalence classes with respect to having contact. For this to be possible, the
relation we defined must be an equivalence relation. We claim:

Theorem 21.1.1. The relation t,r∼ of definition 21.1.1 is an equivalence relation.

Proof. This is obvious from the definition. ■

Hence, the following definition is valid.

Definition 21.1.2 (Jets of C∞(R,R)). Let (U, f) ∈ C∞t (R,R) be a real local function of
one variable with t ∈ R. For r ∈ N, we define the r-jet jrt f of f at t as the equivalence class

jrt f =
{
(V, g) ∈ C∞t (R,R)

∣∣∣ (U, f) t,r∼ (V, g)
}

(21.1.2)
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of local functions (V, g) ∈ C∞t (R,R) whose Taylor polynomials at t agree with the Taylor
polynomial of f up to order r. The space of all r-jets is denoted

Jr(R,R) = {jrt f, t ∈ R, f ∈ C∞t (R,R)} . (21.1.3)

Note that we do not include the domain U in the notation jrpf , since it is not essential for the
definition of the jet, and we will also omit it for the remaining notions of jets to be defined in
this chapter; this will become more explicit in section 21.2. We will also frequently write just f
instead of (U, f), whenever the domain is not important. In the following example, we illustrate
the notions of contact and jets.

Example 21.1.1. Consider the three functions f, g, h ∈ C∞(R,R) defined by

f(t) = t− 3π

2
, g(t) = 1− t2

2
, h(t) = cos t , (21.1.4)

and illustrated in figure 21.1. For the functions f and g, we have f(t) = g(t), and hence
0-contact, for

t1,2 = −1±
√
3 + 3π , (21.1.5)

and so we write f
t1,2,0∼ g. They therefore define the same 0-jets j0t1,2f = j0t1,2g at t1,2. These

are characterized by the common function value, or zeroth order Taylor coefficient,

f(t1,2) = g(t1,2) = −1±
√
3 + 3π − 3π

2
, (21.1.6)

which, together with the point t1,2 itself where the functions are evaluated, uniquely deter-
mines the zeroth order jet. Note that the derivatives of f and g differ at these points, and
so they do not have r-contact for any r > 0 and t ∈ R. For all other t ∈ R \ {t1, t2}, they
have no 0-contact either.

The functions f and h satisfy f(t) = h(t) and f ′(t) = h′(t) at t = 3π
2 . This means that at

this point they have 1-contact, f t,1∼ h, and hence also 0-contact, f t,0∼ h. Hence, they have
the same first-order jet j1t f = j1t h, which is characterized by

f(t) = h(t) = 0 , f ′(t) = h′(t) = 1 , (21.1.7)

together with the value t = 3π
2 . Of course, they also have the same zeroth-order jet j0t f = j0t h

at the same value of t. All other jets, for r > 1 or t ̸= 3π
2 , differ, jrt f ̸= jrt h.

Finally, for g and h we find g(0) = h(0), g′(0) = h′(0) and g′′(0) = h′′(0), and so g 0,2∼ h

(and hence also g 0,1∼ h and g
0,0∼ h). Their highest order of contact at t = 0 is thus 2, and

they have no contact at other values of t.

The example demonstrates that in the simple case of real functions, we can uniquely determine
a jet jrt f by a tuple (

t, f(t), f ′(t), . . . , f (r)(t)
)
, (21.1.8)

consisting of the point t and the values of the first r + 1 Taylor coefficients at this point.
Understanding the elements of this tuple as coordinates, we thus have a mapping Jr(R,R) ∼=
Rr+2. Another possibility, which is also found in the literature, is to identify the function value
and derivatives with the finite Taylor polynomial

t̃ 7→ f(t) + f ′(t)(t̃− t) + . . .+
f (r)(t)

r!
(t̃− t)r , (21.1.9)
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Figure 21.1: Contact of functions f, g, h ∈ C∞(R,R) given in example 21.1.1.

where also the point t must still be specified in order for the jet to be fully determined. This is
obvious from the fact that a general polynomial of order r in t̃ has r + 1 coefficients, while we
need an (r + 2)-tuple to specify a jet.

The importance of the base point t also becomes clear if we take a closer look at the definition
of jets as equivalence classes with respect to the relation t,r∼. A local function (U, f) gives rise
to a jet jrt f for every t ∈ U . However, for distinct t, t′ ∈ U these are distinct, jrt f ̸= jrt′f , even
if all Taylor coefficients at these points agree, f (k)(t) = f (k)(t′) for all k ∈ N. This is due to the
fact that jrt f is the equivalence class of all local functions (V, g) whose Taylor coefficients at the
point t agree with those of f . The same local function (V, g) does not necessarily belong to the
equivalence class jrt′f , and may not even be defined at t′, if t′ /∈ V . Phrased differently, for each
t ∈ R and r ∈ N, the relation t,r∼ partitions the set C∞t (R,R) of local functions into equivalence
classes, namely the jets jrt f , and each local function (U, f) belongs to one equivalence class for
each t ∈ U and r ∈ N; these equivalence classes can be distinguished by which other functions
they contain, and this membership is uniquely linked to the point t at which all of their Taylor
polynomials to order r agree.

Finally, one may pose the question why we take the technical burden of working with equivalence
classes of local functions, instead of directly defining jets as tuples of Taylor coefficients or
Taylor polynomials. The reason for this choice is that the more general notions of jets, which
we will encounter in this chapter, will always be equivalence classes of maps and not possess
the algebraic structure suggested by polynomials or the simple form of tuples; essentially, they
will provide us with a coordinate-free notion of higher order derivatives of maps.. To see how
this works, we will introduce the notions of contact and jets of curves.

Definition 21.1.3 (Contact on C∞(R,M)). Two local curves (U, γ), (V, β) ∈ C∞t (R,M)

on a manifold M with t ∈ R are said to have r-contact at t for r ∈ N, written as (U, γ)
t,r∼

(V, β), if and only if for all functions f ∈ C∞(M,R) holds:

(U, f ◦ γ) t,r∼ (V, f ◦ β) . (21.1.10)

It should be clear that (U, f ◦ γ), (V, f ◦ β) ∈ C∞t (R,R) are local functions, and so the relation
t,r∼ here denotes the previously defined notion of contact. Again we wish to take equivalence
classes, and so we need to make sure that this is an equivalence relation.
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Theorem 21.1.2. The relation t,r∼ of definition 21.1.3 is an equivalence relation.

Proof. Reflexivity and symmetry are obvious from the definition. To check transitivity, consider
(U, γ), (V, β), (W, ζ) ∈ C∞t (R,M) with (U, γ)

t,r∼ (V, β) and (V, β)
t,r∼ (W, ζ). Then for every

f ∈ C∞(M,R) holds

(U, f ◦ γ) t,r∼ (V, f ◦ β) , (V, f ◦ β) t,r∼ (W, f ◦ ζ) , (21.1.11)

and thus also
(U, f ◦ γ) t,r∼ (W, f ◦ ζ) , (21.1.12)

using the fact that t,r∼ is an equivalence relation for local functions. ■

Definition 21.1.4 (Jets of C∞(R,M)). Let M be a manifold and (U, γ) ∈ C∞t (R,M) a
local curve on M with t ∈ R. For r ∈ N, we define the r-jet jrt γ of γ at t as the equivalence
class

jrt γ =
{
(V, β) ∈ C∞t (R,M)

∣∣∣ (U, γ) t,r∼ (V, β)
}

(21.1.13)

of local curves (V, β) ∈ C∞t (R,M) having r-contact. The space of all r-jets is denoted

Jr(R,M) = {jrt γ, t ∈ R, γ ∈ C∞t (R,M)} . (21.1.14)

In this definition we have now made use of the previously introduced notion of contact for
(local) curves, which we have shown to be an equivalence relation. The condition given in
definition 21.1.3, which demands that (U, f ◦ γ), (V, f ◦ β) ∈ C∞t (R,R) for all f ∈ C∞(M,R)
seems strong at first sight. However, this intuition may be misleading. To illustrate this, we
will explicitly construct the first order jets.

Example 21.1.2 (First order jets of C∞(R,M)). Let M be a manifold, t ∈ R and γ ∈
C∞t (R,M) a local curve onM . The 1-jet j1t γ is the equivalence class of curves β ∈ C∞t (R,M)
such that for all functions f ∈ C∞(M,R) we have (f ◦ γ)(t) = (f ◦ β)(t) and (f ◦ γ)′(t) =
(f ◦β)′(t). We start with the first condition. Assume that γ(t) ̸= β(t). Then we could choose
a function f ∈ C∞(M,R) such that f(γ(t)) ̸= f(β(t)), contradicting the first condition.
Hence, it follows that γ(t) = β(t). For the second condition, recall that

(f ◦ γ)′(t) = γ̇(t)(f) , (21.1.15)

and analogously for β, by the definition 7.3.1 of the tangent vector of a curve. Assuming
γ̇(t) ̸= β̇(t), one could find a function f ∈ C∞(M,R) such that γ̇(t)(f) ̸= β̇(t)(f), contra-
dicting the second condition. Hence, this condition implies γ̇(t) = β̇(t). These conditions
are both necessary and sufficient, so that each equivalence class j1t γ is uniquely described
by the point γ(t) ∈ M and the tangent vector γ̇(t) ∈ Tγ(t)M . Hence, there is a one-to-one
correspondence between jets j1t γ and pairs (t, v) ∈ R× TM , where t ∈ R denotes the value
of the curve parameter where the jet is taken and v ∈ TM fixes the tangent vector γ̇(t) at t
(and thus also the point γ(t) = τ(γ̇(t))). Hence, we have a bijection J1(R,M) ∼= R× TM .

This shows that 1-jets are in this case simply tangent vectors, so that jets generalize the con-
cept of tangent vectors. To see that we can also generalize cotangent vectors, we continue by
constructing jets of real functions on manifolds. Again we start by defining a notion of contact.
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Definition 21.1.5 (Contact on C∞(M,R)). Two local functions (U, f), (V, g) ∈ C∞p (M,R)
on M with p ∈ M are said to have r-contact at p for r ∈ N, written as (U, f)

p,r∼ (V, g), if
and only if for all local curves (W,γ) ∈ C∞0 (R, U ∩ V ) with γ(0) = p holds:

(W, f ◦ γ) 0,r∼ (W, g ◦ γ) . (21.1.16)

The construction is very similar to the previous case of curves on M . We have simply reversed
the order of composition in order to obtain a local function f ◦ γ ∈ C∞0 (R,R), and, without
loss of generality, chosen the curve parameter at which the curve passes through p to be 0.
However, a few technicalities arise from the fact that the local functions (U, f) and (V, g) will
have different domains in general, which we have dealt with by restricting the image of the
curve γ. These technicalities, which can also be overcome by working with germs as we see in
section 21.2, are also relevant in showing that we have defined an equivalence relation.

Theorem 21.1.3. The relation p,r∼ of definition 21.1.5 is an equivalence relation.

Proof. Reflexivity and symmetry are obvious from the definition. To check transitivity, consider
(U, f), (V, g), (W,h) ∈ C∞p (M,R) with (U, f)

t,r∼ (V, g) and (V, g)
t,r∼ (W,h). Further, let (Y, γ) ∈

C∞0 (R, U ∩W ), and define

(Z, γ̃) = (γ−1(U ∩ V ∩W ), γ|γ−1(U∩V ∩W )) ∈ C∞0 (R, U ∩ V ∩W ) . (21.1.17)

Now we have the inclusion C∞0 (R, U∩V ∩W ) ⊂ C∞0 (R, U∩V ), and from (U, f)
0,r∼ (V, g) follows

(Z, f ◦ γ̃) 0,r∼ (Z, g ◦ γ̃) , (21.1.18)

where 0,r∼ here denotes contact of a real function of a real variable. Similarly, one shows

(Z, g ◦ γ̃) 0,r∼ (Z, h ◦ γ̃) , (21.1.19)

and from theorem 21.1.1 then also follows

(Z, f ◦ γ̃) 0,r∼ (Z, h ◦ γ̃) . (21.1.20)

Further, γ and γ̃ agree on an open set Z containing 0, and so they yield the same Taylor series
when composed with a function. Hence,

(Y, f ◦ γ) 0,r∼ (Z, f ◦ γ̃) , (Y, h ◦ γ) 0,r∼ (Z, h ◦ γ̃) , (21.1.21)

and once more employing theorem 21.1.1, finally

(Y, f ◦ γ) 0,r∼ (Y, h ◦ γ) . (21.1.22)

Since this construction is valid for all (Y, γ) ∈ C∞0 (R, U∩W ), we conclude that (U, f) p,r∼ (W,h),
showing that p,r∼ is transitive, and thus an equivalence relation. ■

With the preceding result at hand, we can now define jets of functions on a manifold as equiv-
alence classes.
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Definition 21.1.6 (Jets of C∞(M,R)). Let M be a manifold and (U, f) ∈ C∞p (M,R) a
local function on a manifold M with p ∈ M . For r ∈ N, we define the r-jet jrpf of f at p
as the equivalence class

jrpf =
{
(V, g) ∈ C∞p (M,R)

∣∣∣ (U, f) p,r∼ (V, g)
}

(21.1.23)

of local functions (V, g) ∈ C∞p (M,R) having r-contact. The space of all r-jets is denoted

Jr(M,R) = {jrpf, p ∈M,f ∈ C∞p (M,R)} . (21.1.24)

As an example, we construct the first order jets.

Example 21.1.3 (First order jets of C∞(M,R)). Let M be a manifold, p ∈ M and f ∈
C∞p (M,R) a real local function on M . The 1-jet j1pf is the equivalence class of local
functions g ∈ C∞p (M,R) such that for all local curves γ ∈ C∞0 (R,M) with γ(0) = p we have
(f ◦ γ)(0) = (g ◦ γ)(0) and (f ◦ γ)′(0) = (g ◦ γ)′(0). The first condition obviously states that

f(p) = f(γ(0)) = g(γ(0)) = g(p) , (21.1.25)

since γ(0) = p is fixed by allowing only such curves γ which satisfy this condition. Further,
for any v ∈ TpM one can find such a curve γ with γ̇(0) = v. Therefore, the second condition
is satisfied if and only if df(p) = dg(p). In other words, each equivalence class is uniquely
described by the point p ∈ M , the function value f(p) ∈ R and the value df(p) ∈ T ∗pM of
its total derivative at p. Note that the latter is a covector df(p) ∈ T ∗M with τ̄(df(p)) = p,
so that there is a one-to-one correspondence between jets j1pf and pairs (α, u) ∈ T ∗M ×R,
where α ∈ T ∗M fixes the covector and u ∈ R the function value. Hence, we have a bijection
J1(M,R) ∼= T ∗M × R.

This shows that jets also generalize the concept of cotangent vectors. But the most powerful
property of jets is the fact that we can also extend the definition to jets of maps between
arbitrary manifolds. Now we can define contact as follows.

Definition 21.1.7 (Contact on C∞(M,N)). For manifolds M,N , two local maps
(U,φ), (V, ϑ) ∈ C∞p (M,N) with p ∈ M are said to have r-contact at p for r ∈ N, written
as (U,φ)

p,r∼ (V, ϑ), if and only if for all local curves (W,γ) ∈ C∞0 (R, U ∩ V ) with γ(0) = p
and all functions f ∈ C∞(N,R) holds:

(W, f ◦ φ ◦ γ) 0,r∼ (W, f ◦ ϑ ◦ γ) . (21.1.26)

Note that we have simply combined definitions 21.1.3 and 21.1.5, by composing with both a
curve and a real function. As one expects, this also yields an equivalence relation.

Theorem 21.1.4. The relation p,r∼ of definition 21.1.7 is an equivalence relation.

Proof. The proof combines two previous proofs. One follows the same steps as in the proof of
theorem 21.1.3, but with f and g replaced by f ◦φ and f ◦ ϑ, respectively, as done in the proof
of theorem 21.1.2. ■

Now the final definition is straightforward.
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Definition 21.1.8 (Jets of C∞(M,N)). Let M,N be manifolds and (U,φ) ∈ C∞p (M,N)
a local map with p ∈ M . For r ∈ N, we define the r-jet jrpφ of φ at p as the equivalence
class

jrpφ =
{
(V, ϑ) ∈ C∞p (M,N)

∣∣∣ (U,φ) p,r∼ (V, ϑ)
}

(21.1.27)

of local functions (V, ϑ) ∈ C∞p (M,N) having r-contact. The space of all r-jets is denoted

Jr(M,N) = {jrpφ, p ∈M,φ ∈ C∞p (M,N)} . (21.1.28)

We have seen in the previous examples that if M or N is given by the real line R, one can
identify the first order jet spaces J1(M,N) with either the tangent or cotangent bundle, up to
a direct factor R. For the general case, the geometric picture is less obvious, since it involves
properties of both manifolds M and N . We will shed more light on the geometry of these jet
spaces in section 21.3.

21.2 Contact, jets and germs

The use of local maps and the fact that we used only derivatives of such maps in a single point
already suggests that the jet jrpφ of a local map φ remains unchanged if we replace φ by another
local map which belongs to the same germ. We now show that this is indeed the case.

Theorem 21.2.1. Let M,N be manifolds and p ∈ M . If two local maps (U,φ), (V, ϑ) ∈
C∞p (M,N) have the same germ, [U,φ] = [V, ϑ], then (U,φ)

p,r∼ (V, ϑ) for all r ∈ N.

Proof. Let (Y, γ) ∈ C∞0 (R, U ∩ V ) be a local curve and f ∈ C∞(N,R) a function. Since (U,φ)
and (V, ϑ) have the same germ at p, there exists an open set W ⊆ U ∩ V containing p, such
that φ|W = ϑ|W . Now we can define another local curve (Z, γ̃) by

(Z, γ̃) = (γ−1(W ), γ|γ−1(W )) ∈ C∞0 (R,W ) . (21.2.1)

Now it is clear that
φ ◦ γ̃ = φ|W ◦ γ̃ = ϑ|W ◦ γ̃ = ϑ ◦ γ̃ , (21.2.2)

where the first and last equality hold since the image of γ̃ lies within W by construction, while
the central equality holds since φ|W = ϑ|W . Finally, we have

(Y, f ◦ φ ◦ γ) 0,r∼ (Z, f ◦ φ ◦ γ̃) , (Y, f ◦ ϑ ◦ γ) 0,r∼ (Z, f ◦ ϑ ◦ γ̃) , (21.2.3)

since γ and γ̃ agree on an open set Z containing 0 by definition. Combining these relations,
and using the fact that 0,r∼ is an equivalence relation, we find

(Y, f ◦ φ ◦ γ) 0,r∼ (Y, f ◦ ϑ ◦ γ) . (21.2.4)

Since this holds for all (Y, γ) ∈ C∞0 (R, U ∩ V ) and f ∈ C∞(N,R), it follows that (U,φ)
p,r∼

(V, ϑ). ■

This result is very useful, as it allows us to replace a local map with any other local map with
the same germ, if it only appears as a representative of a jet. In particular, note that a local
map (U,φ) has the same germ as any restriction (Ũ, φ|Ũ ) to an open subset Ũ ⊂ U , and vice
versa. This means that we may choose the domain of the representative at our convenience,
since this choice has no influence on the jet. We will make use of this freedom in the remainder
of this chapter.
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One may pose the question whether also the converse holds, i.e., whether a germ is uniquely
determined by a (possibly infinite) sequence of jets of a local function. However, this is not the
case, which can be seen as follows. Let M = N = R and p = 0, and consider

f : R → R

x 7→
{
0 for x = 0 ,

exp(−x−2) otherwise,
(21.2.5)

as well as
g : R → R

x 7→ 0
(21.2.6)

Clearly, we have f (r)(0) = g(r)(0) = 0 for all r ∈ N, and thus jr0f = jr0g. However, f and g do
not have the same germ, since f(x) ̸= 0 = g(x) for all x ̸= 0, and so there is no open set on
which they agree.

21.3 Jet manifolds

In the examples discussed in section 21.1 it appeared that the jet spaces would be vector spaces,
which may seem logical, since the Taylor polynomials we compared them to form vector spaces.
However, for general jet spaces this is not the case. This false intuition comes from the fact that
functions φ ∈ C∞(Rm,Rn) form a vector space, whose structure comes from the vector space
structure of Rn. For maps between general manifolds there is no such structure. Nevertheless,
the jet spaces carry a number of other structures, which we will explore in this section, mostly
following [KSM93]. The first structure is the following.

Theorem 21.3.1. Let M,N be manifolds of dimensions dimM = m,dimN = n and r ∈ N.
Then the jet space Jr(M,N) is a manifold of dimension m+ n

(
m+r
r

)
.

Proof. In order to equip the mentioned spaces with the structure of a manifold, we need to
construct atlases. For this purpose, we make use of the fact that M and N are manifolds, and
thus equipped with atlases. Let p ∈ M and consider a jet jrpφ. This jet uniquely determines a
point q = φ(p) ∈ N , which is independent of the representative φ of the jet. Let (U, ϕ) be a
chart of M containing p and (V, χ) be a chart of N containing q. Then we can express a curve
γ : R→M with γ(0) = p and a function f : N → R locally as

γϕ = ϕ ◦ γ|γ−1(U) , fχ = f ◦ χ−1 . (21.3.1)

In order to describe a jet jrpφ, it will be sufficient to consider these local descriptions, since the
jet depends only on function values and derivatives at the point p, which are given by

jr0(f ◦ φ ◦ γ) = jr0(fχ ◦ χ ◦ φ ◦ ϕ−1 ◦ γϕ) . (21.3.2)

Here χ ◦ φ ◦ ϕ−1 is a map between open subsets of Rm and Rn, respectively. Recall that the
jet given above is defined via the derivatives up to order r. Using the chain rule, it follows that
these are fully determined by the partial derivatives of γϕ, fχ and χ ◦ φ ◦ ϕ−1 up to order r at
the respective points. Hence, any functions φ, ϑ :M → N for which χ ◦φ ◦ ϕ−1 and χ ◦ ϑ ◦ ϕ−1
have the same partial derivatives at ϕ(p) will define the same jet. Conversely, if any of the
aforementioned derivatives differs, we can find some function f and curve γ such that

jr0(f ◦ φ ◦ γ) ̸= jr0(f ◦ ϑ ◦ γ) . (21.3.3)

Hence, we conclude that the jet jrpφ is uniquely determined by the coordinates ϕ(p) of the point
p and the partial derivatives of χ ◦ φ ◦ ϕ−1 up to order r at ϕ(p), and vice versa jrpφ uniquely
determines these values. We can therefore use the aforementioned data as coordinates for a
chart (W,ψ), where

W = {jrpφ ∈ Jr(M,N)|p ∈ U ∧ φ(p) ∈ V } (21.3.4)
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and ψ : W → Rk assigns to jrpφ the values of the aforementioned derivatives. We still need
to determine the value k, which will become the dimension of the manifold. First note that
ϕ(p) ∈ Rm, giving m coordinates. We are thus left with the partial derivatives of χ ◦ φ ◦ ϕ−1.
Here we can consider each of the n coordinates assigned by χ on its own. Recalling that we
consider only smooth maps, their partial derivatives commute, and so there are

(
m+r′−1

r′
)

partial
derivatives with respect to m variables, such that their total order equals r′. For the jet jrpφ,
we need the partial derivatives from zeroth order (which specify the point φ(p)) up to order r.
For each coordinate on N , we thus have

r∑
r′=0

(
m+ r′ − 1

r′

)
=

(
m+ r

r

)
(21.3.5)

partial derivatives to consider, and so the total number of coordinates on Jr(M,N) is

k = m+ n

(
m+ r

r

)
. (21.3.6)

Keeping in mind that M and N are covered by charts, we can perform the construction detailed
above for any jet jrpφ, and thus construct charts which will cover Jr(M,N). Finally, for any
other pair (U ′, ϕ′) and (V ′, χ′) of charts, which are compatible with (U, ϕ) and (V, χ), respec-
tively, so that their transition functions are smooth bijections, since we consider only smooth
manifolds, the partial derivatives of χ ◦ φ ◦ ϕ−1 and χ′ ◦ φ ◦ ϕ′−1 are bijectively and smoothly
related to each other via the derivatives of the aforementioned transition function. Hence, the
charts we obtain via the construction detailed above are compatible. We have thus constructed
an atlas on Jr(M,N), and so equipped it with the structure of a smooth manifold. ■

We can illustrate the construction given in the proof above by explicitly constructing the coor-
dinates on the given jet manifolds. Let (xα) be coordinates on M and (ya) coordinates on N ,
with Greek indices in the range 1, . . . ,dimM and Latin indices in the range 1, . . . ,dimN . In
these coordinates a map φ : M → N can be expressed by the coordinate functions y(x). The
r-jet of φ is then given by those maps ϑ :M → N which have the same Taylor polynomial∑

λ1+...+λm≤r

(x1 − x10)λ1 · . . . · (xm − xm0 )λm

λ1! · . . . · λm!

∂λ1+...+λm

(∂x1)λ1 · · · (∂xm)λm
ya(x0) (21.3.7)

up to order r around a chosen point p with coordinates xα0 . A r-jet jrpφ is thus uniquely
determined by the coordinates (xα) of the base point, the values of the coordinate functions
ya(x0) and their derivatives of order at most r at x0. We will use these values as coordinates
on Jr(M,N). To simplify the notation, we define a multiindex Λ = (λ1, . . . , λm) to be an
m-tuple of natural numbers λα ∈ N and denote their sum by |Λ|. For the |Λ|’th order derivative
appearing in the Taylor polynomial we simply write ∂Λya(x0). In this notation, a r-jet jrpφ is
uniquely determined by (xα) and the values ∂Λya(x0) for 0 ≤ |Λ| ≤ r. This allows us to use
them as coordinates (xα, yaΛ = ∂Λy

a(x0)) on Jr(M,N).

Note that some authors also use the notation (xα, ya, yaΛ) for coordinates on Jr(M,N) instead,
where 1 ≤ |Λ| ≤ r. In other words, the coordinates ya(0,...,0) are instead denoted ya. This is of
course equivalent to our choice of coordinates.

Once again it should be noted that despite their nice coordinate form, which maps jets into
a vector space of polynomials, there is no vector space structure on jets, i.e., there is no way
to treat them as vectors. It is only their coordinate representation we used here that has this
structure, but it is not defined on the jets themselves without using coordinates, and is not
independent of the choice of coordinates.

Example 21.3.1. Let dimM = 2 and dimN = 1. We use coordinates (x1, x2) on M and the
coordinate y on N in order to construct coordinates on J3(M,N). Here we need to consider
the multiindices

Λ ∈ {(0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2), (3, 0), (2, 1), (1, 2), (0, 3)} . (21.3.8)
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On J3(M,N), we thus have coordinates (x1, x2, yΛ) with Λ taking the values above, so that
dim J3(M,N) = 12. This agrees with the dimension formula above.

We can then continue by exploring the general structure of jet manifolds for a given pair M,N
of manifolds, as well as the relations between them. We start with the most basic jet space,
which is of zeroth order. Its structure is fairly simple.

Theorem 21.3.2. For manifolds M,N , the zeroth-order jet space J0(M,N) is canonically
diffeomorphic to M ×N .

Proof. Let p ∈M and φ ∈ C∞p (M,N). Its zeroth-order jet j0p is the equivalence class

j0pφ =
{
ϑ ∈ C∞p (M,N)

∣∣∣φ p,0∼ ϑ
}
. (21.3.9)

As discussed in the proof of theorem 21.3.1, this jet is uniquely defined by p ∈M and φ(p) ∈ N ,
hence by (p, φ(p)) ∈ M × N and vice versa. Further, given charts (U, ϕ) of M and (V, χ) of
N with p ∈ U and φ(p) ∈ V , one finds that the chart (W,ψ) of J0(M,N) constructed in the
proof of theorem 21.3.1 agrees with that of the product manifold M × N , showing that these
manifolds are diffeomorphic. ■

Next, we aim to study higher order jet spaces. To approach their structure, we introduce the
following definition.

Definition 21.3.1 (Jet projection). Let M,N be manifolds and k, r ∈ N with r > k.
Then we call πr,k : Jr(M,N)→ Jk(M,N), jrpφ 7→ jkpφ the jet projection from Jr(M,N) to
Jk(M,N).

It should be clear that the jet projections πr,k are well-defined, since a r-jet uniquely determines
a k-jet for r > k, which is obtained by “forgetting” the terms in the Taylor polynomial whose
order is larger than k. Since both Jr(M,N) and Jk(M,N) are manifolds, one may expect that
they are smooth maps. We will show this next, among some of its properties.

Theorem 21.3.3. The jet projections πr,k are surjective submersions.

Proof. Let p ∈M , φ ∈ C∞p (M,N) and consider charts (U, ϕ) of M and (V, χ) of N with p ∈ U
and φ(p) ∈ V , as well as the induced charts (Wr, ψr) of Jr(M,N) and (Wk, ψk) of Jk(M,N),
with jrpφ ∈Wr and jkpφ = πr,k(j

r
pφ) ∈Wk. In these charts, the projection πr,k is represented by

a map Wr →Wk which omits those coordinates which correspond to derivatives of order higher
than k. This map is smooth, and hence also πr,k is smooth. Further, it is a submersion, and so
πr,k is a submersion. Finally, for all jets jkpφ ∈ Jk(M,N) there exists at least one representative
φ ∈ C∞p (M,N), and thus a jet jrpφ ∈ Jr(M,N) with jkpφ = πr,k(j

r
pφ), showing that πr,k is

surjective. ■

One may thus already suspect that these maps define the projections of fiber bundles. Before
we can show this, we need to study the local and global structure of jet manifolds in more detail.
For this purpose, we first make use of the fact that J0(M,N) ∼=M ×N , in order to define the
following maps.
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Definition 21.3.2 (Source and target projections). For every jet manifold Jr(M,N) we
call

pr1 ◦πr,0 : Jr(M,N) → M
jrpφ 7→ p

(21.3.10)

the source projection and

pr2 ◦πr,0 : Jr(M,N) → N
jrpφ 7→ φ(p)

(21.3.11)

the target projection.

Hence, we have the following “tower” of surjective submersions:

Jr(M,N)

πr,r−1

��
Jr−1(M,N)

��
J1(M,N)

π1,0

��
J0(M,N) ∼=M ×N

pr1

ww

pr2

''
M N

(21.3.12)

These allow us to define the following spaces, where we make use of the relation J0(M,N) ∼=
M ×N to canonically identify elements of these manifolds.

Definition 21.3.3 (Jet spaces). For every jet manifold Jr(M,N), p ∈ M and q ∈ N we
define the jet spaces:

Jrp (M,N) = π−1r,0 (pr
−1
1 (p)) , (21.3.13a)

Jr(M,N)q = π−1r,0 (pr
−1
2 (q)) , (21.3.13b)

Jrp (M,N)q = π−1r,0 (p, q) = Jrp (M,N) ∩ Jr(M,N)q . (21.3.13c)

In order for these spaces to become the fibers of a fiber bundle, we need to show that they are
diffeomorphic to a typical fiber manifold. To show this, let us first state the following property.

Theorem 21.3.4. The jet spaces Jrp (M,N), Jr(M,N)q and Jrp (M,N)q are embedded subman-
ifolds of Jr(M,N).

Proof. This follows from theorem 13.2.2 and the fact that the maps πr,0, pr1 ◦πr,0 and pr2 ◦πr,0
are submersions. ■

Next, we will show that these manifolds are “similar”, i.e., diffeomorphic, for different choices
of the points p and q. As we have already seen in the proof of theorem 21.3.1, a jet jrpφ is
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fully determined by the point p as well as the value and finitely many partial derivatives of the
coordinate expression for φ at the point p, which is determined by the behavior of the function φ
in an arbitrarily small neighborhood of the point p, where it takes values in some neighborhood
of φ(p) = q, which can also be chosen arbitrarily small. One may therefore conclude that the
manifold Jrp (M,N)q is independent of the global structure of M and N , while for Jrp (M,N)
and Jr(M,N)q the global structure of N enters through the freedom to choose the point φ(p)
in the former case, and that of M in the freedom to choose the base point in the latter case.
We now show this explicitly.

Theorem 21.3.5. Let M,N be manifolds, U ⊆ M and V ⊆ N open sets. Then the following
manifolds are diffeomorphic:

1. Jrp (U,N) ∼= Jrp (M,N) for all p ∈ U ,

2. Jr(M,V )q ∼= Jr(M,N)q for all q ∈ V ,

3. Jrp (U, V )q ∼= Jrp (M,N)q for all p ∈ U and q ∈ V .

Proof. 1. First note that every local map (Uφ, φ) ∈ C∞p (U,N) is also an element of C∞p (M,N),
since Uφ ⊆ U ⊆ M . Hence, there exists a canonical inclusion C∞p (U,N) ↪→ C∞p (M,N).
Conversely, for every local map (Mφ, φ) ∈ C∞p (M,N) there exists a local map (Mφ ∩
U,φ|Mφ∩U ) ∈ C∞p (U,N), since U is open; restricting the domain to U thus defines an
assignment C∞p (M,N) → C∞p (U,N). Recall from theorem 21.2.1 that the jet depends
only on the germ. Clearly, (Mφ, φ) and (Mφ ∩U,φ|Mφ∩U ) have the same germ at p, since
they agree on the open set Mφ ∩ U , and so they define the same jet. Hence, there exists
a bijection between Jrp (U,N) and Jrp (M,N).

To see that this bijection is a diffeomorphism, pick a chart of U containing p, and con-
struct a chart of Jrp (U,N) following the procedure outlined in the proof of theorem 21.3.1.
Keeping in mind that a chart of U is also a chart of M ⊇ U , one can construct a chart of
Jrp (M,N) from the same chart. Then the bijection given above relates these two charts,
and is thus a diffeomorphism.

2. Let p ∈ M and consider a local map (Uφ, φ) ∈ C∞p (M,V ) with φ(p) = q. Since
V ⊂ N , this is also an element of C∞p (M,N), and so there is a canonical inclusion
C∞p (M,V ) ↪→ C∞p (M,N). Conversely, every element (Uφ, φ) ∈ C∞p (M,N) can be re-
stricted to (Uφ ∩ φ−1(V ), φ|Uφ∩φ−1(V )) ∈ C∞p (M,V ), since V and hence φ−1(V ) is open.
One then proceeds as in the proof of the first proposition, using the fact that restrictions
have the same germ and therefore define the same jet.

3. The proof proceeds again as for the previous cases. Let (Uφ, φ) ∈ C∞p (U, V ) with φ(p) = q
be a local map. This map is also en element of C∞p (M,N). Conversely, every element
(Uφ, φ) ∈ C∞p (M,N) can be restricted to (Uφ∩U ∩φ−1(V ), φ|Uφ∩U∩φ−1(V )) ∈ C∞p (U, V ).
The remainder of the proof is analogous as before. ■

Recall that locally every manifold is diffeomorphic to an open subset of Euclidean space. Since
the jets depends only on this local structure, one may thus further conclude that once we
fix a point p ∈ M or q ∈ N , or both, the corresponding jet space does not depend on the
containing manifold at all, except for its dimension, or on the particular choice of the point, up
to diffeomorphism. This will be shown next.

Theorem 21.3.6. Let M,N be manifolds with m = dimM and n = dimN . Then the following
manifolds are diffeomorphic:

1. Jrp (M,N) ∼= Jr0 (Rm, N) for all p ∈M ,

2. Jr(M,N)q ∼= Jr(M,Rn)0 for all q ∈ N ,

3. Jrp (M,N)q ∼= Jr0 (Rm,Rn)0 for all p ∈M and q ∈ N .
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Proof. 1. Let (U, ϕ) be a chart of M with p ∈ U and ϕ(p) = 0 ∈ Rm. By theorem 21.3.5,
we have Jrp (M,N) ∼= Jrp (U,N), and so we will work with the latter instead of the
former. For any local map (Uφ, φ) ∈ C∞p (U,N) there exists a local map (ϕ(Uφ), φ ◦
ϕ−1) ∈ C∞0 (ϕ(U), N), and vice versa. This establishes a bijection between C∞p (U,N) and
C∞0 (ϕ(U), N). Now recall that two local maps (Uφ, φ), (Uϑ, ϑ) ∈ C∞p (U,N) define the
same r-jet at p if and only if for all local curves (W,γ) ∈ C∞0 (R, U) with γ(0) = p and all
functions f ∈ C∞(N,R) holds

(W, f ◦ φ ◦ γ) 0,r∼ (W, f ◦ ϑ ◦ γ) . (21.3.14)

Using the fact that for each such local curve there exists a local curve (W,ϕ ◦ γ) ∈
C∞0 (R, ϕ(U)) and vice versa, as well as

f ◦ φ ◦ γ = f ◦ φ ◦ ϕ−1 ◦ ϕ ◦ γ , f ◦ ϑ ◦ γ = f ◦ ϑ ◦ ϕ−1 ◦ ϕ ◦ γ , (21.3.15)

we see that
(Uφ, φ)

p,r∼ (Uϑ, ϑ) (21.3.16)

if and only if
(ϕ(Uφ), φ ◦ ϕ−1) p,r∼ (ϕ(Uϑ), ϑ ◦ ϕ−1) . (21.3.17)

Hence, we have a bijection between Jrp (U,N) and Jr0 (ϕ(U), N). This bijection is a dif-
feomorphism, since it relates the charts constructed from (U, ϕ) and (ϕ(U), idRm) on
the respective jet bundles. Finally, using again theorem 21.3.5 we have Jr0 (ϕ(U), N) ∼=
Jr0 (Rm, N), and thus Jrp (M,N) ∼= Jr0 (Rm, N).

2. Let (V, χ) be a chart of N with q ∈ V and χ(q) = 0 ∈ Rn. By theorem 21.3.5, we
have Jr(M,N)q ∼= Jrq (M,V ), and so we will work with the latter instead of the former.
For any local map (Uφ, φ) ∈ C∞p (M,V ), where p ∈ M and φ(p) = q, there exists a
local map (Uφ, χ ◦ φ) ∈ C∞p (M,χ(V )), and vice versa. This establishes a bijection be-
tween C∞p (M,V ) and C∞p (M,χ(V )). Now recall that two local maps (Uφ, φ), (Uϑ, ϑ) ∈
C∞p (M,V ) with φ(p) = ϑ(p) = q define the same r-jet at p if and only if for all local
curves (W,γ) ∈ C∞0 (R,M) with γ(0) = p and all functions f ∈ C∞(V,R) holds

(W, f ◦ φ ◦ γ) 0,r∼ (W, f ◦ ϑ ◦ γ) . (21.3.18)

Using the fact that for each such function there exists a function f ◦ χ−1 ∈ C∞(χ(V ),R)
and vice versa, as well as

f ◦ φ ◦ γ = f ◦ χ−1 ◦ χ ◦ φ ◦ γ , f ◦ ϑ ◦ γ = f ◦ χ−1 ◦ χ ◦ ϑ ◦ γ , (21.3.19)

we see that
(Uφ, φ)

p,r∼ (Uϑ, ϑ) (21.3.20)

if and only if
(Uφ, χ ◦ φ) p,r∼ (Uϑ, χ ◦ ϑ) . (21.3.21)

Hence, we have a bijection between Jr(M,V )q and Jr(M,χ(V ))0. This bijection is a
diffeomorphism, since it relates the charts constructed from (V, χ) and (χ(V ), idRn) on
the respective jet bundles. Finally, using again theorem 21.3.5 we have Jr(M,χ(V ))0 ∼=
Jr(M,Rn)0, and thus Jr(M,N)q ∼= Jr(M,Rn)q.

3. For the third proposition, we can combine the proofs of the first two propositions. Let
(U, ϕ) be a chart of M with p ∈ U and ϕ(p) = 0 ∈ Rm, as well as (V, χ) a chart of N with
q ∈ V and χ(q) = 0 ∈ Rn. By theorem 21.3.5, we have Jrp (M,N)q ∼= Jrp (U, V )q, and so
we will work with the latter instead of the former. For any local map (Uφ, φ) ∈ C∞p (U, V )
there exists a local map (ϕ(Uφ), χ ◦ φ ◦ ϕ−1) ∈ C∞0 (ϕ(U), χ(V )), and vice versa. This
establishes a bijection between C∞p (U, V ) and C∞0 (ϕ(U), χ(V )). Now recall that two local
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maps (Uφ, φ), (Uϑ, ϑ) ∈ C∞p (U, V ) define the same r-jet at p if and only if for all local
curves (W,γ) ∈ C∞0 (R, U) with γ(0) = p and all functions f ∈ C∞(V,R) holds

(W, f ◦ φ ◦ γ) 0,r∼ (W, f ◦ ϑ ◦ γ) . (21.3.22)

Using the fact that for each such local curve there exists a local curve (W,ϕ ◦ γ) ∈
C∞0 (R, ϕ(U)) and vice versa, a function f ◦χ−1 ∈ C∞(χ(V ),R) and vice versa, as well as

f ◦φ ◦γ = f ◦χ−1 ◦χ ◦φ ◦ϕ−1 ◦ϕ ◦γ , f ◦ϑ ◦γ = f ◦χ−1 ◦χ ◦ϑ ◦ϕ−1 ◦ϕ ◦γ , (21.3.23)

we see that
(Uφ, φ)

p,r∼ (Uϑ, ϑ) (21.3.24)

if and only if
(ϕ(Uφ), χ ◦ φ ◦ ϕ−1) p,r∼ (ϕ(Uϑ), χ ◦ ϑ ◦ ϕ−1) . (21.3.25)

Hence, we have a bijection between Jrp (U, V )q and Jr0 (ϕ(U), χ(V ))0. This bijection is a
diffeomorphism, since it relates the charts constructed from (U, ϕ) and (V, χ) as well as
(ϕ(U), idRm) and (χ(V ), idRn) on the respective jet bundles. Finally, using again theo-
rem 21.3.5 we have Jr0 (ϕ(U), χ(V ))0 ∼= Jr0 (Rm,Rn)0, and thus Jrp (M,N)0 ∼= Jr0 (Rm,R)0.

■

Note that the diffeomorphisms we found above depend on the choice of a chart of M , and so
there is no canonical diffeomorphism. This is reminiscent of the structure of a fiber bundle,
where each fiber is diffeomorphic to a given manifold, but the choice of the diffeomorphism
is related to the local trivializations. We now come to the crucial result, showing that the
aforementioned spaces are indeed fibers of a fiber bundle with total space Jr(M,N).

Theorem 21.3.7. Let M,N be manifolds with m = dimM and n = dimN . Then the following
tuples are fiber bundles:

1. (Jr(M,N),M,
←
π r, J

r
0 (Rm, N)), where

←
π r = pr1 ◦πr,0 : Jr(M,N)→M, jrpφ 7→ p.

2. (Jr(M,N), N,
→
π r, J

r(M,Rn)0), where
→
π r = pr2 ◦πr,0 : Jr(M,N)→ N, jrpφ 7→ φ(p).

3. (Jr(M,N),M × N,↔π r, Jr0 (Rm,Rn)0), where
↔
π r = πr,0 : Jr(M,N) → J0(M,N) ∼= M ×

N, jrpφ 7→ (p, φ(p)).

Proof. ▶. . .◀ ■

It is important to note that these fiber bundles are in general not trivial. Further, also the
following holds.

Theorem 21.3.8. The triple (Jr(M,N), Jk(M,N), πr,k), where M,N are manifolds and k, r ∈
N with r > k, is a smooth fiber bundle.

Proof. ▶. . .◀ ■

21.4 Pullback and pushforward of jets

From their definition, we know that jets are equivalence classes of (local) maps. Further, we
know that the composition of (smooth) maps is again a (smooth) maps. One may thus wonder
whether the operation of map composition is compatible with the structure of equivalence classes
defined by jets. We start by showing the following.
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Theorem 21.4.1. Let M,M ′, N,N ′ be manifolds, p ∈M , q ∈ N , p′ ∈M ′, q′ ∈ N ′, φ :M ′ →
M and ϑ : N → N ′ maps such that φ(p′) = p and ϑ(q) = q′ and r ∈ N. If (U,ψ), (U, ψ̃) ∈
C∞p (M,N) are local maps with (U,ψ)

p,r∼ (U, ψ̃), then the following hold:

1. (U, ϑ ◦ ψ) p,r∼ (U, ϑ ◦ ψ̃),

2. (φ−1(U), ψ ◦ φ) p
′,r∼ (φ−1(U), ψ̃ ◦ φ),

3. (φ−1(U), ϑ ◦ ψ ◦ φ) p
′,r∼ (φ−1(U), ϑ ◦ ψ̃ ◦ φ).

Proof. ▶. . .◀ ■

We thus see that composition with maps preserves the equivalence class structure defined by
jets. Recalling that jets form the elements of a manifold, one may thus construct the following.

Theorem 21.4.2. Let M,M ′, N,N ′ be manifolds, p ∈ M , p′ ∈ M ′„ φ : M ′ → M and ϑ :
N → N ′ maps such that φ(p′) = p and r ∈ N. Then there exist smooth maps defined by the
pushforward

ϑ∗ : Jr(M,N) → Jr(M,N ′)
jrpψ 7→ jrp(ϑ ◦ ψ)

(21.4.1)

and the pullback
φ∗ : Jrp (M,N) → Jrp′(M

′, N)

jrpψ 7→ jrp′(ψ ◦ φ)
(21.4.2)

such that the diagram

Jrp (M,N)
ϑ∗ //

φ∗

��

Jrp (M,N ′)

φ∗

��
Jrp′(M

′, N)
ϑ∗
// Jrp′(M

′, N ′)

(21.4.3)

commutes.

Proof. ▶. . .◀ ■

It is important to note that we have fixed the source p, p′ of the jets appearing in the manifolds
above for the pullback φ∗. This is due to the fact that φ may not be surjective, so that one
can only pull back jets at points p ∈ M which lie in the image of φ and not all of Jr(M,N).
Further, φ may not be injective, and so one needs to specify the point p′ ∈ M ′ as well. This
restriction does not apply for the pushforward ϑ∗, since the map ϑ possesses a unique image
for each q ∈ N , so that every jet in Jr(M,N) can uniquely be pushed to Jr(M,N).

Note that the jet manifolds given above form the total spaces of several fiber bundles, as we
have seen in theorems 21.3.7 and 21.3.8. Having a map ϑ∗ between them, the question arises
whether this map preserves the fiber bundle structure, and thus defines fiber bundle morphisms,
and if this is the case, which maps they cover. This can be shown as follows.

Theorem 21.4.3. For each of the bundles given in theorems 21.3.7 and 21.3.8, the pushforward
ϑ∗ : Jr(M,N) → Jr(M,N ′) along a map ϑ : N → N ′ is a bundle morphism, covering the
following maps:

1. from (Jr(M,N), Jk(M,N), πr,k) to (Jr(M,N ′), Jk(M,N ′), π′r,k) covering ϑ∗ : Jk(M,N)→
Jk(M,N ′),

2. from (Jr(M,N),M,
←
π r) to (Jr(M,N ′),M,

←
π
′
r) covering idM :M →M ,
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3. from (Jr(M,N), N,
→
π r) to (Jr(M,N ′), N ′,

→
π
′
r) covering ϑ : N → N ′,

4. from (Jr(M,N),M × N,↔π r) to (Jr(M,N ′),M × N ′,↔π ′r) covering (idM , ϑ) : M × N →
M ×N ′.

Proof. Due to the fact that all bundle maps of the fiber bundles above are defined through the
bundle maps πr,k and π′r,k as well as the projections of M×N and M×N ′ onto their respective
factors, it is sufficient to show that the following diagram commutes:

Jr(M,N)
ϑ∗ //

πr,k

��

Jr(M,N ′)

π′
r,k

��
Jk(M,N ′)

ϑ∗ //

πk,0

��

Jk(M,N ′)

π′
k,0

��
M ×N (idM ,ϑ) //

pr1

%%
pr2

��

M ×N ′
pr1

yy
pr2

��

M

N
ϑ // N ′

(21.4.4)

▶. . .◀ ■

21.5 Jet groups

In the following section we will show how the notion of jets leads to an interesting class of Lie
groups, which play an important role in the construction of certain bundles, which allow lifts of
diffeomorphisms, and which generalize the notion of pullback we discussed in section 11.3. We
will encounter such bundles in section 22.5. Here we mostly follow [KSM93].

In order to construct a group of jets, we first need to define a composition of jets. The crucial
observation that allows this construction is the following.

Theorem 21.5.1. Let M,N,O be manifolds, p ∈ M , q ∈ N and r ∈ N. If two pairs
(U,φ), (Ũ, φ̃) ∈ C∞p (M,N) and (V, ϑ), (Ṽ, ϑ̃) ∈ C∞q (N,O) with q = φ(p) = φ̃(p) satisfy

(U,φ)
p,r∼ (Ũ, φ̃) , (V, ϑ)

q,r∼ (Ṽ, ϑ̃) , (21.5.1)

then
(U ∩ φ−1(V ), ϑ ◦ φ|U∩φ−1(V ))

p,r∼ (Ũ ∩ φ̃−1(Ṽ ), ϑ̃ ◦ φ̃Ũ∩φ̃−1(Ṽ )) . (21.5.2)

Proof. Let (W,χ) be a chart of N with q ∈W . Since φ and φ̃ are smooth and thus continuous,
φ−1(W ) and φ̃−1 are open, and we can consider the local maps (U ∩ φ−1(W ), φ|U∩φ−1(W )) ∈
C∞p (M,N) and (Ũ ∩ φ̃−1(W ), φ̃|Ũ∩φ̃−1(W )) ∈ C∞p (M,N). Since the latter are defined by re-
striction, they have the same germ as the former, so that

(U,φ)
p,r∼ (U ∩ φ−1(W ), φ|U∩φ−1(W )) , (Ũ, φ̃)

p,r∼ (Ũ ∩ φ̃−1(W ), φ̃|Ũ∩φ̃−1(W )) (21.5.3)

by theorem 21.2.1, and thus also

(U ∩ φ−1(W ), φ|U∩φ−1(W ))
p,r∼ (Ũ ∩ φ̃−1(W ), φ̃|Ũ∩φ̃−1(W )) . (21.5.4)
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Similarly, for (V ∩W,ϑ|V ∩W ) ∈ C∞q (N,O) and (Ṽ ∩W, ϑ̃Ṽ ∩W ) ∈ C∞q (N,O) we have

(V, ϑ)
p,r∼ (V ∩W,ϑ|V ∩W ) , (Ṽ, ϑ̃)

p,r∼ (Ṽ ∩W, ϑ̃Ṽ ∩W ) (21.5.5)

by theorem 21.2.1, and thus also

(V ∩W,ϑ|V ∩W )
p,r∼ (Ṽ ∩W, ϑ̃Ṽ ∩W ) . (21.5.6)

Now consider a local curve

γ ∈ C∞0 (R, U ∩ Ũ ∩ φ−1(V ) ∩ φ̃−1(Ṽ ) ∩ φ−1(W ) ∩ φ̃−1(W )) , (21.5.7)

as well as a function f ∈ C∞(O). Then we have

dr

dtr
(f ◦ ϑ ◦ φ ◦ γ)(t)

∣∣∣∣
t=0

=
dr

dtr
(f ◦ ϑ ◦ χ−1 ◦ χ ◦ φ ◦ γ)(t)

∣∣∣∣
t=0

, (21.5.8a)

dr

dtr
(f ◦ ϑ̃ ◦ φ̃ ◦ γ)(t)

∣∣∣∣
t=0

=
dr

dtr
(f ◦ ϑ̃ ◦ χ−1 ◦ χ ◦ φ̃ ◦ γ)(t)

∣∣∣∣
t=0

, (21.5.8b)

where we have omitted the restrictions of the domains of the appearing functions, since these
are only necessary for the definition of γ to guarantee that it lies entirely in the domain of all
appearing functions, but do not change the value of the derivative given above. We see that on
the right hand side appear compositions of local functions g ∈ C∞0 (R,Rn) and h ∈ C∞χ(q)(Rn,R),
where n = dimN , and for these we can write the derivative as

dr

dtr
(h ◦ g)(t)

∣∣∣∣
t=0

= ▶ . . . ◀ (21.5.9)

Note that these depend only on derivatives of g and h up to order r, and thus their r-jets. As
shown in theorem 21.3.6, from the assumption that φ and φ̃ define the same r-jet at p, the
same follows also for χ ◦ φ and χ ◦ φ̃. Analogously, one concludes from ϑ and ϑ̃ to ϑ ◦ χ−1 and
ϑ̃ ◦ χ−1. Hence, also their compositions define the same r-jet. ■

We see that if φ and φ̃, as well as ϑ and ϑ̃, have r-contact, then also their compositions ϑ ◦ φ
and ϑ̃◦ φ̃ have r-contact. In other words, the jets jrp(ϑ◦φ) and jrp(ϑ̃◦ φ̃) agree if jrpφ = jrpφ̃ and
jrqϑ = jrq ϑ̃. Hence, jrp(ϑ ◦ φ) depends only on the jets jrpφ and jrqϑ, but not on the particular
choice of representatives φ and ϑ. Therefore, the following definition is valid.

Definition 21.5.1 (Composition of jets). Let M,N,O be manifolds, u ∈M , v ∈ N , w ∈ O
and r ∈ N. For jets jruφ ∈ Jru(M,N)v and jrvϑ ∈ Jrv (N,O)w we define the composition
jrvϑ ◦ jruφ = jru(ϑ ◦ φ).

In order to define a group structure, we need to check that this operation is associative, which
we will do next.

Theorem 21.5.2. For r ∈ N, manifolds M,N,O, P , points u ∈M , v ∈ N , w ∈ O, x ∈ P and
jets jruφ ∈ Jru(M,N)v, jrvϑ ∈ Jrv (N,O)w and jrwψ ∈ Jrw(O,P )x holds:

(jrwψ ◦ jrvϑ) ◦ jruφ = jrwψ ◦ (jrvϑ ◦ jruφ) . (21.5.10)

Proof. By definition, one has

(jrwψ ◦ jrvϑ) ◦ jruφ = jrv(ψ ◦ ϑ) ◦ jruφ
= jru((ψ ◦ ϑ) ◦ φ)
= jru(ψ ◦ (ϑ ◦ φ))
= jrwψ ◦ jru(ϑ ◦ φ)
= jrwψ ◦ (jrvϑ ◦ jruφ)

(21.5.11)

using the associativity of map composition. ■
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Further, we need a neutral element. Since jets are defined via map composition, and the neutral
element of map composition is the identity map, the following result is straightforward.

Theorem 21.5.3. Let r ∈ N and M,N be manifolds with p ∈ M and q ∈ N . For any jet
jrpφ ∈ Jrp (M,N)q holds

jrq idN ◦ jrpφ = jrpφ = jrpφ ◦ jrp idM . (21.5.12)

Proof. From the definition immediately follows

jrq idN ◦ jrpφ = jrp(idN ◦ φ) = jrpφ (21.5.13)

and
jrpφ ◦ jrp idM = jrp(φ ◦ idM ) = jrpφ . (21.5.14)

■

Finally, we also need the notion of an inverse. It turns out that for the composition of jets, not
every element possesses an inverse, and so we will have to restrict the jets we consider to those
which possess an inverse. We define them as follows.

Definition 21.5.2 (Invertible jet). Let M,N be manifolds, p ∈ M , q ∈ N and r ∈ N. A
jet jrpφ ∈ Jrp (M,N)q is called invertible if there exists a jet jrq φ̃ ∈ Jrq (N,M)p such that
jrq φ̃ ◦ jrpφ = jrp(idM ) and jrpφ ◦ jrq φ̃ = jrq (idN ). The space of all invertible elements in
Jr(M,N) is denoted J̃r(M,N).

In the following, we will determine a few criteria for jets to be invertible. The most simple case
is trivial.

Theorem 21.5.4. For any manifolds M,N , every zeroth order jet j0pφ ∈ J0(M,N) is invert-
ible.

Proof. Recall that a zeroth-order jet j0pφ ∈ J0(M,N) ∼= M × N is simply given by the pair
(p, q) = (p, φ(p)) ∈ M × N . Let φ̃ : N → M,x 7→ p be the constant map. Then φ̃(φ(p)) =
p = idM (p), and thus j0q φ̃ ◦ j0pφ = j0p idM , as well as φ(φ̃(q)) = q = idN (q), and so j0pφ ◦ j0q φ̃ =
j0q idN . ■

We now come to more interesting cases. Recalling that jets essentially generalize partial deriva-
tives, we can use the properties of the derivatives of inverse functions to show the following.

Theorem 21.5.5. For any manifolds M,N , every first order jet j1pφ ∈ J1(M,N) is invertible if
and only if the rank of φ at p equals dimM = dimN , i.e., if and only if φ∗|TpM : TpM → Tφ(p)N
is bijective.

Proof. Let q = φ(p) ∈ N . If j1pφ is invertible, then there exists φ̃ ∈ C∞q (N,M) such that
j1q φ̃ ◦ j1pφ = j1p(idM ) and j1pφ ◦ j1q φ̃ = j1q (idN ). This is equivalent to stating that φ̃(q) = p and
that for all local curves γ ∈ C∞0 (R,M) with γ(0) = p and functions f ∈ C∞(N,R) holds

(df ◦ γ̇)(0) = (f ◦ γ)′(0)
= (f ◦ idM ◦ γ)′(0)
= (f ◦ φ̃ ◦ φ ◦ γ)′(0)
= (df ◦ φ̃∗ ◦ φ∗ ◦ γ̇)(0) ,

(21.5.15)
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while for all local curves γ̃ ∈ C∞0 (R, N) with γ̃(0) = q and functions f̃ ∈ C∞(M,R) holds

(df̃ ◦ ˙̃γ)(0) = (f̃ ◦ γ̃)′(0)
= (f̃ ◦ idN ◦ γ̃)′(0)
= (f̃ ◦ φ̃ ◦ φ ◦ γ̃)′(0)
= (df̃ ◦ φ̃∗ ◦ φ∗ ◦ ˙̃γ)(0) .

(21.5.16)

Since the tangent vectors γ̇(0) of all such curves span TpM , while the cotangent vectors df(p)
span T ∗pM , the former is the case if and only if φ̃∗ ◦ φ∗|TpM = idTpM . Likewise, the latter is
the case if and only if φ∗ ◦ φ̃∗|TpN = idTpN . Hence, φ̃∗|TpN is the inverse of φ∗|TpM , and so the
latter is invertible.

To show the converse, assume that φ∗|TpM is invertible. To construct φ̃, consider charts (U, ϕ)
of M with p ∈ U and (V, χ) of N with q ∈ V . From the assumption follows that the Jacobian
J = D(χ ◦ φ ◦ ϕ−1)(ϕ(p)) is an invertible matrix. Consider a local map φ̃ defined by

φ̃(q′) = ϕ−1(ϕ(p) + J−1(χ(q′)− χ(q))) , (21.5.17)

defined for all q′ ∈ V with ϕ(p)+J−1(χ(q′)−χ(q)) ∈ ϕ(U). Clearly, its domain contains q, and
φ̃(q) = p. Further, for all v ∈ TpM holds

(φ̃∗ ◦ φ∗)(v) = (φ̃ ◦ φ)∗(v)
= (ϕ−1 ◦ ϕ ◦ φ̃ ◦ χ−1 ◦ χ ◦ φ ◦ ϕ−1 ◦ ϕ)∗(v)
= ϕ−1∗ (D(ϕ ◦ φ̃ ◦ χ−1) ·D(χ ◦ φ ◦ ϕ−1) · ϕ∗(v))
= ϕ−1∗ (J−1 · J · ϕ∗(v))
= (ϕ−1∗ ◦ ϕ∗)(v)
= (ϕ−1 ◦ ϕ)∗(v)
= v ,

(21.5.18)

where we used the fact that the linear map ϕ ◦ φ̃ ◦ χ−1 satisfies

(ϕ ◦ φ̃ ◦ χ−1)(y) = ϕ(p) + J−1(y − χ(q)) , (21.5.19)

and so its Jacobian is J−1. Analogously, one shows that (φ∗ ◦ φ̃∗)(w) = w for all w ∈ TqN . It
thus follows that j1q φ̃ ◦ j1pφ = j1p(idM ) and j1pφ ◦ j1q φ̃ = j1q (idN ), and so jrpφ is invertible. ■

The appearance of the Jacobian signals an important result.

Theorem 21.5.6. For any manifolds M,N , every jet jrpφ ∈ Jr(M,N) with r > 1 is invertible
if and only if j1pφ ∈ J1(M,N) is invertible.

Proof. Consider the same charts (U, ϕ) of M with p ∈ U and (V, χ) of N with q = φ(p) ∈ V
as in the proof of theorem 21.5.5. If j1pφ is invertible, then the Jacobian D(χ ◦ φ ◦ ϕ−1)(ϕ(p))
is non-degenerate. By the inverse function theorem, then there exists an open set W ⊂ χ(V ),
with open preimages under χ, φ and ϕ−1, such that χ ◦φ ◦ ϕ−1 possesses an inverse defined on
W . This can be written as ϕ ◦ φ̃ ◦χ−1 by suitable composing with the chart functions, because
ϕ and χ are bijections on the relevant subsets generated by W . Then φ̃ is a local inverse of φ,
with

φ̃ ◦ φ = idM |φ−1(χ−1(W )) , φ ◦ φ̃ = idN |χ−1(W ) . (21.5.20)

Hence, its jet jrq φ̃ is an inverse of jrpφ.

Conversely, if we know that an inverse jrq φ̃ exists, we can use the jet projection πr,1 to obtain
an inverse j1q φ̃ of j1pφ. ■

So far, we have only been discussing the existence of an inverse jet, but we have not yet excluded
the possibility that there exists several inverses. This will be discussed next.
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Theorem 21.5.7. If a jet jrpφ ∈ Jr(M,N) is invertible, then its inverse is unique.

Proof. If both jrφ(p)φ̃ and jrφ(p)φ̃
′ are inverses of jrpφ, then we find

jrφ(p)φ̃ = jrφ(p)(φ̃ ◦ idN )

= jrφ(p)φ̃ ◦ jrφ(p)idN
= jrφ(p)φ̃ ◦ jrpφ ◦ jrφ(p)φ̃′

= jrp idM ◦ jrφ(p)φ̃′

= jrφ(p)(idM ◦ φ̃′)
= jrφ(p)φ̃

′ . ■

(21.5.21)

With these results at hand, we can finally come to the central definition of this section. In
order to form a group G, we must make sure that any two elements of G can be composed.
Since jet composition is defined only if the source of one jet agrees with the target of another,
we must therefore restrict ourselves to the invertible elements of a jet space J̃rp (M,M)p, where
all jets have the same source and target p ∈ M . From theorem 21.3.6 we know that, up to
diffeomorphism, this space neither depends on the choice of the manifold M , nor the point p,
except for the dimension of the former. Hence, we can make a canonical choice and define the
following.

Definition 21.5.3 (Jet group). For r, n ∈ N, the jet group is defined as Jr(n) =
J̃r0 (Rn,Rn)0.

From its construction, it becomes clear that Jr(n) is a group. Further, recall that Jr0 (Rn,Rn)0
is a manifold, and one may expect the same to be true for J̃r0 (Rn,Rn)0. Given these two
structures, the question arises whether they are compatible. This will be answered next.

Theorem 21.5.8. The jet group Jr(n) is a Lie group of dimension dimJr(n) = n
((
n+r
n

)
− 1
)
.

Proof. We show the smoothness of the group operations of multiplication and inverse by con-
structing a suitable chart. Note that Rn is canonically equipped with Cartesian coordinates
(xa). In these coordinate, an invertible r-jet g ∈ Jr(n) can uniquely be expressed through the
Taylor polynomial

g(x) =

r∑
k=1

gab1···bkx
b1 · · ·xbk , (21.5.22)

where the coefficients satisfy
gab1···bk = ga(b1···bk) , (21.5.23)

and gab are the components of an invertible matrix. Note that this polynomial, being an
element of C∞(Rn,Rn, is also a canonical representative of the jet. The jet composition, which
constitutes the group structure, is thus given by the composition

g(h(x)) =

r∑
k=1

∑
l1,...,lk

gab1···bkh
b1
c1,1···c1,l1 · · ·h

bk
ck,1···ck,lkx

c1,1 · · ·xck,lk , (21.5.24)

where the sum runs over such values that the total degree of the polynomial is at most r. This
is obviously smooth in the components of g and h. For the inverse, one has

g−1(x) = ▶ . . . ◀ , (21.5.25)

where g̃ab is the inverse of gab. This is also smooth, since the inverse is smooth in GL(n,R).
Hence, Jr(n) is a Lie group. ■
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It is instructive to take a look at the most simple example.

Theorem 21.5.9. The jet group J1(n) is isomorphic to the general linear group GL(n,R).

Proof. This follows from the fact that an invertible 1-jet, following theorem 21.5.8, is uniquely
determined by an invertible linear function g : Rn → Rn, and thus an element of GL(n,R). ■

21.6 Jet bundles

We have already learned that a particularly useful class of maps are sections of fiber bundles,
and that many useful objects such as vector or tensor fields fall into this category. We will now
study the jets of these maps, using the conventions in [Sau89]. Since jets only depend on the
local behavior of a map, i.e., its germ as discussed in section 21.2, we make use of local sections
here, as defined in definition 2.3.2 - similarly to the local maps used in definition 21.1.8. Another
reason, which makes it even necessary to use local instead of global sections, is the fact that
there are fiber bundles which do not have any global sections, but are still interesting objects
for constructing jet bundles. Common examples, which we will encounter later, are principal
fiber bundles, and in particular frame bundles. Hence, we define jets of local sections as follows.

Definition 21.6.1 (Jets of local sections). Let π : E → M be a fiber bundle, p ∈ M and
Γp(E) the space of all local sections whose domain contains p. For r ∈ N and a local section
σ ∈ Γp(E) with domain Uσ we define the r-jet jrpσ of σ at p as the equivalence class

jrpσ =
{
τ ∈ Γp(E)

∣∣∣ (Uσ, σ) p,r∼ (Uτ , τ)
}

(21.6.1)

of local sections τ ∈ Γp(E) with domain Uτ having r-contact at p. The space of all r-jets
at p is denoted Jrp (E), while the space of all r-jets is denoted Jr(E).

Note that local sections are in particular local maps, and so the notion of r-contact given in
definition 21.1.7 can be applied. The main difference between this definition and the defini-
tion 21.1.8 is that we do not consider arbitrary maps from M to E in the construction of the
equivalence classes, but only sections. This restriction also reduces the number of dimensions
of the jet space, which we can state as follows.

Theorem 21.6.1. Let π : E → M be a fiber bundle with fiber F and dimensions dimM =
m,dimF = n and r ∈ N. For each p ∈M the space Jrp (E) is a manifold of dimension n

(
m+r
r

)
,

while Jr(E) is a manifold of dimension m+ n
(
m+r
r

)
.

Proof. ▶. . .◀ ■

We see that instead of the dimension dimE of the target manifold we only have the dimension
dimF which enters the formula of the dimension. To see why this is the case, we can construct
coordinates in the same way as we did for the jet manifolds of arbitrary maps. By definition,
every fiber bundle is locally trivial, i.e., for every p ∈ M there exists an open set U ⊂ M
containing p such that U × F ∼= π−1(U) ⊂ E. Given coordinates (xα) on U and (ya) on F
we can thus use coordinates (xα, ya) on π−1(U). Let now σ : U → π−1(U) be a local section,
whose domain we also assume to be U . (If it had a different domain U ′ ∋ p instead, we could
simply replace U by U ∩U ′ in the remainder of this construction.) This section is described by
assigning coordinates (xα, ya) of the target space to coordinates (xα) of the domain. However,
the first part of these target coordinates is already fixed by the condition that σ is a section, and
thus π ◦ σ = idU . Hence, σ is uniquely determined by the coordinate functions ya(x). In other
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words, a section σ looks locally just like a map from U to F . Using the coordinate functions
ya(x) we can use the same construction as in the previous section to construct coordinates (yaΛ)
on Jrp (E) and (xα, yaΛ) on Jr(E).

Now it is also easy to see the following.

Theorem 21.6.2. Let π : E → M be a fiber bundle and p ∈ M . Then J0
p (E) ∼= π−1(p) ∼= F

and J0(E) ∼= E.

Proof. Recall that a 0-jet j0pσ of a local section σ is uniquely determined by the value σ(p) ∈
π−1(p) ∼= F , which proves the first statement. The second statement follows from the fact that
J0(E) is simply the union of Jrp (E) for all p ∈M , while E is the union of all π−1(p). One can
easily show that the maps J0

p (E) → F and J0(E) → E derived from these identifications are
diffeomorphisms. ■

Given now a number of jet manifolds, we may consider maps between them. A very useful class
of maps is defined as follows.

Definition 21.6.2 (Jet projection). Let π : E →M be a fiber bundle and 0 ≤ k ≤ r. The
k-jet projection is the map πr,k : Jr(E)→ Jk(E) which assigns to the r-jet jrpσ of any local
section σ its k-jet jkpσ for every p ∈M . The map πr,0 : Jr(E)→ E is also called the target
projection, while πr = π ◦ πr,0 : Jr(E)→M is called the source projection.

Of course we must check that the projections given above are indeed well-defined. This is the
case, since any two local sections σ, τ which have the same r-jet also have the same k-jet for
k ≤ r, which follows immediately from the definition of jets. Therefore, the k-jet jkpσ of a local
section σ is uniquely determined by its r-jet jrpσ, as we presumed in the definition above. We
will not prove here that the jet projections are smooth maps - the proof is lengthy, but simple.
In coordinates (xα, yaΛ) on Jr(E) one can easily see that the projection πr,k simply discards all
coordinates yaΛ with |Λ| > k and keeps only the coordinates on Jk(E). These maps have even
more nice properties.

Theorem 21.6.3. The triples (Jr(E), Jk(E), πr,k) with r > k, (Jr(E), E, πr,0) and (Jr(E),M, πr)
are fiber bundles.

Proof. Note that E = J0(E) is just a special case with k = 0, and so we will not discuss it
separately here. For p ∈ M , consider a local trivialization (U, ϕ) with p ∈ U ⊂ M and ϕ :
π−1(U)→ U ×F . Now there is a one-to-one correspondence between local sections σ ∈ Γ|U (E)
and maps σϕ : U → F given by

σϕ = pr2 ◦ϕ ◦ σ ⇔ σ = ϕ−1 ◦ (idU , σϕ) . (21.6.2)

▶. . .◀ ■

Some of the aforementioned bundles carry some additional structure, which deserves further
discussion. We will start with the following bundle, which turns out to have the structure of an
affine bundle.

Theorem 21.6.4. For r ∈ N, the bundle (Jr(E), Jr−1(E), πr,r−1) is an affine bundle modeled
over the vector bundle π∗r−1,0(V E)⊗ π∗r−1(Symr T ∗M).

Proof. ▶. . .◀ ■
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The last bundle of the list in theorem 21.6.3 will also be of particular interest for us, and has
its own name.

Definition 21.6.3 (Jet bundle). Let π : E →M be a fiber bundle and r ∈ N. The bundle
(Jr(E),M, πr) is called the r’th jet bundle of E.

We first study how these bundles are related amongst each other. It is not very surprising that
the maps between them turn out to be bundle morphisms.

Theorem 21.6.5. For 0 ≤ k ≤ r, the map πr,k : Jr(E) → Jk(E) is a bundle morphism from
(Jr(E),M, πr) to (Jk(E),M, πk) covering the identity idM on M .

Proof. ▶. . .◀ ■

Jr(E)
πr,r−1

//

πr

��

Jr−1(E) //

πr−1

��

J1(E)
π1,0

//

π1

��

J0(E) ∼= E

π

��
M

idM // M // M
idM // M

(21.6.3)

Further, one may study what happens if the original bundle (E,M, π) carries additional struc-
ture, and whether any of this addition structure can be carried to jet bundles. We start with
the case of vector bundles.

Theorem 21.6.6. Let (E,M, π) be a vector bundle. Then also the jet bundles (Jr(E),M, πr)
are vector bundles and the maps πr,k are vector bundle homomorphisms.

Proof. To show that (Jr(E),M, πr) is a vector bundle, we have to check that for p ∈M the fiber
Jrp (E) carries the structure of a vector space, and that the local trivializations restrict to vector
space isomorphisms. ▶Thus, also the space of sections is a vector space, where the addition and
scalar multiplication are defined pointwise. From this follows that also the jet spaces Jrx(E) for
x ∈M are vector spaces, since for any local sections σ, τ around x and µ, ν ∈ R the definition

µjrxσ + νjrxτ = jrx(µσ + ντ) (21.6.4)

yields a vector space structure. Thus, πr : Jr(E) → M is a vector bundle. (Note, however,
that the bundles πr,k : Jr(E)→ Jk(E), and thus in particular πr,0 : Jr(E)→ E, are not vector
bundles, since the fibers of these bundles are not vector (sub)spaces, but affine spaces.)◀ ■

Having established this relation, it is a small step to generalize the statement to affine bundles
in place of vector bundles.

Theorem 21.6.7. Let (E,M, π) be an affine bundle modeled over the vector bundle (E⃗,M, π⃗).
Then also the jet bundles (Jr(E),M, πr) are affine bundles modeled over the vector bundles
(Jr(E⃗),M, π⃗r) and the maps πr,k are affine bundle morphisms.

Proof. ▶. . .◀ ■

Another interesting structure we have encountered in particular in the context of principal
bundles is that of a fiber preserving group action. Here we consider a left action; of course, the
same statement also holds for right actions.
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Theorem 21.6.8. Let (E,M, π) be a fiber bundle carrying a left action · : G×E → E, (g, e) 7→
g · e by a Lie group G that preserves the fibers, π(g · e) = π(e) for all (g, e) ∈ G×E. Then also
the jet bundles (Jr(E),M, πr) carry induced left actions, and the maps πr,k are equivariant.

Proof. ▶. . .◀ ■

So far, we have restricted ourselves to considering jet bundles over a single fiber bundle (E,M, π).
We now consider how to relate jet bundles over different fiber bundles over a common base
manifold. We start with the case of a fibered product.

Theorem 21.6.9. Let (E,M, π) and (E′,M, π′) be two fiber bundles over a common base
manifold M and (E×M E′,M, π×M π′) their fibered product. Then their jet bundles are related
by

Jr(E ×M E′) ∼= Jr(E)×M Jr(E′) . (21.6.5)

Proof. ▶. . .◀ ■

Recall that if we have vector bundles, also their fibered product can be given the structure
of a vector bundle, known as the direct sum. It is straightforward to conclude that also this
structure can be carried over to the jet bundles.

Theorem 21.6.10. Let (E,M, π) and (E′,M, π′) be two vector bundles over a common base
manifold M and (E ⊕ E′,M, π ⊕ π′) their direct sum. Then their jet bundles are related by

Jr(E ⊕ E′) ∼= Jr(E)⊕ Jr(E′) . (21.6.6)

Proof. ▶. . .◀ ■

One may wonder whether the aforementioned statement holds also for tensor product bundles.
However, this is not the case! This can most easily seen by studying the ranks of the respective
bundles. Let E and E′ be vector bundles of rank n and n′, respectively, over a manifold M of
dimension m. Then their tensor product bundle is of rank nn′. The rank of the jet bundles
Jr(E), Jr(E′) and Jr(E ⊗ E′) is then given by

n

(
m+ r

r

)
, n′

(
m+ r

r

)
, nn′

(
m+ r

r

)
. (21.6.7)

However, the rank of JrE ⊗ JrE′ is

nn′
(
m+ r

r

)2

̸= nn′
(
m+ r

r

)
. (21.6.8)

21.7 Prolongation of bundle morphisms

Another important relation between fiber bundles can be established by a bundle morphism.
We now show that this induces also a bundle morphism between the corresponding jet bundles.
We start by showing the following.

Theorem 21.7.1. Let (E,M, π) and (E′,M, π′) be two fiber bundles over a common base
manifold M , φ : E → E′ a bundle morphism covering the identity, p ∈ M , r ∈ N and σ, τ ∈
Γp(E) two local sections such that σ p,r∼ τ . Then φ ◦ σ p,r∼ φ ◦ τ .

Proof. This follows directly from theorem 21.5.1, using the fact that σ, τ :M → E and φ : E →
E′ are maps. ■
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Recall from theorem 2.7.3 that φ ◦ σ : M → E′ and φ ◦ τ : M → E′ are local sections of the
bundle π′ : E′ → M . From the theorem above follows that if σ and τ define the same r-jet at
p, i.e., jrpσ = jrpτ , then also jrp(φ ◦ σ) = jrp(φ ◦ τ). While the former is an element of Jrp (E), the
latter belongs to Jrp (E′). This allows to define the following map.

Definition 21.7.1 (Jet prolongation of bundle morphisms). Let (E,M, π) and (E′,M, π′)
be two fiber bundles over a common base manifold M and φ : E → E′ a bundle morphism
covering the identity. For r ∈ N, the map jrφ : Jr(E)→ Jr(E′) defined by

jrφ(jrpσ) = jrp(φ ◦ σ) (21.7.1)

for each p ∈M and σ ∈ Γp(E) is called the r-jet prolongation of φ.

One may ask for a coordinate representation of this construction. Let (xµ) be coordinates on
M and (xµ, ya) as well as (xµ, zA) induced coordinates on E and E′, respectively. A section
σ : M → E assigns to a point in M with coordinates x = (xµ) the coordinate values ya(x),
while the map φ : E → E′ is fully determined by assigning fiber coordinates zA(x, y), since the
coordinates xµ are already determined by the fact that φ covers the identity. The composition
φ◦σ is then represented by assigning to x the coordinates zA(x, y(x)). The jet jrp(φ◦σ) is then
determined by the derivatives with respect to xµ up to order r, and hence by the chain rule
depends only on derivatives of ya(x) up to order r, which determine the jet jrpσ.

We can now recall that Jr(E) forms the total space of a number of bundles, in particular
πr : Jr(E) → M and πr,k : Jr(E) → Jk(E), including the special case J0(E) ∼= E, and
analogously for E′ in place of E. One may therefore ask whether this bundle structure is
preserved by jrφ. We now show that this is indeed the case.

Theorem 21.7.2. Let (E,M, π) and (E′,M, π′) be two fiber bundles over a common base
manifold M and φ : E → E′ a bundle morphism covering the identity. Then for r ∈ N the
r-jet prolongation jrφ : Jr(E) → Jr(E′) is a bundle morphism from πr : Jr(E) → M to
π′r : Jr(E′) → M covering the identity on M , as well as a bundle morphisms from πr,k :
Jr(E)→ Jk(E) to π′r,k : Jr(E′)→ Jk(E′) covering jkφ : Jk(E)→ Jk(E′) for all k = 0, . . . , r.

Proof. Let p ∈M and σ ∈ Γp(E) a local section. Then we have

(π′r,k ◦ jrφ)(jrpσ) = π′r,k(j
r
p(φ ◦ σ))

= jkp (φ ◦ σ)
= jkφ(jkpσ)

= (jkφ ◦ πr,k)(jrpσ) ,

(21.7.2)

as well as
(π′r ◦ jrφ)(jrpσ) = π′r(j

r
p(φ ◦ σ)) = p = r(jrpσ) . (21.7.3)

■
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The preceding statement can also be stated by saying that the diagram

Jr(E)
jrφ //

πr,k

��

Jr(E′)

π′
r,k

��
Jk(E)

jkφ //

πk,0

��

Jk(E′)

π′
k,0

��
E

φ //

π
##

E′

π′
{{

M

(21.7.4)

commutes. Recall from theorem 21.6.4 that there is a special case included above for r = k+1,
in which case one finds the structure of an affine bundle. Naturally one may ask whether this
affine bundle structure is preserved. This is indeed the case, as we will show next.

Theorem 21.7.3. Let (E,M, π) and (E′,M, π′) be two fiber bundles over a common base
manifold M and φ : E → E′ a bundle morphism covering the identity. Then for r ≥ 1 the
map jrφ : Jr(E) → Jr(E′) is an affine bundle morphism from πr,r−1 : Jr(E) → Jr−1(E) to
π′r,k : Jr(E′)→ Jr−1(E′) covering jr−1φ : Jr−1(E)→ Jr−1(E′).

Proof. ▶. . .◀ ■

The aforementioned statements hold for jet bundles over general fiber bundles π : E → M .
As we have seen in section 21.6, in the case that π : E → M is equipped with additional
structure, this also carries to the jet bundles πr : Jr(E)→M . Hence, one may also ask whether
this additional structure on the jet bundle is preserved by jrφ, provided that φ preserves the
structure on π : E →M . We first show this for vector bundles.

Theorem 21.7.4. Let (E,M, π) and (E′,M, π′) be two vector bundles over a common base
manifold M and φ : E → E′ a vector bundle morphism covering the identity. Then the maps
jrφ : Jr(E)→ Jr(E′) are vector bundle morphisms from πr : J

r(E)→M to π′r : Jr(E′)→M
covering the identity on M .

Proof. ▶. . .◀ ■

For affine bundles, the following holds.

Theorem 21.7.5. Let (E,M, π) and (E′,M, π′) be two affine bundles over a common base
manifold M and φ : E → E′ an affine bundle morphism covering the identity. Then the maps
jrφ : Jr(E)→ Jr(E′) are affine bundle morphisms from πr : J

r(E)→M to π′r : Jr(E′)→M
covering the identity on M .

Proof. ▶. . .◀ ■

21.8 Prolongation of sections

Once we have constructed a fiber bundle, we are of course interested in its sections. For the
jet bundle of a fiber bundle E there is a particular way to construct sections of Jr(E) from the
sections of E, which we define as follows.
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Definition 21.8.1 (Jet prolongation). Let π : E →M be a fiber bundle and σ ∈ Γ|U (E) a
local section with domain U ⊂M . For r ∈ N the r-jet prolongation jrσ ∈ Γ|U (Jr(E)) of σ
is the local section with domain U of the bundle πr : Jr(E)→M such that (jrσ)(p) = jrpσ
for all p ∈ U .

It is once again easy to check that this construction is well-defined and indeed yields a section of
the jet bundle. We illustrate this construction using coordinates (xα) on U ⊂M , (ya) on F and
(xα, ya) on π−1(U), from which we derive coordinates (xα, yaΛ) on π−1r (U). In these coordinates
a section σ is locally expressed by the coordinate functions ya(x). Its r-jet prolongation jrσ is
then expressed by the coordinate functions yaΛ(x) = ∂Λy

a(x).

Now we have constructed an important and helpful tool which we will apply to physics. We can
now make precise what it means that some function “depends on the value and derivatives up
to order r of some section at some point”. Such a function will simply be a function on Jr(E),
and if we feed it with a jet prolongation of some section, it will have exactly the dependence we
need.

Recall from definition 21.6.2 that we have certain projection maps between the total spaces of
jet bundles, which “forget” higher jet orders. It is straightforward that these also relate different
jet prolongations.

Theorem 21.8.1. Let π : E →M be a fiber bundle and r ≥ k. For a local section σ ∈ Γ|U (E)

with domain U ⊂M the jet prolongations jrσ and jkσ are related by jkσ = πr,k ◦ jrσ.

Proof. For every p ∈ U one has

(jkσ)(p) = jkpσ = πr,k(j
r
pσ) = (πr,k ◦ jrσ)(p) (21.8.1)

by the definition 21.6.2 of πr,k. ■

Naturally, one may ask which sections of a jet bundle πr : Jr(E) → M are prolongations of
sections of π : E →M . This question is easily answered by the fact that for any prolongation we
can recover the original section by applying the projection πr,0, which follows from the previous
statement for k = 0. This leads to the following statement.

Theorem 21.8.2. Let π : E → M be a fiber bundle and Jr(E) its r’th jet bundle. A local
section Σ : U → Jr(E) on U ⊂ M is the prolongation of a section, i.e., Σ = jrσ for some
σ : U → E, if and only if Σ = jr(πr,0 ◦ Σ), and one has σ = πr,0 ◦ Σ.

Proof. First note that if Σ = jrσ for some local section σ, then σ = j0σ can be recovered from
Σ using theorem 21.8.1 as σ = πr,0 ◦ Σ, and it follows that

Σ = jrσ = jr(πr,0 ◦ Σ) . (21.8.2)

Conversely, if the equation above holds, Σ is obviously a prolongation of σ = πr,0 ◦ Σ, showing
the equivalence of both statements. ■

21.9 Differential forms on jet bundles

We have seen in the last lecture that for every fiber bundle π : E →M the jet spaces Jr(E) for
r ∈ N form an inverse sequence

M
π←− E π1,0←−− J1(E)

π2,1←−− J2(E)
π3,2←−− . . . , (21.9.1)
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where the maps πr,k : Jr(E) → Jk(E) are the projections of fiber bundles. This equips the
jet bundles with a very rich structure, some of which can be seen when we study differential
forms on the jet spaces. There are particular types of differential forms which deserve special
attention. The first such type is something we have encountered already in section 19.4; in the
special case if jet bundles, it is defined as follows.

Definition 21.9.1 (Horizontal form on a jet bundle). Let π : E → M be a fiber bundle
and r ∈ N. A k-form ω ∈ Ωk(Jr(E)) is called horizontal if it is horizontal with respect to
πr : J

r(E)→M , i.e., if it vanishes on the kernel kerπr∗ of πr∗ : TJr(E)→ TM .

Hence, we define horizontality with respect to the fiber bundle πr : Jr(E) → M . To illustrate
this definition, consider a trivializing subset U ⊂ M equipped with coordinates (xa), as well
as adapted coordinates (xa, yµ) on π−1(U) ⊂ E, from which we construct induced coordinates
(xa, yµΛ) with 0 ≤ |Λ| ≤ r on π−1r (U) ⊂ Jr(E). We further introduce the notation

∂a =
∂

∂xa
, ∂Λµ =

∂

∂yµΛ
(21.9.2)

for the corresponding coordinate basis of TJr(E). A tangent vector ξ ∈ TJr(E) can thus be
written in the form ξ = ua∂a+ v

µ
Λ∂

Λ
µ . For the pushforward one then finds πr∗(ξ) = ua∂a, where

∂a now denotes the coordinate basis of TM . Hence, a vertical tangent vector satisfies ua = 0,
and is thus of the form ξ = vµΛ∂

Λ
µ . Writing the coordinate basis of T ∗Jr(E) as dxa,dyµΛ we thus

find that ω ∈ Ωk(Jr(E)) is horizontal if and only if it is of the form

ω = ωa1···akdx
a1 ∧ . . . ∧ dxak . (21.9.3)

While horizontal forms can be defined on any fiber bundle, the structure of prolongations on
jet bundles allow also the definition of a complimentary notion, which we define as follows.

Definition 21.9.2 (Contact form). Let π : E →M be a fiber bundle and r ∈ N. A k-form
ω ∈ Ωk(Jr(E)) is called a contact form if its pullback (jrσ)∗(ω) ∈ Ωk(M) vanishes for
every local section σ of π : E →M .

In order to illustrate the space of contact forms, it is helpful to first restrict the discussion to
contact one-forms. Let ω = αadx

a + βΛ
µdy

µ
Λ ∈ Ω1(Jr(E)) be a one-form and σ : M → E a

section. Its r-jet prolongation jrσ :M → Jr(E) takes the form

(xa) 7→ (xa, yµΛ) = (xa, ∂Λσ
µ) . (21.9.4)

For the pullback of ω one therefore has

(jrσ)∗(ω) = (αa + βΛ
µ ∂a∂Λσ

µ)dxa ∈ Ω1(M) . (21.9.5)

Hence, ω is a contact form if and only if the components αa satisfy

αa = −βΛ
µ ∂a∂Λσ

µ (21.9.6)

for all a = 1, . . . ,dimM and all local sections σ. To understand the right hand side, recall that
for |Λ| < r, ∂a∂Λσµ is simply the value of the coordinate yµΛa, which is to be interpreted as

yµΛa = yµ(λ1,...,λa+1,...,λn)
. (21.9.7)
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Now it is useful to split the sum as

αa = −
∑
|Λ|<r

βΛ
µ ∂a∂Λσ

µ −
∑
|Λ|=r

βΛ
µ ∂a∂Λσ

µ = −
∑
|Λ|<r

βΛ
µ y

µ
Λa −

∑
|Λ|=r

βΛ
µ ∂a∂Λσ

µ . (21.9.8)

Recalling that αa and βΛ
µ are component functions depending on the coordinates (xa, yµΛ), we

see that both the left hand side and the first sum are now fully expressed as functions of these
coordinates, while the last sum still explicitly depends on the particular choice of σ. Since this
equation must hold for all possible choices of σ, the coefficients in this second sum must vanish,
hence βΛ

µ = 0 for |Λ| = r. Therefore, any contact one-form is uniquely determined by the choice
of the component functions βΛ

µ . Introducing a suitable basis, we can therefore write ω in the
form ω = βΛ

µ θ
µ
Λ, where we make use of the following definition.

Definition 21.9.3 (Basic contact one-form). Let π : E →M be a fiber bundle and r ∈ N,
U ⊂ M and (xa), (xa, yµ) and (xa, yµΛ) with 0 ≤ |Λ| ≤ r local coordinates on U , π−1(U)
and π−1r (U), respectively. The basic contact one-forms with respect to these coordinates
are the one-forms

θµΛ = dyµΛ − yµ(λ1+1,λ2,...,λn)
dx1 − yµ(λ1,λ2+1,...,λn)

dx2 − . . .− yµ(λ1,λ2,...,λn+1)dx
n , (21.9.9)

where 0 ≤ |Λ| ≤ r − 1.

One easily checks that these are indeed contact forms. Further, one finds that every contact
one-form must be of the form θ = βΛ

µ θ
µ
Λ, so that the basic contact one-forms constitute a basis of

all contact one-forms. This basis almost complements the basis dxa of the horizontal one-forms,
but not completely, since the space spanned by dyµΛ with |Λ| = r is missing. Nevertheless, one
may define a basis as follows.

Definition 21.9.4 (Contact basis). Let π : E → M be a fiber bundle and r ∈ N, U ⊂ M
and (xa), (xa, yµ) and (xa, yµΛ) with 0 ≤ |Λ| ≤ r local coordinates on U , π−1(U) and
π−1r (U), respectively. The contact basis with respect to these coordinates is the basis of
Ω1(Jr(E)) given by

(dxa, θµΛ,dy
µ

Λ̃
) (21.9.10)

with 0 ≤ |Λ| ≤ r − 1 and |Λ̃| = r.

Using the exterior product, we may now construct higher order differential forms from these
basis elements. Before we do so explicitly, it is helpful to state a few general properties of the
exterior product of forms on jet bundles. We first remark the following property.

Theorem 21.9.1. The exterior product of two horizontal forms is again horizontal.

Proof. Let ω ∈ Ωk(Jr(E)) and τ ∈ Ωl(Jr(E)) be horizontal and X ∈ Vect(Jr(E)) a vertical
vector field, i.e., πr∗ ◦X = 0. Then we have

ιX(ω ∧ τ) = ιXω ∧ τ + (−1)kω ∧ ιXτ = 0 , (21.9.11)

so that also ω ∧ τ is horizontal. ■

An even stronger statement holds for contact forms.
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Theorem 21.9.2. The contact forms form an ideal (the contact ideal) of the exterior algebra,
i.e., the exterior product of an arbitrary form and a contact form is again a contact form.

Proof. Let ω ∈ Ωk(Jr(E)) be a contact form, τ ∈ Ωl(Jr(E)) an arbitrary l-form and σ : U → E
a local section on U ⊂M . Then we have the pullback

(jrσ)∗(ω ∧ τ) = (jrσ)∗(ω) ∧ (jrσ)∗(τ) = 0 , (21.9.12)

so that also ω ∧ τ is a contact form. ■

With these statements in place we now proceed with the following definition.

Definition 21.9.5 (l-contact form). Let π : E → M be a fiber bundle and r ∈ N. A
(k + l)-form ω ∈ Ωk+l(Jr(E)) is called l-contact if it is a linear combination of exterior
products of k horizontal one-forms and l contact one-forms. The space of all such forms is
denoted Ωk,l(Jr(E)).

Obviously one has Ωk,l(Jr(E)) ⊂ Ωk+l(Jr(E)). However, one cannot completely decompose
Ωk+l(Jr(E)) into such subspaces, since the forms dyµΛ with |Λ| = r do not belong to any such
space. However, this can easily be fixed by lifting forms to the next higher jet bundle, which
leads to the following theorem.

Theorem 21.9.3. Let π : E → M be a fiber bundle and r ∈ N. The pullback of every k-form
ω ∈ Ωk(Jr(E)) along πr+1,r uniquely decomposes into

π∗r+1,r(ω) =

k∑
i=0

piω ∈ Ωk(Jr+1(E)) , (21.9.13)

where piω ∈ Ωk−i,i(Jr+1(E)).

Proof. ▶. . .◀ ■

Note in particular that the component p0ω is horizontal, and hence also the notation hω can
be found in the literature [Kru15]. We then proceed with the following statement.

Theorem 21.9.4. Let ω ∈ Ωk,l(Jr(E)) and χ ∈ Ωk
′,l′(Jr(E)). Then the following hold:

1. ω ∧ χ ∈ Ωk+k
′,l+l′(Jr(E)),

2. π∗r+1,r(dω) ∈ Ωk+1,l(Jr+1(E))⊕ Ωk,l+1(Jr+1(E)).

Proof. ▶. . .◀ ■

This property of the exterior product is immediately clear. For the exterior derivative it means
that π∗r+1,r(dω) can be uniquely written as the sum of two terms, one of them belonging to
Ωk+1,l(Jr+1(E)), the other one to Ωk,l+1(Jr+1(E)):

π∗r+1,r(dω) = pldω + pl+1dω . (21.9.14)

This allows us to decompose the exterior derivative in the following way.
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Definition 21.9.6 (Horizontal and vertical differentials). Let π : E →M be a fiber bundle.
For k, l ∈ N the horizontal (or total) differential

dH : Ωk,l(Jr(E)) → Ωk+1,l(Jr+1(E))
ω 7→ pldω

(21.9.15)

and vertical differential

dV : Ωk,l(Jr(E)) → Ωk,l+1(Jr+1(E))
ω 7→ pl+1dω

(21.9.16)

are the unique functions such that dHω + dV ω = π∗r+1,r(dω) for all ω ∈ Ωk,l(Jr(E)).

In order to work with these differentials, we first state a few of their properties, which will then
allow us to write them using coordinates.

Theorem 21.9.5. For each ω ∈ Ωk,l(Jr(E)) and χ ∈ Ωk
′,l′(Jr(E)) the horizontal and vertical

differentials dH and dV satisfy:

1. dH and dV are antiderivations:

dH(ω ∧ χ) = dHω ∧ π∗r+1,r(χ) + (−1)k+lπ∗r+1,r(ω) ∧ dHχ , (21.9.17a)

dV (ω ∧ χ) = dV ω ∧ π∗r+1,r(χ) + (−1)k+lπ∗r+1,r(ω) ∧ dV χ . (21.9.17b)

2. d2H = 0, d2V = 0 and dHdV = −dV dH .

Proof. ▶. . .◀ ■

With these properties we can now construct the coordinate expressions for dH and dV by apply-
ing them to functions (zero-forms) and one-forms, since all differential forms can be constructed
from these simplest forms. For f ∈ Ω0,0(Jr(E)), the exterior derivative can be written in the
contact basis as

π∗r+1,r(df) =
∂f

∂xa
dxa +

∂f

∂yµΛ
dyµΛ

=
∂f

∂xa
dxa +

∂f

∂yµΛ
(θµΛ + yµΛadx

a)

=

(
∂f

∂xa
+ yµΛa

∂f

∂yµΛ

)
dxa +

∂f

∂yµΛ
θµΛ .

(21.9.18)

Hence, we have the vertical differential given by

dV f =
∂f

∂yµΛ
θµΛ ∈ Ω0,1(Jr+1(E)) , (21.9.19)

where the summation over Λ goes over 0 ≤ |Λ| ≤ r, and hence covers the contact basis of
Ω0,1(Jr+1(E)). For the horizontal differential then follows

dHf = π∗r+1,r(df)− dV f = Daf dx
a ∈ Ω1,0(Jr+1(E)) , (21.9.20)

where we introduced the total derivative

Daf =
∂f

∂xa
+ yµΛa

∂f

∂yµΛ
=

∂f

∂xa
+

r∑
|Λ|=0

yµ(λ1,...,λα+1,...,λn)

∂f

∂yµΛ
. (21.9.21)
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For the horizontal and vertical coordinate differentials we have

dH(dxa) = 0 , dV (dx
a) = 0 , dH(dyµΛ) = 0 , dV (dy

µ
Λ) = 0 , (21.9.22)

which follows from the fact that they are closed, i.e., their exterior derivatives vanish. Finally,
the basic contact forms satisfy

π∗r+1,r(dθ
µ
Λ) = π∗r+1,r[d(dy

µ
Λ − yµΛadxa)]

= −dyµΛa ∧ dxa

= dxa ∧ (θµΛa + yµΛabdx
b)

= dxa ∧ θµΛa ,

(21.9.23)

where the second term in the last step vanishes since the coordinates yµΛab (which are, in fact,
coordinates on Jr+2(E)) are symmetric, while dxa ∧ dxb is antisymmetric. It follows that the
vertical differential vanishes,

dV θ
µ
Λ = 0 , (21.9.24)

while the horizontal differential is given by

dHθ
µ
Λ = dxa ∧ θµΛa
= dx1 ∧ θµ(λ1+1,λ2,...,λn)

+ dx2 ∧ θµ(λ1,λ2+1,...,λn)
+ . . .+ dxn ∧ θµ(λ1,λ2,...,λn+1)

(21.9.25)

Since any differential form on Jr(E) can be constructed as a linear combination of wedge prod-
ucts of the forms above, we can thus explicitly calculate the vertical and horizontal differentials
for all differential forms.
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Chapter 22

Frame bundles

22.1 Frame bundles over vector bundles

An important class of fiber bundles, which can be constructed from any vector bundles, is
given by frame bundles. There exist different types of frame bundles, most of which require
an additional structure to be defined on the fibers of the vector bundle under consideration.
However, the most simple type does not require any such structure. It can be defined as follows.

Definition 22.1.1 (Frame bundle). Let π : E → M be a vector bundle of rank k, with
total space E, fiber Rk and base manifold M . A frame at x ∈ M is a bijective linear
function p : Rk → Ex ≡ π−1(x) ⊂ E. The set of all frames constitutes the (general linear)
frame bundle F (E) with projection ϖ : F (E)→M mapping p : Rk → Ex to x ∈M .

This definition deserves a few clarifications. Recall that for a vector bundle of rank k, for every
base point x ∈ M the fiber Ex ⊂ E over x is diffeomorphic to Rk and carries the same vector
space structure. Hence, there is a well-defined notion of bijective, linear maps p : Rk → Ex. All
these maps over a given point x, which we call frames, constitute the fiber Fx(E) ⊂ F (E) of
the frame bundle F (E) over x. Since every frame maps all of Rk into the same fiber Ex, there
exists a well defined projection map ϖ : F (E)→M , which assigns to p ∈ F (E) the base point
x. This projection map can also explicitly written as follows. We take the zero element of Rk,
which is mapped by a frame to the zero element p(0) ∈ Ex of some fiber Ex. The base point x of
this fiber is recovered as x = π(p(0)). Hence, we may write the projection ϖ as ϖ(p) = π(p(0)).
In fact, instead of the zero element we could have chosen any other element of Rk here, since
all are mapped into the same fiber Ex. Choosing the zero element is just convenient, because
it is canonically distinguished.

Another and more intuitive picture of a frame is that of an ordered basis of the vector space
Ex. This picture is related to the definition above as follows. Denoting the canonical basis of
Rk by (ei, i = 1, . . . , k), a frame defines an ordered basis (pi, i = 1, . . . , k) of Ex as pi = p(ei).
Conversely, the frame p : Rk → Ex can be constructed from an ordered basis (pi) as the map
p : viei 7→ vipi, which is linear by definition.

In order to complete the fiber bundle structure of F (E), one also needs to provide its local
trivializations. We will do so alongside the following statement. Using the fact that the group
GL(k,R) acts on the bases of a real, k-dimensional vector space, one deduces the following
important property of frame bundles.

Theorem 22.1.1. The frame bundle F (E) over a vector bundle E of rank k is a principal
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fiber bundle with structure group GL(k,R), where the right action is defined as p · g = p ◦ g for
p ∈ F (E) and g ∈ GL(k,R).

Proof. Let x ∈ M and p, p′ ∈ Fx(E). Then there exists a unique g ∈ GL(k,R), such that
p′ = p ◦ g, which is given by g = p−1 ◦ p′. Hence, g ∈ GL(k,R) acts freely and transitively on
the fibers of F (E). Further, since E is a vector bundle, there exists a local basis (ϵi) on U ⊂M
with x ∈ U , which defines a local section ϵ : U → F (E). Setting ϕ−1(x, g) = ϵ(x) ◦ g defines a
local trivialization ϕ of F (E), which equips it with the structure of a smooth fiber bundle. ■

Using either of the interpretations given above, we may use local coordinates on E in order to
construct local coordinates on F (E). For this purpose, let U ⊂ M be a trivializing subset of
M with coordinates (xµ, µ = 1, . . . , n), and consider induced vector bundle coordinates (xµ, ya)
on π−1(U), where a = 1, . . . , k. By definition, these coordinates are chosen such that they
correspond to a basis ϵa of Ex for every x ∈ U . A frame p : Rk → Ex is then uniquely defined
by the coordinates xµ of the base point x, together with the components pai of the images
p(ei) = paiϵa of the basis vectors ei. Hence, coordinates on ϖ−1(U) ⊂ F (E) are given by
(xµ, pai), where pai are the components of an invertible matrix.

22.2 Vector bundles as associated bundles

Note that the frame bundle is canonically constructed from any vector bundle. One may ask
whether also the converse construction is possible, i.e., whether one can obtain a vector bundle
from a principal GL(k,R)-bundle, since the latter is reminiscent of a frame bundle. One may
already guess that this is possible by using the construction of associated fiber bundles detailed in
the previous section, where the action is given by the natural left action ρ : GL(k,R)×Rk → Rk
given by matrix multiplication. Hence, one has two constructions: Given a vector bundle
π : E → M , one finds the frame bundle F (E), which is a principal GL(k,R)-bundle, while
from a principal GL(k,R)-bundle P one finds the associated bundle P ×ρ Rk, which is a vector
bundle of rank k. We now check that each of these constructions is indeed the inverse of the
other.

Theorem 22.2.1. Let ϖ : P →M be a principal GL(k,R)-bundle and ρ : GL(k,R)×Rk → Rk
the left action given by matrix multiplication. Then the associated bundle P ×ρ Rk is a vector
bundle, and its frame bundle F (P ×ρ Rk) is canonically isomorphic to P .

Proof. It follows from the fact that ρ is a linear representation of GL(k,R) and theorem 20.4.1
that P ×ρ Rk is a vector bundle of rank k. To show that its frame bundle is canonically
isomorphic to P , consider an element p ∈ P , and let x = ϖ(p) ∈M . Recall that p gives rise to
a fiber diffeomorphism [p] : Rk → ϖ−1ρ (x), where ϖρ denotes the bundle projection of P ×ρ Rk,
which satisfies

[p](v) = [p, v] . (22.2.1)

By construction of the associated bundle, this map is bijective. Further, it is linear, which
can be seen from the construction of the vector bundle structure in theorem 20.4.1. Hence, it
constitutes a frame at x, and so [p] ∈ F (P ×ρ F ). We now show that the assignment p 7→ [p]
is a principal bundle isomorphism from P to F (P ×ρ F ). Let q ∈ F (Px ×ρ F ) be a frame at
x ∈M . Then there exists p ∈ Px with [p] ∈ F (P ×ρ F ). Since both [p] and q are frames, there
exists a unique g ∈ GL(k,R) such that q = [p] ◦ g. This yields another element p · g ∈ Px, for
which holds

[p · g](v) = [p](ρ(g, v)) = [p](gv) = ([p] ◦ g)(v) = q(v) (22.2.2)

for all v ∈ Rk, and hence [p · g] = q. This shows that p 7→ [p] is surjective, since for every
q ∈ F (P ×ρ F ) we can find a preimage in P . To show that it is also injective, we must show
that this preimage does not depend on the choice of the initial element p. If we had chosen
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another element p′, we would have found p′ ·g′ with [p′ ·g′] = q for another g′ ∈ GL(k,R). Since
both p · g and p′ · g′ are elements of Px, there exists a unique g̃ such that

p · g · g̃ = p′ · g′ . (22.2.3)

Then we have
q = [p′ · g′] = [p · g · g̃] = [p · g] ◦ g̃ = q · g̃ , (22.2.4)

and thus g̃ = 1, by applying the inverse frame q−1 from the left, proving that p · g = p′ · g′
is unique, independent of the choice of p, and hence p 7→ [p] is also injective, and therefore
bijective. Further, it preserves the fibers, since [p] ∈ F (Px ×ρ F ) for p ∈ Px, and compatible
with the right action, as follows from the relation (22.2.2). ▶Show smoothness.◀ ■

Next, we discuss the opposite direction.

Theorem 22.2.2. Let π : E → M be a vector bundle of rank k and ρ : GL(k,R) × Rk →
Rk, (g, v) 7→ gv the natural left action given by matrix multiplication. Then F (E) ×ρ Rk is
canonically isomorphic to E, where F (E) is the frame bundle of E.

Proof. We have to check that there is a one-to-one correspondence between elements e ∈ E and
[p, v] ∈ F (E)×ρRk, which constitutes a vector bundle isomorphism between these two bundles.
Given [p, v] ∈ F (E) ×ρ Rk, one can define e = p(v). This is independent of the choice of the
representative, since for [p, v] = [p′, v′] one has an element g ∈ GL(k,R) such that p′ = p · g and
v′ = g−1v, and hence

e′ = p′(v′) = (p ◦ g ◦ g−1)(v) = p(v) = e . (22.2.5)

Hence, this defines a map φ : F (E) ×ρ Rk → E. To show that this is bijective, we explicitly
construct its inverse. For e ∈ E, let x = π(e) ∈ M and pick a frame p ∈ Fx(E). Setting
v = p−1(e) ∈ Rk, one obtains an element [p, v] ∈ F (E) ×ρ Rk. Using the same argument as
above, one finds that this is independent of the choice of p. Further, it is obvious that p(v) = e,
and so these two maps indeed establish a one-to-one correspondence between [p, v] ∈ F (E)×ρRk
and e ∈ E. Finally, this one-to-one correspondence covers the identity on M , since e ∈ Ex and
p ∈ Fx(M) have the same base point x ∈M .

To check the smoothness of this map, we show that it relates the local trivializations. Recall
that a local trivialization ϵ̃ of E on U ⊂ M can be obtained from a local basis ϵ on U as the
inverse of

ϵ̃−1(x, v) 7→ ϵi(x)v
i . (22.2.6)

This is equivalent to a local section ϵ : U → F (E), which then defines a local trivialization ϕ of
F (E) as the inverse of

ϕ(x, g) = ϵ(x) · g , (22.2.7)

as well as a local trivialization ϕρ of F (E)×ρ Rk as the inverse of the map

ϕ−1ρ (x, v) = [ϵ(x), v] . (22.2.8)

Now it is easy to see that

φ(ϕ−1ρ (x, v)) = φ([ϵ(x), v]) = ϵ(x)(v) = ϵi(x)v
i = ϵ̃−1(x, v) , (22.2.9)

and so φ relates the local trivializations of E and F (E)×ρ Rk. Finally, we can write

φ|ϖ−1
ρ (U) = ϵ̃−1 ◦ ϕρ , (22.2.10)

showing that φ is a composition of smooth maps on ϖ−1ρ (U), and thus smooth. Since the local
trivializations cover F (E)×ρ Rk, it is smooth everywhere, thus finally proving that it is indeed
a vector bundle isomorphism. ■
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22.3 Coframes

As discussed in section 4.1, for every vector vector bundle π : E → M , there exists another
canonically defined vector bundle of the same rank, which is given by the dual bundle E∗. Of
course, also E∗ comes with a frame bundle F (E∗), and it is straightforward to expect that the
frame bundles of E and E∗ are closely related. In this section we clarify this relation, and
provide a few notions which are frequently used in the relevant literature. We start with the
following definition.

Definition 22.3.1 (Coframe bundle). Let π : E → M be a vector bundle of rank k, with
total space E, fiber Rk and base manifold M . A coframe at x ∈ M is a bijective linear
function q : Ex → Rk. The set of all coframes constitutes the (general linear) coframe
bundle F ∗(E) with projection ϖ̄ : F ∗(E)→M mapping q : Ex → Rk to x ∈M .

Further, we specify a right action on F ∗(E):

Theorem 22.3.1. The coframe bundle F ∗(E) over a vector bundle E of rank k is a principal
fiber bundle with structure group GL(k,R), where the right action is defined as q · g = g−1 ◦ q
for q ∈ F ∗(E) and g ∈ GL(k,R).

Proof. Let x ∈ M and q, q′ ∈ F ∗x (E). Then there exists a unique g ∈ GL(k,R), such that
q′ = g−1 ◦ q, which is given by g = q ◦ q′−1. Hence, g ∈ GL(k,R) acts freely and transitively on
the fibers of F ∗(E). Further, since E is a vector bundle, there exists a local basis (ϵi) on U ⊂M
with x ∈ U , which defines a local section ϵ−1 : U → F ∗(E). Setting ϕ−1(x, g) = g−1 ◦ ϵ−1(x)
defines a local trivialization ϕ of F ∗(E), which equips it with the structure of a smooth fiber
bundle. ■

Note that in contrast to the frame bundle, we need to compose from the left, and to use the
inverse group element in order to still obtain a right action. Now the following statement
becomes obvious.

Theorem 22.3.2. For any vector bundle E, the frame bundle F (E) and coframe bundle F ∗(E)
are canonically isomorphic, and the isomorphism is given by •−1 : F (E)→ F ∗(E).

Proof. Clearly, given x ∈M , p−1 ∈ F ∗x (E) is a coframe at x for each p ∈ Fx(E) and vice versa,
so that •−1 is a bijection which preserves the fibers. It commutes with the right multiplication,
since

(p · g)−1 = (p ◦ g)−1 = g−1 ◦ p−1 = p−1 · g (22.3.1)

for all g ∈ GL(k,R). Finally, if (U, ϕ) is a local trivialization of F (E), then (U, ϕ ◦ •−1) is
a local trivialization of F ∗(E) and vice versa, which follows from the construction of local
trivializations given in theorems 22.1.1 and 22.3.1. Hence, •−1 is an isomorphism of principal
GL(k,R)-bundles. ■

There is, of course, no practical difference between working with frames or coframes, since being
elements of canonically isomorphic bundles, both contain exactly the same information. The
only difference lies in their interpretation. Recall that we interpreted a frame p : Rk → Ex at
x ∈M as a basis (pi) of Ex, with basis vectors pi = p(ei). Similarly, we can interpret a coframe
q : Ex → Rk, which assigns to y ∈ Ex an element q(y) = yiei, as a cobasis (qi) with qi(y) = yi.
The latter, of course, is nothing else than a basis of the dual vector space E∗x, which is a fiber
of the dual bundle E∗. This finally brings us to the following conclusion.

Theorem 22.3.3. For any vector bundle π : E → M of rank k, its frame bundle F (E) and
frame bundle F (E∗) of its dual E∗ are canonically isomorphic.

235



Proof. For x ∈ M , let q : Rk → E∗x be a frame of the dual bundle, and denote by q̃ : Ex →
Rk, y 7→ ⟨q(ei), y⟩ei the corresponding coframe q̃ ∈ F ∗x (E). This induces a bijective mapping
between F (E∗) and F ∗(E), which can easily be seen by constructing the inverse. For q̃ : Ex →
Rk, we define the corresponding dual bundle frame as the unique element q ∈ Fx(E∗) which
satisfies ⟨q(ei), y⟩ >= ⟨ei, q(y)⟩ for all y ∈ Ex. Together with the isomorphism between F (E)
and F ∗(E), we thus have a bijective mapping between F (E) and F (E∗). ▶Show compatibility
with right action. . .◀ ■

Keep in mind, however, although F (E) ∼= F (E∗) via the canonical isomorphism given above,
these exists no such canonical isomorphism between E and E∗! These are distinct bundles, and
an in order to construct an isomorphism between them one must supply additional information.
The bundle E∗ it self, however, is of course fully defined by E. Following our discussion
in section 22.2, we can obtain E as an associated bundle to F (E), and analogously E∗ as
associated bundle to F (E∗). The fact that these two frame bundles are isomorphic suggests
that we can also obtain E∗ as associated bundle to F (E). This is of course the case.

Theorem 22.3.4. Let π : E → M be a vector bundle of rank k and ρ̄ : GL(k,R) × Rk →
Rk, (g, v) 7→ (gt)−1v the dual of the natural left action given by matrix multiplication. Then
F (E) ×ρ̄ Rk is canonically isomorphic to the dual bundle E∗, where F (E) is the frame bundle
of E.

Proof. ▶. . .◀ ■

22.4 Tensor bundles as associated bundles

22.5 Higher order frame bundles

Recall from definition 22.1.1 that we defined a frame at a point x ∈ M of a vector bundle
π : E → M of rank k as a bijective linear function p : Rk → Ex. We now introduce another
perspective on frames, which allows us to generalize their notion. Recall that a linear function
p : Rk → Ex in particular maps 0 ∈ Rk to 0 ∈ Ex, and that the components of p(viei)
with respect to some given basis of Ex are simply linear functions of the components vi, i.e.,
homogeneous first-order polynomials. In other words, we can identify the linear function p by
its first order jet j10p ∈ J1

0 (Rk, Ex)0. The additional requirement that p is bijective, and so
possesses an inverse p−1, then implies that this jet must be invertible, j10p ∈ J̃1

0 (Rk, Ex)0. We
can thus canonically identify the fiber Fx(E) of frames at x ∈ M with the space J̃1

0 (Rk, Ex)0,
and even write just p instead of j10p. This identification suggests a simple generalization, which
we define as follows.

Definition 22.5.1 (Higher order frame bundle). Let π : E → M be a vector bundle of
rank k, with total space E, fiber Rk and base manifold M . A r-th order frame at x ∈ M
is an invertible jet p ∈ J̃r0 (Rk, Ex)0. The set of all r-th order frames constitutes the r-th
order frame bundle F r(E) with projection ϖr : F r(E) → M mapping p ∈ J̃r0 (Rk, Ex)0 to
x ∈M .

In section 22.1 we have see that the ordinary frame bundle is a principal bundle with structure
group GL(k,R). One may therefore wonder whether a similar property holds also for the higher
order frame bundles we defined above. We now show that this is indeed the case.

Theorem 22.5.1. The r-th order frame bundle F r(E) over a vector bundle E of rank k is a
principal fiber bundle with structure group Jr(k), where the right action is defined as p ·g = p◦g
for p ∈ F r(E) and g ∈ Jr(k).
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Proof. Let x ∈ M . Given p ∈ F rx (E) = J̃r0 (Rk, Ex)0 and g ∈ Jr(k) = J̃r0 (Rk,Rk)0, their exists
a well-defined composition p ◦ g ∈ J̃r0 (Rk, Ex)0. This defines an action of Jr(k) on F r(E) which
preserves the fibers. This is a right action, since for p ∈ F rx (E) and g, h ∈ Jr(k) holds

p ◦ (gh) = p ◦ (g ◦ h) = (p ◦ g) ◦ h , (22.5.1)

since jet composition is associative. This action is also smooth, since jet composition is smooth.
From the fact that frames are invertible by definition further follows that for each pair p, p′ ∈
F rx (E) of frames at the same point x ∈ M there exists a unique element g = p−1 ◦ p′ ∈ Jr(k)
such that p′ = p ◦ g. Hence, the action is free and transitive. Finally, given a local basis (ϵi)
of E on U ⊂M , which we can also understand as a local section ϵ : U → F (E), we can finally
construct a local trivialization (U, ϕ) by defining

ϕ(p) = (ϖr(p), j
r
0(ϵ(x)

−1) ◦ p) ∈ U × Jr(k) (22.5.2)

for all p ∈ ϖ−1r (U). This gives F r(E) the structure of a principal Jr(k)-bundle. ■

As mentioned in the beginning of this section, higher order frame bundles are constructed as
generalizations of ordinary frame bundles, and so we expect to recover the ordinary frame bundle
as a special case. This easily follows from our construction.

Theorem 22.5.2. The first-order frame bundle F 1(E) over a vector bundle E is isomorphic
to the frame bundle F (E).

Proof. The existence of a bijection between F 1(E) and F (E) follows immediately from the
definition of higher order frame bundles and the fact that bijective, linear maps from Rk to
Ex for x ∈ M are canonically identified with invertible first-order jets in J̃r0 (Rk, Ex)0 and vice
versa. This identification commutes with the right action of Jr(k) ∼= GL(k,R) and preserves
the local trivializations. Hence, it constitutes a principal bundle isomorphism. ■

▶Discuss associated bundles.◀

22.6 Tangent frame bundle

A prototypical example of a vector bundle which exists on every manifold and is often encoun-
tered in physics is, of course, the tangent bundle. By applying the procedure detailed in the
preceding section to construct its frame bundle, we obtain a principal bundle which likewise is
canonically defined over any manifold. The definition is straightforward.

Definition 22.6.1 (Tangent frame bundle). LetM be a manifold of dimension dimM = n.
Its tangent frame bundle (or simply its frame bundle) is the frame bundle of its tangent
bundle τ : TM →M . It is usually denoted GL(M) or FM .

In the following, it will be useful to introduce coordinates on the tangent frame bundle, similarly
to the coordinates we have introduced on frames bundles in general. For this purpose, recall
that any coordinates (xµ) on the base manifold M induce a coordinate basis (∂µ) on the tangent
bundle TM , and so we can write a tangent vector in the form x̄µ∂µ, giving rise to coordinates
(xµ, x̄µ) on TM . (This will be discussed in more detail in section 29.1.) Writing a frame
p ∈ FxM with x ∈M as

p : Rn → TxM
viei 7→ pµiv

i∂µ
, (22.6.1)
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we have thus introduced coordinates (xµ, pµi) on FM , where pµi constitute the components
of an invertible matrix. Naturally, these coordinates also define a basis of the tangent bundle
TFM , which we denote as

∂µ =
∂

∂xµ
, ∂̄µ

i =
∂

∂pµi
, (22.6.2)

and the dual basis
dxµ , dpµi (22.6.3)

of the cotangent bundle T ∗FM .

To illustrate the usefulness of these coordinates, we use them to express the right translation
and fundamental vector fields. Denoting g ∈ GL(n,R) by the components gij of an invertible
matrix, the right translation reads

Rg : FM → FM
(xµ, pµi) 7→ (xµ, pµjg

j
i)

. (22.6.4)

Further, using the fact that the elements of TeGL(n,R) ∼= gl(n,R) are real n× n matrices, we
can denote a Lie algebra element

a = aijHij , (22.6.5)

and so the fundamental vector field ã ∈ Vect(FM) takes the form

ã = aijH̃ij = pµja
j
i∂̄µ

i . (22.6.6)

This expression will turn out to be useful also in later sections.

by its matrix components aij with respect to the basis Hij . A whole theory has been developed
around the question whether the frame bundle of a given manifold is trivial or not. Those
manifolds whose frame bundle is trivial deserve an own name.

Definition 22.6.2 (Parallelizable manifold). A manifold M whose frame bundle GL(M)
is trivial is called parallelizable.

Definition 22.6.3 (Parallelization). A global section σ ∈ Γ(GL(M)) of the frame bundle
GL(M) of a parallelizable manifold M is called a parallelization of M .

A nice case for studying this property is given in the following example.

Example 22.6.1. The only spheres Sn that are parallelizable are S1, S3 and S7. A Cartesian
product of at least two spheres is parallelizable if and only if at least one of them is odd.

We will not prove this here, since the proof is highly non-trivial. However, we can nicely prove
the following.

Theorem 22.6.1. Every Lie group G is parallelizable.

Proof. Let G be a Lie group of dimension dimG = n and (X1, . . . , Xn) a basis of the Lie
algebra g. Every basis element Xi is a left invariant vector field on G. For all g ∈ G, the
vectors (X1(g), . . . , Xn(g)) constitute a basis of TgG, and thus define a frame at g. This yields
a global section of the frame bundle. It thus follows that the frame bundle is trivial, so that G
is parallelizable. ■
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As we have seen in the previous sections, there is a close relationship between frame bundles,
their underlying vector bundles, as well as their dual and tensor product bundles. For tensor
bundles of the tangent and cotangent bundle, we have seen in section 12.1 that one can define
the notion of pullback along diffeomorphisms for their sections. Since we construct elements of
the tangent frame bundle with the help of vectors, one may therefore expect a similar notion
to exist also for (local) sections of the tangent frame bundle. This can be defined as follows.

Definition 22.6.4 (Pullback of a frame field). Let M,N be manifolds of dimension
dimM = dimN = n and φ : M → N a diffeomorphism. For a local section ε : U → FN
of the frame bundle FN of N defined on U ⊂ N , we define the pullback of ε as the local
section φ∗ε : φ−1(U)→ FM such that for every x ∈ φ−1(U) and v ∈ Rn holds

(φ∗ε)(x)(v) = φ−1∗ (ε(φ(x))(v)) . (22.6.7)

There is another possibility to understand this construction. Recall that a tangent frame p ∈
FxM over x ∈ M with dimM = n is a bijective, linear function p : Rn → TxM . Given a
diffeomorphism φ : M → N , it follows from theorem 10.1.4 that φ∗|TxM : TxM → Tφ(x)N is a
vector space isomorphism, i.e., a bijective, linear function. Hence, also φ∗ ◦ p : Rn → Tφ(x)N
is bijective and linear, and thus a frame, φ∗ ◦ p ∈ Fφ(x)N . One may thus define the following
function.

Definition 22.6.5 (Frame bundle lift). Let M,N be manifolds of dimension dimM =
dimN = n and φ :M → N a diffeomorphism. Its frame bundle lift is the map

φ◦ : FM → FN
p 7→ φ◦(p) = φ∗ ◦ p . (22.6.8)

It does not come as a surprise that the frame bundle lift satisfies the following property.

Theorem 22.6.2. The frame bundle lift φ◦ : FM → FN of a diffeomorphism φ : M → N
between manifolds of dimension n is a principal GL(n,R)-bundle isomorphism covering φ.

Proof. ▶. . .◀ ■

Given a left action ρ : GL(n,R)× F → F on a manifold F , one may then proceed by carrying
this bundle map to the corresponding associated bundles. This can be done by defining another
notion as follows.

Definition 22.6.6 (Associated bundle lift). Let M,N be manifolds of dimension dimM =
dimN = n and φ : M → N a diffeomorphism. For a left action ρ : GL(n,R)× F → F on
a manifold F , one defines the associated bundle lift as the map

φρ : FM ×ρ F → FN ×ρ F
[p, f ]ρ 7→ [φ◦(p), f ]ρ

. (22.6.9)

One needs to check that this is well-defined, i.e., independent of the choice of the representative
(p, f) ∈ [p, f ]ρ. We will do so by proving an even stronger statement.
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Theorem 22.6.3. The associated bundle lift φρ : FM ×ρ F → FN ×ρ F is a fiber bundle
isomorphism covering φ, and a vector bundle isomorphism if ρ : GL(n,R)× F → F is a linear
representation on a vector space F .

Proof. ▶. . .◀ ■

Among the most important actions of the group GL(n,R) we have encountered so far are the
natural representation on Rn, its dual and their tensor products and powers. We have seen in
the previous sections that the associated bundles obtained from these actions are the tangent,
cotangent and tensor bundles. Recall from section 12.1 that we have defined the pullback of
sections of these bundles. One may expect that these notions are related; it turns out that this
is the case, and we prove the following statement.

Theorem 22.6.4. Given a diffeomorphism φ : M → N and a tensor field T ∈ Γ(T rsN), the
pullback φ∗(T ) and the lift φrs : T rsM → T rsN are related by

T ◦ φ = φrs ◦ φ∗(T ) . (22.6.10)

Proof. ▶. . .◀ ■

Before we conclude this section, it is helpful to introduce another helpful notion, which exists
on the tangent frame bundle. We use the following definition.

Definition 22.6.7 (Canonical one-form). Let M be a manifold of dimension dimM =
n and ϖ : FM → M the tangent frame bundle of M . The canonical one-form θ ∈
Ω1(FM,Rn) is the Rn-valued one-form on FM such that

θp(ξ) = p−1(ϖ∗(ξ)) (22.6.11)

for all p ∈ FM and ξ ∈ TpFM .

This definition deserves a brief explanation. A Rn-valued one-form on FM assigns to every
tangent vector ξ ∈ TFM an element of Rn, and this assignment is linear on the fibers TpFM
for p ∈ FM . The canonical one-form does so by using the fact that a frame p ∈ FM is a
bijective, linear map from Rn to Tϖ(p)M . Given ξ ∈ TpFM , one can obtain a tangent vector
ϖ∗(ξ) ∈ Tϖ(p)M to M . Then one has p−1(ϖ∗(ξ)) ∈ Rn. Since both p and ϖ∗ are linear on
every fibers, this also holds for their composition. It follows that θ as constructed above is
indeed a Rn-valued one-form on FM .

It is instructive to derive a coordinate expression for the canonical one-form. Denoting a tangent
vector ξ ∈ TpFM as ξ = ξµ∂µ + ξ̄µi∂̄µ

i, we have

ϖ∗(ξ) = ξµ∂µ ∈ Tϖ(p)M , (22.6.12)

and hence
θ(ξ) = p−1(ϖ∗(ξ)) = p−1 iµξ

µ
ei ∈ Rn . (22.6.13)

Hence, it follows that the canonical one-form is given by

θ = p−1 iµdx
µ ⊗ ei ∈ Ω1(FM,Rn) , (22.6.14)

and we will also write
θi = p−1 iµdx

µ (22.6.15)

for convenience.

Recall that the structure group GL(n,R) of FM acts on Rn via the natural representation
ρ = idGL(n,R). Following definition 27.2.1, we now show the following.
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Theorem 22.6.5. The canonical form θ ∈ Ω1(FM,Rn) on the general linear frame bundle
FM of a manifold M of dimension n is a basic form of type ρ = idGL(n,R).

Proof. We need to show that θ is both horizontal and equivariant. For the former, let p ∈ FM
and ξ ∈ VpFM a vertical tangent vector. By the definition of the canonical form we then have

θp(ξ) = p−1(ϖ∗(ξ)) = 0 , (22.6.16)

since ϖ∗(ξ) = 0 for a vertical tangent vector. Further, let g ∈ GL(n,R) and ζ ∈ TpFM . Then
we have

(R∗gθ)p(ζ) = θp·g(Rg∗(ζ))

= (p · g)−1(ϖ∗(Rg∗(ζ)))
= (g−1 · p−1)(ϖ∗(ζ))
= g−1(θp(ζ)) ,

(22.6.17)

which shows that θ is equivariant with respect to ρ = idGL(n,R), and thus a basic form. ■

This can also be illustrated using coordinates. Hence, we have

θp·g = g−1 ijp
−1 j

µdx
µ ⊗ ei , (22.6.18)

and also
(R∗gθ)p = g−1 ijp

−1 j
µdx

µ ⊗ ei , (22.6.19)

since the action on the xµ coordinates is trivial. Since g acts by

g : Rn → Rn
viei 7→ gijv

j
ei

, (22.6.20)

we have
g−1(θp) = g−1 ijp

−1 j
µdx

µ ⊗ ei = (R∗gθ)p , (22.6.21)

as expected.
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Chapter 23

Densities

23.1 Density bundles and scalar densities

Let us now consider the following linear (left) actions of the general linear group GL(k,R) with
k ∈ N on the vector space F = R of real numbers:

1. ρ+w(A, c) = (detA)−wc for w ∈ Z,

2. ρ−w(A, c) = sgn(detA)(detA)−wc for w ∈ Z,

3. |ρ|+w(A, c) = |detA|−wc for w ∈ R,

4. |ρ|−w(A, c) = sgn(detA)|detA|−wc for w ∈ R.

We add a few remarks:

• One might be worried that, except for the first one, the right hand sides of the expressions
above are functions of detA which are non-differentiable and even discontinuous at detA =
0. However, recall that detA ̸= 0 for A ∈ GL(k,R), and so all defined functions are smooth
on GL(k,R)× R.

• Note that the former two actions are special cases of the latter two. Namely, if w is even,
we have ρ+w = |ρ|+w and ρ−w = |ρ|−w . If w is odd, the opposite holds, i.e., ρ+w = |ρ|−w and
ρ−w = |ρ|+w .

Consider now a vector bundle π : E → M of rank k over a manifold M , and recall that its
frame bundle F (E) is a principal GL(k,R)-bundle. Hence, for any of the actions ρ listed above,
we may define a corresponding associated bundle. This leads to the following definition:

Definition 23.1.1 (Densities). Let π : E → M be a vector bundle and F (E) its general
linear frame bundle. For the representations listed above one defines the density bundles
as follows:

1. the bundle of authentic scalar densities of weight w ∈ Z:

D+
w(E) = F (E)×ρ+w R , (23.1.1)

2. the bundle of scalar pseudo-densities of weight w ∈ Z:

D−w (E) = F (E)×ρ−w R , (23.1.2)
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3. the bundle of even scalar densities of weight w ∈ R:

|D|+w(E) = F (E)×|ρ|+w R , (23.1.3)

4. the bundle of odd scalar densities of weight w ∈ R:

|D|−w(E) = F (E)×|ρ|−w R . (23.1.4)

We call a section of a density bundle as defined above a scalar density of weight s.

In the literature, one finds also different names for these objects, some of them contradicting
the ones we use here:

• In [Spi99, vol. I, ch. 4], the following nomenclature is used:

1. Sections of D+
w are called even relative scalars.

2. Sections of |D|+w are called odd relative scalars.
3. Sections of D+

1 are called even scalar densities.
4. Sections of |D|+1 are called odd scalar densities.

There are a few special cases that deserve particular attention. We start with the following
case.

Theorem 23.1.1. The bundle D+
0 (E) = |D|+0 (E) of even (authentic) scalar densities of weight

0 is canonically isomorphic to the trivial line bundle M × R.

Proof. Recall that an element of the associated bundle is given by an equivalence class

[p, c]ρ+0
= {[p · g, ρ+0 (g−1, c)], g ∈ G} = {[p · g, c], g ∈ G} , (23.1.5)

where p ∈ F (E), c ∈ R and G = GL(k,R). We see that there is a one-to-one correspondence
between such equivalence classes and pairs (x, c) ∈M ×R, where x = π(p · g) = π(p) ∈M . ■

Hence, any (even, authentic) scalar density of weight 0 may simply be identified with a real
function. Another important case is the following.

Theorem 23.1.2. The bundle D+
−1(E) = |D|−−1(E) is canonically isomorphic to the exterior

power bundle ΛkE.

Proof. Recall that an element of the associated bundle is given by an equivalence class

[p, c]ρ+−1
= {[p · g, ρ+−1(g−1, c)], g ∈ G} = {[p · g, (det g)−1c], g ∈ G} , (23.1.6)

where p ∈ F (E), c ∈ R and G = GL(k,R). We then construct an element

cp1 ∧ p2 ∧ . . . ∧ pk ∈ ΛkE . (23.1.7)

To see that this is independent of the representative, we choose a different representative given
by p′ = p · g and c′ = (det g)−1c and calculate

c′p′1 ∧ p′2 ∧ . . . ∧ p′k = (det g)−1c(pi1g
i1

1) ∧ . . . ∧ (pikg
ik
k)

= (det g)−1cp1 ∧ . . . ∧ pk
∑
σ∈Sk

(
sgnσ

k∏
i=1

gσ(i)i

)
= cp1 ∧ p2 ∧ . . . ∧ pk .

(23.1.8)
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To get the second line from the first, we used the fact that the exterior product is totally
antisymmetric, and so we could reorder the terms such that the basis elements pi are in canonical
order. The third line is obtained by realizing that the sum appearing in the second line is just
the determinant formula in terms of matrix components. ■

Also densities of weight 1 we already encountered, despite in a different form, which we will see
as follows.

Theorem 23.1.3. The bundle D+
1 (E) = |D|−1 (E) is canonically isomorphic to the dual exterior

power bundle ΛkE∗.

Proof. In this case an element of the associated bundle is given by an equivalence class

[p, c]ρ+1
= {[p · g, ρ+1 (g−1, c)], g ∈ G} = {[p · g, (det g)c], g ∈ G} , (23.1.9)

where p ∈ F (E), c ∈ R and G = GL(k,R). Now we construct an element

cp∗1 ∧ p∗2 ∧ . . . ∧ p∗k ∈ ΛkE∗ , (23.1.10)

where p∗ denotes the basis of E∗π(p) dual to p. Similarly to the previous case, one must show
that this is independent of the representative. Here we choose a different representative given
by p′ = p · g and c′ = (det g)c and calculate

c′p′∗1 ∧ p′∗2 ∧ . . . ∧ p′∗k = (det g)c[(g−1)1i1p
∗i1 ] ∧ . . . ∧ [(g−1)kikp

∗ik ]

= (det g)cp∗1 ∧ . . . ∧ p∗k
∑
σ∈Sk

(
sgnσ

k∏
i=1

(g−1)iσ(i)

)
= cp∗1 ∧ p∗2 ∧ . . . ∧ p∗k ,

(23.1.11)

where we essentially used the same steps as in the preceding proof. ■

We see that the bundles ΛkE and ΛkE∗ can hence be regarded as particular cases of density
bundles. Note that also these two bundles are dual to each other. One may therefore ask
whether also for the duals of other density bundles one can find an explicit rule. This is the
case, and we state it as follows.

Theorem 23.1.4. The dual vector bundles of the scalar density bundles are given by:

[D+
w(E)]∗ = D+

w(E
∗) = D+

−w(E) , [|D|+w(E)]∗ = |D|+w(E∗) = |D|+−w(E) , (23.1.12a)

[D−w (E)]∗ = D−w (E
∗) = D−−w(E) , [|D|−w(E)]∗ = |D|−w(E∗) = |D|−−w(E) . (23.1.12b)

Proof. From the relation detA−1 = (detA)−1 of the determinant and the fact that the transpose
is trivial for a one-dimensional representation follows that the dual representations are given by

(ρ+w)
∗(A, c) = ρ+w(A

−1, c) = (detA)wc = ρ+−w(A, c) , (23.1.13a)

(ρ−w)
∗(A, c) = ρ−w(A

−1, c) = sgn(detA)(detA)wc = ρ−−w(A, c) , (23.1.13b)

(|ρ|+w)∗(A, c) = |ρ|+w(A−1, c) = |detA|wc = |ρ|+−w(A, c) , (23.1.13c)

(|ρ|−w)∗(A, c) = |ρ|−w(A−1, c) = sgn(detA)|detA|wc = |ρ|−−w(A, c) . (23.1.13d)

Using theorem 20.4.2, we therefore find the relations for the dual bundles. ▶Show relations for
E∗.◀ ■

Theorem 23.1.5. The tensor product between two scalar density bundles satisfies the following
rules:

D+
w(E)⊗D+

w′(E) ∼= D−w (E)⊗D−w′(E) ∼= D+
w+w′(E) , (23.1.14a)
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D−w (E)⊗D+
w′(E) ∼= D+

w(E)⊗D−w′(E) ∼= D−w+w′(E) , (23.1.14b)

|D|+w(E)⊗ |D|+w′(E) ∼= |D|−w(E)⊗ |D|−w′(E) ∼= |D|+w+w′(E) , (23.1.14c)

|D|−w(E)⊗ |D|+w′(E) ∼= |D|+w(E)⊗ |D|−w′(E) ∼= |D|−w+w′(E) . (23.1.14d)

Proof. Since the representations involved in the construction of these bundles are one-dimensional,
their tensor product reduces to the ordinary product. For these we find the relations

(ρ+w ⊗ ρ+w′)(A, c) = (ρ−w ⊗ ρ−w′)(A, c) = (detA)−w−w
′
c = ρ+w+w′(A, c) ,

(23.1.15a)

(ρ−w ⊗ ρ+w′)(A, c) = (ρ+w ⊗ ρ−w′)(A, c) = sgn(detA)(detA)−w−w
′
c = ρ−w+w′(A, c) ,

(23.1.15b)

(|ρ|+w ⊗ |ρ|+w′)(A, c) = (|ρ|−w ⊗ |ρ|−w′)(A, c) = |detA|−w−w
′
c = |ρ|+w+w′(A, c) ,

(23.1.15c)

(|ρ|−w ⊗ |ρ|+w′)(A, c) = (|ρ|+w ⊗ |ρ|−w′)(A, c) = sgn(detA)|detA|−w−w′
c = |ρ|−w+w′(A, c) .

(23.1.15d)

The corresponding relations for the density bundles then follow from theorem 20.4.2. ■

Since the density bundles are vector bundles, we can describe their elements and sections by
introducing a basis on their fibers. This basis consists of only one (non-zero) element of each
fiber, since these bundles are of rank 1. Note that such a basis element is not always canoni-
cally defined, except in special cases, such as D+

0 (E). However, given a basis of E, it can be
constructed by using the defining properties of the associated bundle construction. Note that
a local basis defined on an open set U ⊂M is simply a local section e : U → F (E) of the frame
bundle. This allows us to define a local, nowhere vanishing section

[e, 1]|ρ|±w : U → |D|±w
x 7→ [e(x), 1]|ρ|±w

(23.1.16)

of any of the density bundles we introduced. Since these bundles are one-dimensional, this
section constitutes a local basis. We will denote these bases as

e±w = [e, 1]ρ±w , |e|±w = [e, 1]|ρ|±w . (23.1.17)

To demonstrate the use of these bases, we apply them to write out the bundle isomorphisms
whose existence we proved above. Using the identifications from theorems 23.1.1, 23.1.2 and 23.1.3
and setting p = e(x) for x ∈ U , we see that the bundle isomorphisms simply map the bases as

e+0
∼= (• 7→ 1) , e+1

∼= e∗1 ∧ . . . ∧ e∗k , e+−1 ∼= e1 ∧ . . . ∧ ek , (23.1.18)

where by • 7→ 1 we denoted the constant function on U which has the value 1 everywhere. Also
it is helpful to note that the dual bases of the dual bundles, following theorem 23.1.4, are given
by

(e+w)
∗ = e+−w , (e−w)

∗ = e−−w , (|e|+w)∗ = |e|+−w , (|e|−w)∗ = |e|−−w . (23.1.19)

Finally, following theorem 23.1.5, the tensor products of these bases satisfy

e+w ⊗ e+w′ = e−w ⊗ e−w′ = e+w+w′ , (23.1.20a)

e−w ⊗ e+w′ = e+w ⊗ e−w′ = e−w+w′ , (23.1.20b)

|e|+w ⊗ |e|+w′ = |e|−w ⊗ |e|−w′ = |e|+w+w′ , (23.1.20c)

|e|−w ⊗ |e|+w′ = |e|+w ⊗ |e|−w′ = |e|−w+w′ . (23.1.20d)

We will not prove these formulas here, but make use of them later.

We finally discuss the question how the bases of density bundles are related which are derived
from different bases of the underlying vector bundle E. We thus consider a new basis ẽ defined
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on the same open subset U ⊂ M as above, which is related to e by a basis transformation of
the form

ẽ = e · g , ẽa(x) = eb(x)g
b
a(x) (23.1.21)

for all x ∈ U , where g : U → GL(k,R) defines the basis transformation. One then easily derives
the transformations

ẽ+w = [ẽ, 1]ρ+w

= [e · g, 1]ρ+w
= [e, ρ+w(g, 1)]ρ+w

= [e, (det g)−w]ρ+w
= (det g)−w[e, 1]ρ+w
= (det g)−we+w ,

(23.1.22)

and in the same way also

ẽ−w = sgn(det g)(det g)−we−w , |ẽ|+w = |det g|−w|e|+w , |ẽ|−w = sgn(det g)|det g|−w|e|−w .
(23.1.23)

Using these transformation formulas, we can now answer the question how the component
expression of a scalar density depends on the choice of the basis. We find the following formulas:

q = qe+w = q̃ẽ+w ∈ Γ(D+
w(E)) , q̃ = (det g)wq (23.1.24a)

t = te−w = t̃ẽ−w ∈ Γ(D−w (E)) , t̃ = sgn(det g)(det g)wt (23.1.24b)

u = u|e|+w = ũ|ẽ|+w ∈ Γ(|D|+w(E)) , ũ = |det g|wu (23.1.24c)

v = v|e|−w = ṽ|ẽ|−w ∈ Γ(|D|−w(E)) , ṽ = sgn(det g)|det g|wv . (23.1.24d)

We see that the component of a scalar density of weight w with respect to a basis changes under
a basis transformation with the determinant of the transformation matrix to the power w. Note
that this is the reason for introducing the negative sign in the definition of the representations
|ρ|±w at the beginning of this chapter.

23.2 Pseudotensors and tensor densities

Given a vector bundle π : E → M , we have now found essentially two types of vector bundles
which we can obtain as associated bundles of the frame bundle F (E): the tensor product
bundles Ers discussed in chapter 4, which are associated to the frame bundle by the tensor
product of the canonical representation of the structure group GL(k,R) and its dual, as well as
the scalar density bundles shown in section 23.1. We may combine these two notions, and thus
obtain another important type of bundle by taking their tensor product. We then arrive at the
following definition.

Definition 23.2.1 (Tensor densities). Let π : E →M be a vector bundle and the density
bundles as given in definition 23.1.1. For r, s ∈ N we define the following bundles:

1. the bundle of authentic tensor densities of weight w ∈ Z:

D+
w(E)⊗ Ers , (23.2.1)

2. the bundle of tensor pseudo-densities of weight w ∈ Z:

D−w (E)⊗ Ers , (23.2.2)
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3. the bundle of even tensor densities of weight w ∈ R:

|D|+w(E)⊗ Ers , (23.2.3)

4. the bundle of odd tensor densities of weight w ∈ R:

|D|−w(E)⊗ Ers . (23.2.4)

We call a section of a density bundle as defined above a tensor density of weight w.

In the literature one also finds other conventions for naming the objects defined above, as it is
also the case for the scalar densities we encountered before:

• In [HO01, sec. A.1.8], sections of D+
w(E) ⊗ Ers are called tensor densities, while sections

of D−w (E)⊗ Ers are called twisted tensor densities.

• In [Spi99, vol. I, ch. 4], sections of D+
w(E) ⊗ Ers are called even relative tensors, while

sections of |D|+w(E)⊗ Ers are called odd relative tensors.

Two special cases which we previously discussed are easily recovered:

1. For w = 0 and the positive sign, i.e., D+
0 = |D|+0 , one obtains an ordinary tensor bundle.

2. For r = s = 0 one obtains a scalar density.

Since also the tensor density bundles are vector bundles, one may of course discuss their duals
and tensor products. These are straightforward to proof, and so we will summarize their most
important properties in the following few statements.

Theorem 23.2.1. The dual vector bundles of the tensor density bundles are given by:

[D+
w(E)⊗ Ers ]∗ ∼= D+

−w(E)⊗ Esr , (23.2.5a)

[|D|+w(E)⊗ Ers ]∗ ∼= |D|+−w(E)⊗ Esr , (23.2.5b)

[D−w (E)⊗ Ers ]∗ ∼= D−−w(E)⊗ Esr , (23.2.5c)

[|D|−w(E)⊗ Ers ]∗ ∼= |D|−−w(E)⊗ Esr . (23.2.5d)

Proof. This follows immediately from theorems 4.3.2, 4.3.4 and 23.1.4. ■

Theorem 23.2.2. The tensor product between two tensor density bundles satisfies the following
rules:

D+
w(E)⊗D+

w′(E)⊗ Ers ∼= D−w (E)⊗D−w′(E)⊗ Ers ∼= D+
w+w′(E)⊗ Esr , (23.2.6a)

D−w (E)⊗D+
w′(E)⊗ Ers ∼= D+

w(E)⊗D−w′(E)⊗ Ers ∼= D−w+w′(E)⊗ Esr , (23.2.6b)

|D|+w(E)⊗ |D|+w′(E)⊗ Ers ∼= |D|−w(E)⊗ |D|−w′(E)⊗ Ers ∼= |D|+w+w′(E)⊗ Esr , (23.2.6c)

|D|−w(E)⊗ |D|+w′(E)⊗ Ers ∼= |D|+w(E)⊗ |D|−w′(E)⊗ Ers ∼= |D|−w+w′(E)⊗ Esr . (23.2.6d)

Proof. This follows from theorem 23.1.5. ■

Theorem 23.2.3. The contraction trkl of a tensor density is a tensor density of the same weight
and parity.

Proof. ▶. . .◀ ■
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From the definition 23.2.1 one can easily derive how to construct bases for the tensor density
bundles, given a basis e on the underlying vector bundle. These are of the form

|e|±w ⊗ ea1 ⊗ . . .⊗ ear ⊗ e∗b1 ⊗ . . .⊗ e∗bs , (23.2.7)

so that we can write a tensor density in the form

T = Ta1···ar b1···bs |e|±w ⊗ ea1 ⊗ . . .⊗ ear ⊗ e∗b1 ⊗ . . .⊗ e∗bs , (23.2.8)

where the first factor |e|±w must be chosen such that it corresponds to the weight and parity of
the tensor density.

We finally pose the question how the components of a tensor density change under a basis
transformation of the form (23.1.21), which we already considered for scalar densities. Using
the basis transformation

ẽa = ebg
b
a , ẽ∗a = (g−1)abe

∗b , (23.2.9)

as well as the transformation rules (23.1.24) for the basis transformation of scalar densities
derived in the section 23.1, we find

T̃a1···ar b1···bs =


(det g)w

sgn(det g)(det g)w

|det g|w
sgn(det g)|det g|w

 (g−1)a1c1 · · · (g−1)ar crgd1b1 · · · gdsbsTc1···crd1···ds ,

(23.2.10)
where the factor in braces depends on the parity of the tensor density.

23.3 Canonical tensor densities

The vector bundle isomorphisms shown in theorems 23.1.1, 23.1.2 and 23.1.3, which allow the
identifications of certain density bundles with other canonically constructed one-dimensional
vector bundles, as well as the tensor product rules in theorem 23.1.5, allow the construction of
a number of tensor densities, which are canonically defined for any vector bundle π : E → M .
From these follow the canonical isomorphism

D+
1 (E)⊗ ΛkE ∼= D+

−1(E)⊗ ΛkE∗ ∼= D+
0 (E) ∼= Λ0E ∼=M × R (23.3.1)

with the trivial line bundle. Further, the latter has a canonical, nowhere vanishing section,
namely the constant function • 7→ 1, which is an element of C∞(M,R) ∼= Γ(M × R). Via the
canonical isomorphism (23.3.1) one can therefore find canonical, nowhere vanishing sections
also for the two listed bundles of tensor densities. These are defined as follows.

Definition 23.3.1 (Levi-Civita densities). Let π : E → M be a vector bundle of rank
k. The Levi-Civita densities on E are the tensor densities E ∈ Γ(D+

1 (E) ⊗ ΛkE) and
e ∈ Γ(D+

−1(E)⊗ΛkE∗) which are obtained by identifying the function • 7→ 1 on M via the
bundle isomorphisms (23.3.1).

It is helpful to write these sections using the bases (23.1.17) we derived in section 23.1, given a
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local basis e of E. We start with E, which we identify as

E = (• 7→ 1)

= e+0

= e+1 ⊗ e+−1
= e+1 ⊗ (e1 ∧ . . . ∧ ek)

=
1

k!
ϵa1···ake+1 ⊗ (ea1 ∧ . . . ∧ eak)

= ϵa1···ake+1 ⊗ ea1 ⊗ . . .⊗ eak ,

(23.3.2)

where ϵa1···ak is the Levi-Civita symbol, which is totally antisymmetric in its indices. It takes
the values 1 if (a1, . . . , ak) are an even permutation of (1, . . . , k), −1 for an odd permutation
and 0 otherwise. It is a remarkable fact that the components of E, which is a tensor density of
rank (k, 0) and weight 1, are the same in any basis e, which can be seen from the fact that we
did not use any properties of e in order to derive its component expression. We can proceed
analogously with e and find

e = (• 7→ 1)

= e+0

= e+−1 ⊗ e+1
= e+−1 ⊗ (e∗1 ∧ . . . ∧ e∗k)

=
1

k!
ϵa1···ake

+
−1 ⊗ (e∗a1 ∧ . . . ∧ e∗ak)

= ϵa1···ake
+
−1 ⊗ e∗a1 ⊗ . . .⊗ e∗ak ,

(23.3.3)

where ϵa1···ak takes the same values as ϵa1···ak . Also the components of e, which is a tensor
density of rank (0, k) and weight −1, are the same in any basis e.

23.4 Determinant of tensor densities

Using the canonical Levi-Civita densities defined in the previous section, as well as the relations
between different tensor bundles, we can define another useful operation acting on second rank
(covariant, contravariant or mixed) tensors and tensor densities, which is analogue to a similarly
defined operation in linear algebra, namely that of a determinant. While in linear algebra the
determinant of a matrix is simple a number, the intuitive expectation that the determinant of a
second rank tensor is a scalar function, does not hold true. Instead, it turns out to be a tensor
density. The reason for this false intuition comes from the fact that the determinant in linear
algebra is commonly defined in terms of the totally antisymmetric Levi-Civita symbol, whose
entries are numbers, but the analogue totally antisymmetric object in differential geometry is
given by the Levi-Civita densities. This becomes clear in the following definition.

Definition 23.4.1 (Determinant of a tensor density). Let π : E →M be a vector bundle
of rank k. For a second rank tensor density on E, the determinant is defined as follows:

1. For a covariant tensor density T ∈ Γ(|D|±w(E)⊗ E0
2):

detT =
1

k!
tr11 tr

2
3 · · · trk2k−1 trk+1

2 trk+2
4 · · · tr2k2k E⊗ E⊗ T⊗ . . .⊗ T︸ ︷︷ ︸

k times

. (23.4.1)

2. For a contravariant tensor density U ∈ Γ(|D|±w(E)⊗ E2
0):

detU =
1

k!
tr11 tr

3
2 · · · tr2k−1k tr2k+1 tr

4
k+2 · · · tr2k2k e⊗ e⊗ U⊗ . . .⊗ U︸ ︷︷ ︸

k times

. (23.4.2)
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3. For a mixed tensor density V ∈ Γ(|D|±w(E)⊗ E1
1):

detV =
1

k!
trk+1

1 trk+2
2 · · · tr2kk tr1k+1 tr

2
k+2 · · · trk2k e⊗ E⊗V⊗ . . .⊗V︸ ︷︷ ︸

k times

. (23.4.3)

To see that the obtained determinants are scalar densities and calculate their weight and parity,
we use theorem 23.2.2 on the tensor product of tensor densities, as well as theorem 23.2.3 on
their contraction. With the notations of definition 23.4.1 we thus find the following.

1. For a covariant tensor density T ∈ Γ(|D|±w(E)⊗ E0
2) we have

T⊗ . . .⊗ T︸ ︷︷ ︸
k times

∈ Γ
(
|D|±kkw(E)⊗ E0

2k

)
. (23.4.4)

Together with the Levi-Civita densities this yields

E⊗ E⊗ T⊗ . . .⊗ T︸ ︷︷ ︸
k times

∈ Γ
(
|D|±kkw+2(E)⊗ E2k

2k

)
. (23.4.5)

Finally, after contraction, we find detT ∈ Γ
(
|D|±kkw+2(E)

)
.

2. For a contravariant tensor density U ∈ Γ(|D|±w(E)⊗ E2
0) we have

U⊗ . . .⊗ U︸ ︷︷ ︸
k times

∈ Γ
(
|D|±kkw(E)⊗ E2k

0

)
. (23.4.6)

Together with the Levi-Civita densities this yields

e⊗ e⊗ U⊗ . . .⊗ U︸ ︷︷ ︸
k times

∈ Γ
(
|D|±kkw−2(E)⊗ E2k

2k

)
. (23.4.7)

Finally, after contraction, we find detU ∈ Γ
(
|D|±kkw−2(E)

)
.

3. For a mixed tensor density V ∈ Γ(|D|±w(E)⊗ E1
1) we have

V⊗ . . .⊗V︸ ︷︷ ︸
k times

∈ Γ
(
|D|±kkw(E)⊗ Ekk

)
. (23.4.8)

Together with the Levi-Civita densities this yields

e⊗ E⊗V⊗ . . .⊗V︸ ︷︷ ︸
k times

∈ Γ
(
|D|±kkw(E)⊗ E2k

2k

)
. (23.4.9)

Finally, after contraction, we find detV ∈ Γ
(
|D|±kkw(E)

)
.

We see that the weight depends on the type of the original tensor density, due to the contribution
from the Levi-Civita densities. To give a more intuitive formula for the tensor contractions, we
also give the coordinate formulas with respect to a local basis e of E below, making use of the
product (23.1.20) of the basis elements.

1. A covariant tensor density T ∈ Γ(|D|±w(E)⊗ E0
2) can be written as

T = Tab|e|±w ⊗ e∗a ⊗ e∗b . (23.4.10)

Its determinant is given by

detT =
1

k!
ϵa1···akϵb1···bkTa1b1 · · ·Takbk |e|±

k

kw+2 = detT••|e|±
k

kw+2 . (23.4.11)
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2. A contravariant tensor density U ∈ Γ(|D|±w(E)⊗ E2
0) can be written as

U = Uab|e|±w ⊗ ea ⊗ eb . (23.4.12)

Its determinant is given by

detU =
1

k!
ϵa1···akϵb1···bkU

a1b1 · · ·Uakbk |e|±kkw−2 = detU••|e|±kkw−2 . (23.4.13)

3. A mixed tensor density V ∈ Γ(|D|±w(E)⊗ E1
1) can be written as

V = Va
b|e|±w ⊗ ea ⊗ e∗b . (23.4.14)

Its determinant is given by

detV =
1

k!
ϵa1···akϵ

b1···bkVa1
b1 · · ·Vak

bk |e|±
k

kw = detV••|e|±
k

kw . (23.4.15)

Note that we denoted by detT,detU,detV the determinant of the tensor density, which is a
scalar density, following definition 23.4.1, i.e., a section of a density bundle. This is different
from most other literature, where this notation is instead used to denote the determinant of
the component expression Tab,U

ab,Va
b with respect to some given basis e, understood as a

matrix. To distinguish these different objects, we use the notation detT••,detU••,detV•• for
the latter, to indicate that these are components with respect to a basis.

For matrices, we are used to the fact that we can obtain the determinant of a product of
matrices as the product of their individual determinants. A similar statement also holds for the
determinant of tensor densities. We will thus show the following statement.

Theorem 23.4.1. The determinant of the product of two densities is given by the product of
their determinants.

Proof. ▶. . .◀ ■

23.5 Densities in the tangent bundle

If the vector bundle we consider is the tangent bundle τ : TM → M , so that the frame
bundle becomes the tangent frame bundle FM , another set of operations on densities becomes
available. This comes from the fact that in this case the (scalar and tensor) density bundles are
associated to the frame bundle, and are thus natural bundles, which allows the construction of
pullbacks along diffeomorphisms, as shown for tensor bundles in section 12.1, and more general
in section 22.6. A possible way to introduce a pullback is by making use of the lift 22.6.6 to
the associated bundle, and its relation 22.6.4, which we now also demand for densities. In the
most simple case of a scalar density, this leads to the following definition.

Definition 23.5.1 (Pullback of a scalar tangent density). Let M,N be manifolds of di-
mension dimM = dimN = n and φ : M → N a diffeomorphism. For a scalar density
q ∈ Γ(|D|±w(TN)) of weight w, the pullback along φ is the scalar density

φ∗(q) = (|φ|±w)−1 ◦ q ◦ φ ∈ Γ(|D|±w(TM)) , (23.5.1)

where |φ|±w : |D|±w(TM)→ |D|±w(TN) denotes the associated bundle lift.

Having defined a notion of a pullback, one can proceed as in section 16.2 and introduce a Lie
derivative, by taking the pullback along the flow of a vector field. This definition proceeds in
full analogy to the Lie derivative 16.2.1 of tensor fields. We thus define:
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Definition 23.5.2 (Lie derivative of a scalar tangent density). Let q ∈ Γ(|D|±w(TM)) be a
scalar density and X ∈ Vect(M) a vector field on a manifold M . Let ϕ : R×M ⊇ U →M
be the flow of X. The Lie derivative of q with respect to X is the scalar density defined by

LXq = lim
t→0

ϕ∗t q− q

t
. (23.5.2)

It is instructive to derive coordinate expressions for the pullback of a scalar density and its Lie
derivative. We start with the former, and introduce local coordinates (xa) on M and (ya) on
N . For the corresponding induced bases of |D|±w(TM) and |D|±w(TN), we will use the notation
|ð|±w and |ð′|±w , respectively. Using these bases, we will write the original tensor density as
q = q|ð′|±w and its pullback as q′ = φ∗(q) = q′|ð|±w . Our aim is to derive the relation between
the component expressions q′ and q. For this purpose, recall that for x ∈ M , we can write a
frame p ∈ FxM in coordinates as the linear function

p : Rn → TxM
viei 7→ p(viei) = paiv

i∂a
, (23.5.3)

where we used the notation ∂a for the induced coordinate basis of TM . Applying the lift map
φ◦ : FM → FN , which is defined via the differential φ∗ : TM → TN , we find

φ◦(p)(v
i
ei) =

∂ya

∂xb
pbiv

i∂′a . (23.5.4)

Now we recall that the coordinate bases on the density bundles are obtained as

|ð|±w = [δ, 1]|ρ|±w , |ð′|±w = [δ′, 1]|ρ|±w , (23.5.5)

where by δ and δ′ we denoted the local sections of the frame bundles FM and FN induced by
the coordinate charts, as δ(ea) = ∂a and δ′(ea) = ∂′a. By comparison with the formula for the
frame bundle lift, we find that for x ∈ M the coordinate frames at x and φ(x) = y are related
by

φ◦(δ(x))(v
a
ea) =

∂ya

∂xb
vb∂′a = δ′(y)

(
∂ya

∂xb
vbea

)
= (δ′(y) ◦ g)(vaea) , (23.5.6)

where g ∈ GL(n,R) is defined by

g(vaea) = gabv
b
ea =

∂ya

∂xb
vbea . (23.5.7)

Hence, we have found the element g ∈ GL(n,R) which relates φ◦(δ(x)) and δ′(y). With this
knowledge, we can use the lift 22.6.6 to obtain

q(y)|ð′|±w = q(y)

= |φ|±w(q′(x))
= |φ|±w(q′(x)|ð′|±w)
= |φ|±w([δ(x), q′(x)]|ρ|±w )
= [φ◦(δ(x)), q

′(x)]|ρ|±w
= [δ′(y) · g, q′(x)]|ρ|±w
= [δ′(y), |ρ|±w(g, q′(x))]|ρ|±w
= |ρ|±w(g, q′(x))|ð′|±w .

(23.5.8)

In other words, the component expressions for densities transform with the representation of
the Jacobian gab = ∂ya/∂xb of the map φ expressed in the respective coordinates on M and
N . In particular, we thus find

q = qð′+w ∈ Γ(D+
w(TN)) , q′ = (det g)wq (23.5.9a)
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t = tð′−w ∈ Γ(D−w (TN)) , t′ = sgn(det g)(det g)wt (23.5.9b)

u = u|ð′|+w ∈ Γ(|D|+w(TN)) , u′ = |det g|wu (23.5.9c)

v = v|ð′|−w ∈ Γ(|D|−w(TN)) , v′ = sgn(det g)|det g|wv . (23.5.9d)

Note that we obtain a positive sign for w, since we defined the density representations with a
negative sign in section 23.1. We can then make use of these formulas in order to derive an
expression for the Lie derivative, following the same prescription as in section 16.2, where we
discussed the Lie derivative of tensor fields. Using coordinates (xa) on M , let X = Xa∂a be a
vector field, ϕ : R×M ⊇ U →M its flow and

q = q|ð|±w ∈ Γ(|D|±w(TM)) . (23.5.10)

We then write the pullback q′ = ϕ∗t (q) in the same coordinates as

ϕ∗t (q) = q′t = q′t|ð|±w ∈ Γ(|D|±w(TM)) . (23.5.11)

Now the coordinate expression for the Lie derivative takes the form

LXq(x) = lim
t→0

q′t(x)− q(x)
t

|ð|±w =
d

dt
q′t(x)

∣∣∣∣
t=0

|ð|±w . (23.5.12)

We then make use of the pullback formulas (23.5.9) we derived above, where now

det g = det
∂x′•t
∂x•

, (23.5.13)

and the vector field is related to the flow by

Xa(x) =
d

dt
x′at (x)

∣∣∣∣
t=0

. (23.5.14)

Hence, we find the derivative

d

dt
det g

∣∣∣∣
t=0

= tr
d

dt
g

∣∣∣∣
t=0

=
d

dt

∂x′at
∂xa

∣∣∣∣
t=0

= ∂a
d

dt
x′at (x)

∣∣∣∣
t=0

= ∂aX
a(x) . (23.5.15)

Note that we evaluate this derivative at t = 0, where det g → 1, and hence we can set
sgn(det g) = 1 and |det g| = det g a priori, so that we only need the derivative

d

dt
(det g)w

∣∣∣∣
t=0

= w∂aX
a(x) . (23.5.16)

Together with the term
d

dt
q(x′t(x))

∣∣∣∣
t=0

= Xa(x)∂aq(x) (23.5.17)

we then find the derivative

d

dt
q′t(x)

∣∣∣∣
t=0

=
d

dt
(det g)wq(x′t(x))

∣∣∣∣
t=0

= Xa(x)∂aq(x) + w∂aX
a(x)q(x) . (23.5.18)

Since this holds for all x ∈M , we find that the Lie derivative is given as the density

LXq = (Xa∂aq + w∂aX
aq)|ð|±w . (23.5.19)

This is the coordinate expression for the Lie derivative of a scalar density. Note that in addition
to the term for a scalar function which we derived in section 16.3 we find a contribution which
scales with the weight w. Also note that the same formula holds for all cases (23.5.9). We
finally remark that in the literature one conventionally omits the basis element, and thus finds
only the term in brackets as the coordinate expression. Here we included the basis element for
clarity, to distinguish the density component q from a scalar function.
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It is now straightforward to apply the same construction also to tensor densities. One can define
their pullback in full analogy to the case of scalar densities using associated bundles, or use the
fact that tensor density bundles arise as a tensor product between scalar density bundles and
ordinary tensor bundles. Here we do the latter, and remark that this definition is equivalent to
the associated bundle construction, as we have shown in section 22.6.

Definition 23.5.3 (Pullback of a tensor tangent density). Let M and N be manifolds and
φ :M → N a diffeomorphism. The pullback of tensor densities on N to tensor densities on
M is defined as the linear function φ∗ : Γ(|D|±w(TN)⊗T rsN)→ Γ(|D|±w(TM)⊗T rsM) that
for any scalar density t ∈ Γ(|D|±w(TN)) and tensor field T ∈ Γ(T rsN) holds

φ∗(t⊗ T ) = φ∗(t)⊗ φ∗(T ) . (23.5.20)

Also a coordinate expression for the pullback is now easily derived from the formulas for the
pullback of a tensor field (12.1.7) and a scalar density (23.5.9). Writing the original tensor
density as

T = Ta1···ar b1···bs |ð′|±w ⊗ ∂′a1 ⊗ . . .⊗ ∂′ar ⊗ dyb1 ⊗ . . .⊗ dybs (23.5.21)

and its pullback as

φ∗(T) = T′ = T′a1···ar b1···bs |ð|±w ⊗ ∂a1 ⊗ . . .⊗ ∂ar ⊗ dxb1 ⊗ . . .⊗ dxbs , (23.5.22)

one finds that the components are related by

T′a1···ar b1···bs =


(det g)w

sgn(det g)(det g)w

|det g|w
sgn(det g)|det g|w


∂xa1

∂yc1
· · · ∂x

ar

∂ycr
∂yd1

∂xb1
· · · ∂y

ds

∂xbs
Tc1···crd1···ds , (23.5.23)

where the term in braces must be chosen according to the parity of the density, and we wrote
g for the Jacobian gab = ∂ya/∂xb of the map φ expressed in the respective coordinates on M
and N .

Given the pullback, it is now obvious how to construct the Lie derivative of tensor densities.
As for scalars and ordinary densities, it is defined as follows.

Definition 23.5.4 (Lie derivative of a tensor tangent density). Let T ∈ Γ(|D|±w(TM) ⊗
T rsM) be a tensor density and X ∈ Vect(M) a vector field on a manifold M . Let ϕ :
R×M ⊇ U →M be the flow of X. The Lie derivative of T with respect to X is the tensor
density defined by

LXT = lim
t→0

ϕ∗tT− T

t
. (23.5.24)

Using the previous findings for the coordinate expressions of the Lie derivative of tensor fields
and scalar densities, one can easily derive a coordinate expression for the Lie derivative of a
tensor density. Observe that the factors attained in the pullback (23.5.23) of a tensor density are
simply a product of the factors we found for a tensor field (12.1.7) and a scalar density (23.5.9).
Hence, in the coordinate expression for the Lie derivative, the respective terms obtained from
these factors in the formulas (16.2.12) and (23.5.19) must be added, as a consequence of the
Leibniz rule. We thus obtain the coordinate expression

(LXT)a1···ar b1···bs = Xc∂cT
a1···ar

b1···bs + w∂cX
cTa1···ar b1···bs

− ∂cXa1Tca2···ar b1···bs − . . .− ∂cXarTa1···ar−1c
b1···bs

+ ∂b1X
cTa1···ar cb2···bs + . . .+ ∂bsX

cTa1···ar b1···bs−1c ,

(23.5.25)
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where we have now omitted the basis element for brevity, as its form should be clear by now.

We finally introduce another property of manifolds, which can conveniently be obtained from
the notion of tangent densities. Recall from definition 24.2.2 that we defined a vector bundle
to be orientable if its orientation bundle possesses a global section. Since every fiber bundle
is canonically equipped with a vector bundle, namely its tangent bundle, we can make the
following definition.

Definition 23.5.5 (Orientable manifold). A manifold is called orientable if and only if its
tangent bundle is orientable.

The orientability of a manifold is a fundamental property, which is deeply connected to its
geometry. It turns out that it can be related to the properties of atlases as follows.

Theorem 23.5.1. A manifold is orientable if and only if it possesses an atlas such that the
determinants of the Jacobian matrices of all transition functions are positive.

Proof. ▶. . .◀ ■

23.6 Twisted differential forms

In chapter 9 we have introduced and intensively discussed differential forms, which are one
of the most important and foundational classes of objects in differential geometry. We have
defined and studied a number of operations on them, in particular the exterior product, interior
product and exterior derivative. In chapter 17 we have seen that the latter two are just particular
examples of graded derivations on differential forms. We will now see that differential forms
have a close relative, which turns out to be useful in physics, but is much less covered in the
literature on differential geometry, despite having numerous applications in mathematical as
well as in physics. We start with the following definition.

Definition 23.6.1 (Twisted differential form). A twisted differential form of rank k (or
twisted k-form) on a manifold M is a section of the vector bundle ΛkT ∗M ⊗D−0 (T ∗M) for
k ∈ N. The space of all twisted k-forms on M is denoted Ω̄k(M), while the space of all
twisted differential forms is denoted

Ω̄•(M) =

dimM⊕
k=0

Ω̄k(M) . (23.6.1)

Recalling the canonical bundle isomorphisms

D−0 (TM) ∼= D−0 (T
∗M) ∼= [D−0 (TM)]∗ ∼= [D−0 (T

∗M)]∗ , (23.6.2)

and comparing with definition 23.2.1, we see that we can also understand twisted k-forms as
totally antisymmetric pseudotensors of rank (0, k). For this reason, also the term k-pseudoform
can be sometimes be found in the literature, while the term twisted k-form is used for a more
general notion. Also note that we have already encountered two special cases. A twisted
zero-form is simply a section of the bundle D−0 (T

∗M) and hence a pseudoscalar, while for
k = m = dimM we recall the canonical isomorphism ΛmTM ∼= D+

−1(T
∗M), so that

ΛmTM ⊗D−0 (T ∗M) ∼= D−−1(T
∗M) ∼= D−1 (TM) (23.6.3)
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is the bundle of scalar pseudo-densities.

Given coordinates (xa) on M , it follows that any twisted k-form A ∈ Ω̄k(M) can be written as

A =
1

k!
Aa1···akdx

a1 ∧ . . . ∧ dxak ⊗ ð−0 , (23.6.4)

similarly to (untwisted) differential forms. The important difference, which is often also used
as the defining property in the physics literature, is the fact that the components Aa1···ak of
a twisted k-form incur an additional factor sgn(det ∂x′•/∂x•) under a coordinate change from
(xa) to (x′a), which comes from the change of the basis element from ð−0 to ð′−0 , as given by
the relations (23.5.9) and (23.5.23).

The question arises whether one can apply any of the operations we have introduced for differ-
ential forms also to twisted forms. This can be seen most easily for the exterior product. The
crucial observation which makes this possible is the fact that the bundle D−0 (T

∗M) is its own
dual, and that

D−0 (T
∗M)⊗D−0 (T ∗M) ∼= D+

0 (T
∗M) ∼=M × R (23.6.5)

is the trivial line bundle. Hence, the tensor product of two pseudoscalars is canonically identified
with a real function. This allows us to give the following definition.

Definition 23.6.2 (Exterior product of twisted forms). For any differential forms α ∈
Ωk(M), β ∈ Ωl(M) and pseudoscalars a, b ∈ Ω̄0(M), the exterior product is defined as

(α⊗ a) ∧ β = (α ∧ β)⊗ a ∈ Ω̄k+l(M) , (23.6.6a)

α ∧ (β ⊗ b) = (α ∧ β)⊗ b ∈ Ω̄k+l(M) , (23.6.6b)

(α⊗ a) ∧ (β ⊗ b) = (α ∧ β)⊗ (a⊗ b) ∈ Ωk+l(M) , (23.6.6c)

and extended to arbitrary twisted forms A ∈ Ω̄k(M), B ∈ Ω̄l(M) by linearity in each
factor.

In other words, with regard to the exterior product, we may treat pseudoscalars exactly as we
would treat scalar functions, by simply pulling them out of the product, and let the exterior
product act only on the untwisted differential form factors. It is thus not surprising that the
exterior product of twisted forms inherits the same properties as for untwisted forms.

Theorem 23.6.1. For any twisted or untwisted differential forms A ∈
(−)

Ωk(M), B ∈
(−)

Ωl(M)

and C ∈
(−)

Ωr(M) holds:

1. Graded anticommutativity:
A ∧B = (−1)klB ∧ A . (23.6.7)

2. Associativity:
A ∧ (B ∧ C) = (A ∧B) ∧ C = A ∧B ∧ C . (23.6.8)

3. R-linearity in each factor.

Proof. ▶. . .◀ ■

We then continue with the interior product. From theorem ▶. . .◀ we know that also in this
case we can pull out a scalar factor which multiplies either the differential form or the vector
field. Extending this definition to allow also for pseudoscalar factors thus suggests itself. In
fact, we may even consider the case that the vector field carries a pseudoscalar factor, which
leads to the following definition, which is again useful in physics.
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Definition 23.6.3 (Pseudovector field). Let M be a manifold. A pseudovector field on M
is a section of the bundle TM ⊗ D−0 (TM). The space of all pseudovector fields on M is
denoted ¯Vect(M).

With this definition at hand, it is now straightforward to generalize the interior product as
follows.

Definition 23.6.4 (Interior product of twisted forms and pseudovector fields). For any
vector fieldsX ∈ Vect(M), differential forms α ∈ Ωk(M) and pseudoscalars x, a, the interior
product is defined such that

ιX⊗xα = ιXα⊗ x ∈ Ω̄k−1(M) , (23.6.9a)

ιX(α⊗ a) = ιXα⊗ a ∈ Ω̄k−1(M) , (23.6.9b)

ιX⊗x(α⊗ a) = ιXα⊗ (x⊗ a) ∈ Ωk−1(M) , (23.6.9c)

and extended to arbitrary twisted forms A ∈ Ω̄k(M) by linearity.

Just like the exterior product, also this generalized notion of an interior product inherits a
number of properties from the untwisted case. ▶. . .◀

Finally, we come to the exterior derivative. ▶. . .◀

Theorem 23.6.2. Let q ∈ Ω̄0(M) a pseudoscalar. Then there exists a unique twisted one-form
dq ∈ Ω̄1(M) such that for all vector fields X ∈ Vect(M) holds

LXq = ιXdq . (23.6.10)

Proof. ▶. . .◀ ■

We can thus define:

Definition 23.6.5 (Total differential of pseudoscalars). For a pseudoscalar q ∈ Ω̄0(M),
the total differential is the twisted one-form dq ∈ Ω1(M) constructed in theorem 23.6.2.
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Chapter 24

G-structures

24.1 Volume forms

It follows from the properties of the exterior power bundle that for a vector bundle π : E →M
of rank k the highest non-trivial exterior power is given by ΛkE, and that this is a vector bundle
of rank 1. We have seen in theorem 23.1.2 that we can canonically identify this bundle with the
density bundle D+

−1(E) = |D|−−1(E), which we will do in this section. Sections of this bundle
play an important role, as they are related to defining integrals, and therefore deserve special
attention. Of particular interest are nowhere vanishing sections of this type, which we will now
study, and which we define as follows.

Definition 24.1.1 (Volume form). A volume form on a vector bundle π : E →M of rank
k is a nowhere vanishing section of the bundle D+

−1(E), i.e., a section ω ∈ Γ(D+
−1(E)) such

that ω(x) ̸= 0 for all x ∈M .

Using a local basis (ea, a = 1, . . . , k) on an open set U ⊂ M , which is simply a local section
e : U → F (E) of the frame bundle, a volume form can always be written in the form ω =
we+−1 ∼= we1 ∧ . . . ∧ ek with w(x) ̸= 0 for all x ∈ U , with respect to the induced basis e+−1.
Note that although at first sight it looks like w is simply a real function on M , so that one
could identify volume forms and nowhere vanishing functions, this is not the case - the value
of w in this definition depends on the choice of the basis e, while the value of a real function
f ∈ Γ(D+

0 (E)) ∼= C∞(M,R) depends only on a point on M , but not on the choice of coordinates
used for its description. However, functions can be used to compare volume forms. If ω is a
volume form and f ∈ C∞(M,R) is nowhere vanishing, then obviously also fω is a volume form.
In fact, every volume form can be expressed by any other volume form and a function:

Theorem 24.1.1. Let ω and ω′ be volume forms on a vector bundle π : E → M . Then there
exists a unique nowhere vanishing function f ∈ C∞(M,R) such that ω′ = fω.

There is another crucial difference between the bundles D+
0 (E) ∼= Λ0E ∼=M×R and D+

−1(E) ∼=
ΛkE: although both are vector bundles of rank 1 over M , they are in general not isomorphic.
While the former is simply the trivial line bundle M × R and therefore always has nowhere
vanishing sections such as the constant function f : • 7→ 1, this does not necessarily hold for
the latter, and there are examples which do not possess nowhere vanishing sections. Hence,
not every vector bundle allows for a volume form. In fact, volume forms can be identified with
another structure, as we will see next.
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Theorem 24.1.2. There is a one-to-one correspondence between volume forms of a vector
bundle π : E → M of rank k and SL(k,R)-reductions of its general linear frame bundle ϖ :
F (E)→M .

Proof. Recall from definition 20.6.1 that a reduction of a principal bundle is a particular ho-
momorphism of principal bundles covering the identity on M . We will sketch how to construct
such a homomorphism from a volume form and vice versa, and show how these constructions
are related to each other.

First, consider a volume form ω ∈ Γ(D+
−1(E)) and x ∈M . We call a frame p ∈ Fx(E) over x a

unit frame if and only if
[p, 1]ρ+−1

= ω(ϖ(p)) = ω(x) . (24.1.1)

Note that such unit frames exist for all x ∈ M . To see this, recall that by definition of the
bundle D+

−1(E), for any frame p ∈ Fx(E) there exists a unique c ∈ R such that

[p, c]ρ+−1
= ω(x) . (24.1.2)

From the condition that ω nowhere vanishes follows that c ̸= 0. We may thus consider the frame
p′ obtained from p by replacing its first component p1 by p′1 = cp1, while all other components
remain unchanged, and again obtain a frame. One easily checks that this new frame is a unit
frame, since

ω(x) ∼= cp1 ∧ . . . ∧ pk = p′1 ∧ . . . ∧ p′k . (24.1.3)

Further, one finds that if p ∈ Fx(E) is a unit frame, then p · g is a unit frame if and only if
det g = 1, and hence g ∈ SL(k,R). For every x ∈ M , we thus find that the set of unit frames
over x carries a right action of SL(k,R), which is obtained by the restriction of the action of
GL(k,R) on Fx(E), and that this action is free and transitive. From the smoothness of ω one
finds that these sets constitute the fibers of a principal SL(k,R)-bundle over M , which we will
denote SL(E,ω). Finally, one finds that the canonical inclusion SL(E,ω) ↪→ F (E), together
with the inclusion SL(k,R) ↪→ GL(k,R) define a principal bundle reduction of F (E).

To show the converse direction, let χ : Q→M be a principal SL(k,R) bundle and ϕ : Q→ F (E)
a SL(k,R) reduction over the canonical inclusion SL(k,R) ↪→ GL(k,R). For q ∈ Q with
χ(q) = x, define

ω(x) = [ϕ(q), 1]ρ+−1
. (24.1.4)

This is independent of the choice of the representative, since for any other q′ = q · g with
g ∈ SL(k,R) we have det g = 1 and hence

[ϕ(q′), 1]ρ+−1
= [ϕ(q · g), 1]ρ+−1

= [ϕ(q) · g, 1]ρ+−1
= [ϕ(q), 1]ρ+−1

= ω(x) . (24.1.5)

One finds that this defines a nowhere vanishing section ω of D+
−1(E), and hence a volume form

on π : E →M .

Finally, one can see from the two constructions that the bundle SL(E,ω) constructed above is
simply the image of Q under ϕ in F (E), which can canonically be identified with Q, since ϕ
restricts to an isomorphism of principal SL(k,R) bundles. ■

In the proof we have constructed a particular subbundle of the frame bundle F (E), which we
will study further below, and denote as follows.

Definition 24.1.2 (Unit frame bundle). Let π : E → M be a vector bundle of rank k
equipped with a volume form ω and ϖ : F (E) → M its general linear frame bundle. Its
unit frame bundle is the principal SL(k,R) bundle

SL(E,ω) =
{
p ∈ F (E), [p, 1]ρ+−1

= ω(ϖ(p))
}

(24.1.6)
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of unit frames, together with the right action obtained by restricting the right action of
GL(k,R) on F (E) to SL(k,R).

Using the unit frame bundle, we can obtain yet another interpretation of a volume form. Recall
from theorem 20.6.1 that we can identify a principal bundle reduction to a closed subgroup with
a section of a suitable associated bundle, whose fiber is a coset space. Now we aim to identify
this section with the volume form. It turns out that we can achieve this as follows.

Theorem 24.1.3. Let π : E → M be a vector bundle and ϖ : F (E) → M its general linear
frame bundle. Then there exists a canonical isomorphism between the slit density bundle

D∗+−1(E) = F (E)×ρ+−1
R∗ (24.1.7)

and the coset bundle
F (E)×ρ G/H , (24.1.8)

where G = GL(k,R), H = SL(k,R) and ρ denotes the canonical left action of G on G/H.

Proof. It is obviously enough to show that R∗ ∼= G/H and that this identification relates ρ
and ρ+−1, so that one obtains the same associated bundle. First note that ρ+−1 acts on R∗
by restriction, since ρ+−1(g, 0) = 0 for all g ∈ GL(k,R), so that D∗+−1(E) as defined above is
well-defined. Further, we can write every g ∈ GL(k,R) uniquely as

g = diag(det g, 1, . . . , 1) · h (24.1.9)

with h ∈ SL(k,R). Hence, every coset gH is uniquely characterized by det g. Since det g ∈ R∗,
this yields an identification R∗ ∼= G/H. Further, from the relation det(gg′) = det g · det g′
follows that G acts on G/H by multiplication with det g, which is exactly the action defined by
ρ+−1. ■

With this identification, we can see why there exist vector bundles which do not admit a volume
form. Note that R∗ is a one-dimensional manifold with two connected components, namely the
positive and negative real numbers. Hence, also the fibers of D∗+−1(E) have two connected
components. If we consider, for example, a vector bundle over the circle M = S1, which is
constructed such that one passes from one connected component to the other when going around
the circle, it is not possible to find a smooth section of this bundle. An example is the infinite
Möbius strip π : E → M we constructed in example 3.1.1. Here we have D+

−1(E) ∼= Λ1E ∼= E,
and if we remove the zero section, we obtain a bundle which has no global sections, since every
section of E must pass through 0.

24.2 Orientations

In the previous section we have seen that not every vector bundle admits a volume form, due to
the fact that the fibers of the bundle D∗+−1(E) consist of two connected components, and that
these fibers might be “glued the wrong way”, so that the resulting fiber bundle does not have any
global sections. Intuitively, one could try to simplify this geometric picture by shrinking every
connected component of the fibers to a single point, and considering a bundle whose fiber is the
zero-dimensional manifold Z2 = {1,−1} consisting of only two points, instead of R∗. It turns
out that this type of construction is indeed possible, and yields a structure which is just as rich
as the volume forms we discussed in the previous section. To arrive at this structure, we proceed
by analogy. Recall that GL(k,R) acts on R∗ by multiplication with the determinant, and that
we could identify this action as the canonical action on the coset space GL(k,R)/SL(k,R).
Looking for a similar action on Z2, we find that GL(k,R) naturally acts by multiplication with
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the sign of the determinant. Proceeding as in the previous section, one finds that this allows
an identification of Z2 with the coset space GL(k,R)/GL+(k,R), where

GL+(k,R) = {g ∈ GL(k,R),det g > 0} (24.2.1)

is the positive general linear group. The associated bundle construction then yields a bundle,
whose sections we denote as follows.

Definition 24.2.1 (Orientation). Let π : E →M be a vector bundle and F (E) its general
linear frame bundle. An orientation on E is a section of the bundle

F (E)×ρ G/H , (24.2.2)

where G = GL(k,R), H = GL+(k,R) and ρ denotes the canonical left action of G on G/H.

As it is also the case with volume forms, it is intuitively clear that not every vector bundle
admits an orientation. We thus introduce the following notion.

Definition 24.2.2 (Orientable vector bundle). A vector bundle is called orientable if and
only if it admits an orientation.

In analogy to the case of volume forms, we can find equivalent descriptions of orientations.
We first take a closer look at the associated bundle we constructed in definition 24.2.1. As
mentioned earlier, the fibers of this bundle are given by the space Z2, on which GL(k,R) acts
by multiplication with the sign of the determinant. By comparison with the density bundles
listed in definition 23.1.1, we find the same action under the name ρ−0 = |ρ|−0 , albeit acting on
the larger space R. As it turns out, the bundle D−0 (E) = |D|−0 (E) is a curious special case.
This bundle is its own dual, and the tensor product with itself yields the trivial line bundle
D+

0 (E) = |D|+0 (E) ∼=M × R, and it is sometimes denoted as follows.

Definition 24.2.3 (Orientation line bundle). Let π : E → M be a vector bundle. Its
orientation line bundle is the bundle D−0 (E) = |D|−0 (E).

Also the sections of this bundle carry a particular name in the literature.

Definition 24.2.4 (Pseudoscalar). Let π : E →M be a vector bundle. A pseudoscalar on
E is a section of the orientation line bundle D−0 (E) = |D|−0 (E).

It is easy to check that the action ρ−0 preserves the absolute value |c| of c ∈ R, as it multiples
only with ±1, and so restricts to an action on Z2 = {1,−1}. Hence, we may define another
associated bundle s follows.
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Definition 24.2.5 (Orientation bundle). Let π : E →M be a vector bundle. Its orienta-
tion bundle is the discrete density bundle

F (E)×ρ−0 Z2 . (24.2.3)

The name already suggests that we may regard an orientation also as a section of this bundle.
This follows from the following statement.

Theorem 24.2.1. Let π : E → M be a vector bundle and ϖ : F (E) → M its general lin-
ear frame bundle. Then there exists a canonical isomorphism between the orientation bundle
F (E)×ρ−0 Z2 and the coset bundle F (E)×ρ G/H, where G = GL(k,R), H = GL+(k,R) and ρ
denotes the canonical left action of G on G/H.

Proof. One can proceed in analogy to the proof of theorem 24.1.3, and show that the two fiber
spaces and the left actions they carry are identical. For this purpose, note that one can write
every g ∈ GL(k,R) uniquely as

g = diag(sgn(det g), 1, . . . , 1) · h (24.2.4)

with h ∈ GL+(k,R). Hence, every coset gH is uniquely characterized by sgn(det g) ∈ Z2.
Using the relation det(gg′) = det g ·det g′, it follows that G acts on G/H by multiplication with
sgn(det g), which corresponds to the action on Z2 defined by ρ−0 . ■

Since F (E) ×ρ−0 Z2 ⊂ D−0 (E), we can also consider an orientation as a section of the bundle
D−0 (E), which in a given basis e−0 , induced by a basis e on E, takes only the values ±1. This is
similar to the definition of a volume form, which in an induced local basis takes only non-zero
values. Note that this property is independent of the choice of the basis, since the induced
basis of D−0 (E) changes only by a sign, as can be seen from the corresponding transformation
law (23.1.24). Since we can identify a basis of E with a frame, we arrive at the following notion.

Definition 24.2.6 (Oriented frame bundle). Let π : E → M be a vector bundle of rank
k equipped with an orientation σ ∈ Γ(F (E)×ρ−0 Z2) and ϖ : F (E)→M its general linear
frame bundle. Its oriented frame bundle is the principal GL+(k,R) bundle

GL+(E, σ) =
{
p ∈ F (E), [p, 1]ρ−0

= σ(ϖ(p))
}

(24.2.5)

of oriented frames, together with the right action obtained by restricting the right action
of GL(k,R) on F (E) to GL+(k,R).

Obviously, choosing an orientation is now equivalent to choosing an oriented frame bundle, i.e.,
declaring one of the two connected components of each fiber of F (E) as containing the oriented
frames, and thus turning this connected component into the fiber of GL+(E, σ). We formalize
this equivalence in the following statement.

Theorem 24.2.2. There is a one-to-one correspondence between orientations of a vector bundle
π : E →M of rank k and GL+(k,R)-reductions of its general linear frame bundle ϖ : F (E)→
M .

Proof. We can proceed in analogy to the proof of theorem 24.1.2, by first considering an orien-
tation σ ∈ Γ(F (E) ×ρ−0 Z2) and x ∈ M . Then we call a frame p ∈ Fx(E) over x an oriented
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frame if and only if
[p, 1]ρ−0

= σ(ϖ(p)) = σ(x) . (24.2.6)

We need to show that oriented frames exist for all x ∈M . It follows from the definition of the
associated bundle F (E)×ρ−0 Z2 that for any frame p ∈ Fx(E) there exists a unique c ∈ Z2 such
that

[p, c]ρ−0
= σ(x) . (24.2.7)

We may then consider the frame p′ obtained from p by replacing its first component p1 by
p′1 = cp1, while all other components remain unchanged, and again obtain a frame. It follows
that this new frame p′ is oriented, since

[p, c]ρ−0
= [p′ · g, c]ρ−0 = [p′, sgn(det g)c]ρ−0 = [p′, c2]ρ−0 = [p′, 1]ρ−0 = σ(x) , (24.2.8)

where g = diag(c, 1, . . . , 1), and we repeatedly used the fact that det g = c = ±1, so that
c = sgn(c) and c2 = 1. Further, it holds that if p ∈ Fx(E) is oriented, then p · g is oriented
if and only if det g > 0, and hence g ∈ GL+(k,R). For every x ∈ M , we thus find that the
set of oriented frames over x carries a right action of GL+(k,R), which is obtained by the
restriction of the action of GL(k,R) on Fx(E), and that this action is free and transitive. From
the smoothness of σ one finds that these sets constitute the fibers of a principal GL+(k,R)-
bundle over M , which we will denote GL+(E, σ). Finally, one finds that the canonical inclusion
GL+(E, σ) ↪→ F (E), together with the inclusion GL+(k,R) ↪→ GL(k,R) define a principal
bundle reduction of F (E).

To show the converse direction, let χ : Q → M be a principal GL+(k,R) bundle and ϕ : Q →
F (E) a GL+(k,R) reduction over the canonical inclusion GL+(k,R) ↪→ GL(k,R). For q ∈ Q
with χ(q) = x, define

σ(x) = [ϕ(q), 1]ρ−0
. (24.2.9)

This is independent of the choice of the representative, since for any other q′ = q · g with
g ∈ GL+(k,R) we have det g > 0 and hence

[ϕ(q′), 1]ρ−0 = [ϕ(q · g), 1]ρ−0 = [ϕ(q) · g, 1]ρ−0 = [ϕ(q), sgn(det g)]ρ−0
= [ϕ(q), 1]ρ−0

= σ(x) .

(24.2.10)
One finds that this defines a section σ of F (E)×ρ−0 Z2, and hence an orientation on π : E →M .

Finally, one can see from the two constructions that the bundle GL+(E,ω) constructed above
is simply the image of Q under ϕ in F (E), which can canonically be identified with Q, since ϕ
restricts to an isomorphism of principal GL+(k,R) bundles. ■

Intuitively, one may now expect that if one can choose an orientation, and hence an oriented
frame bundle, one can also choose a volume form, by a further bundle reduction. Indeed, it
turns out that this is the case.

Theorem 24.2.3. A vector bundle admits a volume form if and only if it is orientable.

Proof. ▶. . .◀ ■

24.3 Twisted volume forms

In the previous section we have constructed a bundle by taking the bundle D∗+−1(E) of volume
forms over a vector bundle, and “forgetting” the magnitude of its elements and keeping only
the orientation, i.e., by identifying all elements which belong to the same connected component
of each fiber. We thus reduced the fiber space from R∗ to Z2. We now pose the question
whether one can also “forget” the complementary piece of information, namely the orientation,
and keep only the magnitude. In other words, we will now identify antipodal pairs of elements
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of D∗+−1(E), in order to obtain a bundle whose fiber is diffeomorphic to the connected manifold
R+. Looking for a suitable action of GL(k,R) on this manifold, one finds that in this case one
needs to multiply with the absolute value of the determinant. In this case it turns out that we
can identify R+ with the coset space GL(k,R)/SL±(k,R), where

SL±(k,R) = {g ∈ GL(k,R), |det g| = 1} (24.3.1)

is the indefinite special linear group. Then we may again employ the associated bundle con-
struction to obtain a bundle, whose sections we denote as follows.

Definition 24.3.1 (Twisted volume form). Let π : E → M be a vector bundle and F (E)
its general linear frame bundle. A twisted volume form on E is a section of the bundle

F (E)×ρ G/H , (24.3.2)

where G = GL(k,R), H = SL±(k,R) and ρ denotes the canonical left action of G on G/H.

In the literature, a twisted volume form is also often called simply a density. We will not use
this terminology here, since we use the term “density” for general sections of density bundles.
One may wonder whether passing to this new bundle, whose fibers have only one connected
component, always allows us to find sections, or whether there happen to be other obstructions
in certain cases. It turns out that the former is true:

Theorem 24.3.1. Every vector bundle admits twisted volume forms.

Proof. ▶. . .◀ ■

We can now apply the same kind of constructions as in the previous sections for the (untwisted)
volume forms and orientations. First, we relate the associated bundle built from coset spaces to
a suitable density bundle, whose fiber is given by the positive real numbers R+ and which can
be obtained from the general linear frame bundle by acting on these fibers by multiplication
with the absolute value of the determinant. Taking a look at the representations used in the
definition 23.1.1 of the density bundles, we see that this action is denoted ρ−−1 = |ρ|+−1, and that
we may restrict it from R to R+. Hence, we find the following bundle isomorphism.

Theorem 24.3.2. Let π : E → M be a vector bundle and ϖ : F (E) → M its general linear
frame bundle. Then there exists a canonical isomorphism between the positive density bundle

F (E)×ρ−−1
R+ (24.3.3)

and the coset bundle
F (E)×ρ G/H , (24.3.4)

where G = GL(k,R), H = SL±(k,R) and ρ denotes the canonical left action of G on G/H.

Proof. One can proceed in analogy to the proof of theorem 24.1.3, and show that the two fiber
spaces and the left actions they carry are identical. For this purpose, note that one can write
every g ∈ GL(k,R) uniquely as

g = diag(|det g|, 1, . . . , 1) · h (24.3.5)

with h ∈ SL±(k,R). Hence, every coset gH is uniquely characterized by |det g| ∈ R+. Using
the relation det(gg′) = det g ·det g′, it follows that G acts on G/H by multiplication with |det g|,
which corresponds to the action on R+ defined by ρ−−1. ■
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Using this isomorphism, we can identify twisted volume forms with sections of the density
bundle D−−1, which are represented by positive numbers in any basis e−−1 induced by a basis
e of E. As in the case of orientations, this condition is independent of the choice of the basis
e, since the sign does not change under a basis transformation, as can also be seen from the
transformation rules (23.1.24). With this knowledge, we can identify those bases, or frames,
with respect to which a given twisted volume form µ is represented by the number 1. We define
them as follows.

Definition 24.3.2 (Normalized frame bundle). Let π : E →M be a vector bundle of rank
k equipped with a twisted volume form µ ∈ Γ(F (E) ×ρ−−1

R+) and ϖ : F (E) → M its

general linear frame bundle. Its normalized frame bundle is the principal SL±(k,R) bundle

SL±(E, σ) =
{
p ∈ F (E), [p, 1]ρ−−1

= µ(ϖ(p))
}

(24.3.6)

of normalized frames, together with the right action obtained by restricting the right action
of GL(k,R) on F (E) to SL±(k,R).

Note that in contrast to the oriented and unit frame bundles, the fibers of the normalized
frame bundle have two connected components, as also the structure group SL±(k,R) acting on
these fibers has two connected components. This relates to the fact that the twisted volume
form prescribes a magnitude for normalized frames, but no preferred orientation, and hence
the normalized frame bundle contains elements from each connected component of the fibers of
the general linear frame bundle. As for the other bundles we considered, we can then state the
following relation between twisted volume forms and frame bundle reductions.

Theorem 24.3.3. There is a one-to-one correspondence between twisted volume forms of a
vector bundle π : E →M of rank k and SL±(k,R)-reductions of its general linear frame bundle
ϖ : F (E)→M .

Proof. We can once again proceed in analogy to the proof of theorem 24.1.2, by now considering
a twisted volume form µ ∈ Γ(F (E)×ρ−−1

R+) and x ∈M . Here we call a frame p ∈ Fx(E) over
x a normalized frame if and only if

[p, 1]ρ−−1
= µ(ϖ(p)) = µ(x) . (24.3.7)

It is easy to show that oriented frames exist for all x ∈M . It follows from the definition of the
associated bundle F (E) ×ρ−0 R+ that for any frame p ∈ Fx(E) there exists a unique c ∈ R+

such that
[p, c]ρ−−1

= µ(x) . (24.3.8)

We may then consider the frame p′ obtained from p by replacing its first component p1 by
p′1 = cp1, while all other components remain unchanged, and again obtain a frame. It follows
that this new frame p′ is normalized, since

[p, c]ρ−−1
= [p′ · g, c]ρ−−1

= [p′, c|det g|]ρ−−1
= [p′, cc−1]ρ−−1

= [p′, 1]ρ−−1
= µ(x) , (24.3.9)

where g = diag(c−1, 1, . . . , 1), and used the fact that det g = c > 0, so that |c| = c. Further, it
holds that if p ∈ Fx(E) is normalized, then p · g is normalized if and only if |det g| = 1, and
hence g ∈ SL±(k,R). For every x ∈ M , we thus find that the set of normalized frames over x
carries a right action of SL±(k,R), which is obtained by the restriction of the action of GL(k,R)
on Fx(E), and that this action is free and transitive. From the smoothness of µ one finds that
these sets constitute the fibers of a principal SL±(k,R)-bundle over M , which we will denote
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SL±(E,µ). Finally, one finds that the canonical inclusion SL±(E,µ) ↪→ F (E), together with
the inclusion SL±(k,R) ↪→ GL(k,R) define a principal bundle reduction of F (E).

To show the converse direction, let χ : Q → M be a principal SL±(k,R) bundle and ϕ : Q →
F (E) a SL±(k,R) reduction over the canonical inclusion SL±(k,R) ↪→ GL(k,R). For q ∈ Q
with χ(q) = x, define

µ(x) = [ϕ(q), 1]ρ−−1
. (24.3.10)

This is independent of the choice of the representative, since for any other q′ = q · g with
g ∈ SL±(k,R) we have |det g| = and hence

[ϕ(q′), 1]ρ−−1
= [ϕ(q · g), 1]ρ−−1

= [ϕ(q) · g, 1]ρ−−1
= [ϕ(q), |det g|]ρ−−1

= [ϕ(q), 1]ρ−−1
= µ(x) .

(24.3.11)
One finds that this defines a section µ of F (E) ×ρ−−1

R+, and hence a twisted volume form on
π : E →M .

Finally, one can see from the two constructions that the bundle SL±(E,µ) constructed above
is simply the image of Q under ϕ in F (E), which can canonically be identified with Q, since ϕ
restricts to an isomorphism of principal SL±(k,R) bundles. ■

Finally, we discuss an interesting relation between (untwisted) volume forms, orientations and
twisted volume forms, which we state as follows.

Theorem 24.3.4. On every vector bundle π : E →M , there exists a one-to-one correspondence
between volume forms ω and pairs (σ, µ) of orientations and twisted volume forms.

Proof. Given a twisted volume form µ ∈ Γ(D−−1(E)) and an orientation σ ∈ Γ(D−0 (E)), we may
define ω = σ ⊗ µ ∈ Γ(D+

−1(E)), using the bundle isomorphism

D−0 (E)⊗D−−1(E) ∼= D+
−1(E) , (24.3.12)

which follows from theorem 23.1.5. Since µ and σ, by definition, are nowhere vanishing sections
of their respective density bundles, the same holds also for ω, and so ω is a volume form. Using
the equivalence between reductions of the frame bundle and the aforementioned sections, we
can obtain another, more geometric picture for this construction. One finds that the bundles,
and corresponding reductions, defined by these sections are related by

SL(E,ω) = GL+(E, σ) ∩ SL±(E,µ) . (24.3.13)

Hence, a frame is a unit frame, if it is both oriented and normalized.

Conversely, we show that every volume form ω ∈ Γ(D+
−1(E)) uniquely decomposes into a twisted

volume form µ ∈ Γ(D−−1(E)) and an orientation σ ∈ Γ(D−0 (E)) in the form ω = σ ⊗ µ. This
decomposition can also most easily found from the geometric picture of bundle reductions.
Given the unit frame bundle SL(E,ω), one may consider the bundles

GL+(E, σ) = {p · g, p ∈ SL(E,ω), g ∈ GL+(k,R)} , (24.3.14a)

SL±(E,µ) = {p · g, p ∈ SL(E,ω), g ∈ SL±(k,R)} . (24.3.14b)

It follows that these bundles define reductions of the frame bundle, so that σ is an orientation,
while µ is a twisted volume form, and ω = σ ⊗ µ. More explicitly, for any x ∈M , we can pick
a unit frame p ∈ Fx(E) ∩ SL(E,ω), and define

µ(x) = [p, 1]ρ−−1
, σ(x) = [p, 1]ρ−0

. (24.3.15)

These definitions are independent of the choice of p, since any other unit frame p′ over x is
related by p′ = p · g with det g = 1. ■
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The construction above conveys the intuition that a non-zero real number uniquely decomposes
into its sign and absolute value to volume forms, whose basis representation is likewise given by
non-zero real numbers. The remarkable fact is that this decomposition is independent of the
choice of a basis.

Finally, we remark that the bundles (24.3.14) can also be obtained as extensions of SL(E,ω)
via the canonical inclusions SL(k,R) ↪→ GL+(k,R) and SL(k,R) ↪→ SL±(k,R), following the
treatment detailed in section 20.7. To see this, note that we can canonically identify p · g with
the equivalence class

[p, g] = {(p · h, h−1g), h ∈ SL(k,R)} (24.3.16)

for p ∈ SL(E,ω) and g ∈ GL+(k,R) or g ∈ SL±(k,R), respectively.

24.4 Metrics

24.5 Almost symplectic structures

24.6 Almost complex structures

24.7 Almost Hermitian structures

24.8 Almost product structures
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Chapter 25

Integration

25.1 Integrals over curve segments

We start our discussion of integrals with the simplest possible case, which should remind us to
an integral over a single variable. From elementary calculus we know the meaning of integrals
of the form

F (b)− F (a) =
∫ b

a

f(x)dx . (25.1.1)

This looks like an integral of a function f(x) over the one-dimensional manifold R, and so
one may be tempted to define a way to integrate functions over (one-dimensional) manifolds.
However, doing so would very soon cause a lot of trouble. To see this, consider the famous
change-of-variable formula for integrals. Let φ : R → R be a smooth function with φ′(x) > 0
for all x ∈ R. Then we have∫ φ(b)

φ(a)

f(y)dy =

∫ b

a

(f ◦ φ)(x)φ′(x)dx . (25.1.2)

Note the appearance of the factor φ′(x) = dy/dx, which tells us that f(y)dy is a 1-form. In
other words, the objects we can and should integrate over a curve segments will not be functions,
but 1-forms. This leads us to the following definition.

Definition 25.1.1 (Integration on R). Let ω = f dx be a 1-form on the one-dimensional
manifold R. Its integral over the interval [a, b] ⊂ R is defined as∫

[a,b]

ω =

∫ b

a

f(x)dx , (25.1.3)

where the right hand side is to be interpreted in the obvious way.

Note that the integral above of course depends on the order of the bounds a and b. Changing
them would reverse the sign of the integral. For an (oriented) interval one has a < b, so that
there is a unique prescription how the bounds on the integral must be ordered.

To see how this definition works together with the change-of-variable formula, note that the
function φ : R→ R defined above is simply a diffeomorphism from the manifold R to itself. It
then follows that∫

φ([a,b])

ω =

∫ φ(b)

φ(a)

f(y)dy =

∫ b

a

f(φ(x))φ′(x)dx =

∫
[a,b]

φ∗(ω) , (25.1.4)
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which shows that the integral as we defined it is invariant under a pullback by φ. This is an
important property which enters the proofs of many of the statements we encounter during this
chapter. It is also important that we demanded φ′ > 0, since otherwise the order of the bounds
would get reversed.

Of course we want to perform integration not only on R (or intervals), but also on general
manifolds. To see how we can get there, we first take something we already know (an interval)
and stick it into a manifold.

Definition 25.1.2 (Singular curve segment). A singular curve segment on a smooth mani-
fold M is a smooth function c : [0, 1]→M . We denote the space of singular curve segments
on M by K1(M).

By “singular” we mean that we make no assumption on c being injective, but leave it arbitrary.
We already know that we can integrate 1-forms on an interval, so we need a prescription which
yields us a 1-form on [0, 1] if we have a curve segment. If we have a 1-form on the target
manifold M , then we can simply take its pullback. This leads us to the following definition.

Definition 25.1.3 (Integral over a curve segment). Let M be a manifold and ω ∈ Ω1(M).
For a curve segment c ∈ K1(M), the integral of ω over c is defined as∫

c

ω =

∫
[0,1]

c∗(ω) . (25.1.5)

This prescription now allows us to integrate 1-forms on a manifold along a curve segment. Again
we raise the question how the change-of-variable formula and diffeomorphisms work together
with this definition. Since we have fixed the interval of integration to be [0, 1], we will consider
only diffeomorphisms of R which leave this interval unchanged. We define them as follows.

Definition 25.1.4 (Reparametrization of the unit interval). A reparametrization of the
unit interval [0, 1] is a smooth function φ : [0, 1]→ [0, 1] such that φ(0) = 0, φ(1) = 1 and
φ′(x) > 0 for all x ∈ [0, 1].

0 x
0

y

1

1

y = φ(x)

Figure 25.1: A reparametrization φ : [0, 1]→ [0, 1] of the unit interval.

We have restricted ourselves to orientation preserving reparametrizations here by demanding
φ′ > 0 everywhere. If we would also allow the case φ′ < 0 everywhere, this would be an
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orientation reversing reparametrization, which would also swap the endpoints of the interval,
as we discussed above. We keep things more simple by not considering this case. Now it is easy
to see what happens with our integral if we apply a reparametrization.

Theorem 25.1.1. The integral over a curve segment is invariant under reparametrization,∫
c

ω =

∫
c◦φ

ω (25.1.6)

for all curve segments c, 1-forms ω and reparametrizations φ.

Proof. By definition we have∫
c◦φ

ω =

∫
[0,1]

(c ◦ φ)∗(ω) =
∫
[0,1]

φ∗(c∗(ω)) =
∫
[0,1]

c∗(ω) =
∫
c

ω , (25.1.7)

where we used the fact that φ([0, 1]) = [0, 1] by definition. ■

Intuitively this means that the integral depends only on the path traced out by the curve
segment, but not on the velocity with which this path is transversed.

25.2 Integrals over k-cubes

We now generalize our knowledge from the previous section from curve segments to k-cubes,
and from intervals on the real line to boxes in Euclidean space Rk. It should be clear from what
we have learned that the objects which we can integrate on Rk must be k-forms, since they
have the correct transformation behavior under a change of integration variables. We define
integrals in analogy to the one-dimensional case.

Definition 25.2.1 (Integration over boxes on Rk). Let ω = f dx1∧. . .∧dxk be a k-form on
the k-dimensional manifold Rk. Its integral over the rectangular box [a1, b1]×. . .×[ak, bk] ⊂
Rk is defined as ∫

[a1,b1]×...×[ak,bk]
ω =

∫ bk

ak
· · ·
∫ b1

a1
f(x)dx1 · · · dxk , (25.2.1)

where the integrals on the right hand side are evaluated from the inside outwards.

In order to apply this knowledge to the integration of k-forms on manifolds, we first need to
transfer the box over which we integrate into the manifold. In other words, we need to define
the analogy of a singular curve segment. We will use cubes here, because the formulas will
become easier - an alternative formulation uses simplices, shown in section 25.3.

Definition 25.2.2 (Singular k-cube). A singular k-cube on a smooth manifold M is a
smooth function c : [0, 1]k →M . We denote the space of singular k-cubes on M by Kk(M).

Again by singular mean that c will not necessarily be injective. It should now be clear how to
integrate a k-form over a k-cube, so we just provide the definition.
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Definition 25.2.3 (Integral over a k-cube). Let M be a manifold and ω ∈ Ωk(M). For a
k-cube c ∈ Kk(M), the integral of ω over c is defined as∫

c

ω =

∫
[0,1]k

c∗(ω) . (25.2.2)

We finally come to the question how this definition of integrals behaves under reparametriza-
tions. For this purpose we first need to generalize our definition of reparametrizations.

Definition 25.2.4 (Reparametrization of the unit cube). A reparametrization of the unit
cube [0, 1]k is a smooth, bijective function φ : [0, 1]k → [0, 1]k such that detDφ(x) > 0 for
all x ∈ [0, 1]k.

Again we restrict ourselves to orientation preserving reparametrizations, which in this case
means that the Jacobi determinant detDφmust be everywhere positive. Without this restriction
the sign of the integral would change. We give an illustrative example.

Example 25.2.1 (Rotation of a 2-cube). The function

φ : [0, 1]2 → [0, 1]2

(x1, x2) 7→ (1− x2, x1) , (25.2.3)

which turns the unit cube by 90°, is a reparametrization. It changes a cube c : [0, 1]2 →M
to c ◦ φ, i.e., such that

c(y1, y2) = (c ◦ φ)(x1, x2) = c(1− x2, x1) . (25.2.4)

This is illustrated in figure 25.2.

M

x1

x2 x1

x2

y1

y2
x1

x2

y1

y2

φ c

Figure 25.2: A reparametrization φ : [0, 1]2 → [0, 1]2 of the unit cube and its application to a
singular 2-cube c : [0, 1]2 →M .

Note that we did not demand that φ restricts to the identity on the boundary of the cube, but
we allowed for boundary points to be displaced; in contrast, for the reparametrization of the
unit interval in definition 25.1.4 we demanded that the endpoints (which are the boundary of
the interval) remain fixed. However, it turns out that the latter is actually a consequence of the
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remaining requirements in the case k = 1. In this case the Jacobian Dφ and its determinant
simply reduce to φ′. From φ′ > 0 then follows that φ is a monotonically increasing function,
and so it must map the minimum 0 of the domain [0, 1] to the minimum of the image; by
demanding that φ is bijective, the latter is also [0, 1], and hence φ(0) = 0. Analogously follows
φ(1) = 1.

We finally come to the important result of this section.

Theorem 25.2.1. The integral over a k-cube is invariant under reparametrization,∫
c

ω =

∫
c◦φ

ω (25.2.5)

for all k-cubes c, k-forms ω and reparametrizations φ.

Proof. ▶. . .◀ ■

25.3 Integrals over k-simplices

While integration over cubes is most easily defined, it is sometimes more practical to work with
simplices instead. Recall from Euclidean geometry that a k-simplex is a k-dimensional polytope
spanned by k + 1 points p0, . . . , pk ∈ Rk, where each pair of points is connected by an edge.
For simplicity, we will choose the coordinate system such that the xi coordinate points along
the edge from pi−1 to pi, and that the points p0 = (a, . . . , a) and pk = (b, . . . , b) lie at opposite
corners of a cube with a < b. Then the simplex contains the points

{x ∈ Rk, a ≤ x1 ≤ . . . ≤ xk ≤ b} . (25.3.1)

Now we can integrate a k-form as follows.

Definition 25.3.1 (Integration over simplices on Rk). Let ω = f dx1 ∧ . . . ∧ dxk be a
k-form on the k-dimensional manifold Rk. Its integral over the simplex (25.3.1) is defined
as ∫

{x∈Rk,a≤x1≤...≤xk≤b}
ω =

∫ b

a

∫ xk

a

· · ·
∫ x3

a

∫ x2

a

f(x)dx1 · · · dxk , (25.3.2)

where the integrals on the right hand side are evaluated from the inside outwards.

In order to make use of this relation to integrate differential forms on manifolds, we reproduce
the same steps which we have performed for cubes in section 25.2. Instead of a unit cube, we
will now need a “unit simplex”, which we define as follows.

Definition 25.3.2 (Unit k-simplex). For k ∈ N, the unit k-simplex is the set

∆k = {x ∈ Rk, 0 ≤ x1 ≤ . . . ≤ xk ≤ 1} . (25.3.3)

The unit simplices ∆2 and ∆3 are displayed in figure 25.3. With this definition in place, we can
proceed with the following definition.

272



x1

x2

1

1

x1

x2

x3

1

1

1

Figure 25.3: Unit simplices ∆2 and ∆3.

Definition 25.3.3 (Singular k-simplex). A singular k-simplex on a smooth manifold M
is a smooth function c : ∆k → M . We denote the space of singular k-simplices on M by
Sk(M).

As in the previous cases, by singular we mean that the function c does not have to be injective.
Now the definition of the integral is straightforward.

Definition 25.3.4 (Integral over a k-simplex). Let M be a manifold and ω ∈ Ωk(M). For
a k-simplex c ∈ Sk(M), the integral of ω over c is defined as∫

c

ω =

∫
∆k

c∗(ω) . (25.3.4)

Finally, also for simplices we discuss how this definition of integrals behaves under reparametriza-
tions. We therefore need to provide a definition for the reparametrization of a simplex.

Definition 25.3.5 (Reparametrization of the unit simplex). A reparametrization of the
unit simplex ∆k is a smooth, bijective function φ : ∆k → ∆k such that detDφ(x) > 0 for
all x ∈ ∆k.

When we write a reparametrization in coordinates, we have to keep in mind that their values
form an ascending sequence for points in ∆k. Here we give an illustrating example.

Example 25.3.1 (Rotation of a 2-simplex). The functions

φ : ∆2 → ∆2

(x1, x2) 7→ (1− x2, 1 + x1 − x2) , (25.3.5)
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and
ϑ : ∆2 → ∆2

(x1, x2) 7→ (x2 − x1, 1− x1) , (25.3.6)

which turn the unit simplex by one third in either direction, are reparametrizations. They
changes a simplex c : ∆2 →M to c ◦ φ and c ◦ ϑ, respectively, i.e., such that

c(y1, y2) = (c ◦ φ)(x1, x2) = c(1− x2, 1 + x1 − x2) , (25.3.7a)

c(y1, y2) = (c ◦ ϑ)(x1, x2) = c(x2 − x1, 1− x1) . (25.3.7b)

This is illustrated in figure 25.4.

M

x1x2 x1

x2

y1

y2
y2

y1

x2

x1φ c

M

x1x2

x1
x2

y1

y2
y2

y1

x2

x1
ϑ c

Figure 25.4: Two reparametrizations φ : ∆2 → ∆2 of the unit simplex and their application to
a singular 2-simplex c : ∆2 →M .

Finally, we can show the following.

Theorem 25.3.1. The integral over a k-simplex is invariant under reparametrization,∫
c

ω =

∫
c◦φ

ω (25.3.8)

for all k-simplices c, k-forms ω and reparametrizations φ.

Proof. ▶. . .◀ ■

25.4 Integrals over k-chains

So far we have learned how to integrate k-forms over regions which can be parametrized by
singular k-cubes or singular k-simplices. We now wish to further generalize this concept to
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more general regions. One straightforward possibility would be to consider other polytopes.
While it is obviously possible to integrate over arbitrary polytopes in Rk by suitably restricting
the domain of the integral, and decompose it into several pieces if necessary, it is more fruitful to
follow a different approach, by considering domains which may be composed of several k-cubes
or k-simplices, some of which may be transversed multiple times or in different orientation, as
it turns out that such domains will occur naturally in certain constructions, and we can always
decompose more involved polytopes into simplices. The mathematical object corresponding to
such a composite integration domain is a chain, which we define as follows.

Definition 25.4.1 (Chain). A k-chain over a set Pk(M) of singular k-polytopes on a
smooth manifold M is an element of the free abelian group Ck(M) generated by the set
Pk(M). If Pk(M) = Kk(M) is the set of k-cubes, the elements of Ck are called cubical
chains. If Pk(M) = Sk(M) is the set of k-simplices, the elements of Ck are called simplical
chains.

We first need to clarify the notion of a free abelian group. The elements of Ck(M) are finite
formal sums of elements of Pk(M) with integer coefficients, i.e., a chain C ∈ Ck(M) can be
written as

C =
∑

c∈Pk(M)

Ccc (25.4.1)

with integer coefficients Cc such that only finitely many Cc are non-zero. The group operation
is the addition of formal sums and the group inversion is the negative,

C + C ′ =
∑

c∈Pk(M)

(Cc + C ′c)c , −C =
∑

c∈Pk(M)

(−Cc)c . (25.4.2)

Hence, a k-chain C is uniquely determined by a function

C• : Pk(M) → Z
c 7→ Cc

, (25.4.3)

such that only finitely many Cc are non-zero, and addition is defined pointwise.

A chain can thus be interpreted as a prescription which k-cubes should be transversed, how often
and with which orientation. Note that every k-cube can also be interpreted as a k-chain which
simply prescribes to transverse only this k-cube and exactly once with positive orientation. It
is clear that this chain with c ∈ Pk(M) ⊂ Ck(M) takes the form

c =
∑

c′∈Pk(M)

c′ ·
{
1 if c = c′

0 otherwise
. (25.4.4)

Integration over a chain is then simply the integration over all of its constituents c, where each
integral is weighted with the integer coefficient Cc.

Definition 25.4.2 (Integral over a chain). Let M be a manifold and ω ∈ Ωk(M). For a
k-chain C ∈ Ck(M), the integral of ω over C is defined as∫

C

ω =
∑

c∈Pk(M)

Cc

∫
c

ω . (25.4.5)
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25.5 Boundary of a k-chain

An interesting property of polytopes, which also transcends to k-chains, is the existence of a
boundary, which is a (k − 1)-chain. To construct this boundary, we will start by constructing
the boundary of its constituents. For a cubical chain, these are cubes, and so we start with the
following definition.

Definition 25.5.1 (Boundary of a k-cube). The boundary of a singular k-cube c ∈ Kk(M)
is the cubical (k − 1)-chain ∂c ∈ Ck−1(M) defined as

∂c =

k∑
i=1

(−1)i(c(i,0) − c(i,1)) , (25.5.1)

where c(i,y) ∈ Kk−1(M) is the facet of c defined by

c(i,y) = c ◦ F(i,y) (25.5.2)

with
F(i,y) : [0, 1]k−1 → [0, 1]k

(x1, . . . , xk−1) 7→ (x1, . . . , xi−1, y, xi, . . . , xk−1)
. (25.5.3)

The maps F(i,y) defining the facets of the singular k-cube can also be understood as fixing the
i’th coordinate of the unit cube [0, 1]k to be equal to y, and relabelling the remaining k − 1
coordinates by the coordinates of [0, 1]k−1. We can illustrate this with a simple example.

Example 25.5.1 (Boundary of a 2-cube). Let c : [0, 1]2 →M be a singular 2-cube. Following
definition 25.5.1, its boundary is the chain

∂c = c(1,1) − c(1,0) + c(2,0) − c(2,1) , (25.5.4)

where the facets c(i,y) : [0, 1]→M are defined by

c(1,0)(x) = c(0, x) , c(1,1)(x) = c(1, x) , c(2,0)(x) = c(x, 0) , c(2,1)(x) = c(x, 1) .
(25.5.5)

This is illustrated in figure 25.5.

In case we have a simplical chain, the constituents will be simplices instead of cubes. In this
case, we will use the following definition of a boundary.

Definition 25.5.2 (Boundary of a k-simplex). The boundary of a singular k-simplex c ∈
Sk(M) is the simplical (k − 1)-chain ∂c ∈ Ck−1(M) defined as

∂c =

k∑
i=0

(−1)i+1ci , (25.5.6)

where ci ∈ Sk−1(M) is the facet of c defined by

ci = c ◦ Fi , (25.5.7)

where the maps Fi : ∆k−1 → ∆k are defined by

F0(x
1, . . . , xk−1) = (0, x1, x2, . . . , xk−1) , (25.5.8a)
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M

0
0

1

1

0 1

0 1

0

1

0

1

(•, 0)F(2,0)

(•, 1)F(2,1)

(0, •)
F(1,0)

(1, •)
F(1,1)

c
c(1,1)

c(2,1)

c(2,0)

c(1,0)

Figure 25.5: Illustration of the boundary ∂c = c(1,1)− c(1,0) + c(2,0)− c(2,1) of a singular 2-cube
c. The latter defines an oriented “patch” of the manifold M , whose orientation is indicated
by a circular arrow. The arrows on the facets c(i,y) indicate their orientation. Note that the
orientation of the facets c(1,0) and c(2,1) is against the orientation of the boundary, and so they
must contribute with a negative sign.

F1(x
1, . . . , xk−1) = (x1, x1, x2, . . . , xk−1) , (25.5.8b)

F2(x
1, . . . , xk−1) = (x1, x2, x2, . . . , xk−1) , (25.5.8c)

... (25.5.8d)

Fk−2(x
1, . . . , xk−1) = (x1, x2, x3, . . . , xk−2, xk−2, xk−1) , (25.5.8e)

Fk−1(x
1, . . . , xk−1) = (x1, x2, x3, . . . , xk−2, xk−1, xk−1) , (25.5.8f)

Fk(x
1, . . . , xk−1) = (x1, x2, x3, . . . , xk−2, xk−1, 1) . (25.5.8g)

To understand the maps Fi, recall that the unit k-simplex ∆k by definition contains those points
x ∈ Rk which satisfy

0 ≤ x1 ≤ . . . ≤ xk ≤ 1 , (25.5.9)
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and so it is the intersection of the k + 1 half-spaces

∆k = {x ∈ Rk, 0 ≤ x1} ∩ {x ∈ Rk, x1 ≤ x2} ∩ . . . ∩ {x ∈ Rk, xk−1 ≤ xk} ∩ {x ∈ Rk, xk ≤ 1} .
(25.5.10)

Note that there are k + 1 inequalities in the condition (25.5.9), which we shall label from 0
to k. The map Fi is obtained if we replace the i’th inequality sign by an equality, thus fixing
either the first or last coordinate equal to 0 or 1, respectively, or two successive coordinates to
be equal to each other, and relabel the remaining k − 1 independent coordinates in ascending
order to match those of ∆k−1. Also this definition can be illustrated with a simple example.

Example 25.5.2 (Boundary of a 2-simplex). Let c : ∆2 → M be a singular 2-simplex.
Following definition 25.5.2, its boundary is the chain

∂c = −c0 + c1 − c2 , (25.5.11)

where the facets ci : ∆1 →M are defined by

c0(x) = c(0, x) , c1(x) = c(x, x) , c2(x) = c(x, 1) . (25.5.12)

This is illustrated in figure 25.6.

M

0

0

1
1

0

1

0 1

0

1

(•, •)
F1

(•, 1)F2

(0, •)
F0

c

c2

c1

c0

Figure 25.6: Illustration of the boundary ∂c = −c0+c1−c2 of a singular 2-simplex c, whose ori-
entation is indicated by a circular arrow. The arrows on the facets ci indicate their orientation.
Note that the orientation of the facets c0 and c2 is against the orientation of the boundary, and
so they must contribute with a negative sign.
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Having defined the boundary of the constituents, we can generalize these definitions to the
boundary of a chain. This is straightforward.

Definition 25.5.3 (Boundary of a k-chain). Let

C =
∑

c∈Pk(M)

Ccc ∈ Ck(M) . (25.5.13)

be a k-chain on a manifold M . Its boundary is the (k − 1)-chain ∂C ∈ Ck−1(M) given by

∂C =
∑

c∈Pk(M)

Cc∂c . (25.5.14)

Recall from the definitions 25.5.1 and 25.5.2 that we introduced particular signs for each of
the facets which constitute the boundary. As we have seen in the examples 25.5.1 and 25.5.2,
these signs ensure that when calculating the integral over the boundary, the contribution of
each facet whose orientation is opposite to the orientation of the boundary is accounted with a
negative sign. An interesting consequence of this accounting is a rather important property of
the boundary operator, which we will explore next. We start again with the case of cubes.

Theorem 25.5.1. The double boundary of a singular cube vanishes, ∂2c = 0 for all c ∈ Kk(M).

Proof. By direct calculation, following the definitions given above, we have

∂∂c =

k∑
i=1

(−1)i(∂c(i,0) − ∂c(i,1))

=

k∑
i=1

k−1∑
j=1

(−1)i+j(c(i,0)(j,0) − c(i,0)(j,1) − c(i,1)(j,0) + c(i,1)(j,1)) ,

(25.5.15)

where the appearing terms are the (k − 2)-cubes given by

c(i,y)(j,z)(x
1, . . . , xk−2) = c(i,y)(x

1, . . . , xj−1, z, xj , . . . , xk−2)

=

{
c(x1, . . . , xi−1, y, xi, . . . , xj−1, z, xj , . . . , xk−2) i ≤ j ,
c(x1, . . . , xj−1, z, xj , . . . , xi−2, y, xi−1, . . . , xk−2) i > j .

(25.5.16)

Now we see that there are always two (k − 2)-cubes which only differ by the order in which
y and z appear as arguments of c, while their dependence on the remaining arguments is the
same. They can thus be transformed into each other by swapping y and z, together with an
appropriate change of i and j. In particular, we have

c(i,y)(j,z) = c(i′,y′)(j′,z′) =

{
c(j+1,z)(i,y) i ≤ j ,
c(j,z)(i−1,y) i > j ,

(25.5.17)

where y′ = z, z′ = y and i′, j′ follow from the two cases given above. Note that this operation is
symmetric: by exchanging primed and non-primed indices, we get the same relation in reverse.
Also, we have i′ ≤ j′ if and only if i > j and vice versa. Applying this to the double boundary
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formula, we have

∂∂c =

k∑
i=1

k−1∑
j=1

(−1)i+j(c(i,0)(j,0) − c(i,0)(j,1) − c(i,1)(j,0) + c(i,1)(j,1))

=

k∑
i=2

i−1∑
j=1

(−1)i+j(c(i,0)(j,0) − c(i,0)(j,1) − c(i,1)(j,0) + c(i,1)(j,1))

+

k−1∑
i=1

k−1∑
j=i

(−1)i+j(c(i,0)(j,0) − c(i,0)(j,1) − c(i,1)(j,0) + c(i,1)(j,1))

=

k∑
i=2

i−1∑
j=1

(−1)i+j(c(j,0)(i−1,0) − c(j,1)(i−1,0) − c(j,0)(i−1,1) + c(j,1)(i−1,1))

+

k−1∑
i=1

k−1∑
j=i

(−1)i+j(c(i,0)(j,0) − c(i,0)(j,1) − c(i,1)(j,0) + c(i,1)(j,1))

=

k−1∑
j′=1

j′∑
i′=1

(−1)j′+1+i′(c(i′,0)(j′,0) − c(i′,1)(j′,0) − c(i′,0)(j′,1) + c(i′,1)(j′,1))

+
k−1∑
i=1

k−1∑
j=i

(−1)i+j(c(i,0)(j,0) − c(i,0)(j,1) − c(i,1)(j,0) + c(i,1)(j,1))

= −
k−1∑
i′=1

k−1∑
j′=i′

(−1)i′+j′(c(i′,0)(j′,0) − c(i′,1)(j′,0) − c(i′,0)(j′,1) + c(i′,1)(j′,1))

+

k−1∑
i=1

k−1∑
j=i

(−1)i+j(c(i,0)(j,0) − c(i,0)(j,1) − c(i,1)(j,0) + c(i,1)(j,1))

= 0 . ■

(25.5.18)

We illustrate this with the following example.

Example 25.5.3 (Double boundary of a 3-cube). Let c : [0, 1]3 → M be a singular 3-cube.
Its boundary is the chain

∂c = c(1,1) − c(1,0) + c(2,0) − c(2,1) + c(3,1) − c(3,0) , (25.5.19)

where the facets c(i,z) : [0, 1]2 →M are given by

c(1,0)(x, y) = c(0, x, y) , c(1,1)(x, y) = c(1, x, y) , (25.5.20a)
c(2,0)(x, y) = c(x, 0, y) , c(2,1)(x, y) = c(x, 1, y) , (25.5.20b)
c(3,0)(x, y) = c(x, y, 0) , c(3,1)(x, y) = c(x, y, 1) . (25.5.20c)

Now their boundaries are given by

∂c(i,z) = c(i,z)(1,1) − c(i,z)(1,0) + c(i,z)(2,0) − c(i,z)(2,1) . (25.5.21)

Hence, we have

∂∂c = c(1,1)(1,1) − c(1,0)(1,1) + c(2,0)(1,1) − c(2,1)(1,1) + c(3,1)(1,1) − c(3,0)(1,1)
− c(1,1)(1,0) + c(1,0)(1,0) − c(2,0)(1,0) + c(2,1)(1,0) − c(3,1)(1,0) + c(3,0)(1,0)

+ c(1,1)(2,0) − c(1,0)(2,0) + c(2,0)(2,0) − c(2,1)(2,0) + c(3,1)(2,0) − c(3,0)(2,0)
− c(1,1)(2,1) + c(1,0)(2,1) − c(2,0)(2,1) + c(2,1)(2,1) − c(3,1)(2,1) + c(3,0)(2,1) .

(25.5.22)

Here the facets c(i,z)(j,y) : [0, 1]→M are given by the 1-cubes

c(1,0)(1,0)(x) = c(0, 0, x) = c(2,0)(1,0)(x) , c(1,0)(1,1)(x) = c(0, 1, x) = c(2,1)(1,0)(x) ,

(25.5.23a)
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c(1,0)(2,0)(x) = c(0, x, 0) = c(3,0)(1,0)(x) , c(1,0)(2,1)(x) = c(0, x, 1) = c(3,1)(1,0)(x) ,
(25.5.23b)

c(1,1)(1,0)(x) = c(1, 0, x) = c(2,0)(1,1)(x) , c(1,1)(1,1)(x) = c(1, 1, x) = c(2,1)(1,1)(x) ,
(25.5.23c)

c(1,1)(2,0)(x) = c(1, x, 0) = c(3,0)(1,1)(x) , c(1,1)(2,1)(x) = c(1, x, 1) = c(3,1)(1,1)(x) ,
(25.5.23d)

c(2,0)(2,0)(x) = c(x, 0, 0) = c(3,0)(2,0)(x) , c(2,0)(2,1)(x) = c(x, 0, 1) = c(3,1)(2,0)(x) ,
(25.5.23e)

c(2,1)(2,0)(x) = c(x, 1, 0) = c(3,0)(2,1)(x) , c(2,1)(2,1)(x) = c(x, 1, 1) = c(3,1)(2,1)(x) .
(25.5.23f)

Hence, we see that they appear in pairs which cancel each other, and so ∂∂c = 0. This is
illustrated in figure 25.7.

x1

x2

x3

−c(1,0) c(1,1)

c(2,0)

−c(2,1)

−c(3,0)

c(3,1)

Figure 25.7: The double boundary of a 3-cube. Arrows indicate the orientation of the (possibly
flipped) facets ±c(i,y), i.e., they take into account the sign with which they contribute to the
boundary.

Naturally one may ask whether the same holds also for simplices, which is what we consider
next.

Theorem 25.5.2. The double boundary of a singular simplex vanishes, ∂2c = 0 for all c ∈
Sk(M).

Proof. By direct calculation, following the definitions given above, we have

∂∂c =

k∑
i=0

(−1)i+1∂ci =

k∑
i=1

k−1∑
j=1

(−1)i+jcij . (25.5.24)

To understand the appearing (k−2)-simplices cij , we can come back to their definition in terms
of functions Fij : ∆k − 2 → ∆k, which are defined by first replacing the i’th inequality in the
condition (25.5.9) by an equality, and then replacing also the j’th of the remaining k inequalities
by an equality. In total, this means that if i ≤ j, we have replaced the inequalities originally
labeled i and j + 1 (since at the time we perform the second replacement, we have already
replaced the i’th inequality, and so what has now become the j’th inequality was originally
labeled as (j + 1)’th inequality) by equalities, while if i > j, we have replaced the inequalities
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i and j. In any case we replace two inequalities and relabel all remaining free coordinates in
ascending order. Since it does not matter which of the two inequalities is replaced in the first
step and which one in the second step, we can conclude that

Fij =

{
F(j+1)i i ≤ j ,
Fj(i−1) i > j ,

(25.5.25)

and hence also

cij =

{
c(j+1)i i ≤ j ,
cj(i−1) i > j .

(25.5.26)

Applying this to the double boundary formula, we have

∂∂c =

k∑
i=1

k−1∑
j=1

(−1)i+jcij

=

k∑
i=2

i−1∑
j=1

(−1)i+jcij +
k−1∑
i=1

k−1∑
j=i

(−1)i+jcij

=

k∑
i=2

i−1∑
j=1

(−1)i+jcj(i−1) +
k−1∑
i=1

k−1∑
j=i

(−1)i+jcij

=

k−1∑
j′=1

j′∑
i′=1

(−1)j′+1+i′ci′j′ +

k−1∑
i=1

k−1∑
j=i

(−1)i+jcij

= −
k−1∑
i′=1

k−1∑
j′=i′

(−1)i′+j′ci′j′ +
k−1∑
i=1

k−1∑
j=i

(−1)i+jcij

= 0 . ■

(25.5.27)

Also this is easily illustrated by an example.

Example 25.5.4 (Double boundary of a 3-simplex). Let c : ∆3 → M be a singular 3-cube.
Its boundary is the chain

∂c = −c0 + c1 − c2 + c3 , (25.5.28)

where the facets ci : ∆2 →M are given by

c0(x, y) = c(0, x, y) , c1(x, y) = c(x, x, y) , (25.5.29a)
c2(x, y) = c(x, y, y) , c3(x, y) = c(x, y, 1) . (25.5.29b)

Now their boundaries are given by

∂ci = −ci0 + ci1 − ci2 . (25.5.30)

Hence, we have

∂∂c = c00 − c01 + c02 − c10 + c11 − c12
+ c20 − c21 + c22 − c30 + c31 − c32 .

(25.5.31)

Here the facets cij : ∆1 →M are given by the 1-simplices

c00(x) = c(0, 0, x) = c10(x) , c01(x) = c(0, x, x) = c20(x) , (25.5.32a)
c02(x) = c(0, x, 1) = c30(x) , c11(x) = c(x, x, x) = c21(x) , (25.5.32b)
c12(x) = c(x, x, 1) = c31(x) , c22(x) = c(x, 1, 1) = c32(x) . (25.5.32c)

Hence, we see that they appear in pairs which cancel each other, and so ∂∂c = 0. This is
illustrated in figure 25.8.
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x1

x2

x3

1

1

1

−c0

c1−c2

c3

Figure 25.8: The double boundary of a 3-simplex. Arrows indicate the orientation of the
(possibly flipped) facets ±ci, i.e., they take into account the sign with which they contribute to
the boundary.

Finally, we can come back to our original motivation and apply our findings to the case of
chains. The following is now straightforward.

Theorem 25.5.3. The double boundary of a chain vanishes, ∂2C = 0 for all C ∈ Ck(M).

Proof. Since the boundary of a chain is given by the boundary of its constituents, we have

∂∂C = ∂∂
∑

c∈Pk(M)

Ccc =
∑

c∈Pk(M)

Cc∂∂c = 0 , (25.5.33)

where ∂∂c = 0 as shown in the proofs of theorems 25.5.1 and 25.5.2. ■

Intuitively, it means that a boundary must always be “closed” in the sense that it does by itself
not have a boundary. Otherwise it could not enclose its interior.

25.6 Integrals over manifolds

In the previous sections we have now learned how to integrate k-forms over regions of manifolds
parametrized be k-chains. We finally come to the point of integrating over all of a manifold.
In order to do this, we must decompose the integral into pieces which we can map into Rk.
This decomposition can be done using a partition of unity, as discussed in section 1.5. Given
a partition and unity and an atlas which are chosen to fit together in a suitable way, we can
define integration on manifolds as follows.

Definition 25.6.1 (Integration over manifolds). Let M be an orientable manifold of di-
mension n together with an oriented atlas A and a partition of unity R, such that for
every ρ ∈ R the support supp ρ is compact and there exists a chart (Uρ, ϕρ) such that
supp ρ ⊂ Uρ. Let Bρ ⊂ Rn be a box such that ϕρ(supp ρ) ⊂ Bρ. For a compactly sup-
ported n-form ω ∈ Ωn(M) the integral over M is defined as∫

M

ω =
∑
ρ∈R

∫
Bρ

(ϕ−1ρ )∗(ρω) . (25.6.1)
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There are a few remarks regarding this definition. First of all, note that a partition of unity
of this type does not exist on every manifold (using our definition of manifolds). One needs
additional conditions (such as metrizability or paracompactness) to guarantee the existence of
such a partition of unity. We will not go into these details, because all examples of manifolds
we consider in this lecture course have these properties and suitable partitions of unity.

We further remark that although R will in general be an infinite set, the sum in the definition
above is actually finite and thus well-defined. The reason is that the compact support of ω
intersects only the supports of a finite number of ρ ∈ R, so that ρ · ω will be non-zero only for
these finitely many ρ.

Of course the important question arises how the value of the integral depends on the choice of
the partition of unity and the atlas. This is answered by the following theorem.

Theorem 25.6.1. Let M be a manifold and (R,A) and (R′,A′) two choices of a partition of
unity and an oriented atlas as given in the definition above, such that A∪A′ is oriented. Then
the integrals defined by (R,A) and (R′,A′) are the same.

Proof. ▶. . .◀ ■

The condition that the union of both atlases is oriented is important. It means that both atlases
define the same orientation on M . If they define opposite orientation, their integrals will differ
by a minus sign.

25.7 Stokes’ theorem

The boundary operator ∂ : Ck(M)→ Ck−1(M) is in some sense similar to the exterior derivative
d : Ωk(M) → Ωk+1(M). Both satisfy ∂2 = 0 resp. d2 = 0. This already suggests that both
operators are related to each other. Indeed there exists a close relationship, which is given by
the following famous theorem.

Theorem 25.7.1 (Stokes’ theorem). The integral of a (k − 1)-form ω over the boundary ∂C
of a k-chain C equals the integral of its exterior derivative dω over the k-chain C,∫

∂C

ω =

∫
C

dω . (25.7.1)

Proof. ▶. . .◀ ■

25.8 Integration by parts

From Stokes’ theorem 25.7.1 and the properties of differential forms a number of helpful formulas
can be derived, which may be summarized under the name integration by parts. The most basic
of these formulas is the following.

Theorem 25.8.1. Let M be a manifold of dimension n, ω ∈ Ωp(M) and σ ∈ Ωq(M) differential
forms such that k = p+ q + 1 ≤ n and C ∈ Ck(M) a k-chain. Then the following holds:∫

C

dω ∧ σ = (−1)p+1

∫
C

ω ∧ dσ +

∫
∂C

ω ∧ σ . (25.8.1)
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Proof. Recall the formula

d(ω ∧ σ) = dω ∧ σ + (−1)pω ∧ dσ . (25.8.2)

Together with Stokes’ theorem follows∫
∂C

ω ∧ σ =

∫
C

d(ω ∧ σ)

=

∫
C

dω ∧ σ + (−1)p
∫
C

ω ∧ dσ ,

(25.8.3)

from which the statement of the theorem can be obtained. ■

Another helpful formula can be derived for Lie derivatives, in case the differential form to be
integrated has maximal rank.

Theorem 25.8.2. Let M be a manifold of dimension n, ω ∈ Ωp(M) and σ ∈ Ωq(M) differential
forms such that p + q = n, X ∈ Vect(M) a vector field and C ∈ Cn(M) a n-chain. Then the
following holds: ∫

C

LXω ∧ σ =

∫
∂C

ιX(ω ∧ σ)−
∫
C

ω ∧ LXσ . (25.8.4)

Proof. We first use the Leibniz rule (16.5.7) for Lie derivatives and then Cartan’s formula (16.5.1),
from which we find

LXω ∧ σ + ω ∧ LXσ = LX(ω ∧ σ) = dιX(ω ∧ σ) + ιXd(ω ∧ σ) . (25.8.5)

The second term vanishes, since ω ∧ σ is already a form of maximal rank p + q = n, and thus
has vanishing exterior derivative. The first term is an exact form, and so we can use Stokes’
theorem to find ∫

∂C

ιX(ω ∧ σ) =
∫
C

dιX(ω ∧ σ)

=

∫
C

LX(ω ∧ σ)

=

∫
C

LXω ∧ σ +

∫
C

ω ∧ LXσ ,

(25.8.6)

from which the statement of the theorem follows. ■

25.9 Dirac distributions

In the physics literature one often encounters a situation in which a quantity which is confined
to a submanifold of lower dimension is supposed to be described by a density on the surrounding
manifold. The most common example is that of a point charge of total charge Q located at
a point p ∈ M of some space M , which is described by a charge density ρ on M such that ρ
vanishes everywhere except in p, and its integral over M equals Q. This density is then formally
written in a form similar to ρ = Qδp, where δp is often simply called a Dirac delta function
centered at p, and defined to vanish everywhere except in p and have integral equal to one when
integrated over a subvolume of M which contains p, and zero otherwise. Equivalently, one can
demand that ∫

M

fδp = f(p) (25.9.1)

for all functions f ∈ C∞(M,R). More generally, one considers charges confined to a wire or
a surface, with a given charge density per line element or area element, and again expresses
these in terms of a volume density, with the help of an appropriate Dirac delta. Usually these
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are expressed in a given set of coordinates, and integration is performed using the known rules
for Dirac delta functions on R and Rn. In the context of differential geometry, one may of
course ask whether there is a proper, coordinate-independent description of such Dirac delta
expressions. Demanding that they can be integrated to yield a finite value indicates that they
should be expressed as differential forms. However, this description can only be formal, since
in order to yield a finite integral despite vanishing almost everywhere, they would have to be
infinite somewhere. A suitable definition is the following.

Definition 25.9.1 (Dirac distribution). Let M be a manifold of dimension dimM = m
and S an embedded submanifold of dimension dimS = s with inclusion map ι : S → M .
The Dirac distribution of S is the formal (m− s)-form δS such that∫

M

ω ∧ δS =

∫
S

ι∗ω (25.9.2)

for all s-forms ω ∈ Ωs(M) .

We see that the right hand side is well-defined since ι∗ω ∈ Ωs(S) is a s-form on S. The left
hand side has the form of an integral of a m-form; however, this definition is purely formal.
To see how it is related to the usual definition in coordinates, we first study the most simple
example of a zero-dimensional submanifold S.

Example 25.9.1. Let M be a manifold, S = {p} ⊂ M the zero-dimensional submanifold
containing a single point p ∈M and (U, ϕ) a chart such that p ∈ U . ▶. . .◀

25.10 Integration along fibers

So far we have studied the case of integrating n-forms on n-dimensional domains, the result
of which is a real number. Sometimes, however, one encounters the case that one would like
to integrate “only along some directions”, and be left with a function, or even a differential
form of lower rank, which still depends “on the remaining directions”. We will now make these
statements more rigorous. We first provide a definition.

Definition 25.10.1 (Integration along fibers). Let π : E → B be a fiber bundle with
fiber dimension k. The integration along the fibers of E is defined as the unique linear
prescription π∗ : Ωn(E) → Ωn−k(B) such that for every σ ∈ Ωn−k(B), τ ∈ Ωk(E) and
p ∈ B holds

π∗(π
∗σ ∧ τ)(p) = σ(p)

∫
π−1(p)

τ . (25.10.1)

A few remarks are necessary. First note that in order for the integral in the definition to be
defined, supp τ ∩ π−1(x) must be compact. Differential forms on E which satisfy this condition
are said to have compact support in the vertical direction. As a consequence, also the integration
along fibers is defined only for forms which have compact support in the vertical direction, which
we shall therefore assume without explicitly mentioning it. Further, it is sufficient to define the
integration along fibers for differential forms of the form π∗σ ∧ τ as given above, since these
span the space of all differential n-forms with n ≤ k on E, which can be seen, for example,
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by considering a local trivialization on U ⊂ B and all σ which form a local coordinate basis
of Ωn−k(B), as well as all τ obtained from k-forms on the fiber F obtained via the local
trivialization; we will show this explicitly using local induced coordinates below.

In the literature also another, equivalent definition of integration along fibers can be found,
which is related to our definition as follows.

Theorem 25.10.1. Let π : E → B be a fiber bundle with fiber dimension k. For every
ω ∈ Ωn(E) with n ≤ k, π∗ω ∈ Ωn−k(B) is the unique (n−k)-form such that for all vector fields
Y1, . . . , Yn−k ∈ Vect(E) and X1, . . . , Xn−k ∈ Vect(B) satisfying

Xi ◦ π = π∗ ◦ Yi (25.10.2)

and p ∈ B holds

π∗ω(X1, . . . , Xn−k)(p) =
∫
π−1(p)

ω(Y1, . . . , Yn−k, •) . (25.10.3)

Proof. First note that a (n − k)-form on B is uniquely determined by its action on n − k
vector fields at each point. Hence, we only have to check that the action of the fiber integral
given in definition 25.10.1 satisfies the equation given here. Further, we can restrict ourselves
to differential forms of the form ω = π∗σ ∧ τ with σ ∈ Ωn−k(B) and τ ∈ Ωk(E), since the
integration along fibers is linear by definition, the equation given here is linear in ω, and these
forms span Ωn(E). By (25.10.1) we have

π∗(π
∗σ ∧ τ)(X1, . . . , Xn−k)(p) = σ(X1, . . . , Xn−k)(p)

∫
π−1(p)

τ , (25.10.4)

while (25.10.3) yields

π∗(π
∗σ ∧ τ)(X1, . . . , Xn−k)(p) =

∫
π−1(p)

(π∗σ ∧ τ)(Y1, . . . , Yn−k, •) . (25.10.5)

For the integral given here we find∫
π−1(p)

(π∗σ ∧ τ)(Y1, . . . , Yn−k, •) =
∫
π−1(p)

(π∗σ)(Y1, . . . , Yn−k) ∧ τ , (25.10.6)

since all terms which we have omitted under the integral are of the form

(π∗σ)(Yi1 , . . . , Yim , •) ∧ τ(Yim+1 , . . . , Yin−k , •) (25.10.7)

with m < n − k; note that the first factor is horizontal, and so its pullback to the fiber π−p,
and thus the integral over the fiber, vanishes. For the first factor under the integral we have

(π∗σ)(Y1, . . . , Yn−k) = π∗σ(X1, . . . , Xn−k) , (25.10.8)

since the vector fields Yi project to Xi. Here σ(X1, . . . , Xn−k) is a zero-form, i.e., a function,
and so its pullback along π is constant along the fibers, and we can pull it out of the integral,
so that ∫

π−1(p)

(π∗σ)(Y1, . . . , Yn−k) ∧ τ = σ(X1, . . . , Xn−k)(p)
∫
π−1(p)

τ , (25.10.9)

which agrees with the form given by (25.10.1). ■

The fiber integral has a few helpful properties, which can be used in calculations, and which we
show below. The first relation we show is that it commutes with the exterior derivative.

Theorem 25.10.2. Integration along fibers commutes with exterior differentiation, i.e.,

π∗(dω) = d(π∗ω) (25.10.10)

for all ω ∈ Ωn(E) with n ≥ k.

287



Proof. ▶. . .◀ ■

Another helpful relation concerns the exterior product with the pullback of a differential form
on the base manifold. This is also known as the projection formula.

Theorem 25.10.3. For all ω ∈ Ωn(E) with n ≥ k and α ∈ Ωm(B) holds

π∗(π
∗α ∧ ω) = α ∧ π∗ω . (25.10.11)

Proof. Again we consider only differential forms of the form ω = π∗σ ∧ τ , and conclude on the
general case by linearity. Then we have

π∗(π
∗α ∧ π∗σ ∧ τ)(p) = π∗[π

∗(α ∧ σ) ∧ τ ](p)

= (α ∧ σ)(p)
∫
π−1(p)

τ

= [α ∧ π∗(π∗σ ∧ τ)](p)

(25.10.12)

for all p ∈ B. ■

If the forms under consideration are of maximal rank, we can apply the projection formula to
obtain the following important result.

Theorem 25.10.4. For all ω ∈ Ωn(E) with n ≥ k and σ ∈ Ωb−n+k(B), where b = dimB,
holds ∫

E

(π∗σ ∧ ω) =
∫
M

(σ ∧ π∗ω) . (25.10.13)

Proof. ▶. . .◀ ■

In the particular case n = b + k = dimE and σ = 1, this formula represents the intuitive idea
that a differential form of maximal rank on the total space of a fiber bundle can be “integrated
along the fibers first, and then over the base manifold”.
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Chapter 26

Connections

26.1 Horizontal distributions

One of the most important notions in differential geometry is that of a connection on a fiber
bundle. The most general type we discuss here is called an Ehresmann connection. There are
many different, but equivalent ways to define Ehresmann connections. We will start with a
definition that is most intuitive and pictorial (although the least practical for calculations).

Definition 26.1.1 (Horizontal distribution). Let π : E →M be a fiber bundle. A horizon-
tal distribution on E is an assignment e 7→ HeE of a horizontal tangent space HeE ⊂ TeE
to every e ∈ E such that TeE = VeE ⊕HeE and for every e ∈ E there exists a neighbor-
hood Ue on which the horizontal tangent spaces are spanned by n = dimM vector fields
(X1, . . . , Xn).

Recall that on a fiber bundle π : E →M we have for every e ∈ E a canonically defined vertical
tangent space VeE = kerπ∗ ⊂ TeE, and that the vertical tangent spaces constitute the fibers of a
vector bundle - the vertical tangent bundle V E. A horizontal distribution assigns to each e ∈ E
a complement of the vertical tangent space VeE. The condition that these horizontal vector
spaces are locally spanned by vector fields can be understood geometrically as a requirement
that this assignment is smooth. This means in particular that the union of the horizontal
vector spaces forms a manifold HE, which is the total space of a vector bundle over E, called
the horizontal tangent bundle. Note that while the vertical tangent bundle V E is canonically
defined over the total space of every fiber bundle, a horizontal bundle is not canonically given
and thus defines an additional structure.

An important observation is that the splitting TeE = VeE ⊕ HeE implies that every tangent
vector w ∈ TeE is uniquely decomposed in the form w = wV + wH , where wV ∈ VeE is the
vertical part and wH ∈ HeE is the horizontal part. We thus have uniquely defined projections
w 7→ wV and w 7→ wH , which extend to maps TE → V E and TE → HE on all of the tangent
bundle TE. One easily checks that these maps are vector bundle homomorphisms, and that we
can identify TE with the Whitney sum V E ⊕HE.

Note that definition 26.1.1 already implies that the dimension of the horizontal tangent spaces
is given by dimHeE = dimM . This can be seen from the fact that the dimension of the vertical
tangent spaces is given by the fiber dimension, and so

dimHeE = dimTeE − dimVeE = dimE − (dimE − dimM) = dimM . (26.1.1)

Recall that dimM is also the same as the dimension of the tangent spaces TxM for x ∈ M .
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This already hints towards the existence of a relation between these vector spaces. Indeed, such
a relation exists, which we state as follows.

Theorem 26.1.1. A connection on a fiber bundle π : E → M induces a vector space isomor-
phism between HeE and Tπ(e)M for every e ∈ E.

Proof. Consider the projector w 7→ wH onto the horizontal distribution HE. It follows from
the unique decomposition w = wV +wH that the kernel of this projector is the vertical tangent
bundle V E = kerπ∗. This means that for all e ∈ E there is a vector space isomorphism

HeE ∼= TeE/VeE ∼= Tπ(e)M , (26.1.2)

which relates the elements

HeE ∋ wH ∼ [wH ] = {w′ ∈ TeE,w′ − wH ∈ VeE} ∈ TeE/VeE
= {w′ ∈ TeE, π∗(w′) = π∗(wH)} ∈ TeE/VeE
∼ π∗(wH) ∈ Tπ(e)M
= π∗(w) ∈ Tπ(e)M ,

(26.1.3)

To see that the restriction of π∗ to HeE is indeed a vector space isomorphism from HeE to
Tπ(e)M , note that for w,w′ ∈ TeE we have π∗(w) = π∗(w′) if and only if w − w′ is vertical,
and hence wH = w′H , so that π∗(w) is uniquely determined by the horizontal part wH and vice
versa. ■

To further illustrate these concepts, we introduce coordinates (xµ) on a trivializing neighborhood
U ⊂ M and (ya) on the fiber space of the bundle π : E → M , so that we have coordinates
(xµ, ya) on E and the projection π simply discards the second part of these coordinates. We
can then write a tangent vector w ∈ TeE in the form

w = uµ
∂

∂xµ
+ va

∂

∂ya
= uµ∂µ + va∂̄a , (26.1.4)

from which we obtain coordinates (uµ, va) on TeE, (va) on VeE and thus (xµ, ya, uµ, va) on TE
and (xµ, ya, va) on V E.

To understand the horizontal tangent bundle in these coordinates, first note that the differential
π∗ of the bundle projection π takes the form

π∗
(
uµ∂µ + va∂̄a

)
= uµ∂µ , (26.1.5)

where ∂µ on the left hand side denotes one part of a coordinate basis of TeE, while on the
right hand side it denotes a coordinate basis of Tπ(e)M . Using theorem 26.1.1, we thus see that
the horizontal part wH is fully determined by the components uµ. We may therefore write the
horizontal projector in coordinates in the form

wH =
(
uµ∂µ + va∂̄a

)
H

= uµδµ , (26.1.6)

where δµ is the basis of HeE which satisfies π∗(δµ) = ∂µ. Using the fact that TeE = VeE⊕HeE,
we realize that

(δµ, ∂̄a) (26.1.7)

is a basis of TeE, which we call the adapted basis induced by the connection. We will construct
explicit coordinate expressions of this adapted basis and its relation to the coordinate basis,
and hence a coordinate representation of the connection, in the following sections.

Recall from section 19.3 that the (canonically defined) vertical tangent bundle V E gives rise
to a horizontal cotangent bundle H∗E. If we have a horizontal distribution HE, then we can
analogously also define a vertical cotangent bundle. We will do so as follows.
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Definition 26.1.2 (Vertical cotangent vector). Let π : E → M be a fiber bundle, HE ⊂
TE a horizontal distribution and e ∈ E. A covector α ∈ T ∗eE is called vertical if and only
if ⟨v, α⟩ = 0 for all horizontal vectors v ∈ HeE. The space V ∗e E of all vertical covectors at
e is called the vertical cotangent space over e.

▶Discuss split of cotangent bundle◀

26.2 Connection forms

More practical definitions of a connection can be obtained by constructing certain maps, which
can be derived from the unique decomposition w = wV +wH for every tangent vector w ∈ TeE,
where wV ∈ VeE is the vertical part and wH ∈ HeE is the horizontal part. In the following it
makes sense to focus on the vertical projector, since its codomain V E is canonically defined.
We can define such a projector as follows.

Definition 26.2.1 (Connection form). Let π : E → M be a fiber bundle. A connection
form on E is a vector bundle homomorphism θ : TE → V E covering the identity map idE
on E and restricting to the identity map on V E, i.e., θ|V E = idV E .

This definition requires a few explanations. First, note that following theorem 4.6.2 one may
equivalently view θ as a section of the homomorphism bundle Hom(TE, V E), which according
to theorem 4.6.1 is identified with the bundle T ∗E⊗V E; the latter justifies the name “connection
form”, as it can be seen as a one-form taking values in the vertical tangent bundle.

Since θ : TE → V E covers the identity, we have π ◦ θ = π. Further, θ is a vector bundle
homomorphism, which means that each restriction θ|e : TeE → VeE is linear. Finally, it is in
fact a projection onto V E, since θ(w) ∈ V E for all w ∈ TE and θ restricts to the identity on
V E, so that θ ◦ θ = θ. With these properties, the following is straightforward.

Theorem 26.2.1. For every fiber bundle π : E → M there is a one-to-one correspondence
between horizontal distributions and connection forms on E.

Proof. Given a connection form θ on E, the kernel of θ is a horizontal distribution. Conversely,
given a horizontal distribution, we can uniquely split every vector w ∈ TE in the form w =
wV + wH , where wV ∈ V E is vertical and wH ∈ HE is horizontal. Then θ : w 7→ wV defines a
connection form. ■

Recall the coordinates (xµ, ya, uµ, va) we introduced on TE in the previous section. In these
coordinates a vector bundle homomorphism θ : TE → TE must be linear in u, v, and can be
expressed in the form

θ(x, y, u, v) = (uνθµν (x, y) + vaθµa (x, y)) ∂µ +
(
uµθaµ(x, y) + vbθab (x, y)

)
∂̄a ∈ T(x,y)E , (26.2.1)

so that it is determined by the component functions θµν , θaµ, θµa , θab . Demanding that the image
is vertical implies θµν ≡ 0 and θµa ≡ 0, so that we have

θ(x, y, u, v) =
(
uµθaµ(x, y) + vbθab (x, y)

)
∂̄a ∈ V(x,y)E . (26.2.2)

Further demanding that θ is the identity on vertical vectors implies θab = δab , so that for a
connection form we find the coordinate expression

θ(x, y, u, v) =
(
uµθaµ(x, y) + va

)
∂̄a ∈ V(x,y)E . (26.2.3)
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A connection form is thus uniquely determined by the coordinate functions θaµ(x, y). Note that
their index structure is reminiscent of a tensor field with mixed (covariant and contravariant)
components. This is not a coincidence, as we shall see now.

Recall from theorem 4.6.2 that a vector bundle homomorphism covering the identity can also
be regarded as a section of the corresponding homomorphism bundle, which in this case is
Hom(TE, V E), and which is isomorphic to V E ⊗ T ∗E following theorem 4.6.1. Adopting this
point of view, we may write the connection form θ as the tensor field

θ = ∂̄a ⊗ (θaµdx
µ + dya) , (26.2.4)

whose dya-part follows from the fact that θ acts as the identity on vertical vectors, and where
we now omitted the argument (x, y), as we express the tensor field, not its value at a single
point. Such a tensor field can be regarded as a one-form which takes values in the vertical
tangent bundle - hence the name connection form.

A word of warning should be issued here. Naively one might think of omitting the dya-part,
as it does not depend on θ, and only consider a form θaµ∂̄a ⊗ dxµ. This implies that the
coordinate expression θaµ looks like coordinates for a map (uµ∂µ 7→ uµθaµ∂̄a) ∈ Hom(TxM,VeE),
but this is misleading. The reason for this coordinate expression is simply that while introducing
coordinates on E we have fixed a local trivialization. If we choose a different trivialization, these
components will not transform as components of a vector space, but as components of an affine
space, which is what they really are. To see this, consider two connection forms θ, θ′. Given
any vertical tangent vector v ∈ V E, their difference satisfies

(θ′ − θ)(v) = θ′(v)− θ(v) = v − v = 0 . (26.2.5)

In coordinates, we have

θ′ − θ = ∂̄a ⊗ (θ′aµ dx
µ + dya)− ∂̄a ⊗ (θaµdx

µ + dya) = (θ′aµ − θaµ)∂̄a ⊗ dxµ , (26.2.6)

Hence, we find that θ′ − θ is a section of V E ⊗H∗E, which is a vector bundle. This suggests
that we can consider connections as sections of an affine bundle modeled over this bundle. We
will find that this is indeed the case in section 26.3, where we explicitly study this bundle.

To further illustrate these constructions, it is helpful to introduce a new basis (dxµ, δya) of the
cotangent bundle T ∗E, where dxµ is a basis of the horizontal cotangent bundle H∗E and

δya = dya + θaµdx
µ ⇔ dya = δya − θaµdxµ . (26.2.7)

In this basis the connection form simply reads

θ = ∂̄a ⊗ δya . (26.2.8)

The dual basis (δµ, ∂̄a) of the tangent bundle TE, which is defined such that

⟨δµ,dxν⟩ = δνµ , ⟨δµ, δya⟩ = 0 , ⟨∂̄a,dxν⟩ = 0 , ⟨∂̄a, δyb⟩ = δba , (26.2.9)

is given by
δµ = ∂µ − θaµ∂̄a ⇔ ∂µ = δµ + θaµ∂̄a . (26.2.10)

It immediately follows that the vector fields δµ lie in the kernel of θ, and so they span the
horizontal tangent bundle HE. Hence, this basis respects the split TE = V E ⊕ HE of the
tangent bundle imposed by the connection. This becomes even more clear if we understand θ
as a vertical projector. Consequently, we can also define a horizontal projector

δ − θ = ∂µ ⊗ dxµ + ∂̄a ⊗ dya − ∂̄a ⊗ δya
= ∂µ ⊗ dxµ − θaµ∂̄a ⊗ dxµ

= δµ ⊗ dxµ ,

(26.2.11)
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where
δ = ∂µ ⊗ dxµ + ∂̄a ⊗ dya = δµ ⊗ dxµ + ∂̄a ⊗ δya (26.2.12)

denotes the unit section 5.5.1, which can be expressed either in the coordinate basis, or in the
basis adapted to the connection. Finally, it follows that in this basis the isomorphism between
HeE and Tπ(e)M simply relates uµδµ ∈ HeE and uµ∂µ ∈ Tπ(e)M . This shows that (δµ, ∂̄a) is
simply the adapted basis (26.1.7) we have introduced before.

26.3 Ehresmann connections and jet bundle sections

As we have seen before, there are different possibilities how to describe an Ehresmann connection
on a fiber bundle. We have also seen that connections form an affine space and not a vector
space. It thus seems helpful to introduce another description and to model them as sections of
an affine bundle. We have already encountered affine bundles when we discussed jet bundles.
We will thus use the following geometric object as our main definition and - since it apparently
lacks a particular name in the literature - simply call it an Ehresmann connection.

Definition 26.3.1 (Ehresmann connection). Let π : E → M be a fiber bundle. An
Ehresmann connection is a section ω : E → J1(E) of the jet bundle π1,0 : J1(E)→ E.

To better understand the geometric meaning of this definition, recall that an element of J1(E)
is an equivalence class of local sections around a point x ∈ M , i.e., maps σ : Uσ → E with
x ∈ Uσ for an open subset Uσ ⊂ M , where two local sections σ, τ are considered equivalent if
for all curves γ ∈ C∞(R, Uσ ∩ Uτ ) with γ(0) = x and all functions f ∈ C∞(E,R) holds

(f ◦ σ ◦ γ)(0) = (f ◦ τ ◦ γ)(0) and (f ◦ σ ◦ γ)′(0) = (f ◦ τ ◦ γ)′(0) . (26.3.1)

The first condition simply translates to σ(x) = τ(x), while the second condition can be written
as σ∗(u) = τ∗(u) for all u ∈ TxM . The equivalence class of σ, for which we introduced the
notation j1xσ, is thus fully characterized by the following data:

• the point π1(j1xσ) = x ∈M ,

• the image π1,0(j1xσ) = σ(x) ∈ Ex = π−1(x),

• a linear map σ∗|x : TxM → Tσ(x)E such that π∗ ◦ σ∗|x = idTxM .

In the given case we are interested in sections ω of the bundle π1,0 : J1(E)→ E. By definition
of the section we have π1,0 ◦ ω = idE . For all e ∈ E thus follows that ω(e) ∈ π−11,0(e), so that
ω(e) must be of the form j1xσ with σ(x) = e and x = π(e). This requirement already uniquely
fixes the first two items from the list above, so that in order to specify a section ω we only need
to supply the last item. To see how much freedom we have for choosing this item, we consider
two different jets j1xσ, j1xτ (where this time σ and τ should be sections of π : E →M which are
not in the same equivalence class, i.e., define different jets). Since we are dealing with linear
maps, we can take the difference

0 = (π∗ ◦ σ∗|x)− (π∗ ◦ τ∗|x) = π∗ ◦ (σ∗|x − τ∗|x) , (26.3.2)

which shows that the image of σ∗|x− τ∗|x must be contained in the vertical tangent space VeE.
In other words, for any u ∈ TxM , the image σ∗|x (u)− τ∗|x (u) is vertical. Note, however, that
σ∗|x (u) is not vertical, so that it is not sufficient to specify a vertical vector only. The reason
for this is that the condition π∗ ◦ σ∗|x = idTxM specifies an affine space, i.e., the difference of
any two such linear maps σ∗|x , τ∗|x lies in the vector space Hom(TxM,VeE), but the space
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of linear maps satisfying this condition is not a vector space. In fact, we have shown this
in theorem 21.6.4, where now we have a special case: the jet bundle π1,0 : J1(E) → E is
an affine bundle modeled over V E ⊗ π∗T ∗M . The fibers of this bundle are, of course, just
VeE ⊗ T ∗xM ∼= Hom(TxM,VeE) with x = π(e).

It further follows from these considerations that the linear map σ∗|x must have maximal rank,
i.e., it must be injective, and so it establishes a vector space isomorphism between TxM and
its image in Tσ(x)E. One may already expect that this image is the horizontal tangent space of
a horizontal distribution, or equivalently the kernel of a connection form on E. The following
theorem shows that this intuition is indeed correct.

Theorem 26.3.1. For every fiber bundle π : E → M there is a one-to-one correspondence
between Ehresmann connections and connection forms on E.

Proof. We have seen that an Ehresmann connection assigns to each e ∈ E with π(e) = x a jet
j1xσe with π1(j1xσe) = x and π1,0(j1xσe) = σe(x) = e such that π∗ ◦ σe∗|x = idTxM , and that the
latter is the only ingredient that differs between different Ehresmann connections. Given this
jet we can define for each e ∈ E a linear function

θe : TeE → VeE
w 7→ w − σe∗(π∗(w)) . (26.3.3)

It is clear that θe(w) ∈ VeE, since

π∗(θe(w)) = π∗(w)− π∗(σe∗(π∗(w))) = π∗(w)− π∗(w) = 0 . (26.3.4)

Further, for w ∈ VeE, we have π∗(w) = 0, and thus θe(w) = w. Together with the linearity it
follows that θe is a projection onto VeE. Finally, since we have such a function θe for all e ∈ E,
they constitute a map θ : TE → V E which covers the identity on E. One easily checks that θ
is a connection form.

Conversely, let θ be a connection form on E, i.e., a vector bundle homomorphism θ : TE → V E
covering the identity map idE on E and restricting to the identity map on V E. For each e ∈ E
it thus defines a projection θ|e : TeE → VeE. Let σe be a local section of the bundle π : E →M
around x = π(e) such that σe(x) = e and θ(σe∗(u)) = 0 for all u ∈ TxM . The latter condition
means that σe∗(u) lies in the kernel of the projection θ|e. This completely fixes σe∗, since for
every local section σe we also have π∗ ◦σe∗ = idTxM . The set of all such local sections σe is thus
simply the jet j1xσe. The jets for each e ∈ E finally define a section ω : E → J1(E), e 7→ j1xσe
of the jet bundle, and thus an Ehresmann connection. ■

It follows from the construction above that

σe∗(π∗(w)) = w − θe(w) = w − wV = wH ∈ HeE (26.3.5)

is simply the horizontal part of w. By comparing with theorem 26.1.1 we thus see that the
maps σe∗ : TxM → HeE and π∗ : HeE → TxM simply realize the isomorphism between these
two vector spaces, which is induced by the connection.

To further illustrate this construction, we introduce coordinates (xµ) on a trivializing neighbor-
hood U ⊂M and (ya) on the fiber space of the bundle π : E →M , so that we have coordinates
(xµ, ya) on E and the projection π simply discards the second part of these coordinates. We
can denote the coordinates on the first jet space by (xµ, ya, yaµ). In these coordinates a section
of the bundle π1,0 : J1(E)→ E is thus expressed by an assignment

ω : (xµ, ya) 7→ (xµ, ya, yaµ(x, y)) . (26.3.6)

Now let σe : U → E with x = π(e) ∈ U ⊂ M be a local section such that σe(x) = e and
j1xσe = ω(e). Writing this section as an assignment (xµ) 7→ (xµ, ya(x)), we see that the latter
condition on its first jet implies that

∂µy
a(x) = yaµ(x, y(x)) . (26.3.7)
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The pushforward σe∗(u) of a vector u = uµ∂µ ∈ TxM is thus given by

σe∗(u) = uµ(∂µx
ν∂ν + ∂µy

a∂̄a) = uµ(∂µ + yaµ(x, y)∂̄a) . (26.3.8)

For w = uµ∂µ + va∂̄a ∈ TeE we then use the definition (26.3.3) in theorem 26.3.1 to obtain the
connection form θe as

θe(w) = w − σe∗(π∗(w))
= uµ∂µ + va∂̄a − uµ(∂µ + yaµ(x, y)∂̄a)

= (va − uµyaµ(x, y))∂̄a .
(26.3.9)

By comparing this result with the expression (26.2.3) it thus follows that the coordinate ex-
pression for the connection form θ is simply given by θaµ(x, y) = −yaµ(x, y).
Another possibility to see this relation between the coordinate expressions of the Ehresmann
connection ω and the connection form θ is by using the induced relation (26.3.5) between TxM
and HeE. Recall that we may use the coordinate expression of θ to construct a basis (26.2.10)
of TeE which respects the split into horizontal and vertical parts, where δµ are the horizontal
basis vectors. It follows from their definition that a horizontal vector w = uµδµ is projected to
π∗(w) = uµ∂µ = u ∈ TxM . The inverse map must therefore satisfy

σe∗(u) = uµδµ = uµ(∂µ − θaµ(x, y)∂̄a) . (26.3.10)

Comparing this to the coordinate expression for the pushforward of a section shows again that
yaµ(x, y) = ∂µy

a(x) = −θaµ(x, y).
In an intuitive, geometric picture we can thus understand an Ehresmann connection as an
assignment that takes a point e in E with coordinates (xµ, ya), which could come from evaluating
a section σe : M → E at the point with coordinates (xµ), and it assigns to it a jet, which
determines “partial derivatives of the coordinates ya with respect to the coordinates xµ”, such
that the resulting tangent vectors at e to the graph of the section σe in E are horizontal.

26.4 Horizontal lift map

We have seen in section 26.1 that a connection on a fiber bundle π : E →M , represented by the
choice of horizontal tangent spaces HeE, induces a vector space isomorphism HeE ∼= Tπ(e)M
for every e ∈ E. We now make use of these vector space isomorphisms in order to lift geometric
objects from M to E. For this purpose, it is useful to form them into a map, whose existence
is guaranteed by the following statement.

Theorem 26.4.1. Let π : E →M be a fiber bundle equipped with a horizontal distribution HE
and χ : TE → E the tangent bundle projection. The map

(χ, π∗) : HE → π∗TM
w 7→ (χ(w), π∗(w))

(26.4.1)

is a vector bundle isomorphism covering the identity on E.

Proof. First, it is clear that the map given above is a smooth map from HE to π∗TM . These
two manifolds are constructed as total spaces of fiber bundles over E, with the projection given
by the diagram

HE
(χ,π∗) //

χ
!!

π∗TM

pr1{{
E

. (26.4.2)
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This diagram obviously commutes, so that (χ, π∗) is a bundle morphism. Given e ∈ E and
w ∈ HeE, we have

(χ(w), π∗(w)) = (e, π∗(w)) (26.4.3)

with π∗(w) ∈ Tπ(e)M . Since the vector space structure on the fibers of π∗TM is inherited
from the fibers of TM , and π∗ is a vector bundle homomorphism, hence linear on every fiber,
also (χ, π∗) is linear on every fiber, and thus a vector bundle homomorphism. We then once
again use the fact that we can identify the fibers of π∗TM and TM over points e ∈ E and
p = π(e) ∈M as

π∗eTM ∋ (e, v) ∼ v ∈ Tπ(e)M , (26.4.4)

and that this identification is a vector space isomorphism. Now recall from theorem 26.1.1 that
π∗|HeE : HeE → Tπ(e)M is a vector space isomorphism. Hence, also the composition

HeE
π∗−→ Tπ(e)M

(e,•)−−−→ π∗eTM (26.4.5)

is a vector space isomorphism. Therefore, we indeed have a vector bundle isomorphism. ■

We remark that the map we considered above is, in fact, defined independently of the connection
as a map

(χ, π∗) : TE → π∗TM
w 7→ (χ(w), π∗(w))

(26.4.6)

on all of TE. However, this map is not an isomorphism, but only a homomorphism, whose
kernel is the (also canonically defined) vertical tangent bundle V E. Only if we restrict this
map to a horizontal bundle, which complements the vertical bundle, its restriction becomes
an isomorphism. In the following, it will turn out to be useful to consider the inverse of this
isomorphism, which we define as follows, essentially following [KSM93, sec. 9].

Definition 26.4.1 (Horizontal lift map). Let π : E →M be a fiber bundle equipped with
a horizontal distribution HE and χ : TE → E the tangent bundle projection. The vector
bundle isomorphism η = (χ, π∗)−1 : π∗TM → HE is called the horizontal lift map.

It should be clear that by specifying η, we can reconstruct HE as its image. In fact, it turns out
that horizontal lift maps provide yet another possibility to specify connections, which we have
already encountered, though in a different form. We formalize this in the following statement.

Theorem 26.4.2. Let π : E → M be a fiber bundle and χ : TE → E the tangent bundle
projection. Then there exists a one-to-one correspondence between Ehresmann connections ω :
E → J1(E) and vector bundle homomorphisms η : π∗TM → TE covering the identity on E
and satisfying π∗ ◦ η = pr2, where pr2 : π∗TM → TM is the projection onto the second factor
of the fibered product π∗TM ∼= E ×M TM .

Proof. For e ∈ E, let π(e) = x and ω(e) = j1xσ for some representative σ ∈ Γx(E). Recall that
ω(e) is uniquely specified by the map σ∗ : TxM → TeE. One easily checks that the relation
σ∗(v) = η(e, v) establishes the claimed one-to-one correspondence, i.e., that η defined from ω
with this prescription is a horizontal lift map, and that a horizontal lift map η conversely defines
an Ehresmann connection ω. ■

We have now derived four equivalent ways to specify a connection: as a horizontal distribution,
as a connection form, as a jet bundle section or as a horizontal lift map. These are summarized
in figure 26.1.

We illustrate the definition of the horizontal lift map using coordinates (xµ, ya, uµ), where (xµ)
are coordinates on M which specify the common base point of the points with coordinates
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TeE
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E

Tπ(e)M

VeE
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η(e, v)

η(e, •)

v′

σ∗(v′)

σ∗

w

θ(w) = wV

wH

θ

j1π(e)σ = ω(e)

π(e)

e

0

0

π π∗τ

χ

Figure 26.1: Four different, but equivalent ways to specify a connection.

(xµ, ya) on E and (xµ, uµ) on TM , where the latter are defined via the coordinate basis ∂µ of
TM . Recall that we can use the adapted basis (26.1.7) to write a horizontal tangent vector at e ∈
E as wH = uµδµ ∈ HeE, and so we can label the elements of HE by the same set of coordinates
(xµ, ya, uµ). This is justified, since we have already seen that π∗(wH) = uµ∂µ ∈ Tπ(e)M . The
horizontal lift map is the inverse of this map, and so it assigns to every (e, v) ∈ π∗TM , where
e ∈ E and v = uµ∂µ ∈ Tπ(e)M , the corresponding element uµδµ ∈ HeE. Here we see how the
horizontal lift map constitutes an isomorphism of these vector bundles.

26.5 Frame bundle reduction

We now come to yet another description of connections, which once again turns out to be
equivalent to the descriptions we have discussed before, and which helps to link the descriptions
in terms of horizontal distributions and jet bundle sections. The starting point of our discussion
is the tangent frame bundle F (TE) over the total space of the bundle π : E →M . If we denote
the dimension of M by dimM = m and of E by dimE = m + n, then TE is of rank m + n,
and so F (TE) is a principal GL(m+ n,R)-bundle. Now recall from section 19.2 that TE has a
canonically defined subbundle, namely the vertical tangent bundle V E of rank n. This canonical
structure allows us to define the following bundle.

Definition 26.5.1 (Adapted frame bundle). Let π : E → M be a fiber bundle with
dimM = m and dimE = m+ n. For e ∈ E, we call an adapted frame a frame p : Rm+n ∼=
Rm ⊕ Rn → TeE if p|{0}⊕Rn : {0} ⊕ Rn → TeE is a frame of VeE, i.e., p restricts to a
bijective linear map onto VeE in the last n components. The space of all adapted frames
is called the adapted frame bundle Fπ(TE).

Similarly to the general linear frame bundle, one may expect that also the associated frame
bundle is a principal bundle. This we show next.

Theorem 26.5.1. The adapted frame bundle Fπ(TE) is a principal bundle with structure group
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G =

{(
A 0
L B

)
, A ∈ GL(m,R), B ∈ GL(n,R), L ∈ Mm,n(R)

}
∼= GL(m,R)⋉Mn,m(R)⋊GL(n,R) ⊂ GL(m+ n,R) . (26.5.1)

Proof. We first show that G acts from the right on Fπ(TE) via p · g = p ◦ g. For this purpose,
let (v, w) ∈ Rm ⊕ Rn, e ∈ E, p ∈ Fπ e(TE) and g = (A 0

L B ) ∈ G. Then we find another frame

p′(v, w) = (p ◦ g)(v, w) = p(Av,Lv +Bw) . (26.5.2)

In particular, for v = 0, we have p′(0, w) = p(0, Bw) ∈ VeE, since p is an adapted frame. This
mapping Rn → VeE,w 7→ p(0, Bw) is bijective, since B ∈ GL(n,R), and so also p′ is an adapted
frame. To show that this action is free and transitive, let p, p′ ∈ Fπ e(TE). Then there exists
a unique g ∈ GL(m+ n,R) such that g = p−1 ◦ p′. If we apply this element to (0, w), we have
that p′(0, w) ∈ VeE, and so p−1(p′(0, w)) must again be of the form (0, w′). Hence, g must be
of the form (A 0

L B ), and thus g ∈ G. ■

It is instructive to take a closer look at the group G which appears here. Clearly, this is a Lie
group of dimension m2 + n2 +mn. Its group operation is given by matrix multiplication, and
thus takes the form (

A 0
L B

)
·
(
A′ 0
L′ B′

)
=

(
AA′ 0

LA′ +BL′ BB′

)
, (26.5.3)

and so the inverse is given by(
A 0
L B

)−1
=

(
A−1 0

−B−1LA−1 B−1

)
. (26.5.4)

If the bundle π : E → M is further equipped with a connection, and hence a horizontal
distribution, the tangent spaces split in the form TeE = HeE ⊕ VeE. In this case one can
further restrict the tangent bundle. We define this restriction as follows.

Definition 26.5.2 (Split frame bundle). Let π : E →M be a fiber bundle with dimM = m
and dimE = m+n, andHE a horizontal distribution, corresponding to a connection ω. For
e ∈ E, we call a split frame a frame p : Rm+n ∼= Rm⊕Rn → TeE if p|Rm⊕{0} : Rm⊕{0} →
TeE is a frame of HeE and p|{0}⊕Rn : {0} ⊕ Rn → TeE is a frame of VeE, i.e., p restricts
to a bijective linear map onto HeE in the first m components and onto VeE in the last n
components. The space of all split frames is called the split frame bundle Fωπ (TE).

Now the following is straightforward.

Theorem 26.5.2. The split frame bundle Fωπ (TE) is a principal bundle with structure group

H =

{(
A 0
0 B

)
, A ∈ GL(m,R), B ∈ GL(n,R)

}
∼= GL(m,R)×GL(n,R) ⊂ GL(m+ n,R) . (26.5.5)

Proof. It is clear from the definition that a split frame at e ∈ E can be seen as a pair of frames
of HeE and VeE, and so Fωπ (TE) ∼= F (HE) ×E F (V E). These bundles are principal bundles
with structure groups GL(m,R) and GL(n,R), respectively. Hence, following theorem 20.1.5,
Fωπ (TE) is a principal bundle with structure group H given above. ■
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Hence, we have seen that a connection allows us to reduce the adapted frame bundle to a split
frame bundle. This suggests that a connection induces a reduction of the structure group.
In order to show that this is indeed the case, and that even the converse relation holds, we
recall from theorem 20.6.1 that if H is a closed subgroup of G, as it is the case here, then a
H-reduction of a principal G-bundle is equivalent to a section of the associated coset bundle
with fiber G/H. It is thus helpful to first clarify the structure of the coset space G/H. Note
that for each g = (A 0

L B ) ∈ G we can find a unique h =
(
A−1 0
0 B−1

)
∈ H such that

gh =

(
1m 0
LA−1 1n

)
∈ gH . (26.5.6)

Hence, we have a unique representative for every gH ∈ G/H for each LA−1 = K ∈ Mn,m(R),
and thus a bijection

•̃ : Mn,m(R) → G/H

K 7→ K̃ =

(
1m 0
K 1n

)
H

. (26.5.7)

Next, we study the action ρ : G×G/H → G/H by left multiplication, which is essential in the
construction of the associated bundle. For this purpose, we calculate(

A 0
L B

)
·
(
1m 0
K 1n

)
·
(
A−1 0
0 B−1

)
=

(
1m 0

(L+BK)A−1 1n

)
. (26.5.8)

We see that ρ acts by affine transformations K 7→ (L+BK)A−1 on the space G/H ∼= Mn,m(R),
i.e., it preserves the affine structure of this space, and so it is an affine representation of G.
This affine representation induces a linear representation ρ⃗ on the underlying vector space−−−→
G/H ∼= Mn,m(R) constituted by differences of elements of G/H, which is given by(

A 0
L B

)
·
(
0 0
κ 0

)
·
(
A−1 0
0 B−1

)
=

(
0 0

BκA−1 0

)
(26.5.9)

for κ ∈ Mn,m(R). Writing the corresponding vector space isomorphism as

•⃗ : Mn,m(R) → −−−→
G/H

κ 7→ κ⃗ =

(
0 0
κ 0

)
H

, (26.5.10)

We see that •̃ is an affine isomorphism covering the linear isomorphism •⃗. Further, following
theorem 20.5.1, we find that Fπ(TE)×ρG/H is an affine bundle modeled over the vector bundle
Fπ(TE)×ρ⃗

−−−→
G/H. Recalling that in definition 26.3.1 we have defined an Ehresmann connection

as a sections of J1(E), which is also an affine bundle over E, modeled over the vector bundle
V E ⊗ π∗(T ∗M), one may thus suspect that these bundles are related to each other. We will
show this now in several steps. In the first step, we need to relate the underlying vector bundles,
since the affine bundles will be built upon them. Hence, we start by proving the following.

Theorem 26.5.3. The bundle V E⊗π∗(T ∗M) is canonically isomorphic to the associated vector
bundle Fπ(TE)×ρ⃗

−−−→
G/H.

Proof. We consider an equivalence class [p, κ⃗] ∈ Fπ(TE) ×ρ⃗
−−−→
G/H, where p ∈ Fπ(TE) is an

adapted frame at e ∈ E and κ ∈ Mn,m(R). This allows us to define a linear function

Φ(p,κ) : TeE → VeE

u 7→ p

((
0 0
−κ 1n

)
· p−1(u)

)
. (26.5.11)

We see that Φ(p,κ)(u) is vertical for all u ∈ TeE, and so we can identify Φ(p,κ) with a
homomorphism Φ(p,κ) ∈ Hom(TeE, VeE) ∼= VeE ⊗ T ∗eE. Further, if u ∈ VeE is already
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vertical, and thus of the form p(0, w) for some w ∈ Rn, we have Φ(p,κ)(u) = 0. Hence, Φ(p,κ)
vanishes on vertical vectors, and so Φ(p,κ) ∈ VeE ⊗H∗eE. Recalling from theorem 19.3.2 that
H∗E ∼= π∗(T ∗M), we have thus constructed an element of the desired bundle V E ⊗ π∗(T ∗M).
To show that this is independent of the choice of the representative of [p, κ⃗], consider [p′, κ⃗′]
with p′ = p · g and κ⃗′ = ρ⃗(g−1, κ⃗), so that

κ′ = B−1κA . (26.5.12)

Then we have

Φ(p′,κ′)(u) = p′
((

0 0
−κ′ 0

)
· p′−1(u)

)
= p

((
A 0
L B

)
·
(

0 0
−B−1κA 0

)
·
(

A−1 0
−B−1LA−1 B−1

)
· p−1(u)

)
= p

((
0 0
−κA B

)
·
(

A−1 0
−B−1LA−1 B−1

)
· p−1(u)

)
= p

((
0 0
−κ 0

)
· p−1(u)

)
= Φ(p,κ)(u) .

(26.5.13)

Since Φ(p,κ) depends only on the equivalence class [p, κ⃗], we can interpret Φ as a map Φ :

Fπ ×ρ
−−−→
G/H → V E ⊗ π∗(T ∗M). This map is smooth by construction, which involves only

smooth maps. Further, it preserves the base point, and so it is a bundle morphism covering
the identity on E. Also it is by definition linear in κ, and thus linear on each fiber, since the
vector space structure on each fiber is inherited from

−−−→
G/H ∼= Mn,m(R), and therefore a vector

bundle homomorphism. To show that it is a vector bundle isomorphism, let φ ∈ VeE ⊗H∗eE ⊂
VeE⊗T ∗eE ∼= Hom(TeE, VeE) a linear map which vanishes on VeE. Choosing an adapted frame
p ∈ Fπ e(TE), we can construct a linear map

ϑ(p, φ) : Rm+n → Rm+n

(v, w) 7→ (p−1 ◦ φ ◦ p)(v, w) . (26.5.14)

Writing this map as a matrix ϑ(p, φ) =
(
a b
c d

)
, we see that a = b = 0, since φ(u) ∈ VeE is vertical

for all u ∈ TeE, and the adapted frame p−1 maps vertical vectors to the subspace {0} ⊕ Rn.
Further, if u ∈ VeE is already vertical, we have φ(u) = 0, and so d = 0. Setting κ = −c one
thus finds the desired element [p, κ⃗] ∈ Fπ(TE) ×ρ⃗

−−−→
G/H. To check that this is independent of

the choice of p, one essentially follows the same steps as given before in this proof. One easily
checks that this construction yields the inverse of the bundle morphism constructed above,
proving that it is indeed a vector bundle isomorphism. ■

Hence, we have shown that the underlying vector bundles of the affine bundles J1(E) and
Fπ(TE) ×ρ G/H are isomorphic as vector bundles. This allows us to proceed with the affine
bundles, which is what we do next.

Theorem 26.5.4. The first jet bundle π1,0 : J1(E)→ E is canonically isomorphic to the asso-
ciated coset bundle Fπ(TE)×ρ G/H, where G and H are given in theorems 26.5.1 and 26.5.2,
and ρ is the action of G given by left multiplication.

Proof. In order to construct this isomorphism, we first aim to find a description for the equiv-
alence class [p, K̃] ∈ Fπ(TE) ×ρ G/H, where p ∈ Fπ(TE) is an adapted frame at e ∈ E and
K ∈ Mn,m(R). For this purpose, consider the linear function

Θ(p,K) : TeE → VeE

u 7→ p

((
0 0
−K 1n

)
· p−1(u)

)
. (26.5.15)
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Clearly, the element Θ(p,K)(u) constructed above is vertical. Also if u ∈ VeE is already vertical,
and thus of the form u = p(0, w) for some w ∈ Rn, we have

Θ(p,K)(u) = p

((
0 0
−K 1n

)
·
(
0
w

))
= p(0, w) = u , (26.5.16)

so that Θ(p,K) restricts to the identity on VeE. To check that Θ(p,K) is independent of the
representative, let p′ = p · g and K̃ ′ = ρ(g−1, K̃), so that

K ′ = (−B−1LA−1 +B−1K)A = B−1(KA− L) . (26.5.17)

By direct calculation we then find

Θ(p′,K ′)(u) = p′
((

0 0
−K ′ 1n

)
· p′−1(u)

)
= p

((
A 0
L B

)
·
(

0 0
B−1(L−KA) 1n

)
·
(

A−1 0
−B−1LA−1 B−1

)
· p−1(u)

)
= p

((
0 0

L−KA B

)
·
(

A−1 0
−B−1LA−1 B−1

)
· p−1(u)

)
= p

((
0 0
−K 1n

)
· p−1(u)

)
= Θ(p,K)(u) .

(26.5.18)

Hence, we see that Θ assigns to each equivalence class [p, K̃] ∈ Fπ(TE)×ρG/H a linear projec-
tion Θ(p, K̃) : TeE → VeE. Following theorem 26.3.1, this uniquely determines a jet j1π(e)σ with
σ(π(x)) = e and Θ(p, K̃) ◦ σ∗ = 0. Hence, we have constructed a map from Fπ(TE) ×ρ G/H
to J1(E). This map is smooth by construction, as can be verified by constructing the local
trivializations, and preserves the base point, and so it is a bundle morphism.

To show that the bundle morphism we constructed above is an isomorphism, we explicitly
construct its inverse. For this purpose, we make use of theorem 26.3.1 again, and represent
an element of J1(E) by a linear projection θe : TeE → VeE. Choosing an adapted frame
p ∈ Fπ e(TE), we can construct a linear map

κ(p, θe) : Rm+n → Rm+n

(v, w) 7→ (p−1 ◦ θe ◦ p)(v, w) . (26.5.19)

Writing this map as a matrix κ(p, θe) =
(
a b
c d

)
, we see that a = b = 0, since θe(u) ∈ VeE

is vertical for all u ∈ TeE, and the adapted frame p−1 maps vertical vectors to the subspace
{0} ⊕ Rn. Further, if u ∈ VeE is already vertical, we have θe(u) = u, and so d = 1n. Setting
K = −c one thus finds the desired element [p, K̃] ∈ Fπ(TE) ×ρ G/H. To check that this is
independent of the choice of p, one essentially follows the same steps as given before in this proof.
One easily checks that this construction yields the inverse of the bundle morphism constructed
above, proving that it is indeed a bundle isomorphism.

Finally, we show that the bundle isomorphism we constructed restricts to an affine map on every
fiber. For this purpose, recall that we can represent an element κ⃗ ∈ −−−→G/H by κ ∈ Mn,m(R).
One easily checks that

Θ(p,K + κ) = Θ(p,K) + Φ(p,κ) . (26.5.20)

Hence, we have constructed an affine bundle isomorphism relating Fπ(TE)×ρ G/H and π1,0 :
J1(E)→ E, whose linear derivative is constructed in the proof of theorem 26.5.3. ■

With this result at hand, the following conclusion is straightforward.

Theorem 26.5.5. There is a one-to-one correspondence between connections ω on a fiber bun-
dle π : E →M and (GL(m,R)×GL(n,R))-reductions of its adapted frame bundle Fπ(TE).
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Proof. Following theorem 20.6.1, there is a one-to-one correspondence between H-reductions of
the adapted frame bundle Fπ(TE) and sections of the coset bundle Fπ(TE)×ρG/H. This coset
bundle is isomorphic to J1(E) as shown in theorem 26.5.4, whose sections are the connections
on π : E →M .

Alternatively, one can proof the equivalence by expressing a connection in terms of a horizontal
distribution. Every horizontal distribution HE defines a split TE = HE ⊕ V E of the tangent
bundle, and thus gives rise to a split frame bundle, which defines a H-reduction of the adapted
frame bundle. Conversely, every H-reduction of the adapted frame bundle yields a split frame
bundle, whose horizontal components span a unique horizontal tangent space in each fiber, and
thus define a horizontal distribution. ■

26.6 Horizontal vector fields

The horizontal lift map is useful to provide explicit formulas which allow us to lift further
geometric objects from the base manifold M to the total space E. The first such object we
discuss here is a vector field, for which we define the following notion.

Definition 26.6.1 (Horizontal lift of a vector field). Let π : E → M be a fiber bundle
equipped with a horizontal distributionHE andX ∈ Vect(M) a vector field. The horizontal
lift of X is the unique horizontal vector field X̂ ∈ Γ(HE) such that π∗ ◦ X̂ = X ◦ π.

In this definition we have made use of the fact that for every e ∈ E the differential π∗ : TeE →
Tπ(e)M restricts to a vector space isomorphism between HeE and Tπ(e)M , so that we can define
X̂(e) to be the unique preimage of X(π(e)) under this isomorphism. We can write this preimage
in terms of the horizontal lift map, using the following statement.

Theorem 26.6.1. Let π : E → M be a fiber bundle equipped with a horizontal lift map η :
π∗TM → HE and X ∈ Vect(M) a vector field. Then the horizontal lift X̂ of X is given by
X̂(e) = η(e,X(π(e))) for all e ∈ E.

Proof. By definition of a vector field, X satisfies

(τ ◦X ◦ π)(e) = π(e) , (26.6.1)

where τ : TM → M is the tangent bundle projection. Hence, (e,X(π(e))) ∈ π∗TM . Further,
the images under η are horizontal, and η covers the identity on E. Hence, η(e,X(π(e))) ∈ HeE,
and so e 7→ η(e,X(π(e))) defines a vector field on E. Finally, by definition of η, this vector field
satisfies

π∗(η(e,X(π(e))) = X(π(e)) , (26.6.2)

and so it agrees with the unique vector field X̂. ■

One can now prove a few helpful statements.

Theorem 26.6.2. Let X,Y ∈ Vect(M) be vector fields and f ∈ C∞(M,R) a function. Then
the horizontal lift •̂ : Vect(M) → Vect(E) on a bundle π : E → M equipped with a connection
satisfies:

X̂ + Y = X̂ + Ŷ , (26.6.3a)

f̂X = (f ◦ π)X̂ , (26.6.3b)

[̂X,Y ] = [X̂, Ŷ ]H . (26.6.3c)
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Proof. The first two relations follow immediately from the formula given in theorem 26.6.1. For
the last formula, one uses the fact that the horizontal lift is the unique vector field on the total
space E which projects to the original vector field on the base manifold M . [X̂, Ŷ ]H is obviously
horizontal by definition. Further, we use the fact that a tangent vector is fully determined by
its action on a function. For every f ∈ C∞(M,R) and e ∈ E we have

π∗([X̂, Ŷ ](e))(f) = [X̂, Ŷ ](e)(f ◦ π)
= (X̂Ŷ (f ◦ π))(e)− (Ŷ X̂(f ◦ π))(e)
= (XY f)(π(e))− (Y Xf)(π(e))

= [X,Y ](π(e))(f) ,

(26.6.4)

and thus π∗ ◦ [X̂, Ŷ ] = [X,Y ] ◦ π. ■

Note that the commutator of two horizontal vector fields is not necessarily horizontal. The
importance of this will become clear in section 26.10.

26.7 Horizontal curves

Another object we may lift using a connection is a curve. Here we define the following notion.

Definition 26.7.1 (Horizontal lift of a curve). Let π : E →M be a fiber bundle equipped
with a horizontal distribution HE and γ : (a, b) → M a curve. A curve γ̂ : (a′, b′) → E
is called a horizontal lift of γ on (a′, b′) ⊆ (a, b) if γ = π ◦ γ̂ and ˙̂γ(t) ∈ Hγ̂(t)E for all
t ∈ (a′, b′).

Note that in contrast to the horizontal lift of a vector field, that of a curve is not unique. In
general, there exist many different horizontal lifts of the same curve. However, we can uniquely
select one of them, at least locally by specifying a point on one fiber which it is supposed to
pass. This can be stated as follows.

Theorem 26.7.1. Let π : E → M be a fiber bundle equipped with an Ehresmann connection
ω : E → J1(E), γ : R → M a curve and e ∈ Eγ(0). Then there exists ϵ > 0 and a unique
horizontal lift γ̂ : (−ϵ, ϵ) of γ on (−ϵ, ϵ) such that γ̂(0) = e.

Proof. For this proof it is helpful to use the notion of pullback bundles. Let γ∗π : γ∗E → R be
the pullback of π : E → M along γ. Recall that the elements of γ∗E are pairs (t, e) ∈ R × E
such that γ(t) = π(e). Let pr2 : γ∗E → E, (t, e) 7→ e denote the projection onto the second
factor. For every (t, e) ∈ γ∗E, let j1γ(t)σ = ω(e) be the jet that is defined by the connection ω

and σ ∈ Γγ(t)(E) a local section with domain U ⊂M , which is representative of this jet. Note
that σ(γ(t)) = e and σ∗(γ̇(t)) ∈ HeE is horizontal by construction. Further, we can define a
local curve

γσ : γ−1(U) → γ∗E
t̃ 7→ (t̃, σ(γ(t̃)))

. (26.7.1)

This is well-defined, since we have

γ(t̃) = π(σ(γ(t̃))) (26.7.2)

for all t̃ ∈ γ−1(U). Further, let X(t, e) = γ̇σ(t) ∈ Tγ∗E the tangent vector of this curve at t̃ = t.
Note that we have γσ(t) = (t, e) and thus X(t, e) ∈ T(t,e)E. Further, X(t, e) depends only on
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the first jet j1t γσ, and hence only on j1γ(t)σ = ω(e), but not on the choice of the representative
σ. Doing this for all (t, e) ∈ γ∗E, we have defined a vector field

X : γ∗E → Tγ∗E
(t, e) 7→ η(e, γ̇(t))

, (26.7.3)

such that pr2∗(X(t, e)) is horizontal and

π∗(pr2∗(X(t, e))) = γ̇(t) ∈ Tγ(t)M = Tπ(e)M . (26.7.4)

For every e ∈ Eγ(0), there exists ϵ > 0 and an integral curve Γ : (−ϵ, ϵ)→ γ∗E of X such that
Γ(0) = (0, e) and Γ̇ = X ◦ Γ. Finally, define γ̂ = pr2 ◦Γ : (−ϵ, ϵ) → E. One finds that γ̂ is a
horizontal lift of γ with γ̂(0) = e. ■

R0−ϵ ϵ

γ∗E

π

γ∗π

pr2

γ = π ◦ γ̂
Γ

γ̂ = pr2 ◦Γ

M

E

γ(0)

e

Figure 26.2: Illustration of the horizontal lift of a curve as the image of an integral curve on
the pullback bundle.

The construction is illustrated in figure 26.2. Note that, in general, the horizontal lift can be
constructed only locally. This can be seen from the proof above, since the vector field X we
introduced may not be complete, and thus only locally admit integral curves. In fact, we may
define a notion which is similar to that of a complete vector field as follows.

Definition 26.7.2 (Complete connection). Let π : E →M be a fiber bundle. A connection
on E is called complete if and only if for every curve γ : (a, b)→M , t ∈ (a, b) and e ∈ Eγ(t)
there exists a horizontal lift γ̂ : (a, b) → E of γ, such that γ̂(t) = e and γ̂ has the same
domain as γ.

To see that not every connection is complete, consider the following counterexample.
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Example 26.7.1. Let M = R and E = M × (0, 1) the trivial bundle. We use a global chart
given by the canonical embedding E → R2 to define coordinates (x, y) ∈ R× (0, 1), where x
is a coordinate on M . We specify the connection on E by the choice of the horizontal basis
vectors, which we define as δx = ∂x + ∂̄y. Then consider the curve γ = idM : R → M and
let e = (x, y) ∈ Ex for some x ∈ R. We find that the horizontal lift γ̂ of γ passing through
e can be defined only on the domain (x − y, x − y + 1) and is given by t 7→ (t, t − x + y).
See also example 16.1.1, where essentially the same argument holds.

γ̂

e

M = R
E = R× (0, 1)

HE

π

Figure 26.3: The connection defined in example 26.7.1 is not complete, since every horizontal
lift can be defined only on a finite domain.

26.8 Parallel transport

If one has a complete connection, one can define the following notion, which plays an important
role in different areas of physics:

Definition 26.8.1 (Parallel transport). Let π : E → M be a fiber bundle equipped with
a complete connection. For every curve γ : [0, 1] → M the parallel transport is the map
Pγ : Eγ(0) → Eγ(1) such that Pγ(e) = γ̂e(1), where γ̂e : [0, 1]→ E is the unique horizontal
lift of γ with γ̂e(0) = e.

Theorem 26.8.1. Let π : E → M be a fiber bundle equipped with a complete connection,
γ : [0, 1]→M a curve and γ̄ : [0, 1]→M, t 7→ γ(1− t) the reversed curve. Then Pγ̄ = P−1γ .

Proof. ▶. . .◀ ■

Theorem 26.8.2. Let π : E → M be a fiber bundle equipped with a complete connection. For
every curve γ : [0, 1]→M the parallel transport Pγ : Eγ(0) → Eγ(1) is a diffeomorphism.

Proof. ▶. . .◀ ■

26.9 Integral sections

If we have a section, whose partial derivatives at each point agree with those determined by the
connection, then we give it a particular name, using the following definition.
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Definition 26.9.1 (Integral section). Let π : E →M be a fiber bundle and ω : E → J1(E)
an Ehresmann connection. A local section σ : U → E on U ⊂M is called an integral section
of ω if j1σ = ω ◦ σ.

For the specially chosen section σe we demanded that the aforementioned tangent vectors at
e are horizontal, i.e., that σe∗(u) is horizontal for u ∈ Tπ(e)M . For an integral section this
must hold at every point. It is important to know that not every Ehresmann connection admits
integral sections. There are conditions when an Ehresmann connection is integrable, at least
locally, which we will encounter later.

26.10 Curvature

We have seen in the first sections of this chapter that there exist different, equivalent ways
to specify a connection on a general fiber bundle π : E → M . An essential part which these
definitions have in common is the fact that they provide a unique prescription how to decompose
an arbitrary vector w ∈ TE over some point e = π(w) ∈ E into horizontal and vertical
parts, wH ∈ HeE and wV ∈ VeE. Applying this prescription pointwise to a vector field
X ∈ Vect(E), we obtain its horizontal and vertical parts, XH ∈ Γ(HE) and XV ∈ Γ(V E).
Following theorem 19.2.4, the commutator [XV , YV ] of the vertical parts of any vector fields
X,Y ∈ Vect(E) is again vertical. The commutator of the horizontal parts, however, is in general
not horizontal, but may have a vertical part. This fact plays an important role in the theory of
connections, and deserves its own definition.

Definition 26.10.1 (Curvature of a general connection). Let π : E → M be a fiber
bundle equipped with a connection, whose horizontal and vertical projectors we denote by
•H and •V . The curvature form of this connection is the unique vertical-valued two-form
R ∈ Γ(Λ2T ∗E ⊗ V E) such that for all X,Y ∈ Vect(E) holds

R(X,Y ) = −[XH , YH ]V . (26.10.1)

In the definition above we have claimed that the curvature defines a vertical-valued two-form.
In order for this to hold true, it must satisfy a number of properties, which we will show next.

Theorem 26.10.1. For all X,Y, Z ∈ Vect(E) and f ∈ C∞(M,R), the curvature R satisfies:

R(Y,X) = −R(X,Y ) , (26.10.2a)
R(X + Y, Z) = R(X,Z) +R(Y,Z) , (26.10.2b)
R(fX, Y ) = fR(X,Y ) . (26.10.2c)

Proof. The first property follows immediately from the fact that the Lie bracket of vector fields
is antisymmetric. Similarly, the second property follows from the linearity of the Lie bracket
and the horizontal and vertical projectors. Finally, for the third property we calculate

R(fX, Y ) = [fXH , YH ]V

= (f [XH , YH ]− (YHf)XH)V

= f [XH , YH ]V

= fR(X,Y ) ,

(26.10.3)

using the fact that XH is horizontal, and so its vertical part vanishes. ■
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It is instructive to calculate the curvature using the coordinates and the horizontal-vertical
basis we introduced before. Consider two horizontal vector fields X = XH = Xµδµ and
Y = YH = Y µδµ. We already omitted their vertical part, since it will not contribute to
the curvature (26.10.1). By direct calculation we then find

R(X,Y ) = −[XH , YH ]V

= −[Xµδµ, Y
νδν ]V

= −[Xµ(∂µ − θaµ∂̄a), Y ν(∂ν − θbν ∂̄b)]V
= −[Xµ(∂µ − θaµ∂̄a)Y ν(∂ν − θbν ∂̄b)−XµY ν(∂µ − θaµ∂̄a)θbν ∂̄b
− Y ν(∂ν − θbν ∂̄b)Xµ(∂µ − θaµ∂̄a) + Y νXµ(∂ν − θbν ∂̄b)θaµ∂̄a]V

= −
(
XµδµY

νδν −XµY νδµθ
b
ν ∂̄b − Y νδνXµδµ + Y νXµδνθ

a
µ∂̄a
)
V

= XµY ν(δµθ
a
ν − δνθaµ)∂̄a .

(26.10.4)

This shows that R is indeed tensorial, since the result does not depend on the derivatives of the
vector field components. Hence, we can write

R =
1

2
Raµνdx

µ ∧ dxν ⊗ ∂̄a =
1

2
(δµθ

a
ν − δνθaµ)dxµ ∧ dxν ⊗ ∂̄a , (26.10.5)

and the components are given by the formula

Raµν = δµθ
a
ν − δνθaµ = ∂µθ

a
ν − ∂νθaµ + θbν ∂̄bθ

a
µ − θbµ∂̄bθaν . (26.10.6)

Since the curvature form is a particular type of vector valued form, one may ask whether it is
related to the operations on graded derivations we discussed in chapter 17. Indeed, recalling
that we may interpret a connection form as a vertical-valued one-form θ ∈ Γ(T ∗E ⊗ V E), we
find the following relation.

Theorem 26.10.2. The curvature form R of a connection form θ is given by its Nijenhuis
tensor

R = −Nθ = −
1

2
Jθ, θK . (26.10.7)

Proof. Using theorem 17.6.6, we find by direct calculation

Nθ(X,Y ) = [θX, θY ] + θ2[X,Y ]− θ([θX, Y ] + [X, θY ])

= [XV , YV ] + [X,Y ]V − [XV , Y ]V + [X,YV ]V

= [XV , YV ]V + [XH +XV , YH + YV ]V − [XV , YH + YV ]V − [XH +XV , YV ]V

= [XH , YH ]V ,

(26.10.8)

where we made use of the fact that θ is the projection to the vertical part and that the vertical
distribution is integrable, so that [XV , YV ]H = 0. ■

We remark that in the literature one also finds the curvature to be defined with the opposite
sign. Here we use this sign convention in order to be consistent with the sign convention for
the curvature of principal connections introduced in section 27.3 and that of linear connections
in section 28.12.

From the definition of the curvature directly follows an important relation.

Theorem 26.10.3 (Bianchi identity). The curvature form R of a connection form θ satisfies
Jθ,RK = 0.

Proof. From the graded Jacobi identity (17.6.5) and symmetry (17.6.4) immediately follows

Jθ, Jθ, θKK = 0 . (26.10.9)
■
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Definition 26.10.2 (Flat connection). A connection is called flat if and only if its curva-
ture vanishes.

26.11 Canonical flat connection

Definition 26.11.1 (Canonical flat connection). Let (E,M, π, F ) with E =M×F and π =
pr1 be a trivial fiber bundle. The canonical flat connection on (E,M, π, F ) is the connection
which assigns to each (m, f) in M × F the jet j1mσf , where σf :M →M × F,m 7→ (m, f)
is the constant section.

Theorem 26.11.1. The canonical flat connection is flat.

Proof. ▶. . .◀ ■

26.12 Fibered product connection

So far we have discussed the definition and properties of a connection on a given fiber bundle.
In the following, we will discuss the question whether and how one may obtain a connection
on a constructed bundle from connections defined on its constituents. In the previous section
we have already seen that on a trivial bundle, a canonical connection is defined by the product
manifold structure. We will now discuss the following construction.

Definition 26.12.1 (Fibered product connection). Let (E1,M, π1, F1) and (E2,M, π2, F2)
be fiber bundles equipped with Ehresmann connections ω1 : E1 → J1(E1) and ω2 : E2 →
J1(E2). The fibered product connection is the connection ω1×Mω2 : E1×ME2 → J1(E1×M
E2) that assigns to (e1, e2) ∈ E1 ×M E2 with π1(e1) = π2(e1) = x ∈ M the jet j1x(σ1, σ2),
where ω1(e1) = j1xσ1 and ω1(e2) = j1xσ2 .

26.13 Pullback connection

A construction which is particularly useful is the following, that allows to construct a connection
on a pullback bundle. We start with its definition.

Definition 26.13.1 (Pullback connection). Let M be a manifold, (E,B, π, F ) a fiber bun-
dle, ω : E → J1(E) an Ehresmann connection and ψ : M → B a map. The pullback con-
nection ψ∗ω : ψ∗E → J1(ψ∗E) is the connection on the pullback bundle (ψ∗E,M,ψ∗π, F )
that assigns to each (m, e) ∈ ψ∗E the jet j1m(idM , σ ◦ ψ), where ω(e) = j1ψ(m)σ.
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It is clear that j1m(σ ◦ ψ) is a jet at m = ψ∗π(m, e). Further, it does not depend on the choice
of the representative σ ∈ Γψ(m)(E), since it is given by the jet of a composition. This shows
that ψ∗ω indeed defines an Ehresmann connection on the pullback bundle.
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Chapter 27

Principal connections

27.1 Connections on principal bundles

Recall that a principal G-bundle π : P → M is equipped with a right action of a Lie group G
which is fiber preserving and free and transitive on the fibers. For p ∈ P and g ∈ G we can
write this action in the form Rg(p) = p · g. This right action also induces a right action on the
space Γ(P ) of (local) sections given by Rg(σ) = Rg ◦ σ for σ ∈ Γ(P ). To see that this is indeed
a right action and not a left action, one can explicitly calculate

Rgh(σ)(x) = (Rgh ◦ σ)(x)
= Rgh(σ(x))

= σ(x) · (gh)
= σ(x) · g · h
= Rg(σ(x)) · h
= Rh(Rg(σ(x)))

= (Rh ◦Rg ◦ σ)(x)
= Rh(Rg(σ))(x) .

(27.1.1)

Note that since Rg is a fiber preserving diffeomorphism for all g ∈ G, the r-jets for any r ∈ N of
the images Rg(σ), Rg(τ) of two sections σ, τ ∈ Γ(P ) agree if any only if σ and τ have the same
r-jets. For all x ∈M thus holds

jrxRg(σ) = jrxRg(τ) ⇔ jrxσ = jrxτ . (27.1.2)

This defines a right action on the jet spaces Jr(P ) given by Rg(jrxσ) = jrxRg(σ). Making use of
this right action on J1(P ) we can now define the following.

Definition 27.1.1 (Principal Ehresmann connection). Let π : P → M be a principal
G-bundle with Lie group G. A principal Ehresmann connection on P is a G-equivariant
section of the jet bundle π1,0 : J1(P )→ P .

In addition to the definition of a general Ehresmann connection we thus have the condition that
the section ω : P → J1(P ) must be G-equivariant. To study the consequences of this condition,
recall that an Ehresmann connection assigns to every p ∈ P a jet ω(p) = j1xσp with x = π(p),
where σp is a local section of π : P → M around x such that σp(x) = p. The condition of
equivariance then takes the form

j1xσp·g = ω(p · g) = ω(Rg(p)) = Rg(ω(p)) = Rg(j
1
xσp) = j1x(Rg ◦ σp) . (27.1.3)
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Of course also principal Ehresmann connections, defined as sections of the jet bundle following
section 26.3, can be expressed using connection forms, as in section 26.2, which leads to a more
commonly used description. Recall that a connection form on a bundle π : P →M is a vector
bundle homomorphism θ : TP → V P covering the identity map on P and restricting to the
identity on V P . Since both TP and V P carry right actions by the Lie group G, which are given
by the differential Rg∗ of the right action on P , there is a well-defined notion of G-equivariant
connection forms. The following statement should thus not be a big surprise.

Theorem 27.1.1. For every principal G-bundle π : P → M with Lie group G there is a one-
to-one correspondence between principal Ehresmann connections and G-equivariant connection
forms on P .

Proof. We have already proven that for general fiber bundles there is a one-to-one correspon-
dence between Ehresmann connections ω and connection forms θ. We now have to show that ω
is a principal Ehresmann connection if and only if θ is G-equivariant. We will thus start with a
principal Ehresmann connection ω, which assigns to p ∈ P with π(p) = x the jet ω(p) = j1xσp.
This defines the connection form θp at p as w 7→ w−σp∗(π∗(w)), as shown for general Ehresmann
connections. To see that θ is equivariant, we check that

θp·g(Rg∗(w)) = Rg∗(w)− σp·g∗(π∗(Rg∗(w)))
= Rg∗(w)− (Rg ◦ σp)∗(π∗(w))
= Rg∗(w − σp∗(π∗(w)))
= Rg∗(θp(w)) .

(27.1.4)

Thus, θ is equivariant. We also see from the derivation above that if ω is not a principal
Ehresmann connection, then θ is not equivariant. ■

We can thus describe any principal Ehresmann connection in terms of a G-equivariant con-
nection form. However, it is more common to replace the target space V P of the connection
form by the Lie algebra g. This is possible, since the fundamental vector fields establish a linear
isomorphism between g and every vertical tangent space VpP . One thus often uses the following
definition for a connection on a principal bundle.

Definition 27.1.2 (Principal G-connection). Let π : P →M be a principal G-bundle with
Lie group G. A principal G-connection on P is a g-valued one-form ϑ ∈ Ω1(P, g) on P such
that:

• ϑ is G-equivariant: ϑ = Adg ◦R∗g(ϑ) for all g ∈ G.

• For all X ∈ g and p ∈ P the fundamental vector field X̃ yields ιX̃ϑ(p) = X.

This definition requires a few explanations. The space Ω1(P, g) of Lie algebra valued one-
forms is simply the tensor product space Ω1(P ) ⊗ g. The map Ad : G → Aut(g) is the
adjoint representation defined in definition 15.9.1. With this definition, we can now come to
the following statement about principal G-connections.

Theorem 27.1.2. For every principal G-bundle π : P → M with Lie group G there is a one-
to-one correspondence between principal Ehresmann connections and principal G-connections
on P .

Proof. For every p ∈ P there exists a vector space isomorphism •̃|p : g → VpP defined by the
fundamental vector fields. Via this isomorphism there exist isomorphisms between the following
spaces:

Hom(TpP, VpP ) ∼= Hom(TpP, g) ∼= T ∗pP ⊗ g . (27.1.5)
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Thus, a vector bundle homomorphism θ : TP → V P covering the identity on E uniquely
determines a section ϑ ∈ Ω1(P, g). It is easy to see that θ restricts to the identity on V P if
and only if ιX̃ϑ(p) = X for all X ∈ g and p ∈ P . Further, it follows from the definition of the
adjoint representation that θ is G-equivariant if and only if ϑ is G-equivariant. ■

Further recalling section 26.1, we can also describe any connection by a horizontal distribution,
and so one may ask what is the distinctive property of a principal connection in this picture.
We formulate it as follows.

Theorem 27.1.3. For every principal G-bundle π : P →M with Lie group G there is a one-to-
one correspondence between principal Ehresmann connections and horizontal distributions HP
which satisfy Rg∗(w) ∈ HP for every w ∈ HP and g ∈ G.

Proof. We can express the principal Ehresmann connection via its equivariant connection form
θ : TP → V P . Following theorem 26.2.1, it defines a horizontal distribution as its kernel,
HP = ker θ. Let p ∈ P , w ∈ HpP and g ∈ G. From θp(w) = 0 and the equivariance of θ then
follows

0 = Rg∗(θp(w)) = θp·g(Rg∗(w)) , (27.1.6)

and thus Rg∗(w) ∈ HP .

Conversely, let HP be a horizontal distribution satisfying Rg∗(w) ∈ HP for every w ∈ HP and
g ∈ G. For w ∈ TP , we denote wV ∈ V P and wH ∈ HP its vertical and horizontal parts. Again
using theorem 26.2.1, the assignment θ : TP → V P,w 7→ θ(w) = wV defines a connection form.
To check its equivariance, note first that Rg preserves the fibers of P by definition, π ◦Rg = π,
and hence π∗ ◦Rg∗ = π∗, so that

0 = π∗(wV ) = π∗(Rg∗(wV )) , (27.1.7)

and so Rg∗(wV ) ∈ V P . Further, Rg∗(wH) ∈ HP by assumption. Since Rg∗(wV ) +Rg∗(wH) =
Rg∗(w) by linearity of Rg∗ and the vertical and horizontal part of a vector Rg∗(w) are uniquely
defined, we have

θp·g(Rg∗(w)) = Rg∗(w)V = Rg∗(wV ) = Rg∗(θp(w)) , (27.1.8)

proving that θ is equivariant. ■

Finally, we have also described connections as horizontal lift maps in section 26.4. Also this
formulation allows us to distinguish principal connections.

Theorem 27.1.4. For every principal G-bundle π : P → M with Lie group G there is a
one-to-one correspondence between principal Ehresmann connections and vector bundle homo-
morphisms η : π∗TM → TP covering the identity on P and satisfying π∗ ◦ η = pr2 and
η ◦ (Rg, idTM ) = Rg∗ ◦ η, where pr2 : π∗TM → TM is the projection onto the second factor of
π∗TM ∼= P ×M TM .

Proof. Given a principal Ehresmann connection ω : P → J1(P ), following theorem 26.4.2, we
have a horizontal lift map η : π∗TM → TP defined by η(p, v) = σp∗(v), where σp ∈ Γx(P )
with x = π(p) and σp(x) = p and j1xσp = ω(p) is a representative for the jet ω(p). Since ω is a
principal connection, its representative at p · g with g ∈ G can be chosen to be σp·g = Rg ◦ σp,
and so for the horizontal lift holds

η(p · g, v) = σ(p·g)∗(v) = Rg∗(σp∗(v)) = Rg∗(η(p, v)) , (27.1.9)

so that
η ◦ (Rg, idTM ) = Rg∗ ◦ η . (27.1.10)

To show the converse direction, it is most simple to represent the Ehresmann connection on P
induced by η by its horizontal distribution HP , which is obtained as the image of the map η.
Recalling that η : π∗TM → HP is a vector bundle isomorphism covering the identity on P ,
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we can identify every horizontal vector w ∈ HP with (p, v) = (χ(w), π∗(w)) ∈ π∗TM , where
χ : TP → P is the tangent bundle projection, and w = η(p, v). Using the equivariance of η we
have

Rg∗(w) = Rg∗(η(p, v)) = η(p · g, v) ∈ HP , (27.1.11)

i.e., Rg∗(w) ∈ HP for all w ∈ HP , proving that HP is the horizontal distribution of a principal
Ehresmann connection. ■

It is helpful to illustrate the constructions shown in this section using coordinates. This can be
done most easily in the case that G is a matrix group. Hence, we will consider the following
example.

Example 27.1.1 (Principal connections for matrix groups). Let G ⊂ Mn,n(R) be a matrix
group and π : P → M a principal G-bundle. We will use the matrix components (gab) as
coordinates on G (imposing suitable restrictions on them, in order to represent only those
matrices that lie in G). In order to construct coordinates on P , we pick a local trivialization
ϕ : π−1(U) → U × G on an open set U ⊂ M . Introducing coordinates (xµ) on U , we
can write the coordinates on π−1(U) which are induced by the trivialization ϕ and the
coordinates (gab) on G in the form (xµ, pab). These are the coordinates we will use in this
illustration.

We start by illustrating definition 27.1.2 of a principal G-connection ϑ ∈ Ω1(P, g). In
order to derive a coordinate expression for ϑ, we first investigate the second condition on
evaluating ϑ on the fundamental vector field X̃ ∈ Γ(V P ) defined by X ∈ g. Using the
coordinate expression we derived in example 20.1.2 we find that this condition reads

Xa
b = ϑab(p)

(
pcdX

d
e
∂

∂pce

)
= pcdX

d
eϑ
a
b(p)

(
∂

∂pce

)
, (27.1.12)

so that
ϑab(p)

(
∂

∂pcd

)
= (p−1)acδ

d
b . (27.1.13)

This completely determines the action of ϑ on vertical tangent vectors. Hence, ϑ must be
of the form

ϑab(p) = (p−1)acdp
c
b + ϑabµ(p)dx

µ . (27.1.14)

We then make use of the first condition in definition 27.1.2, which states that ϑ must be
equivariant, and can be expressed in coordinates as

ϑab(p) = Adg((R
∗
gϑ)(p))

a
b

= gac(g
−1)db(R

∗
gϑ)

c
d(p)

= gac(g
−1)db

[
(p′−1)ce

∂p′ed
∂pf g

dpf g + ϑcdµ(p
′)
∂x′µ

∂xν
dxν

]
= gac(g

−1)db

[
(g−1p−1)ce

∂(pg)ed
∂pf g

dpf g + ϑcdµ(p
′)
∂xµ

∂xν
dxν

]
= gac(g

−1)db
[
(g−1)ch(p

−1)heδ
e
fg
g
ddp

f
g + ϑcdµ(p

′)dxµ
]

= (p−1)acdp
c
b + gac(g

−1)dbϑ
c
dµ(p

′)dxµ ,

(27.1.15)

where p′ = p · g and x′ = x. This means that once ϑ(p) is specified for some p ∈ P , then
also ϑ(p ·g) is determined for all g ∈ G. Making use of the local trivialization ϕ, we can pick
an element over each fiber π−1(x) with x ∈ U by taking p′ = ϕ−1(x, e) ∈ π−1(x), where
e ∈ G is the unit element. In the coordinates chosen on π−1(U) this element is expressed
by (xµ, δab). We then define the coordinate expression

ϑabµ(ϕ
−1(x, e)) = Γabµ(x) . (27.1.16)
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For an arbitrary element p = ϕ−1(x, g) = ϕ−1(x, e) · g we then have

ϑabµ(p) = (p−1)acp
d
bΓ
c
dµ(x) , (27.1.17)

so that
ϑab(p) = (p−1)ac

[
dpcb + pdbΓ

c
dµ(x)dx

µ
]
. (27.1.18)

The principal G-connection ϑ is thus fully determined by the coordinate functions Γabµ(x),
which are called the connection coefficients with respect to the chosen coordinates.

From the coordinate expression of ϑ one can now also derive the connection form θ, which
is obtained by taking the fundamental vector field of ϑ(p) and evaluating it at p. This leads
to the expression

θp =
∂

∂pab
⊗
[
dpab + pdbΓ

a
dµ(x)dx

µ
]
. (27.1.19)

Evaluating this at a tangent vector w ∈ TpP yields

θp(w) = θp

(
uµ

∂

∂xµ
+ vab

∂

∂pab

)
=
[
pdbΓ

a
dµ(x)u

µ + vab
] ∂

∂pab
. (27.1.20)

To see that this connection form is equivariant, let p′ = p · g and consider the pushforward

Rg∗(w) = uµ
∂

∂xµ
+ vacg

c
b

∂

∂p′ab
∈ Tp′P (27.1.21)

and evaluate

θp·g(Rg∗(w)) =
[
p′dbΓ

a
dµ(x)u

µ + vacg
c
b

] ∂

∂p′ab

=
[
pdcΓ

a
dµ(x)u

µ + vac
]
gcb

∂

∂p′ab

= Rg∗

([
pdbΓ

a
dµ(x)u

µ + vab
] ∂

∂pab

)
= Rg∗(θp(w)) .

(27.1.22)

Thus, θ is indeed an equivariant connection form.

From the connection form it is now easy to read off the corresponding Ehresmann connection
ω : P → J1(P ). For this purpose we introduce coordinates (xµ, pab, p

a
bµ) on the first jet

bundle J1(P ). From the coordinate expression of θ one immediately reads off

ω : (xµ, pab) 7→ (xµ, pab,−pcbΓacµ(x)) . (27.1.23)

One easily sees that ω ◦Rg = Rg ◦ ω from

ω : (xµ, pacg
c
b) 7→ (xµ, pacg

c
b,−pdcgcbΓadµ(x)) , (27.1.24)

which shows that ω is equivariant, and hence a principal Ehresmann connection.

Further, we can now derive the horizontal lift map η : π∗TM → TP . Given p ∈ P with
π(p) = x ∈M and u ∈ TxM , we can write

η(p, u) = uµ
(

∂

∂xµ
− pcbΓacµ(x)

∂

∂pab

)
, (27.1.25)

and one easily checks that θp(η(p, u)) = 0. Here equivariance can be seen by calculating

Rg∗(η(p, u)) = uµ
(

∂

∂xµ
− pcdgdbΓacµ(x)

∂

∂p′ab

)
= uµ

(
∂

∂xµ
− p′cbΓacµ(x)

∂

∂p′ab

)
= η(p′, u)

(27.1.26)
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for p′ = p · g.
From the horizontal lift one now finds that a basis of TP which realizes the split V P ⊕HP
is given by the basis vector fields

δµ =
∂

∂xµ
− pcbΓacµ(x)

∂

∂pab
, ∂̄a

b =
∂

∂pab
, (27.1.27)

while the dual basis of T ∗P reads

dxµ , δpab = dpab + pdbΓ
a
dµ(x)dx

µ , (27.1.28)

as can most easily seen from the coordinate expression for θ.

We see from this example that the connection is fully determined by the coefficients Γabµ(x).
Obviously, these depend on the choice of the local trivialization ϕ and the coordinates (xµ)
on the base manifold. If we express the base point x ∈ M in new coordinates (x̃µ), the
coordinate expression of θ changes to

θp =
∂

∂pab
⊗
[
dpab + pdbΓ

a
dµ(x)dx

µ
]

=
∂

∂pab
⊗
[
dpab + pdbΓ

a
dν(x)

∂xν

∂x̃µ
dx̃µ

]
=

∂

∂pab
⊗
[
dpab + pdbΓ̃

a
dµ(x)dx̃

µ
]
,

(27.1.29)

and so the connection coefficients transform like the components of a one-form,

Γ̃adµ(x) = Γadν(x)
∂xν

∂x̃µ
. (27.1.30)

For the change of the local trivialization, we consider another trivialization ϕ̃ : π−1(U) →
U×G defined such that p = ϕ̃−1(x, g) = ϕ̃−1(x, e) · g̃, and we use again the same coordinates
on G. To relate this trivialization to the previously used trivialization ϕ, we define a map
h : U → G such that

ϕ̃−1(x, e) · h(x) = ϕ−1(x, e) . (27.1.31)
Note that such a unique element h(x) always exists, since G acts transitively and freely
on the fibers of P , and that this definition depends only on x. For a general element
p ∈ π−1(U), we then have

ϕ̃−1(x, e) · g̃ = p = ϕ−1(x, e) · g = (ϕ̃−1(x, e) · h(x)) · g = ϕ̃−1(x, e) · (h(x)g) , (27.1.32)

and so we have g̃ = h(x)g. Writing this function in components hab(x), we obtain the new
coordinates

(x̃µ, p̃ab) = (xµ, hac(x)p
c
b) (27.1.33)

on π−1(U). Hence, we have

dx̃µ = dxµ , dp̃ab = hac(x)dp
c
b + ∂µh

a
c(x)p

c
bdx

µ , (27.1.34)

as well as
∂

∂xµ
=

∂

∂x̃µ
+ ∂µh

a
c(x)p

c
b
∂

∂p̃ab
,

∂

∂pab
= hca(x)

∂

∂p̃cb
. (27.1.35)

From these we extract the new coordinate expression for θ as

θp =
∂

∂pab
⊗
[
dpab + pdbΓ

a
dµ(x)dx

µ
]

= hca(x)
∂

∂p̃cb
⊗
[
(h−1)ad(x)

(
dp̃db − peb∂µhde(x)dx̃µ

)
+ pdbΓ

a
dµ(x)dx̃

µ
]

=
∂

∂p̃cb
⊗
[
dp̃cb − peb∂µhce(x)dx̃µ + hca(x)p

d
bΓ
a
dµ(x)dx̃

µ
]

=
∂

∂p̃cb
⊗
[
dp̃cb − (h−1)ed(x)p̃

d
b∂µh

c
e(x)dx̃

µ + hca(x)(h
−1)de(x)p̃

e
bΓ
a
dµ(x)dx̃

µ
]

=
∂

∂p̃ab
⊗
{
dp̃ab + p̃cb

[
hae(x)(h

−1)dc(x)Γ
e
dµ(x)− (h−1)dc(x)∂µh

a
d(x)

]
dx̃µ

}
=

∂

∂p̃ab
⊗
[
dp̃ab + p̃cbΓ̃

a
cµ(x)dx̃

µ
]
.

(27.1.36)

315



Hence, we see that the connection coefficients transform as

Γ̃acµ = hae(h
−1)dcΓ

e
dµ − (h−1)dc∂µh

a
d (27.1.37)

under a change of the local trivialization.

27.2 Exterior covariant derivative

The fact that a principal connection can be expressed in terms of a Lie algebra valued differ-
ential form allows to construct another operation on differential forms which take values in a
representation space of the structure group, or its Lie algebra. For this purpose, we start by
defining the space of differential forms we will act upon, as follows.

Definition 27.2.1 (Basic form). Let π : P → M be a principal bundle with structure
group G and ρ : G×F → F a linear representation of G on a vector space F . A differential
k-form α ∈ Ωk(P, F ) is called basic of type ρ if:

1. α is horizontal, i.e., ιXα = 0 for any vertical vector field X,

2. α is equivariant, i.e., R∗gα = ρg−1 ◦ α.

The space of basic forms of type ρ is denoted Ωkρ(P, F ).

The fact that basic forms are equivariant, and thus uniquely defined along the fibers of P by
their value at any single point on each fiber, suggests that basic forms are closely related to
certain vector valued forms on the base manifold M . Here we show that this is indeed the case.

Theorem 27.2.1. There exists a one-to-one correspondence between basic forms α ∈ Ωkρ(P, F )

and P ×ρ F valued k-forms σ ∈ Ωk(M,P ×ρ F ) on M .

Proof. Let σ ∈ Ωk(M,P ×ρ F ). Then we define

α : P → ΛkT ∗P ⊗ F
p 7→ [p]−1 ◦ (π∗σ)p , (27.2.1)

where [p] : F → Pπ(p) ×ρ F is the fiber diffeomorphism from definition 20.3.2. We see that α is
horizontal, which follows from the fact that π∗σ is horizontal by construction. To check that α
is also equivariant, we calculate

(R∗gα)p(X1, . . . , Xk) = αp·g(Rg∗ ·X1, . . . , Rg∗ ◦Xk)

= [p ◦ g]−1 ◦ (π∗σ)p·g(Rg∗ ·X1, . . . , Rg∗ ◦Xk)

= ρg−1 ◦ [p]−1 ◦ (π∗σ)p(X1, . . . , Xk)

= (ρg−1 ◦ αp)(X1, . . . , Xk) .

(27.2.2)

Finally, α is a smooth differential form, since it is constructed by a composition of smooth maps.
Hence, α is a basic form of type ρ. Finally, to show that this mapping is bijective, note that
for any α ∈ Ωkρ(P, F ) we can define

σπ(p)(π∗(v1), . . . , π∗(vk)) = [p, αp(v1, . . . , vk)] (27.2.3)

for all p ∈ P and v1, . . . , vk ∈ TpP . Note that the right hand side depends only on the
pushforward π∗(vi) of the vectors vi, since any element of the kernel of π∗ is vertical by definition,
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and α is horizontal. Further, it does not depend on the choice of p, but only on the base point
π(p), as a consequence of the equivariance of α. It follows that σ ∈ Ωk(M,P ×ρ F ). One easily
checks that this establishes a one-to-one correspondence. ■

Note that we have already encountered the particular case k = 0 of the statement above in
theorem 20.3.3. With the statement proven above, we have generalized this relation to basic
forms on the total space of the principal bundle and to vector-valued forms on the base manifold,
which are of arbitrary rank.

One may wonder whether the space of basic forms of type ρ is preserved under the exterior
derivative, i.e., whether the exterior derivative of a basic form is again basic. First, note that
the usual exterior derivative of an equivariant form of type ρ is again equivariant of type ρ,
since the exterior derivative commutes with the pullback, and so we have

R∗gdα = dR∗gα = d(ρg−1 ◦ α) = ρg−1 ◦ dα , (27.2.4)

where the last equality holds, since the exterior derivative acts only on the differential form
part, while ρg−1 acts only on the vector space part of α. However, if α is horizontal, then dα,
in general, is not horizontal. To obtain a horizontal form, we may use the connection, which
defines a projector onto the space of horizontal forms. Hence, we define as follows.

Definition 27.2.2 (Exterior covariant derivative). Let α ∈ Ωkρ(P, F ) be a k-form on the
principal bundle π : P → M with values in F and HP the horizontal distribution of a
principal G-connection ϑ on P . The exterior covariant derivative of α with respect to ϑ is
the F -valued k + 1-form dϑα ∈ Ωk+1

ρ (P, F ) defined such that

dϑα(X0, . . . , Xk) = dα((X0)H , . . . , (Xk)H) (27.2.5)

for all vector fields X0, . . . , Xk ∈ Vect(P ).

Obviously, dϑα is horizontal, i.e., it vanishes on any vertical vector field, ιXα = 0 for any
vertical vector field X. We still need to check whether the exterior covariant derivative also
maps equivariant forms to equivariant forms. We show this as follows.

Theorem 27.2.2. The exterior covariant derivative of a basic form is again basic.

Proof. It follows from the definition equation (27.2.5) that dϑα vanishes on any vertical vector,
and is therefore horizontal. To check the equivariance, we calculate

(R∗gdϑα)(X0, . . . , Xk) = dϑα(Rg∗ ◦X0, . . . , Rg∗ ◦Xk)

= dα((Rg∗ ◦X0)H , . . . , (Rg∗ ◦Xk)H)

= dα(Rg∗ ◦ (X0)H , . . . , Rg∗ ◦ (Xk)H)

= (R∗gdα)((X0)H , . . . , (Xk)H)

= (dR∗gα)((X0)H , . . . , (Xk)H)

= d(ρg−1 ◦ α)((X0)H , . . . , (Xk)H)

= (ρg−1 ◦ dα)((X0)H , . . . , (Xk)H)

= (ρg−1 ◦ dϑα)(X0, . . . , Xk) ,

(27.2.6)

and hence
R∗gdϑα = ρg−1 ◦ dϑα . (27.2.7)

■

317



For practical purposes, it is more useful to have a formula for the exterior covariant derivative
in terms of the principal G-connection ϑ ∈ Ω1(P, g) instead of the horizontal distribution and
corresponding projection. Indeed it is possible to find such an expression. We show that it has
a simple form.

Theorem 27.2.3. The exterior covariant derivative of a basic form of type ρ is given by

dϑα = dα+ ρ∗(ϑ) ∧ α , (27.2.8)

where ρ∗ : g→ gl(F ) is the representation of the Lie algebra g on F induced by ρ : G→ GL(F ).

Proof. By construction, the exterior covariant derivative dϑα is the unique F -valued k+1-form
which agrees with dα on horizontal vectors and vanishes on any vertical vector. To check the
former, recall that ϑ vanishes on horizontal vectors, ϑ(XH) = 0, and since ρ∗ is linear, also
ρ∗(ϑ(XH)) = 0. Hence, the second term on the right hand side vanishes if it is contracted
with k + 1 horizontal vectors, and only dα remains. Further, to check that the right hand side
vanishes for any vertical vector, let X ∈ g and consider the fundamental vector field X̃. Then
we have

ιX̃dα = ιX̃dα+ dιX̃α

= LX̃α
= −ρ∗(ϑ) ∧ α .

(27.2.9)

Since the fundamental vector fields span the vertical tangent space, this holds for all vertical
vectors. Hence, the left and right hand sides agree. ■

27.3 Curvature

In section 26.10 we have discussed the curvature of a connection on an arbitrary fiber bundle,
given in terms of the Lie bracket of horizontal vector fields, and we have seen that it can also
be expressed in terms of the Nijenhuis tensor of the connection form. We now aim to find a
similar description for the curvature of principal connections, which constitute a special case of
the more general case we discussed before. Recall that a principal G-connection is a one-form
ϑ with values in a Lie algebra, and hence vector space g. It appears thus natural to apply the
exterior covariant derivative dϑ from definition 27.2.2. We thus arrive at the following definition.

Definition 27.3.1 (Curvature form of a principal connection). Let π : P → M be a
principal bundle with structure group G and ϑ ∈ Ω1(P, g) a principal G-connection on P .
Its curvature form is the Lie algebra valued two-form

Ω = dϑϑ ∈ Ω2(P, g) . (27.3.1)

To see how this is related to the notion of curvature we previously defined, we prove the following.

Theorem 27.3.1. The curvature form Ω of a principal G-connection ϑ is related to the cur-
vature R = −Jθ, θK/2 of the corresponding connection form θ by

R(X,Y ) = ˜Ω(X,Y ) (27.3.2)

for all X,Y ∈ Vect(P ).
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Proof. By definition of the exterior covariant derivative one has

Ω(X,Y ) = dϑϑ(X,Y )

= dϑ(XH , YH)

= XH(ϑ(YH))− YH(ϑ(XH))− ϑ([XH , YH ])

= −ϑ([XH , YH ]) ,

(27.3.3)

where we further used the relation (9.4.5) and the fact that ϑ vanishes on horizontal vector
fields. Now recall that the curvature of a general connection is equivalently defined as

R(X,Y ) = −[XH , YH ]V = − ˜ϑ([XH , YH ]) = ˜Ω(X,Y ) (27.3.4)

in terms of the horizontal and vertical projectors, and we expressed the vertical part of [XH , YH ]
through the connection form and the fundamental vector fields. ■

Before we derive an alternative formula for the connection form, we prove an important property.
We have see that for basic forms, the exterior covariant derivative is again basic. We cannot
apply this argument here, since the connection form ϑ itself is not a basic form, as it is not
horizontal, ιXϑ ̸= 0 for vertical vector fields X. To show that Ω is nevertheless basic, we prove
the following statement.

Theorem 27.3.2. The curvature form Ω of a principal G-connection ϑ is a basic form of type
Ad.

Proof. It follows immediately from the definition that the curvature form is horizontal. Further
taking into account that the principal G-connection ϑ is equivariant by definition, one can apply
the same argument as in the proof of theorem 27.2.2 and calculate

(R∗gdϑϑ)(X0, . . . , Xk) = dϑϑ(Rg∗ ◦X0, . . . , Rg∗ ◦Xk)

= dϑ((Rg∗ ◦X0)H , . . . , (Rg∗ ◦Xk)H)

= dϑ(Rg∗ ◦ (X0)H , . . . , Rg∗ ◦ (Xk)H)

= (R∗gdϑ)((X0)H , . . . , (Xk)H)

= (dR∗gϑ)((X0)H , . . . , (Xk)H)

= d(Adg−1 ◦ϑ)((X0)H , . . . , (Xk)H)

= (Adg−1 ◦dϑ)((X0)H , . . . , (Xk)H)

= (Adg−1 ◦dϑϑ)(X0, . . . , Xk) ,

(27.3.5)

showing that Ω is equivariant, and thus basic of type Ad. ■

In order to provide a simple formula also for the curvature form, we prove the following formula.

Theorem 27.3.3. Let π : P → M be a principal bundle with structure group G and ϑ ∈
Ω1(P, g) a principal G-connection on P . Its curvature form Ω ∈ Ω2(P, g) satisfies the structure
equation

Ω = dϑ+
1

2
[ϑ ∧ ϑ] . (27.3.6)

Proof. ▶. . .◀ ■

We further discuss a few properties of the connection form. Recall from theorem 26.10.3 that
the connection of a general connection satisfies a particular identity, which holds also for a
principal connection, and which we can formulate in terms of the connection form as follows.

Theorem 27.3.4 (Bianchi identity). The connection form Ω of a principal G-connection ϑ
satisfies

dϑΩ = 0 . (27.3.7)
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Proof. The exterior derivative of the structure equation takes the form

dΩ = ddϑ+
1

2
d[ϑ ∧ ϑ] = 1

2
([dϑ ∧ ϑ]− [ϑ ∧ dϑ]) = [dϑ ∧ ϑ] . (27.3.8)

The exterior covariant derivative dϑΩ is the horizontal part of dΩ. However, since ϑ vanishes
on horizontal vectors, so does [dϑ ∧ ϑ], and hence dϑΩ = 0. ■

Finally, we discuss how the curvature of a principal connection is related to the exterior covariant
derivative of forms with values in a representation vector space. We find that a simple relation
holds, which can be stated as follows.

Theorem 27.3.5. The exterior covariant derivative dϑ and the curvature form Ω of a principal
G-connection are related by

dϑdϑα = ρ∗(Ω) ∧ α (27.3.9)

for any basic form α.

Proof. By direct calculation using theorem 27.2.3 we have

dϑdϑα = d(dα+ ρ∗(ϑ) ∧ α) + ρ∗(ϑ) ∧ (dα+ ρ∗(ϑ) ∧ α)
= dρ∗(ϑ) ∧ α− ρ∗(ϑ) ∧ dα+ ρ∗(ϑ) ∧ dα+ ρ∗(ϑ) ∧ ρ∗(ϑ) ∧ α
= ρ∗(dϑ) ∧ α+ ρ∗(ϑ) ∧ ρ∗(ϑ) ∧ α

(27.3.10)

For the second term, we use the fact that ρ∗ is a Lie algebra homomorphism and that gl(F ) is
a Lie algebra of vector space endomorphisms, whose Lie bracket is the commutator. For vector
fields X,Y ∈ Vect(P ) we thus have

(ρ∗(ϑ) ∧ ρ∗(ϑ))(X,Y ) = ρ∗(ϑ(X)) ◦ ρ∗(ϑ(Y ))− ρ∗(ϑ(Y )) ◦ ρ∗(ϑ(X))

= [ρ∗(ϑ(X)), ρ∗(ϑ(Y ))]

= ρ∗([ϑ(X), ϑ(Y )])

=
1

2
ρ∗([ϑ ∧ ϑ])(X,Y ) .

(27.3.11)

Hence, we find

dϑdϑα = ρ∗

(
dϑ+

1

2
[ϑ ∧ ϑ]

)
∧ α = ρ∗(Ω) ∧ α . (27.3.12)

■

27.4 Horizontal lift

In section 26.7 we have seen that given a connection on a fiber bundle, it is always possible
to locally lift a curve from the base manifold to a horizontal curve in the total space of the
bundle, as guaranteed by theorem 26.7.1. However, as shown in example 26.7.1, this may not
be the case globally, i.e., for the whole domain of the curve. Following definition 26.7.2 we call a
connection complete if this is possible globally. Turning our view towards principal connections,
we find the following remarkable result.

Theorem 27.4.1. Every principal connection is complete.

Proof. ▶. . .◀ ■

Recall that by definition, principal connections are “rigid” in the sense that the horizontal space
HpP on a single point p ∈ P determines the horizontal spaces on the whole fiber p · G by
equivariance. Hence, this property is also inherited by the horizontal lift of curves and vector
fields. For the horizontal lift of a curve, this can be formulated as follows.
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Theorem 27.4.2. Let π : P →M be a principal G-bundle equipped with a principal connection,
γ : R→M a curve, p ∈ Pγ(0) and g ∈ G. Then the horizontal lifts γ̂, γ̂′ : R→ P with γ̂(0) = p
and γ̂′(0) = p′ = p · g are related by γ̂′(t) = γ̂(t) · g for all t ∈ R.

Proof. Since the horizontal lift of a curve γ is uniquely defined by one point in the total space
of the bundle and the condition that it is everywhere horizontal, it is sufficient to check these
two properties for the curve γ̂′, using the fact that γ̂ is a horizontal lift of γ with γ̂(0) = p.
Clearly, we have

γ̂′(0) = γ̂(0) · g = p · g = p′ , (27.4.1)

and so γ̂′ passes through p′ at 0. Further, to check whether γ̂′ is horizontal, it is helpful to
write γ̂′ = Rg ◦ γ̂, and thus ˙̂γ′ = Rg∗ ◦ ˙̂γ. We can then use the equivariant connection form θ
to calculate

θγ̂′(t)( ˙̂γ
′(t)) = θγ̂(t)·g(Rg∗(γ̇(t))) = Rg∗(θγ̂(t)(γ̇(t))) = 0 , (27.4.2)

using the fact that γ̂ is horizontal. Hence, also γ̂′ is horizontal. ■

Recalling that the parallel transport is defined via horizontal curves, we can thus conclude as
follows.

Theorem 27.4.3. Let π : P →M be a principal G-bundle equipped with a principal connection,
γ : [a, b]→M a curve and g ∈ G. Then the parallel transport Pγ : Pγ(a) → Pγ(b) is equivariant,
i.e., it satisfies Pγ ◦Rg = Rg ◦ Pγ .

Proof. For p ∈ Pγ(a), let γ̂p : [a, b] → P denote the horizontal lift of γ with γ̂(a) = p, so that
Pγ(p) = γ̂p(b). Then we have

Pγ(p · g) = γ̂p·g(b) = γ̂p(b) · g = Pγ(p) · g (27.4.3)

for all g ∈ G, and hence Pγ ◦Rg = Rg ◦ Pγ . ■

An infinitesimal version of the statements above can be written as follows.

Theorem 27.4.4. Let π : P →M be a principal G-bundle equipped with a principal connection
and X ∈ Vect(M) a vector field on M . Then its horizontal lift X̂ ∈ Γ(HP ) is equivariant, i.e.,

X̂ ◦Rg = Rg∗ ◦ X̂ (27.4.4)

for all g ∈ G.

Proof. Recall from theorem 26.4.2 that we can write the horizontal lift as X̂(p) = η(p,X(π(p)))
for all p ∈ P , where η denotes the horizontal lift map. Using theorem 27.1.4 we then find

X̂(p·g) = η(p·g,X(π(p·g))) = η(Rg(p), X(π(p))) = Rg∗(η(p,X(π(p)))) = Rg∗(X̂(p)) , (27.4.5)

and thus X̂ ◦Rg = Rg∗ ◦ X̂. ■

27.5 Connections on associated bundles

In section 20.3 we have seen that from a principal G-bundle π : P → M and a left action
ρ : G×F → F one can construct the associated bundle P ×ρF . We now show that a connection
on P also induces a connection on every associated bundle. This can be constructed in different,
equivalent ways. Here we start from the interpretation of connections as jet bundle sections.
This construction is based on the relation between local sections of the principal bundle and
local sections of any associated bundle, which we will use as follows.
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M

P
γ̂(0)

γ̂′(0) = γ̂(0) · g
γ̂(t)

γ̂′(t) = γ̂(t) · g

• · g

• · g

π

γ(0) γ(t)

Figure 27.1: Equivariance of the horizontal lift on a principal bundle.

Theorem 27.5.1. Let π : P →M be a principal G-bundle with Lie group G and πρ : P×ρF →
M an associated bundle with fiber F . A principal Ehresmann connection ω : P → J1(P ) on P ,
which assigns to p ∈ P with π(p) = x ∈ M the jet j1xσp, induces a connection ωρ : P ×ρ F →
J1(P ×ρ F ), which assigns to [p, f ] ∈ P ×ρ F the jet j1x[σp, f ].

Proof. We first have to check that ωρ is well-defined. For this purpose, we have to check that it is
independent of the representative (p, f) for [p, f ]. Given another representative (p · g, ρ(g−1, f))
we find that

ωρ([p · g, ρ(g−1, f)]) = j1x[σp·g, ρ(g
−1, f)] = j1x[Rg ◦ σp, ρ(g−1, f)] = j1x[σp, f ] = ωρ([p, f ]) ,

(27.5.1)
so that this is indeed satisfied. Here we used the fact that ω is a principal Ehresmann connection,
so that a representative σp·g for the jet ω(p · g) = j1xσp·g is given by Rg ◦ σp. Further, ωρ is a
section, since

πρ 1,0(ωρ([p, f ])) = [σp, f ](x) = [σp(x), f ] = [p, f ] . (27.5.2)

This shows that ωρ is an Ehresmann connection on P ×ρ F . ■

While this definition is most straightforward, it might not be the most intuitive. However,
recalling that there are various closely related possibilities to express connections, one can
easily obtain other expressions for the connection on P ×ρ F . In the following, we will consider
connections as horizontal lift maps.

Theorem 27.5.2. Let π : P →M be a principal G-bundle with Lie group G, πρ : P ×ρF →M
an associated bundle with fiber F and η : π∗TM → TP a principal horizontal lift map, i.e.,
a vector bundle homomorphism covering the identity on P and satisfying π∗ ◦ η = pr2 and
η ◦ (Rg, idTM ) = Rg∗ ◦ η for all g ∈ G. Then the map ηρ : πρ∗TM → T (P ×ρ F ) defined by
η([p, f ], v) = φρ∗(η̄ρ((p, f), v)), where φρ : P×F → P×ρF, (p, f) 7→ [p, f ] and η̄ρ : pr∗1 π∗TM →
T (P × F ) is the unique map such that pr1∗(η̄ρ((p, f), v)) = η(p, v) and pr2∗(η̄ρ((p, f), v)) = 0
for all p ∈ P , f ∈ F and v ∈ Tπ(p)M , is a horizontal lift map.

Proof. We first check that the map η̄ρ is well-defined. Let p ∈ P and f ∈ F . Since P × F is a
product manifold, there is a canonical decomposition T(p,f)(P ×F ) ∼= TpP ⊕TfF of the tangent
space at (p, f), so that we can identify w ∈ T(p,f)(P × F ) with the pair (pr1∗(w),pr2∗(w)) ∈
TpP ⊕ TfF . Hence, the prescription

η̄ρ : pr∗1 π
∗TM → T (P × F )

((p, f), v) 7→ (η(p, v), 0) ∈ T(p,f)(P × F ) (27.5.3)

indeed defines a map. This map is smooth since η is smooth. In order to further define

ηρ : π∗ρTM → T (P ×ρ F )
([p, f ], v) 7→ φρ∗(η̄ρ((p, f), v)) ∈ T[p,f ](P ×ρ F )

, (27.5.4)
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we further need to check that the expression on the right hand side does not depend on the
choice of the representative (p, f) for [p, f ]. To see this, let (p′, f ′) = (p · g, ρ(g−1, f)) for some
g ∈ G. Then we have

ηρ([p
′, f ′], v) = φρ∗(η̄ρ((p

′, f ′), v))

= φρ∗(η(p
′, v), 0)

= φρ∗(η(p ◦ g, v), 0)
= φρ∗(Rg∗(η(p, v)), 0)

= φρ∗(η(p, v), 0)

= ηρ([p, f ], v) ,

(27.5.5)

where we used the fact that η is the horizontal lift map of a principal connection. Hence, we
find that ηρ is well-defined. Further, it is smooth, since η̄ρ and φρ are smooth. It is a bundle
morphism covering the identity on P ×ρ F , since

ηρ([p, f ], v) ∈ Tφρ(p,f)(P ×ρ F ) = T[p,f ](P ×ρ F ) . (27.5.6)

All involved maps are linear in v, so that ηρ is linear on every fiber and hence a vector bundle
homomorphism. Finally, we have

πρ∗(ηρ([p, f ], v)) = πρ∗(φρ∗(η̄ρ((p, f), v)))

= π∗(pr1∗(η̄ρ((p, f), v)))

= π∗(η(p, v))

= v ,

(27.5.7)

where we used the relations π ◦ pr1 = πρ ◦ φρ for the maps defining the associated bundle and
the fact that π∗ ◦ η = pr2. Hence, we also have πρ∗ ◦ ηρ = pr2, showing that ηρ is a horizontal
lift map. ■

We have now found two different prescriptions for constructing a connection on associated
bundles from a principal connection, interpreted as a jet bundle section or as a horizontal lift
map. Naturally the question arises whether these two constructions are equivalent, i.e., describe
the same connection on the associated bundle. We now show that this is indeed the case.

Theorem 27.5.3. The connections on P ×ρ F constructed in theorems 27.5.1 and 27.5.2 are
identical.

Proof. Let p ∈ P , f ∈ F , x = π(p) and v ∈ TxM . Given an Ehresmann connection ω : P →
J1(P ), let σ ∈ Γx(P ) be a representative of the jet ω(p) = j1xσ. By definition of an Ehresmann
connection, we have σ(x) = p. Further, the Ehresmann connection ω and horizontal lift map
η : π∗TM → TP are related by η(p, v) = σ∗(v) ∈ TpP following theorem 26.4.2. Similarly, we
can use theorem 27.5.1 to construct an Ehresmann connection ωρ : P×ρF → J1(P×ρF ), which
is related to ω such that a representative for ωρ([p, f ]) = j1xΣ is given by Σ : x 7→ [σ(x), f ].
Hence,

Σ = φρ ◦ (idP , f) ◦ σ . (27.5.8)

Its differential is thus given by
Σ∗ = φρ∗ ◦ (σ∗, 0) . (27.5.9)

Thus, we find that

Σ∗(v) = φρ∗(σ∗(v), 0) = φρ∗(η(p, v), 0) = ηρ([p, f ], v) , (27.5.10)

so that ωρ and ηρ define the same connection on P ×ρ F . ■

Using the results obtained so far, it is now straightforward to find also other expressions for the
connection on P ×ρ F . We now take a closer look at the most geometric interpretation in terms
of horizontal distributions.
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Theorem 27.5.4. Let π : P →M be a principal G-bundle with Lie group G, HP a G-invariant
horizontal distribution on P and πρ : P ×ρ F → M an associated bundle with fiber F . Then
there exists a unique horizontal distribution H(P ×ρ F ) such that

φ−1ρ∗ (H(P ×ρ F )) = HP ⊕ kerφρ∗ ⊂ T (P × F ) , (27.5.11)

where φρ : P × F → P ×ρ F, (p, f) 7→ [p, f ] denotes the quotient with respect to the action of G
on P × F .

Proof. Let p ∈ P and f ∈ F . First note that the tangent space T(p,f)(P × F ) decomposes into
direct sums

T(p,f)(P × F ) = TpP ⊕ TfF = VpP ⊕HpP ⊕ TfF , (27.5.12)

where the first equality is the canonical split of the tangent bundle over a product manifold
and the second equality is due to the connection on P , seen as a horizontal distribution. G acts
from the right on P × F as

φ : (P × F )×G → P × F
((p, f), g) 7→ (p · g, ρ(g−1, f)) . (27.5.13)

Since the equivalence classes [p, f ] are the orbits with respect to this action, the kernel kerφρ∗
is given by those tangent vectors which are tangent to the orbits, and hence

T(p,f)(P × F ) ∩ kerφρ∗ = {φ(p,f)∗v, v ∈ TeG} . (27.5.14)

Note in particular that this action leaves π(p) ∈ M invariant, and so kerφρ∗ ⊆ V P ⊕ TF , so
that in particular kerφρ∗∩HP = {0}. Further, the action of G on P is free, from which follows
kerφρ∗ ∩ TF = {0}, and transitive, so that there exists a bijection between VpP and kerφρ∗.
We can thus write the induced split of the tangent spaces as

T(p,f)(P × F ) = VpP ⊕HpP ⊕ TfF = kerφρ∗ ⊕HpP ⊕ TfF . (27.5.15)

This implies that φρ∗ : T(p,f)(P×F )→ T[p,f ](P×ρF ) bijectively maps HpP⊕TfF to T[p,f ](P×ρ
F ). Clearly, one finds that the image of TfF is vertical with respect to πρ, so that the image of
HpP defines a horizontal complement. This decomposition is independent of the choice of the
representative (p, f), since HP is invariant under the action of G on P . One easily checks that
this defines a horizontal distribution on P ×ρ F . ■

One may already expect that the horizontal distribution above defines the same connection as
the previously defined notions. This is what we show next.

Theorem 27.5.5. The horizontal distribution H(P ×ρ F ) defined in theorem 27.5.4 represents
the same connection as obtained in theorems 27.5.1 and 27.5.2.

Proof. ▶. . .◀ ■

The construction is illustrated in figure 27.2. Given a principal connection on P , the tangent
space over p ∈ P splits in the form TpP = VpP ⊕ HpP into a canonically defined vertical
subspace VpP and a horizontal subspace HpP . ▶. . .◀

Another possibility to characterize a connection is in terms of its horizontal curves. It turns
out that for an associated bundle, we can explicitly construct the horizontal lift of a curve from
that defined on the principal bundle, as we show next.

Theorem 27.5.6. Let π : P → M be a principal bundle with a principal connection, πρ :
P ×ρ F →M an associated bundle and γ : R→M a curve. For every (p, f) ∈ Pγ(0) ×F , there
is a unique horizontal lift γ̂ρ : R→ P ×ρ F of γ such that γ̂ρ(0) = [p, f ] given by

γ̂ρ : R → P ×ρ F
t 7→ [γ̂(t), f ]

, (27.5.16)

where γ̂ : R→ P is the horizontal lift of γ such that γ̂(0) = p.
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πρ∗
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v

η(p, v) η̄ρ((p, f), v)

ηρ([p, f ], v)

Figure 27.2: Construction of the associated bundle connection.

Proof. It is sufficient to show that γ̂ρ is a horizontal lift; uniqueness follows from theorem 26.7.1.
Using the fact that γ̂ is a horizontal lift through p, one easily checks that

γ̂ρ(0) = [γ̂(0), f ] = [p, f ] (27.5.17)

and
πρ(γ̂ρ(t)) = πρ([γ̂(t), f ]) = π(γ̂(t)) = γ(t) . (27.5.18)

To show that ˙̂γρ(t) is horizontal for all t ∈ R, recall that we can write the horizontal lift map
ηρ : π

∗
ρTM → T (P ×ρ F ) as ηρ = φρ∗ ◦ (η, 0), where η : π∗TM → TP is the horizontal lift map

on P and φρ : P × F → P ×ρ F is the orbit projection. Further, we can write

γ̂ρ(t) = [γ̂(t), f ] = φρ(γ̂(t), f) , (27.5.19)

and so
˙̂γρ = φρ∗( ˙̂γ(t), 0) = φρ∗(η(γ̂(t), γ̇(t)), 0) = ηρ(γ̂ρ(t), γ̇(t)) , (27.5.20)

so that γ̂ρ is indeed horizontal. ■

Now the following conclusion is straightforward.

Theorem 27.5.7. Every connection on an associated bundle that is induced by a principal
connection is complete.
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Proof. In theorem 27.4.1 we have shown that every curve on the base manifold M of a principal
bundle π : P → M can be horizontally lifted to P on its entire domain. Further, in theo-
rem 27.5.6 we have shown that this horizontal lift to P allows to construct a horizontal lift to
any associated fiber bundle on the same domain. Hence, also the connection on the associated
bundle is complete. ■

27.6 Extension of principal connections

In section 20.7 we studied the extension of principal bundles, which allows us to construct a
principal G-bundle from a principal H-bundle and a Lie group homomorphism. This construc-
tion made us of the notion of associated bundles. In section 27.5 we showed that a principal
connection on a principal bundles also gives rise to a connection on each associated bundle. We
now explore how these two notions can be combined, and study the properties of the connection,
which we define as follows.

Definition 27.6.1 (Extension of a principal connection). Let χ : Q → M be a principal
fiber bundle with structure group H, ω : Q→ J1(Q) a principal connection and λ : H → G
a Lie group homomorphism. The connection ωρ : P → J1(P ) on the λ-extension π : P →M
defined by

P = Q×ρ G , (27.6.1)

where ρ : H ×G→ G is the left action defined by

ρ : H ×G → G
(h, g) 7→ λ(h)g

, (27.6.2)

is called the λ-extension of ω.

In theorem 20.7.1 we have seen that the bundle π : P → M constructed above is a principal
bundle. Hence, one may ask whether the connection constructed above is a principal connection.
This will be shown next.

Theorem 27.6.1. The connection ωρ given in definition 27.6.1 is a principal connection.

Proof. Let p = [q, g] ∈ P = Q ×ρ G with q ∈ Q, g ∈ G and x = χ(q) ∈ M . The induced
connection ωρ : P → J1(P ) assigns to this element the jet j1x[σq, g], where j1xσq = ω(q) ∈ J1(Q).
At any other element p · g̃ of the same fiber with g̃ ∈ G we have

ωρ(p · g̃) = j1x[σq, gg̃] = j1x([σq, g] · g̃) = j1x([σq, g] ◦Rg̃) = ωρ(p) · g̃ , (27.6.3)

and so ωρ is equivariant, and thus a principal connection. ■

We have already learned in the previous sections that principal connections are “rigid” in the
sense that the specifying the connection at one point of a fiber determines it also at any other
point of the same fiber. In the case of a λ-extension, there are points on P = Q×ρG which are
of the form [q, e] with q ∈ Q, and so it is sufficient to specify the connection at these points,
since any other point along the fibers of P can be reached via the right translation. This can be
used to find other characterizations of the extension of a connection. The following statement
makes use of the formulation of connections in terms of horizontal lift maps.

Theorem 27.6.2. The horizontal lift map ηρ : π∗ρTM → T (Q ×ρ G) of the λ-extension in
definition 20.7.1 is the unique horizontal lift map related to η : π∗TM → TQ by ηρ(f(q), u) =
f∗(η(q, u)) for all (q, u) ∈ π∗TM , where f : Q→ Q×ρ G, q 7→ [q, e].
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Proof. Let q ∈ Q with π(q) = x ∈ M and u ∈ TxM , and recall that η(q, u) = σ∗(u), where
σ ∈ Γx(Q) is a representative of the jet j1xσ = ω(q). Similarly, the horizontal lift map on
Q×ρ Q is defined by ηρ(f(q), u) = σρ∗(u), where σρ ∈ Γx(Q×ρ G is a representative of the jet
ωρ(f(q)) = ωρ([q, e]) = j1x[σ, e] by definition 20.7.1; hence, we can set σρ = [σ, e] = f ◦ σ, so
that σρ∗ = f∗ ◦ σ∗ and thus

ηρ(f(q), u) = σρ∗(u) = f∗(σ∗(u)) = f∗(η(q, u)). (27.6.4)

This determines ηρ on all other elements that are of the form (f(q), u) = ([q, e], u). Since ωρ is
a principal connection as shown in theorem 27.6.1, the horizontal lift map on all other elements
(f(q) · g, u) with g ∈ G is determined by theorem 27.1.4 as ηρ(f(q) · g, u) = Rg∗(ηρ(f(q), u)),
and so ηρ is uniquely defined. ■

Having constructed the horizontal lift map on the λ-extension, it is now easy to also relate the
horizontal distributions, using the fact that these are simply the images of the horizontal lift
maps.

Theorem 27.6.3. The horizontal distributions HQ and H(Q×ρG) are related such that for all
q ∈ Q, w ∈ Tf(q)(Q×ρQ) is horizontal if and only if there exists v ∈ HqQ such that w = f∗(v),
where f : Q→ Q×ρ G, q 7→ [q, e].

Proof. For each q ∈ Q with π(q) = x ∈M , the horizontal tangent space is given by

HqQ = {η(q, u), u ∈ TxM} . (27.6.5)

Hence, an element v ∈ TqQ is horizontal if and only if there exists u ∈ TxM such that v = η(q, u).
Similarly, w ∈ Tf(q)(Q×ρ G) is horizontal if and only if there exists u ∈ TxM such that

w = ηρ(f(q), u) = f∗(η(q, u)) , (27.6.6)

and thus if and only if there exists v ∈ HqQ with w = f∗(v). ■

Finally, we also formulate the relation in terms of principal connection forms, which is the
most commonly used formulation of principal connections. In this case, we find the following
statement.

Theorem 27.6.4. The principal G-connection ϑρ on the λ-extension χρ : Q×ρ G→M is the
unique principal G-connection satisfying f∗ϑρ = λ∗ ◦ ϑ, where f : Q→ Q×ρ G, q 7→ [q, e].

Proof. Let q ∈ Q. We make use of the fact that (f∗ϑρ)q : TqQ→ g and λ∗ ◦ ϑq : TqQ→ g are
linear and that TqQ = HqQ⊕ VqQ:

1. If v ∈ HqQ is horizontal, then by definition we have ϑq(v) = 0, and thus also λ∗(ϑq(v)) = 0.
Following theorem 27.6.3, f∗(v) ∈ Hf(q)(Q×ρ G) is horizontal, and thus

(f∗ϑρ)q = ϑρf(q)(f∗(v)) = 0 . (27.6.7)

2. If v ∈ VqQ is vertical, it can be written as v = X̃(q), where X̃ ∈ Vect(Q) is the fundamental
vector field of X = ϑq(v) ∈ h, and hence λ∗(ϑq(v)) = λ∗(X). Since f is a bundle
morphism covering the identity on M , also f∗(v) ∈ Tf(q)(Q×ρG) is vertical, and so it can
be written as f∗(v) = Ỹ (f(q)), where Ỹ ∈ Vect(Q ×ρ G) is the fundamental vector field
of Y = ϑρf(q)(f∗(v)) ∈ g. Finally, let ϕ : R → H be the one-parameter group generated
by X, so that X̃(q) is the tangent vector of t 7→ q · ϕ(t) at t = 0. Then f∗(X̃(q)) is the
tangent vector to the curve

t 7→ f(q · ϕ(t)) = [q · ϕ(t), e] = [q, λ(ϕ(t))] (27.6.8)

at t = 0, where λ ◦ ϕ : R→ G is the one-parameter group generated by λ∗(X) ∈ g. Using
f∗(X̃(q)) = Ỹ (f(q)) and the uniqueness of the fundamental vector fields, we thus have
λ∗(X) = Y .
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By linearity, it follows that
(f∗ϑρ)q(v) = λ∗(ϑq(v)) (27.6.9)

for all v ∈ TqQ. Since this holds for all q ∈ Q, and ϑρ is uniquely determined by its kernel, and
hence the horizontal distribution defined by theorem 27.6.3, this uniquely determines ϑρ. ■

27.7 Reduction of principal connections

Definition 27.7.1 (Reduction of a principal connection). Let π : P → M be a principal
bundle with structure group G, ϑ ∈ Ω1(P, g) a principal G-connection, λ : H → G a Lie
group homomorphism and a λ-reduction given by a principal H-bundle χ : Q→ M and a
map f : Q→ P . A principalH-connection ϑ̃ is called λ-reduction if and only if f∗ϑ = λ∗◦ϑ̃.

27.8 Holonomy

In section 27.4 we have seen that every principal connection is complete, so that every curve on
the base space can be lifted entirely into the total space of the bundle. Further, we have seen
that the parallel transport along any curve is an equivariant map. We now take a closer look
at the parallel transport along closed paths. This allows us to define the following notion.

Definition 27.8.1 (Holonomy). Let π : P → M be a principal G-bundle equipped with
a principal connection, x ∈ M , p ∈ Px and γ : [0, 1] → M with γ(0) = γ(1) = x a closed
curve. The unique element holωp (γ) ∈ G for which

Pγ(p) = p · holωp (γ) , (27.8.1)

is called the holonomy of γ with respect to p.

Note that we have included both the curve γ and the initial point p in the notation of the
holonomy. From section 27.4 we know that the horizontal lift, and thus the parallel transport,
on principal bundles is very “rigid” due to the equivariance of the connection, and so we expect
that also the dependence of the holonomy on the initial point is fixed by equivariance. We now
show that this indeed the case.

Theorem 27.8.1. For any point p ∈ P , curve γ : [0, 1] → M with γ(0) = γ(1) = π(p) and
g ∈ G, the holonomy satisfies

holωp·g(γ) = g−1 holωp (γ)g . (27.8.2)

Proof. From the equivariance of the parallel transport follows

p · g · holωp·g(γ) = Pγ(p · g) = Pγ(p) · g = p · holωp (γ) · g . (27.8.3)
■

The notion of holonomy is illustrated in figure 27.3.
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Figure 27.3: Illustration of holonomy for different curves on the base manifold and initial points
in the fiber over the common base point.

Definition 27.8.2 (Holonomy group). Let π : P → M be a principal bundle equipped
with a principal connection ω. For p ∈ P , the holonomy group is given by

Holp(ω) = {holωp (γ), γ ∈ Cπ(p)(M)} , (27.8.4)

where Cx(M) for x ∈ M denotes the set of curves γ : [0, 1] → M with γ(0) = γ(1) = x,
while its reduced holonomy group is

Hol0p(ω) = {holωp (γ), γ ∈ C0π(p)(M)} , (27.8.5)

where C0x(M) for x ∈ M denotes the set of zero-homotopic curves γ : [0, 1] → M with
γ(0) = γ(1) = x.

Theorem 27.8.2. For each point p ∈ P of a principal G-bundle π : P → M with connection
ω, the holonomy group Holp(ω) is a normal Lie subgroup of G and Hol0p(ω) is its connected
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component containing the unit element.

Proof. ▶. . .◀ ■

Theorem 27.8.3. For each point p ∈ P of a principal G-bundle π : P → M with connection
ω and v, w ∈ TpP , the curvature satisfies

Ωp(v, w) ∈ Lie(Holp(ω)) . (27.8.6)

Proof. ▶. . .◀ ■
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Chapter 28

Linear connections

28.1 Connections on vector bundles

An important special case we consider is that of connections on a vector bundle π : E → M .
In this case every fiber of the bundle carries the structure of a vector space. As we have shown
in theorem 21.6.6, also the jet bundles πr : Jr(E)→M are vector bundles, and the projections
πr,0 : Jr(E) → E are vector bundle homomorphisms covering the identity on M . This allows
us to define the following notion.

Definition 28.1.1 (Linear Ehresmann connection). Let π : E → M be a vector bundle.
A linear Ehresmann connection on E is a vector bundle homomorphism ω : E → J1(E)
such that π1,0 ◦ ω = idE .

This definition essentially consists of two parts. Being a map ω : E → J1(E) with π1,0◦ω = idE
means that a linear Ehresmann connection is a section of the bundle π1,0 : J1(E) → E, and
thus an Ehresmann connection. In addition, the restrictions ω|x : Ex → J1

x(E) must be vector
space homomorphisms for all x ∈M .

To illustrate this definition, let (xµ, ya) be local coordinates on E as in the previous section,
where in addition we demand that the coordinates (ya) on the fiber space F correspond to
a basis (e1, . . . , ef ) of F , where f = dimF and y = yaea. Recall that a general Ehresmann
connection on a fiber bundle is uniquely determined by a set yaµ(x, y) of coordinate functions.
For a linear Ehresmann connection these must be of the form yaµ(x, y) = yabµ(x)y

b.

28.2 Koszul connections

On vector bundles one conventionally uses a different description for connections, which is given
as follows.

Definition 28.2.1 (Koszul connection). Let π : E → M be a vector bundle. A Koszul
connection on E is an R-linear function ∇ : Γ(E) → Γ(T ∗M ⊗ E) such that ∇(fϵ) =
f∇ϵ+ df ⊗ ϵ for all ϵ ∈ Γ(E) and f ∈ C∞(M,R).
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We illustrate this definition using the same coordinates as above. In these coordinates a section
ϵ ∈ Γ(E) is expressed in the form y = yaea, where (ea) is a basis of E and ya are smooth
functions. A Koszul connection assigns to ϵ a section ∇ϵ ∈ Γ(T ∗M ⊗ E), whose coordinate
expression follows from the Leibniz rule, which states that

∇ϵ = ∂µy
adxµ ⊗ ea + ya∇ea . (28.2.1)

We can express ∇ea in the basis dxµ ⊗ ea in the form ∇ea = ωbaµdx
µ ⊗ eb to finally obtain

∇ϵ =
[
∂µy

a + ωabµy
b
]
dxµ ⊗ ea

= ∇µyadxµ ⊗ ea
= ya;µdx

µ ⊗ ea ,
(28.2.2)

where we introduced the semicolon notation.

Koszul connections are very helpful as they can be used to define a number of operations on
vector bundles. Although they are defined rather differently from Ehresmann connections, they
are closely related. One may already get this impression from the coordinate expressions yabµ
and ωabµ, which carry the same index structure. More formally, we formulate it as follows.

Theorem 28.2.1. For every vector bundle π : E → M there is a one-to-one correspondence
between linear Ehresmann connections and Koszul connections on E.

Proof. Let ϵ :M → E be a section. For x ∈M it defines a point e = ϵ(x) ∈ E and a linear map
ϵ∗|x : TxM → TeE with π∗ ◦ ϵ∗|x = idTxM . Also a linear Ehresmann connection ω : E → J1(E)
defines a linear map σe∗|x : TxM → TeE with π∗ ◦ σe∗|x = idTxM through the jet ω(e) = j1xσe.
Their difference ∇ωϵ|x = ϵ∗|x− σe∗|x therefore defines a linear map from TxM to VeE. Hence,

∇ωϵ|x ∈ Hom(TxM,VeE) ∼= T ∗xM ⊗ VeE ∼= T ∗xM ⊗ Ex . (28.2.3)

Doing this for each x ∈ M we obtain a section ∇ωϵ ∈ Γ(T ∗M ⊗ E). The smoothness of this
section can be proven using the smoothness of ω and ϵ. Further, given a function f ∈ C∞(M,R)
we find that

∇ω(fϵ)|x = (fϵ)∗|x − σfe∗|x
= fϵ∗|x + (df ⊗ ϵ)|x − fσe∗|x
= (f∇ωϵ)|x + (df ⊗ ϵ)|x .

(28.2.4)

This shows that ∇ω satisfies the Leibniz rule and hence is a Koszul connection.

We will not prove the converse direction, but simply provide the construction how to obtain
a linear Ehresmann connection from a Koszul connection ∇ : Γ(E) → Γ(T ∗M ⊗ E). For
e ∈ E with π(e) = x ∈ M choose a section ϵ ∈ Γ(E) such that ϵ(x) = e. Then ϵ∇x =
ϵ∗|x − ∇ϵ|x : TxM → TeE is a linear map, which we can take as an ingredient to construct a
section ω∇ : E → J1(E) as described in the previous section. Of course, to complete the proof
one still needs to show that this is independent of the choice of the section ϵ. ■

From the construction above one can derive how the coordinate expressions yabµ and ωabµ we
introduced earlier are related. A quick calculation shows that similarly to the case of general
Ehresmann connections we have yabµ = −ωabµ.

28.3 Affine bundle of connections

Recall from section 26.3 that the bundle π1,0 : J1(E) → E is an affine bundle, and so we
could consider connections as sections of this bundle over E. In the case of linear Ehresmann
connections on vector bundles π : E →M , it is instructive to derive yet another interpretation
as sections of an affine bundle over the base manifold M instead of the total space E. To see
this, we start with the following observation formulated in the language of Koszul connections.

332



Theorem 28.3.1. Let π : E → M be a vector bundle and ∇ : Γ(E) → Γ(T ∗M ⊗ E) a Koszul
connection. Then the following holds:

1. For every endomorphism-valued covector field K ∈ Γ(T ∗M⊗End(E)) there exists a unique
Koszul connection ∇′ : Γ(E)→ Γ(T ∗M ⊗ E), and

2. for every Koszul connection ∇′ : Γ(E)→ Γ(T ∗M⊗E) there exists a unique endomorphism-
valued covector field K ∈ Γ(T ∗M ⊗ End(E)),

such that
∇′ϵ = ∇ϵ+Kϵ . (28.3.1)

Proof. 1. It follows immediately from the definition of K that Kϵ ∈ Γ(T ∗M⊗E), so that the
expression above is well-defined. Further, since ∇ is a Koszul connection and K is a tensor
field, both terms on the right hand side, and thus also the right hand side altogether, are
R-linear. Finally, given a function f ∈ C∞(M,R) we find

∇′(fϵ) = ∇(fϵ) +K(fϵ) = f∇ϵ+ df ⊗ ϵ+ fKϵ = f∇′ϵ+ df ⊗ ϵ , (28.3.2)

and so ∇′ is a Koszul connection. Finally, ∇′ is unique, since it is uniquely defined by its
action on any section ϵ given in the statement of the theorem.

2. Given two Koszul connections ∇,∇′ : Γ(E)→ Γ(T ∗M ⊗ E), we define

Kϵ = ∇′ϵ−∇ϵ , (28.3.3)

which is clearly R-linear. To show that it is indeed tensorial (i.e., does not involve deriva-
tives of ϵ), we calculus

K(fϵ) = ∇′(fϵ)−∇(fϵ) = f∇′ϵi + df ⊗ ϵ− f∇ϵ− df ⊗ ϵ = fKϵ . (28.3.4)

Finally, K is uniquely defined by its action on any section ϵ. ■

Since K in the theorem above is a section of the bundle T ∗M ⊗ End(E), this result suggests
that also Koszul connections form sections of an affine bundle modeled over T ∗M ⊗ End(E).
This is supported by the index structure of the connection coefficients ωabµ, since we can write
the components of K with the same index positions Ka

bµ. Indeed, if we write

∇ϵ =
[
∂µy

a + ωabµy
b
]
dxµ ⊗ ea , ∇′ϵ =

[
∂µy

a + ω′abµy
b
]
dxµ ⊗ ea , (28.3.5)

then we have
Kϵ = Ka

bµy
bdxµ ⊗ ea (28.3.6)

with
Ka

bµ = ω′abµ − ωabµ , (28.3.7)

and so one may expect that the connection coefficients ωabµ are related to a local trivialization
of this affine bundle.

▶. . .◀

28.4 Parallel transport

Theorem 28.4.1. Every linear Ehresmann connection is complete.

Proof. ▶. . .◀ ■
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Theorem 28.4.2. Let π : E → M be a vector bundle equipped with a linear Ehresmann
connection and γ : [a, b] → M a curve. Then the parallel transport Pγ : Eγ(a) → Eγ(b) is a
linear bijection.

Proof. Let e1, e2 ∈ Eγ(a) and denote the corresponding horizontal lifts of γ by γ̂1, γ̂2 : [a, b]→ E,
where γ̂1(a) = e1 and γ̂2(a) = e2, and hence γ̂1(b) = Pγ(e1) and γ̂2(b) = Pγ(e2). For µ, ν ∈ R,
define a curve

γ̂ : [a, b] → E
t 7→ µγ̂1(t) + νγ̂2(t)

. (28.4.1)

This curve satisfies µγ̂1(a)+ νγ̂2(a) = µe1 + νe2. ▶Show horizontality.◀ Finally, it follows that

Pγ(µe1 + νe2) = γ̂(b) = µγ̂1(b) + νγ̂2(b) = µPγ(e1) + νPγ(e2) , (28.4.2)

and so Pγ is indeed linear. Finally, recall from theorem 26.8.2 that Pγ defines a diffeomorphism,
and is thus bijective. ■

28.5 Covariant derivative

A Koszul connection allows us to perform another operation on vector bundles. Given a section
of a vector bundle and a vector field on the base manifold, it allows us to take the derivative of
this section along the vector field. This is defined as follows.

Definition 28.5.1 (Covariant derivative). Let π : E → M be a vector bundle with a
Koszul connection ∇. The covariant derivative of a section ϵ ∈ Γ(E) with respect to a
vector field X ∈ Vect(M) is the section ∇Xϵ = ιX(∇ϵ).

From its definition it is clear that the covariant derivative satisfies a number of relations, which
immediately follow from the properties of the interior product and the Koszul connection. Here
we show the most important relations.

Theorem 28.5.1. Let ∇ be a Koszul connection on a vector bundle π : E → M , X,Y ∈
Vect(M) vector fields, ϵ, ζ ∈ Γ(E) sections and f ∈ C∞(M,R). The covariant derivative
satisfies the following relations:

∇X+Y ϵ = ∇Xϵ+∇Y ϵ , (28.5.1a)
∇X(ϵ+ ζ) = ∇Xϵ+∇Xζ , (28.5.1b)

∇fXϵ = f∇Xϵ , (28.5.1c)
∇X(fϵ) = f∇Xϵ+ (Xf)ϵ . (28.5.1d)

Proof. The first and the third property are obvious from the linearity of the interior product.
From the linearity of the Koszul connection immediately follows the second property, while the
last one becomes clear by calculating

∇X(fϵ) = ιX(f∇ϵ+ df ⊗ ϵ) = f∇Xϵ+ (Xf)ϵ . (28.5.2)
■

Also the coordinate expression of the covariant derivative should be clear from its definition. If
we write ∇ϵ = ya;µdx

µ ⊗ ea and X = Xµ∂µ, then

∇Xϵ = Xµya;µea = Xµ(∂µy
a + ωabµy

b)ea . (28.5.3)

This form is also in agreement with the properties shown in theorem 28.5.1.
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In the definition of the covariant derivative given above we have focused on the algebraic per-
spective in terms of a Koszul connection, which immediately yields a prescription to calculate
the covariant derivative in coordinates. Another approach towards the same notion is to take a
more geometric perspective and makes use of the properties of the parallel transport which we
studied in the previous section. We first show how the same notion arises as follows.

Theorem 28.5.2. Let π : E → M be a vector bundle equipped with a linear Ehresmann
connection and ϵ ∈ Γ(E) a section. For a vector field X ∈ Vect(M), let ϕ : R ×M ⊇ U → M
denote the flow of X. Further, let Px,t : Eϕt(x) → Ex be the parallel transport from ϕt(x) to x
along the flow line of X. Then the covariant derivative is given by

(∇Xϵ)(x) = lim
t→0

Px,t(ϵ(ϕt(x)))− ϵ(x)
t

. (28.5.4)

Proof. ▶. . .◀ ■

28.6 Connections on frame bundles

In section 22.1 we have shown how to construct the frame bundle of a vector bundle. In the
following, we will study how this construction allows us to obtain a connection on the frame
bundle, provided we already have a connection on the underlying vector bundle. The starting
point of this discussion is the following definition.

Definition 28.6.1 (Frame bundle connection). Let π : E →M be a vector bundle of rank
k, ϖ : F (E) → M its frame bundle and ω : E → J1(E) a linear Ehresmann connection.
The frame bundle connection on F (E) is the connection ω̂ : F (E) → J1(F (E)) such that
for each p ∈ F (E) holds ω̂(p) = j1ϖσ, where σ ∈ Γϖ(p)(F (E)) is the local section defined
on U ⊂ M such that σ(x)(v) = σv(x) for all x ∈ U , where σv is defined by the jet
ω(p(v)) = j1ϖ(p)σv for all v ∈ Rk.

To see that this definition makes sense, we need to check that σ indeed constitutes a local
section of the frame bundle, i.e., that σ(x) is a bijective linear function which maps Rk into
Ex = π−1(x) and that σ(ϖ(p)) = p. To check this, note that σv ∈ Γϖ(p)(E) is a local section of
π : E →M , by the definition of a linear Ehresmann connection, and so σ(x)(v) = σv(x) ∈ Ex.
Further, σ(x) is linear, since both ω and p are linear, and so the assignment v 7→ ωv is linear.
In particular, for x = ϖ(p) holds σ(ϖ(p))(v) = σv(ϖ(p)) = p(v), since σv is a representative
of a jet ω(p(v)). At this point, ω(ϖ(p)) = p is thus invertible. Hence, there also exists a
neighborhood around ϖ(p) where σ(x) is invertible, and thus σ constitutes a local section of
the frame bundle. Finally, its first jet depends only on the first jet of σv by construction.

It is helpful to illustrate the construction given above in coordinates. Let (xµ) be local co-
ordinates on M and (xµ, ya) adapted local coordinates on E which correspond to a local
basis. On the frame bundle, we can then introduce local coordinates (xµ, pai). Coordinates
on the first jet bundles are given by (xµ, ya, yaµ) and (xµ, pai, p

a
iµ), respectively. In these

coordinates, a frame p ∈ ϖ−1(x) defines a linear function that maps v = viei ∈ Rk to
y = yaea = paiv

iea ∈ Ex. The linear Ehresmann connection ω assigns to this element y a
jet, which we denote (xµ, ya,−ωabµ(x)yb) as before. In other words, the values and first partial
derivatives of the local sections σv at x = ϖ(p) are given by

(σv)
a(x) = paiv

i , ∂µ(σv)
a(x) = −ωabµ(x)pbivi . (28.6.1)

Writing the local section σ in the frame bundle coordinates (xµ, pai) as σai, we thus have

σai(x) = pai , ∂µσ
a
i(x) = −ωabµ(x)pbi . (28.6.2)
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Its first jet therefore has the coordinates (xµ, pai,−ωabµ(x)pbi). This is the coordinate expres-
sion of the frame bundle connection ω̂.

Since we have now constructed a connection on a frame bundle, and frame bundles are in
particular principal bundles, the first question which arises is whether this construction yields
a principal connection. This will be shown next.

Theorem 28.6.1. The frame bundle connection ω̂ is a principal Ehresmann connection.

Proof. In the following, we will show only the equivariance of the connection. For this purpose,
consider p, p′ ∈ F (E) with ϖ(p) = ϖ(p′) = x ∈ M and p′ = p · g with g ∈ G = GL(k,R).
Denoting the local section defining the jet ω̂(p) = j1xσ

p by σp, we then have

ω̂(Rg(p)) = ω̂(p · g) = j1xσ
p·g , (28.6.3)

where
σp·g(x)(v) = σp·gv (x) (28.6.4)

and
j1xσ

p·g
v = ω((p · g)(v)) = ω(p(gv)) = j1xσ

p
gv . (28.6.5)

Hence, we have
σp·g(x) = σp(x) ◦ g = σp(x) · g = Rg(σ

p(x)) , (28.6.6)

and thus
j1xσ

p·g = j1x(Rg ◦ σp) = Rg(j
1
x(σ

p)) = Rg(ω̂(p)) , (28.6.7)

so that ω̂ is indeed equivariant, and hence a principal Ehresmann connection. ■

The coordinate form we have found above thus does not come as a surprise, since it agrees with
the one we have found in example 27.1.1 for principal connections on bundles whose structure
group is a matrix group, and GL(k,R) is simply a special case.

28.7 Connections on associated vector bundles

In the previous section we have seen how a linear Ehresmann connection gives rise to a prin-
cipal connection on its frame bundle. We now come to a complementary construction, that
allows us to obtain a linear connection from a principal one. For this purpose, we recall from
theorem 20.4.1 that the associated bundle obtained from a principal bundle and a linear rep-
resentation of its structure group is a vector bundle. We have already given a construction for
a connection on arbitrary associated bundles in section 27.5. It remains to show that this con-
nection is a linear Ehresmann connection if the bundle is obtained from a linear representation.
This can be shown as follows.

Theorem 28.7.1. Let ϖ : P → M be a principal G-bundle, ω : P → J1(P ) a principal
Ehresmann connection and ρ : G → GL(V ) a linear representation of G on a k-dimensional
vector space V . Then the induced connection ωρ : E → J1(E) is a linear Ehresmann connection
on the vector bundle π = ϖρ : E = P ×ρ V →M .

Proof. Recall from theorem 20.4.1 that E is a vector bundle and that the vector space structure
on each fiber Ex for x ∈M is induced from the relation

µe+ µ′e′ = µ[p, v] + µ′[p, v′] = [p, µv + µ′v′] (28.7.1)
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for all µ, µ′ ∈ R, p ∈ Px, v, v′ ∈ V and e = [p, v], e′ = [p, v′] ∈ Ex. This allows us to write the
induced connection as

ωρ(µe+ µ′e′) = ωρ([p, µv + µ′v′])

= j1x[σp, µv + µ′v′]

= j1x(µ[σp, v] + µ′[σp, v
′])

= µj1x[σp, v] + µ′j1x[σp, v
′]

= µωρ([p, v]) + µ′ωρ([p, v
′])

= µωρ(e) + µ′ωρ(e
′) ,

(28.7.2)

where we further used the fact that the fiber J1
x(E) also inherits its vector space structure from

the vector space structure of local sections, so that j1x acts as a linear operator. Hence, ωρ is a
linear Ehresmann connection. ■

While using jets is convenient to define the connection on any associated bundle, it is more
practical for calculations to express a linear connection as a Koszul connection, and hence a
covariant derivative, which acts on sections of the underlying vector bundle π : E →M . In the
case that E = P ×ρM is an associated bundle obtained from a principal G-bundle ϖ : P →M
and a linear representation ρ : G → GL(V ) of its structure group on a vector space V , we
can make use of theorem 20.3.3, which states that sections ϵ ∈ Γ(P ×ρ M) are in one-to-one
correspondence with equivariant maps ϵ̃ ∈ C∞G (P, V ). The latter are basic zero-forms on P with
values in V , so that we can apply the exterior covariant derivative to obtain a basic one-form
with values in V . This allows us to obtain a Koszul connection as follows.

Theorem 28.7.2. Let ϖ : P → M be a principal G-bundle, ϑ ∈ Ω1(P, g) a principal G-
connection and ρ : G → GL(V ) a linear representation of G on a k-dimensional vector space
V . Then the induced Koszul connection ∇ : Γ(E)→ Γ(T ∗M ⊗ E) satisfies ▶. . .◀

Proof. ▶. . .◀ ■

Example 28.7.1. We consider the same principal bundle π : P → M as in example 27.1.1,
equipped with the same connection and coordinates. In addition we consider F = Rn with
Cartesian coordinates (fa). Recall that we assumed the structure group G to be a matrix
group with n × n matrices. This group possesses a natural left action ρ on F by matrix
multiplication, ρ(g, f) = gf . We denote by πρ : E = P ×ρ F → M the corresponding
associated bundle. To define a local trivialization ϕρ : π−1ρ (U) → U × F of E over a set
U ⊂M , we make use of the trivialization ϕ : π−1(U)→ U ×G of P and define

ϕρ([ϕ
−1(x, e), f ]) = (x, f) , (28.7.3)

where e ∈ G is the unit element. We write the induced coordinates on π−1(U) as (xµ, ya).
For the corresponding coordinates on the first jet bundle J1(E) we use the notation
(xµ, ya, yaµ).

To construct the induced connection ωρ : E → J1(E) we pick an element [p, f ] ∈ Ex =
π−1ρ (x) of the fiber over x ∈ U , and we keep x ∈ U , p ∈ P and f ∈ F fixed. Note that
the same element [p, f ] can equally well be described by any representative (p · g, ρ(g−1, f)),
and so without loss of generality we may assume that ϕ(p) = (x, e) ∈ U ×G. It follows that
the coordinate representations of p and f are given by (xµ, δab ) and (xµ, fa), respectively,
where (fa) is the coordinate representation of f . We then choose a section σ : U → P such
that σ(x) = p and j1xσ = ω(p). In coordinates this section can be expressed as

σ : (xµ) 7→ (xµ, σab(x)) . (28.7.4)

while its first jet prolongation reads

j1σ : (xµ) 7→ (xµ, σab(x), ∂µσ
a
b(x)) . (28.7.5)
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Together with the fixed element f ∈ F it further defines a section σ̃ = [σ(•), f ] : U → E,
which we write in coordinates as

σ̃ : (xµ) 7→ (xµ, σ̃a(x)) = (xµ, σab(x)f
b) . (28.7.6)

Its first jet prolongation is therefore given by

j1σ̃ : (xµ) 7→ (xµ, σ̃a(x), ∂µσ̃
a(x)) = (xµ, σab(x)f

b, ∂µσ
a
b(x)f

b) . (28.7.7)

We now evaluate σ, σ̃ and their jet prolongations at the fixed point x we have chosen. Due
to our choice ϕ(p) = (x, e) we have σab(x) = δab . We then use j1xσ = ω(p), where evaluating
the latter yields

ω : (xµ, δab ) 7→ (xµ, δab,−Γabµ(x)) . (28.7.8)

We thus have ∂µσ
a
b(x) = −Γab(x). This finally leads to σ̃a(x) = fa and ∂µσ̃

a(x) =
−Γabµ(x)f b. We can thus write the connection ωρ : E → J1(E) as

ωρ : (x
µ, ya) 7→ (xµ, ya,−Γabµ(x)yb) . (28.7.9)

Note in particular that the last component is linear in the fiber coordinates ya, so this is a
linear Ehresmann connection. This is due to the fact that we have chosen ρ to be a linear
representation of G on the vector space F ; it does not hold for general actions ρ which do
not have this property.

We finally remark that is we would have chosen the dual representation ρ∗(g, f) = fg−1 we
would have obtained the dual connection

ωρ∗ : (xµ, ȳa) 7→ (xµ, ȳa,Γ
b
aµ(x)ȳb) (28.7.10)

on the dual bundle E∗. Note in particular the change of the sign in the last component.

28.8 Connections on the dual bundle

Given a linear connection on a vector bundle π : E →M , one finds that also on other, related
bundles a number of connections are defined, which are derived from the original connection.
This holds for all operations on vector bundles as discussed in chapter 4. The most straightfor-
ward construction is found for the dual vector bundle π̄ : E∗ → M introduced in section 4.1.
Recall that for every x ∈M , the fiber E∗x is the dual vector space of the fiber Ex. Given sections
ϵ ∈ Γ(E) and ζ ∈ Γ(E∗), one therefore can construct a function

⟨ϵ, ζ⟩ : M → R
x 7→ ⟨ϵ(x), ζ(x)⟩ , (28.8.1)

by pointwise application of the canonical pairing of the dual vector space. Since this is a real
function, it allows the following definition.

Definition 28.8.1 (Dual bundle connection). Let π : E →M be a vector bundle, equipped
with a Koszul connection ∇. The dual bundle connection on the dual vector bundle π̄ :
E∗ →M is the unique Koszul connection ∇ on E∗ such that for any sections ϵ ∈ Γ(E) and
ζ ∈ Γ(E∗) and vector fields X ∈ Vect(M) the derivatives satisfy

⟨∇Xϵ, ζ⟩+ ⟨ϵ,∇Xζ⟩ = X⟨ϵ, ζ⟩ , (28.8.2)

where ∇X denotes the covariant derivatives on the respective bundles.
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This means that we demand a version of the Leibniz rule also for the pairing of sections of
dual bundles. We illustrate this definition using the same coordinates (xµ, ya) we used also
in sections 28.2 and 28.5, as well as coordinates (xµ, za) on the dual bundle E∗ as shown in
section 4.1. Expressing the sections ϵ and ζ in these coordinates, we find the expressions

⟨ϵ,∇Xζ⟩ = X⟨ϵ, ζ⟩ − ⟨∇Xϵ, ζ⟩
= Xµ∂µ(y

aza)−Xµya;µza

= Xµ∂µy
aza +Xµya∂µza −Xµ(∂µy

a + ωabµy
b)za

= Xµya(∂µza − ωbaµzb)
= Xµyaza;µ ,

(28.8.3)

where the last line and the condition that this holds independent of X and ϵ yield the relation

za;µ = ∇µza = ∂µza − ωbaµzb . (28.8.4)

Comparing this result with the coordinate formula (28.2.2) for the Koszul connection on E, we
see that the sign in front of the connection coefficient ωabµ changes.

28.9 Connections on tensor bundles

For the tensor product of two vector bundles π1 : E1 → M and π2 : E2 → M over a common
base M one can proceed similarly, provided that each of them is equipped with a connection.
Here one demands that the Leibniz rule holds for the tensor product of sections. Hence, one
defines as follows.

Definition 28.9.1 (Tensor product connection). Let π1 : E1 → M and π2 : E2 → M be
vector bundles over a common base M equipped with Koszul connections, which we denote
by ∇ for both bundles. The tensor product connection on the tensor product bundle
π1 ⊗ π2 : E1 ⊗ E2 → M is the unique connection on E1 ⊗ E2 such that for all sections
ϵ1 ∈ Γ(E1) and ϵ2 ∈ Γ(E2) and vector fields X ∈ Vect(M) holds

∇X(ϵ1 ⊗ ϵ2) = ∇Xϵ1 ⊗ ϵ2 + ϵ1 ⊗∇Xϵ2 , (28.9.1)

where ∇X denotes the covariant derivatives on the respective bundles.

Also in this case it is helpful to illustrate the definition by using coordinates. Here the coordi-
nates (xµ, ya) on E1 and (xµ, zā) on E2, as well as (xµ, waā) introduced in section 4.3 turn out
to be useful. Denoting the sections with these coordinates, and writing waā = yazā, we find
that the covariant derivative in coordinates is given by

∇X(ϵ1 ⊗ ϵ2) = ∇Xϵ1 ⊗ ϵ2 + ϵ1 ⊗∇Xϵ2
= (Xµya;µz

ā +Xµyazā;µ)ea ⊗ ēā
=
[
Xµ(∂µy

a + ωabµy
b)zā +Xµya(∂µz

ā + ω̄āb̄µz
b̄)
]
ea ⊗ ēā

= Xµ
(
∂µy

azā + ya∂µz
ā + ωabµy

bzā + ω̄āb̄µy
azb̄
)
ea ⊗ ēā

= Xµ
(
∂µw

aā + ωabµw
bā + ω̄āb̄µw

ab̄
)
ea ⊗ ēā

= Xµwaā;µea ⊗ ēā ,

(28.9.2)

where we denoted the connection coefficients on E2 by ω̄āb̄µ. From the last line we read off the
relation

waā;µ = ∇µwaā = ∂µw
aā + ωabµw

bā + ω̄āb̄µw
ab̄ . (28.9.3)
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A few special cases are worth mentioning. Recall from section 4.6 that the homomorphism bun-
dle Hom(E1, E2) is canonically isomorphic to E∗1⊗E2. If one introduces coordinates (xµ, waā) on
Hom(E1, E2), ond finds that the formula for the covariant derivative in terms of the connection
coefficients ωabµ on E1 and ω̄āb̄µ on E2 is given by

∇µwaā = ∂µwa
ā − ωbaµwbā + ω̄āb̄µwa

b̄ . (28.9.4)

In particular, if E1 = E2 and we consider the same connection on both copies of E, we find the
formula

∇µwab = ∂µwa
b − ωcaµwcb + ωbcµwa

c . (28.9.5)

The latter is a special case of the tensor product Ers =
⊗r

E ⊗⊗s
E∗. Denoting the fiber

coordinates by T a1···ar b1···bs , the covariant derivative is given by

∇µT a1···ar b1···bs = ∂µT
a1···ar

b1···bs
+ ωa1cµT

ca2···ar
b1···bs + . . .+ ωar cµT

a1···ar−1c
b1···bs

− ωcb1µT a1···ar cb2···bs − . . .− ωcbsµT a1···ar b1···bs−1c .

(28.9.6)

This formula may be compared to the Lie derivative (16.2.12) expressed in coordinates. While
in the Lie derivative formula for each upper index a term with a negative sign appears, as well
as for each lower index a term with a positive sign, the opposite is the case for the covariant
derivative.

Other special cases can be obtained by restricting to particular subbundles of the tensor product
bundle, in particular the exterior power bundle introduced in section 4.4 and the symmetric
power bundle introduced in section 4.5. Here we only discuss the former as a particular example.
Recall that we can write a section σ of the bundle ΛrE in coordinates in the form

σ =
1

k!
σa1···area1 ∧ . . . ∧ ear = σa1···area1 ⊗ . . .⊗ ear , (28.9.7)

where the coefficients are totally antisymmetric, σa1···ar = σ[a1···ar].

28.10 Connections on density bundles

Finally, we also discuss the case of densities. ▶. . .◀

∇µTa1···ar b1···bs = ∂µT
a1···ar

b1···bs − wωccµTa1···ar b1···bs
+ ωa1cµT

ca2···ar
b1···bs + . . .+ ωar cµT

a1···ar−1c
b1···bs

− ωcb1µTa1···ar cb2···bs − . . .− ωcbsµTa1···ar b1···bs−1c .

(28.10.1)

28.11 Pullback connections

Definition 28.11.1 (Pullback connection). Let π : E → N be a vector bundle equipped
with a Koszul connection ∇ : Γ(E) → Γ(E ⊗ T ∗N) and ψ : M → N a smooth map. The
pullback ψ∗∇ of∇ along ψ is the unique Koszul connection ψ∗∇ : Γ(ψ∗E)→ Γ(ψ∗E⊗T ∗M)
on the pullback bundle ψ∗π : ψ∗E →M which satisfies

(ψ∗∇)(ψ∗σ) = ▶ . . . ◀ (28.11.1)

for all sections σ ∈ Γ(E).
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28.12 Curvature

Recall that we have introduced the curvature of a connection in section 26.10 as the vertical
part of the commutator of horizontal vector fields, expressed through the Nijenhuis tensor of the
connection form, and for principal connections in section 27.3 as the exterior covariant derivative
of the algebra-valued connection form. For linear connections on vector bundles, which can be
expressed as Koszul connections and hence give rise to the notion of a covariant derivative, we
can introduce curvature in yet another way as the commutator between covariant derivatives.
We start with the following definition.

Definition 28.12.1 (Curvature of a linear connection). Let π : E →M be a vector bundle
and ∇ a Koszul connection on E. The curvature of ∇ is the unique endomorphism valued
two-form F ∈ Γ(Λ2T ∗M ⊗ End(E)) such that for any vector fields X,Y ∈ Vect(M) and
section ϵ ∈ Γ(E) holds

F (X,Y )ϵ = ∇X∇Y ϵ−∇Y∇Xϵ−∇[X,Y ]ϵ . (28.12.1)

In this definition we have already claimed that the curvature is a two-form which takes values
in the endomorphism bundle. For this to be true, it needs to satisfy a number of properties: in
particular it must be antisymmetric in the first two arguments and linear in all arguments. In
the following, we show that it indeed possesses the required properties.

Theorem 28.12.1. For all X,Y, Z ∈ Vect(M), ϵ, ζ) ∈ Γ(E) and f ∈ C∞(M,R), the curvature
F of a linear connection on a vector bundle π : E →M satisfies:

F (Y,X)ϵ = −F (X,Y )ϵ , (28.12.2a)
F (X + Y,Z)ϵ = F (X,Z)ϵ+ F (Y, Z)ϵ , (28.12.2b)
F (X,Y )(ϵ+ ζ) = F (X,Y )ϵ+ F (X,Y )ζ , (28.12.2c)

F (fX, Y )ϵ = fF (X,Y )ϵ , (28.12.2d)
F (X,Y )(fϵ) = fF (X,Y )ϵ . (28.12.2e)

Proof. The first three properties follows immediately from the fact that the covariant derivative
is linear and that the Lie bracket is linear and antisymmetric in its arguments. For the remaining
two propositions, we use the properties 28.5.1 of the covariant derivative and calculate

F (fX, Y )ϵ = ∇fX∇Y ϵ−∇Y∇fXϵ−∇[fX,Y ]ϵ

= f∇X∇Y ϵ−∇Y (f∇Xϵ)−∇f [X,Y ]−(Y f)Xϵ

= f∇X∇Y ϵ− f∇Y∇Xϵ− (Y f)∇Xϵ− f∇[X,Y ]ϵ+ (Y f)∇Xϵ
= f∇X∇Y ϵ− f∇Y∇Xϵ− f∇[X,Y ]ϵ

= fF (X,Y )ϵ

(28.12.3)

and

F (X,Y )(fϵ) = ∇X∇Y (fϵ)−∇Y∇X(fϵ)−∇[X,Y ](fϵ)

= ∇X(f∇Y ϵ+ (Y f)ϵ)−∇Y (f∇Xϵ+ (Xf)ϵ)− f∇[X,Y ]ϵ− ([X,Y ]f)ϵ

= f∇X∇Y ϵ+ (Xf)∇Y ϵ+ (Y f)∇Xϵ+ (XY f)ϵ− f∇X∇Y ϵ− (Y f)∇Xϵ
− (Xf)∇Y ϵ− (Y Xf)ϵ− f∇[X,Y ]ϵ− (XY f)ϵ+ (Y Xf)ϵ

= f∇X∇Y ϵ− f∇Y∇Xϵ− f∇[X,Y ]ϵ

= fF (X,Y )ϵ . ■

(28.12.4)
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It follows that the curvature is indeed a section of the bundle Λ2T ∗M⊗End(E). In coordinates,
it can therefore be expressed in the form

F =
1

2
F abµνdx

µ ∧ dxν ⊗ ea ⊗ eb . (28.12.5)

To obtain an explicit expression for the components F abµν , we calculate

F (X,Y )ϵ = ∇X∇Y ϵ−∇Y∇Xϵ−∇[X,Y ]ϵ

= ∇Xµ∂µ∇Y ν∂ν (yaea)−∇Y ν∂ν∇Xµ∂µ(yaea)−∇[Xµ∂µ,Y ν∂ν ](y
aea)

=
(
Xµ{∂µ[Y ν(∂νya + ωabνy

b)] + ωacµ[Y
ν(∂νy

c + ωcbνy
b)]}

− Y ν{∂ν [Xµ(∂µy
a + ωabµy

b)] + ωacν [X
µ(∂µy

c + ωcbµy
b)]}

− (Xµ∂µY
ν − Y µ∂µXν)(∂νy

a + ωabνy
b)
)
ea

= XµY ν(∂µω
a
bν − ∂νωabµ + ωacµω

c
bν − ωacνωcbµ)ybea .

(28.12.6)

Hence, it follows that the components of the curvature are given by

F abµν = ∂µω
a
bν − ∂νωabµ + ωacµω

c
bν − ωacνωcbµ . (28.12.7)

One may now pose the question how the notion of curvature we introduced here is related
to the ones we introduced before. Since we have related the linear connection to a principal
connection in sections 28.6 and 28.7, we start with the notion of curvature for principal con-
nections discussed in section 27.3. Recall that the curvature form Ω ∈ Ω2(P, g) of a principal
G-connection ϑ is a basic form of type Ad, where the adjoint representation Ad of the struc-
ture group G is a representation on its Lie algebra g. Given a representation ρ : G → GL(V )
of G on a vector space V , which gives rise to the associated bundle E = P ×ρ V , its differ-
ential ρ∗ : g → End(V ) is a Lie algebra representation. Hence, ρ∗ ◦ Ω ∈ Ω2(P,End(V )) is
an endomorphism-valued two-form on P . Note that End(V ) ∼= V ⊗ V ∗ naturally carries a
representation of G, which is the tensor product representation End(ρ) = ρ ⊗ ρ̄, which gives
rise to the bundle End(E) = P ×End(ρ) End(V ). Finally, recalling that the curvature form
F ∈ Γ(Λ2T ∗M ⊗ End(E)) is an endomorphism-valued two-form on M , and that basic forms
on P and vector-valued forms on M are related by theorem 27.2.1 (for any representation, and
thus also for End(ρ)), the following statement suggests itself.

Theorem 28.12.2. The curvature form Ω ∈ Ω2(P, g) of a principal G-connection ϑ ∈ Ω1(P, g)
on a principal G-bundle ϖ : P → M and the curvature form F ∈ Γ(Λ2T ∗M ⊗ End(E)) of the
induced linear connection on the associated vector bundle π : E = P ×ρ V are related such that
for each p ∈ P holds

ρ∗(Ωp) = [p]−1 ◦ (ϖ∗F )p ◦ [p] , (28.12.8)

where [p] : V → Pϖ(p) ×ρ V is the fiber diffeomorphism, and conversely

Fϖ(p)(ϖ∗(v), ϖ∗(w)) = [p, ρ∗(Ωp(v, w))] (28.12.9)

for all v, w ∈ TpP .

Proof. ▶. . .◀ ■

Another relation concerns the curvatureR ∈ Γ(Λ2T ∗E⊗V E) of a general Ehresmann connection
discussed in section 26.10, and can be derived from the fact that a Koszul connection can also
be seen as a linear Ehresmann connection, as discussed in section 28.2. The curvature R of this
linear Ehresmann connection can be related to the curvature form F ∈ Γ(Λ2T ∗M ⊗End(E)) as
follows. One may first take the pullback π∗F ∈ Γ(Λ2T ∗E ⊗ π∗ End(E)). The pullback bundle
π∗E ∼= E ×π E has a canonical diagonal section δ : e 7→ (e, e), and so one has a vector-valued
two-form (π∗F ) ◦ δ ∈ Γ(Λ2T ∗E ⊗ π∗E). Since π∗E is canonically isomorphic to V E as shown
in theorem 19.8.1, this can also be interpreted as a section of Λ2T ∗E ⊗ V E, and so one may
expect that this yields the curvature R. We now show that this is indeed the case.
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Theorem 28.12.3. The curvature form F ∈ Γ(Λ2T ∗M ⊗ End(E)) of a linear Ehresmann
connection is related to the curvature R ∈ Γ(Λ2T ∗M ⊗ V E) by

R = (π∗F ) ◦ δ , (28.12.10)

where δ : E → π∗E, e 7→ (e, e) is the diagonal section.

Proof. ▶. . .◀ ■

28.13 Exterior covariant derivative

By definition 28.2.1, a Koszul connection is a linear assignment ∇ : Γ(E) → Γ(T ∗M ⊗ E).
Note that we can also regard the source of this assignment as the space Ω0(M,E) of vector-
valued zero-forms on M with values on E, while the target space is the space Ω1(M,E) of
vector-valued one-forms on M with values on E. Hence, a Koszul connection can be regarded
as a linear assignment ∇ : Ω0(M,E) → Ω1(M,E). This is reminiscent of the total differential
d : Ω0(M)→ Ω1(M) defined in section 8.4, which assigns to a function f ∈ C∞(M,R) ∼= Ω0(M)
the one-form df ∈ Ω1(M), and which we generalized to the exterior derivative d : Ωk(M) →
Ωk+1(M) acting on differential forms of arbitrary rank k in section 9.3. One may wonder
whether such a generalization is also possible in the case of Koszul connections and E-valued
differential forms. It turns out that this is indeed the case, and we define it as follows.

Definition 28.13.1 (Exterior covariant derivative). Let π : E → M be a vector bundle
with a Koszul connection ∇. The exterior covariant derivative associated to ∇ is the unique
linear function d∇ : Ωk(M,E)→ Ωk+1(M,E) such that

d∇(σ ⊗ ϵ) = dσ ⊗ ϵ+ (−1)kσ ∧∇ϵ (28.13.1)

for all σ ∈ Ωk(M) and ϵ ∈ Γ(E).

Like the ordinary exterior derivative, also the exterior covariant derivative on vector bundles
satisfies a few relations, which turn out to be helpful in practical calculations. We start by
showing the following.

Theorem 28.13.1. The exterior covariant derivative satisfies

d∇(ω ∧ α) = dω ∧ α+ (−1)kω ∧ d∇α (28.13.2)

for all ω ∈ Ωk(M) and α ∈ Ωl(M,E).

Proof. Due to the linearity, it is sufficient to show this relation for α = σ ⊗ ϵ with σ ∈ Ωl(M).
Then ω ∧ σ ∈ Ωk+l(M), and by direct calculation one has

d∇(ω ∧ (σ ⊗ ϵ)) = d∇((ω ∧ σ)⊗ ϵ)
= d(ω ∧ σ)⊗ ϵ+ (−1)k+lω ∧ σ ∧∇ϵ
= (dω ∧ σ)⊗ ϵ+ (−1)kω ∧ dσ ⊗ ϵ+ (−1)k+lω ∧ σ ∧∇ϵ
= dω ∧ σ ⊗ ϵ+ (−1)k[ω ∧ dσ ⊗ ϵ+ (−1)lω ∧ σ ∧∇ϵ]
= dω ∧ σ ⊗ ϵ+ (−1)kω ∧ d∇(σ ⊗ ϵ) . ■

(28.13.3)

For the ordinary exterior derivative, it is well known that it squares to zero. This is not the
case for the exterior covariant derivative, whose square is closely related to the curvature. This
is what we show next.
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Theorem 28.13.2. The exterior covariant derivative satisfies

d∇d∇α = F ∧ α (28.13.4)

for all α ∈ Ωk(M,E).

Proof. Once again, we consider α = σ ⊗ ϵ and then conclude on the general case by linearity.
By direct calculation, we have

d∇d∇(σ ⊗ ϵ) = d∇[dσ ⊗ ϵ+ (−1)kσ ∧∇ϵ]
= ddσ ⊗ ϵ+ (−1)k+1dσ ∧∇ϵ+ (−1)kdσ ∧∇ϵ+ (−1)2kσ ∧ d∇∇ϵ
= σ ∧ d∇∇ϵ .

(28.13.5)

Hence, it is sufficient to show the formula for a zero-form ϵ ∈ Ω0(M,E) ∼= Γ(E). Here ∇ϵ ∈
Ω1(M,E). Again we use the linearity and assume a form∇ϵ = τ⊗ζ with a one-form τ ∈ Ω1(M).
For vector fields X,Y ∈ Vect(M) we then have

d∇(τ ⊗ ζ)(X,Y ) = [dτ ⊗ ζ − τ ∧∇ζ](X,Y )

= dτ(X,Y )⊗ ζ − τ(X)⊗∇Y ζ + τ(Y )⊗∇Xζ
= [X(τ(Y ))− Y (τ(X))− τ([X,Y ])]⊗ ζ − τ(X)⊗∇Y ζ + τ(Y )⊗∇Xζ
= ∇X [τ(Y )⊗ ζ]−∇Y [τ(X)⊗ ζ]− τ([X,Y ])⊗ ζ ,

(28.13.6)

using the relation (9.4.5). Substituting back, we find

(d∇∇ϵ)(X,Y ) = ∇X∇Y ϵ−∇Y∇Xϵ−∇[X,Y ]ϵ = F (X,Y )(ϵ). (28.13.7)

Here F is a two-form, and so its exterior product with σ commutes, so that we finally find

d∇d∇(σ ⊗ ϵ) = F ∧ σ ⊗ ϵ . (28.13.8)
■

From the general theory of connections we know that the curvature of any connection satisfies
the Bianchi identity. Using the exterior covariant derivative, we can also formulate the Bianchi
identity for the curvature form on vector bundles as follows.

Theorem 28.13.3 (Bianchi identity). The curvature form satisfies d∇F = 0.

Proof. ▶. . .◀ ■

In the following, we will discuss another possibility to obtain the exterior covariant derivative
we have defined above. This construction can be applied in the case of an associated vector
bundle E = P ×ρ F , on which a Koszul connection ∇ is induced by a principal G-connection ϑ
on the principal G-bundle P as shown in section 28.7. Recall from section 27.2 that a principal
connection ϑ on P gives rise to an exterior covariant derivative dϑ acting on basic forms on the
total space on the principal bundle, as given in definition 27.2.2. In this section, however, we
study vector-valued differential forms on the base manifold of a bundle instead. As we have
shown in theorem 27.2.1, these are, in fact, in one-to-one correspondence with basic forms. One
may thus wonder whether the exterior covariant derivative dϑ on the principal bundle and the
exterior covariant derivative d∇ acting on vector-valued forms given in definition 28.13.1 are
related by this one-to-one correspondence. We confirm that this is the case as follows:

Theorem 28.13.4. The exterior covariant derivative of a basic form of type ρ corresponds to
the induced exterior covariant derivative on the associated vector bundle P ×ρ F .

Proof. ▶. . .◀ ■
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28.14 Holonomy

In section 27.8 we have seen that the parallel transport from one point back to itself along all
closed curves yields a group, which is a subgroup of the structure group. Using the fact that the
parallel transport on vector bundles is linear and bijective, one finds a similar concept, which
comes from the fact that linear and bijective maps from a vector space to itself also form a
group. We may thus define the following.

Definition 28.14.1 (Holonomy group). Let π : E →M be a vector bundle equipped with
a linear connection ω. For x ∈M , the holonomy group is given by

Holx(ω) = {Px(γ), γ ∈ Cπ(p)(M)} ⊂ GL(Ex) , (28.14.1)

where Cx(M) denotes the set of curves γ : [0, 1] → M with γ(0) = γ(1) = x, while its
reduced holonomy group is

Hol0x(ω) = {Px(γ), γ ∈ C0π(p)(M)} ⊂ GL(Ex) , (28.14.2)

where C0x(M) denotes the set of zero-homotopic curves γ : [0, 1]→M with γ(0) = γ(1) = x.

Also here we have already claimed that the sets we have defined above are groups. As in the
case of principal bundles, this can be proven as follows.

Theorem 28.14.1. For each point x ∈ M of a vector bundle π : E → M with connection ω,
the holonomy group Holx(ω) is a normal Lie subgroup of GL(Ex) and Hol0p(ω) is its connected
component containing the unit element.

Proof. ▶. . .◀ ■

In the case of principal bundles, we have further seen that there exists a close relation between
the Lie algebra of the holonomy group and the curvature of a principal connection. Given that
the curvature of a linear connection is a two-form with values in the endomorphism bundle, and
that at each point x ∈M the fiber Endx(E) is just the Lie algebra of GL(Ex), one may expect
a similar relation also for linear connections. We first show the following.

Theorem 28.14.2. For each point x ∈M of a vector bundle π : E →M with linear connection
ω and v, w ∈ TxM , the curvature satisfies

Fx(v, w) ∈ Lie(Holx(ω)) . (28.14.3)

Proof. ▶. . .◀ ■
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Part II

Particular geometries
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Chapter 29

Canonical tangent bundle geometry

29.1 Coordinates on the tangent bundle

In the following we will consider a particular vector bundle, namely the tangent bundle τ :
TM →M over a manifold M . Its total space TM is again a manifold, and we will be interested
in tensor fields defined on this manifold. For this purpose, we will be working with its tangent
and cotangent bundles, which we write as ϖ : TTM → TM and ϖ̄ : T ∗TM → TM , respec-
tively. In order to work with objects on TM , it is often convenient to introduce a particular set
of coordinates on TM and use the corresponding coordinate bases on TTM and T ∗TM . We
define these coordinates as follows.

Definition 29.1.1 (Induced coordinates on the tangent bundle). Let M be a manifold
of dimension dimM = n and (xa, a = 1, . . . , n) a set of coordinates on U ⊂ M . The
corresponding induced coordinates are the coordinates (xa, x̄a) on τ−1(U) ⊂ TM , where
for each element in τ−1(U), (xa) are the coordinates of the base point x ∈ U and the
fiber coordinates are used to denote x̄a∂a ∈ TxM , where ∂a is the coordinate basis of TM
induced by the coordinates (xa).

There exist different conventions in the literature how to denote the fiber coordinates. It is
denoted (ya) in [BCS91, MA94, BM07]. Two different notations are used in [Run59], namely
(ẋa), which is reminiscent of the coordinate convention for jet bundles over the one-dimensional
base manifold R, and (dxa). Both conventions are also used elsewhere in the literature. However,
we avoid them here, since ẋa will be used to denote the (components of the) tangent vector of
curves, while dxa is used for the coordinate basis of the cotangent bundle T ∗M .

For later use, it is also instructive to note the change of the induced coordinates which arises
from a change of the coordinates on the base manifold. For this purpose, assume we are given
another set (x′a) of coordinates on the base manifold, as functions of the original coordinates
(xa). Then one finds that the fiber part of the induced coordinates (x′a, x̄′a) is given by

x̄′a =
∂x′a

∂xb
x̄b . (29.1.1)

Hence, the induced fiber coordinates transform as if they were components of vector fields.

Given coordinates on TM , it is straightforward to construct the coordinate bases on the bundles
TTM and T ∗TM . We will denote these bases by(

∂a =
∂

∂xa
, ∂̄a =

∂

∂x̄a

)
(29.1.2)

347



and
(dxa,dx̄a) . (29.1.3)

Note that the symbol ∂a now denotes both a coordinate vector field on M and on TM . However,
it should be clear from the context which of these objects is meant. The same holds for the
basis element dxa.

Also for later use, it is helpful to note how these coordinate bases change under a change
of coordinates on the base manifold. The coordinate bases obtained from a new set (x′a) of
coordinates on M can be derived from the standard formulas

∂′a =
∂xb

∂x′a
∂b +

∂x̄b

∂x′a
∂̄b , ∂̄′a =

∂xb

∂x̄′a
∂b +

∂x̄b

∂x̄′a
∂̄b (29.1.4)

and
dx′a =

∂x′a

∂xb
dxb +

∂x′a

∂x̄b
dx̄b , dx̄′a =

∂x̄′a

∂xb
dxb +

∂x̄′a

∂x̄b
dx̄b . (29.1.5)

These formulas simplify, since the coordinates x′a on the base manifold depend only on the
coordinates xa, but not on the fiber coordinates x̄a; the same holds for the converse direction.
Hence,

∂x′a

∂x̄b
= 0 ,

∂xa

∂x̄′b
= 0 . (29.1.6)

Further, making use of the dependence (29.1.1) of the transformed fiber coordinates on the
original coordinates, one can write

∂x̄′a

∂x̄b
=
∂x′a

∂xb
,

∂x̄′a

∂xb
= x̄c

∂x′a

∂xb∂xc
, (29.1.7)

and analogously by exchanging the old and new (primed and unprimed) coordinates. Using
these relations, the basis transformations can further be expanded as

∂′a =
∂xb

∂x′a
∂b + x̄′c

∂xb

∂x′a∂x′c
∂̄b , ∂̄′a =

∂xb

∂x′a
∂̄b (29.1.8)

and
dx′a =

∂x′a

∂xb
dxb , dx̄′a = x̄c

∂x′a

∂xb∂xc
dxb +

∂x′a

∂xb
dx̄b . (29.1.9)

We will make use of these formulas in later sections.

29.2 Tangent structure

The tangent bundle TM of a manifold M is canonically equipped with a number of geometric
objects. We have already encountered the Liouville vector field in definition 19.9.2, which is
defined on every vector bundle, and hence also on TM . Another object, which is specific to the
tangent bundle TM , is defined as follows.

Definition 29.2.1 (Tangent structure). Let M be a manifold, τ : TM → M its tangent
bundle and ϖ : TTM → TM the double tangent bundle. For each ψ ∈ TTM we then have
projections v = ϖ(ψ) and p = τ(v), so that ψ ∈ TvTM and v ∈ TpM . For the differential
τ∗ : TTM → TM of τ we also have τ∗(ψ) ∈ TpM . We can thus consider a curve

γψ : R → TM
λ 7→ γψ(λ) = ϖ(ψ) + λτ∗(ψ)

. (29.2.1)

The map J : TTM → TTM which assigns to each ψ ∈ TTM the tangent vector γ̇ψ(0) ∈
TvTM of the corresponding curve γψ is called the tangent structure.
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There are different alternative definitions of the tangent structure, which lead to canonically
equivalent objects. To see this, and derive a coordinate expression for J , we first note the
following.

Theorem 29.2.1. The tangent structure J : TTM → TTM is a vector bundle homomorphism
from ϖ : TTM → TM to itself, covering the identity on TM .

Proof. We will not show smoothness here for brevity. Using the notations from definition 29.2.1,
we have

J(ψ) = γ̇ψ(0) ∈ TvTM (29.2.2)

and hence ϖ(J(ψ)) = v = ϖ(ψ), so that J indeed preserves the fibers of ϖ : TTM → TM .
To see that it is linear on each fiber, consider ψ,ψ′ ∈ TvTM and µ, µ′ ∈ R. Then we have
ϖ(ψ) = ϖ(ψ′) = v and, using the fact that τ∗ is linear, we find

γµψ+µ′ψ′(λ) = v + λ[µτ∗(ψ) + µ′τ∗(ψ
′)] . (29.2.3)

Taking the tangent vector

J(µψ + µ′ψ′) = γ̇µψ+µ′ψ′(0) = µγ̇ψ(0) + µ′γ̇ψ′(0) = µJ(ψ) + µ′J(ψ′) (29.2.4)

shows that J is indeed linear on each fiber. Hence, it is a vector bundle homomorphism. ■

Recall from section 4.6 that one can identify a vector bundle homomorphism with a section of the
homomorphism bundle, or equivalently, a section of a particular tensor product bundle. Here we
consider the tangent structure J as a section of the homomorphism bundle Hom(TTM, TTM) ∼=
TTM ⊗ T ∗TM , and use it to derive a coordinate expression for J . For this purpose, we use
the induced coordinates (xa, x̄a) on TM defined in section 29.1 and write ψ in the coordinate
basis as ψ = ψa∂a+ ψ̄a∂̄a ∈ TvTM , using again the notation from definition 29.2.1. Similar we
can write v = va∂a ∈ TpM , as well as τ∗(ψ) = ψa∂a ∈ TpM . Finally denoting the coordinates
of the base point p = τ(v) ∈M by (pa), we have the curve γψ in coordinates given by

γψ : λ 7→ (pa, va + λψa) ∈ TM . (29.2.5)

Note that for λ = 0 the curve passes through the point v ∈ TM with coordinates (pa, va),
with the (vertical) tangent vector J(ψ) = ψa∂̄a ∈ TvTM . Hence, we can write J in induced
coordinates as the rank (1, 1) tensor field

J = ∂̄a ⊗ dxa ∈ Γ(TTM ⊗ T ∗TM) , (29.2.6)

which acts on ψ as

J(ψ) = ∂̄a ⊗ dxa(ψb∂b + ψ̄b∂̄b) = ψbδab ∂̄a = ψa∂̄a . (29.2.7)

From the coordinate expression of the tangent structure one may conclude a few more interesting
properties. The first one concerns its image. We find the following:

Theorem 29.2.2. The image of the tangent structure J is V TM , i.e., for every ψ ∈ TTM ,
its image is vertical, J(ψ) ∈ V TM .

Proof. By definition 29.2.1, the curve γψ is entirely contained in the tangent space Tτ(ϖ(ψ))M .
Hence, τ(γψ(λ)) = τ(ϖ(ψ)) is constant and does not depend on λ. The tangent vector of τ ◦γψ
at λ = 0 therefore vanishes, and so τ∗(γ̇ψ(0)) = 0. This means that γ̇ψ(0) = J(ψ) is vertical. ■

This becomes apparent also from the coordinate expression (29.2.7), since ψa∂̄a ∈ V TM is
vertical.

The previous result implies that J is not an isomorphism on TTM , and since its image is not
the whole bundle, it must also possess a non-trivial kernel. Indeed, the kernel is easily found:
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Theorem 29.2.3. The kernel of the tangent structure is V TM , i.e., J(ψ) = 0 ∈ Tϖ(ψ)TM for
all ψ ∈ V TM .

Proof. It follows immediately from the definition 29.2.1 that J(ψ) = 0 if and only if τ∗(ψ) = 0,
so that J and τ∗ have the same kernel. By definition, the vertical tangent bundle V TM is the
kernel of τ∗. ■

Also this becomes apparent from the coordinate expression (29.2.7), since J(ψ̄a∂̄a) = 0 if
ψ ∈ V TM vertical.

From the two previous statements now the next one immediately follows.

Theorem 29.2.4. The tangent structure J : TTM → TTM satisfies J ◦ J = 0, where 0 :
TTM → TTM denotes the vector bundle homomorphism which assigns to every ψ ∈ TTM the
zero element 0 ∈ Tϖ(ψ)TM in the corresponding fiber over ϖ(ψ) ∈ TM .

Proof. This follows immediately from theorems 29.2.2 and 29.2.3. ■

In the following, we will consider the tangent structure as a tensor field J of rank (1, 1) on the
tangent bundle TM , whose coordinate expression is given by (29.2.6), in order to derive a few
more properties. The first is its homogeneity.

Theorem 29.2.5. The tangent structure, viewed as a tensor field of rank (1, 1) on the tangent
bundle TM , is homogeneous of order −1.

Proof. Given a vector ψ ∈ TTM , the pullback χ∗λJ of J along the dilatation χλ with λ ∈ R
acts as

(χ∗λJ)ψ = χ−λ∗Jχλ∗ψ . (29.2.8)

We then follow the construction in the definition 29.2.1. First note that

τ∗(χλ∗ψ) = (τ ◦ χλ)∗(ψ) = τ∗(ψ) , (29.2.9)

since χλ : TM → TM covers the identity on M , and hence τ ◦ χλ = τ . Further, we have

ϖ(χλ∗ψ) = χλϖ(ψ) = eλϖ(ψ) , (29.2.10)

since χλ∗ : TTM → TTM covers χλ on TM , and so ϖ ◦χλ∗ = χλ ◦ϖ. Thus, we obtain a curve

γχλ∗ψ : R → TM
t 7→ γχλ∗ψ(t) = eλϖ(ψ) + tτ∗(ψ)

. (29.2.11)

We further need to calculate its tangent vector γ̇χλ∗ψ(0), which we then push along χ−λ. These
steps can be combined by using

χ−λ∗γ̇χλ∗ψ(0) = ˙̃γχλ∗ψ(0) , (29.2.12)

where
γ̃χλ∗ψ(t) = (χ−λ ◦ γχλ∗ψ)(t) = ϖ(ψ) + te−λτ∗(ψ) . (29.2.13)

Comparing with the curve γψ used in the construction of J(ψ), we now see that

γ̃χλ∗ψ(t) = γψ(te
−λ) , (29.2.14)

and hence
(χ∗λJ)ψ = ˙̃γχλ∗ψ(0) = e−λγ̇ψ(0) = e−λJψ. (29.2.15)

Since this holds for all ψ ∈ TTM , we conclude

χ∗λJ = e−λJ , (29.2.16)

and so J is homogeneous of order −1. ■
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Another set of properties can be derived by realizing that the tangent structure is also a vector
valued one-form on TM , hence J ∈ Ω1(TM, TTM). This allows us to apply the theory of
graded derivations introduced in chapter 17, from which we derive the following properties.

Theorem 29.2.6. The tangent structure J ∈ Ω1(TM, TTM) and the Liouville vector field
c ∈ Ω0(TM, TTM), viewed as vector-valued differential forms on TM , satisfy the following
graded commutation relations:

[ιc, ιJ ] = 0 , (29.2.17a)
[ιJ ,Lc] = ιJ , (29.2.17b)
[ιc,LJ ] = ιJ , (29.2.17c)
[LJ ,Lc] = LJ , (29.2.17d)
[LJ ,LJ ] = 0 , (29.2.17e)
[ιJ ,LJ ] = 0 . (29.2.17f)

Proof. We make frequent use of the fact that c is vertical, and so ιcJ = Jc = 0, as well as the
homogeneity of J , from which follows Jc, JK = LcJ = −J , to show the stated relations:

1. By the definition 17.4.1 of the Nijenhuis-Richardson bracket, one has

[ιc, ιJ ] = ι[c,J]∧ , (29.2.18)

where
[c, J ]∧ = ιcJ − ιJc = 0 , (29.2.19)

where the second term vanishes, since c is a vector-valued zero-form.

2. Following theorem 17.7.2, we have

[ιJ ,Lc] = ιJJ,cK − LιJc = ιJ . (29.2.20)

3. Again using theorem 17.7.2, we find

[ιc,LJ ] = −ιJc,JK − LιcJ = ιJ . (29.2.21)

4. From the definition 17.6.1 of the Frölicher-Nijenhuis bracket and its relation 17.6.7 follows

[LJ ,Lc] = LJJ,cK = LJ . (29.2.22)

5. ▶. . .◀

6. ▶. . .◀ ■

Of particular interest is the relation (29.2.17e), which is related to the fact that the vertical
tangent bundle V TM is an integrable distribution. It can equivalently be formulated as follows.

Theorem 29.2.7. The Nijenhuis tensor NJ = JJ, JK/2 of the tangent structure vanishes, NJ =
0.

Proof. This follows immediately from the relation (29.2.17e), together with the definition of the
Frölicher-Nijenhuis bracket as

LJJ,JK = [LJ ,LJ ] . ■ (29.2.23)

Another helpful relation is the following, which relates it to the Liouville vector field.

Theorem 29.2.8. For any curve γ : R → M , the tangent structure and Liouville vector field
are related by

J ◦ γ̈ = c ◦ γ̇ . (29.2.24)
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Proof. Let t ∈ R. Then by definition of the tangent structure we have

(J ◦ γ̈)(t) = d

dλ
(γ̇(t) + λ(τ∗ ◦ γ̈)(t))

∣∣∣∣
λ=0

=
d

dλ
(γ̇(t) + λγ̇(t))

∣∣∣∣
λ=0

=
d

dλ
γ̇(t)(1 + λ)

∣∣∣∣
λ=0

=
d

dλ
γ̇(t)eλ

∣∣∣∣
λ=0

= (c ◦ γ̇)(t) ,

(29.2.25)

where we replaced 1+λ by eλ, since both have the same value and first derivative at λ = 0. ■

29.3 Cotangent structure

In analogy to the tangent structure discussed above, there also exists an objects which is in a
certain sense dual to the tangent structure. This is defined as follows.

Definition 29.3.1 (Cotangent structure). Let M be a manifold and J its tangent struc-
ture. The cotangent structure is the unique map J∗ : T ∗TM → T ∗TM such that for all
vector fields X ∈ Vect(TM) and one-forms σ ∈ Ω1(TM) on TM holds

ιX(J∗ ◦ σ) = ιJ◦Xσ . (29.3.1)

Note that despite the notation, which is conventional in the literature such as [BM07], J∗ is
not a pullback. In analogy to theorem 29.2.1, also the cotangent structure has a few useful
properties, such as the following.

Theorem 29.3.1. The cotangent structure J∗ : T ∗TM → T ∗TM is a vector bundle homomor-
phism from ϖ̄ : T ∗TM → TM to itself, covering the identity on TM .

Proof. ▶. . .◀ ■

Theorem 29.3.2. For any α ∈ T ∗TM holds J∗(α) = 0 if and only if α is horizontal, α ∈
H∗TM .

Proof. ▶. . .◀ ■

We finally derive a coordinate expression for J∗. Writing X ∈ Vect(TM) and σ ∈ Ω1(TM) in
the induced coordinates as

X = Xa∂a + X̄a∂̄a , σ = σadx
a + σ̄adx̄

a , (29.3.2)

we have
J ◦X = Xa∂̄a , (29.3.3)

and hence
ιX(J∗ ◦ σ) = ιJ◦Xσ = Xaσ̄a . (29.3.4)
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By comparing this with the left hand side, and demanding that it holds for any vector field
X ∈ Vect(TM), we find that we must have

J∗ ◦ σ = σ̄adx
a . (29.3.5)

We can make use of this result and interpret the cotangent structure as a tensor field of rank
(1, 1) on TM , for which we now find the coordinate expression

J∗ = dxa ⊗ ∂̄a . (29.3.6)

Observe that this is very similar to the coordinate expression (29.2.6), the only difference being
the order of the factors in the tensor product.

29.4 Lifts of functions

One peculiar property of the tangent bundle is the possibility to lift certain objects, which are
defined on the base manifold M , to objects defined on the tangent bundle. We have already
encountered such a lift in definition 7.3.2 of the canonical lift of a curve into the tangent bundle.
In this section we will see that also functions can be lifted from the base manifold to the tangent
bundle. In fact, it turns out that there are even several possibilities to construct such a lift. We
start with the following.

Definition 29.4.1 (Vertical lift of a function). Let f ∈ C∞(M,R) be a function. Its
vertical lift is the function

V
f = f ◦ τ ∈ C∞(TM,R) on the tangent bundle τ : TM →M .

Comparing this definition with definition 11.1.1, we see that the vertical lift is simply the
pullback

V
f = τ∗f of f along the tangent bundle projection. The following property of the

vertical lift becomes immediately clear.

Theorem 29.4.1. The vertical lift
V

f of a function f ∈ C∞(M,R) is a homogeneous function
on TM of order 0.

Proof. Given a dilatation χλ : TM → TM we have

χ∗λ
V
f =

V
f ◦ χλ = f ◦ τ ◦ χλ = f ◦ τ =

V
f = e0·λ

V
f , (29.4.1)

where τ ◦ χλ = τ since χλ is vertical. ■

This can also easily be seen in coordinates. Using induced coordinates (xa, x̄a), the functional
dependence on these coordinates is simply expressed as

V
f(xa, x̄a) = f(xa).

Another type of lift is the following.

Definition 29.4.2 (Complete lift of a function). Let f ∈ C∞(M,R) be a function. Its
complete lift is the function

C
f ∈ C∞(TM,R) on the tangent bundle τ : TM → M defined

by
C
f : TM → R

v 7→ v(f)
. (29.4.2)

353



To clarify this definition, recall that we defined tangent vectors as derivations, according to
definition 7.1.1. Every derivation acts on functions, and the result is a real number. In induced
coordinates, the complete lift is thus expressed as

C
f = x̄a∂af . (29.4.3)

On may ask whether also in this case the resulting function on TM is homogeneous. Intuitively
one may expect homogeneity of order 1, since the complete lift depends linearly on the vector
argument. We show that this is indeed the case.

Theorem 29.4.2. The complete lift
C

f of a function f ∈ C∞(M,R) is a homogeneous function
on TM of order 1.

Proof. Given a dilatation χλ : TM → TM we have(
χ∗λ

C
f
)
(v) =

C
f(χλ(v)) =

C
f(eλv) = eλv(f) = eλ

C
f(v) . (29.4.4)

■

We further recall that a derivation, by definition, satisfies the Leibniz rule. One may thus
expect that this property also propagates to the complete lift of a function. Indeed also this is
the case, and we find the following relation.

Theorem 29.4.3. The vertical and complete lifts satisfy the Leibniz rule

C

(fg) =
C

f
V
g +

V

f
C
g (29.4.5)

for any functions f, g ∈ C∞(M,R).

Proof. By the Leibniz rule for derivations we have

C

(fg)(v) = v(fg)

= v(f)g(τ(v)) + f(τ(v))v(g)

=
C
f(v)

V
g(v) +

V
f(v)

C
g(v)

= (
C
f

V
g +

V
f

C
g)(v)

(29.4.6)

for all v ∈ TM . ■

We see that the complete and vertical lifts of functions satisfy a number of relations. One
may ask, conversely, whether there are any relations which are satisfied only by these lifts, and
which can thus be used as a criterion to determine whether an arbitrary function on the tangent
bundle comes from lifting a function on the base manifold. This is indeed the case. For the
vertical lift, it is immediately clear that a function F ∈ C∞(TM,R) is a vertical lift if and
only if it is constant on the fibers. We find that there is another possibility to formulate this
condition, by using the cotangent structure J∗ as follows.

Theorem 29.4.4. A function F ∈ C∞(TM,R) is a vertical lift, F =
V

f for some f ∈
C∞(M,R), if and only if J∗dF = 0.

Proof. Following theorem 29.3.2, J∗dF = 0 if and only if dF is horizontal, dF ∈ Γ(H∗TM).
This is equivalent to the statement that dF vanishes on every vertical vector fieldX ∈ Γ(V TM),

0 = ιXdF = XF . (29.4.7)

Now this can equivalently be stated as F being constant along the fibers of TM , and hence the
vertical lift of a function on M . ■
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For the complete lift, we find a similarly simple condition.

Theorem 29.4.5. A function F ∈ C∞(TM,R) is the sum of a complete and a vertical lift,
F =

C

f1 +
V

f2 for some f1, f2 ∈ C∞(M,R), if and only if dJ∗dF = 0.

Proof. ▶. . .◀ ■

The latter two statements can also be illustrated using coordinates. For a function F ∈
C∞(TM,R), we have

dF = ∂aFdx
a + ∂̄aFdx̄

a , (29.4.8)

J∗dF = ∂̄aFdx
a (29.4.9)

and
dJ∗dF = ∂a∂̄bFdx

a ∧ dxb + ∂̄a∂̄bFdx̄
a ∧ dxb . (29.4.10)

From these expressions one easily sees that J∗dF = 0 if and only if ∂̄aF = 0, which is the case
if and only if F is a vertical lift. Similarly, dJ∗dF = 0 if and only if

∂[a∂̄b]F = ∂̄a∂̄bF = 0 . (29.4.11)

The latter implies that F must be of the form

F (xa, x̄a) = f(xa) + x̄ava(x
a) . (29.4.12)

The former then gives the condition

∂[avb](x
a) = 0 , (29.4.13)

from which follows
va = ∂af̃(x

a) . (29.4.14)

We thus see that F =
V
f +

C

f̃ .

29.5 Lifts of vector fields

The next class of objects which we will lift from the manifold M to its tangent bundle are vector
fields. As it was also the case for functions, we find that there are two canonical ways how this
can be done. We first define the following.

Definition 29.5.1 (Vertical lift of a vector field). Let M be a manifold and X ∈ Vect(M)

a vector field. Its vertical lift is the vector field
V
X ∈ Vect(TM) defined by

V
X(v) =

d

dt
(v + tX(τ(v)))

∣∣∣∣
t=0

(29.5.1)

as the tangent vector to the curve t 7→ v + tX(τ(v)) at t = 0, where τ : TM → M is the
bundle map of the tangent bundle.

To illustrate this definition, we derive its coordinate expression using the induced tangent bundle
coordinates (xa, x̄a) introduced in section 29.1. In these coordinates, the vector field X is
expressed by component functions Xa = Xa(x) on the base manifold M as X = Xa∂a. To
derive its vertical lift

V
X(x, x̄) at a point with coordinates (xa, x̄a) in the tangent bundle, we

construct the curve
λ 7→ (xa, x̄a + λXa(x)) (29.5.2)
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on TM . At λ = 0, we find its tangent vector Xa(x)∂̄a ∈ T(x,x̄)TM . Hence, the vertical lift has
the coordinate expression

V
X = Xa∂̄a . (29.5.3)

One easily checks the following property of the vertical lift.

Theorem 29.5.1. The vertical lift
V

X of a vector field X ∈ Vect(M) is a homogeneous vector
field on TM of order −1.

Proof. We will check the homogeneity using its definition 19.9.3, together with the pullback 12.1.1
of a vector field and the pushforward 10.2.1 of the tangent vector of a curve. Putting these
elements together, we find the formula(

χ∗λ
V
X
)
(v) = χ−λ∗

( V
X(χλ(v))

)
= χ−λ∗

( V
X(eλv)

)
= χ−λ∗

[
d

dt
(eλv + tX(τ(eλv)))

∣∣∣∣
t=0

]
=

d

dt
χ−λ(e

λv + tX(τ(v)))

∣∣∣∣
t=0

=
d

dt
(v + te−λX(τ(v)))

∣∣∣∣
t=0

= e−λ
V
X(v)

(29.5.4)

for all X ∈ Vect(X), λ ∈ R and v ∈ TM . ■

This can also be seen from the coordinate expression (29.5.3) and theorem 19.9.1, from which
one finds

Lc

V
X =

[
c,

V
X
]
= [x̄a∂̄a, X

b∂̄b] = −Xa∂̄a = −
V
X . (29.5.5)

Another type of lift arises from the fact that the tangent bundle is a natural bundle, in the sense
we studied in chapter 10. Such bundles allow a functorial, or canonical, lift of diffeomorphisms
φ : M → M from the base manifold M to the total space of the bundle. In the case of the
tangent bundle, this lift is given by the differential φ∗ : TM → TM . Considering not a single
diffeomorphism φ, but a family of diffeomorphisms generated by the flow of a vector field, we
arrive at the notion of the complete lift of a vector field, which we can define as follows.

Definition 29.5.2 (Complete lift of a vector field). Let M be a manifold and X ∈ Vect(M)

a vector field with flow ϕ : R ×M ⊇ U → M . Its complete lift is the vector field
C
X ∈

Vect(TM) whose flow is given by

C
ϕ : R× TM ⊇ (idR, τ)

−1(U) → TM
(t, v) 7→ ϕt∗(v)

. (29.5.6)

To see that
C
ϕ given above indeed defines the flow of a vector field, one must check that every

curve Γv : t 7→
C
ϕt(v) defined by fixing v is an integral curve, and thus in particular

Γ̇v(t) =
C
X(Γv(t)) = Γ̇C

ϕt(v)
(0) . (29.5.7)
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This follows from the fact that ϕt+s = ϕs ◦ ϕt, since ϕ is a flow, and hence ϕ(t+s)∗ = ϕs∗ ◦ ϕt∗,
by differentiating. For a function f ∈ C∞(TM,R) one has

Γ̇v(t)(f) =
d

ds
f(Γv(t+ s))

∣∣∣∣
s=0

=
d

ds
f(ϕ(t+s)∗(v))

∣∣∣∣
s=0

=
d

ds
f(ϕs∗(ϕt∗(v)))

∣∣∣∣
s=0

= Γ̇ϕt∗(v)(0)(f) .

(29.5.8)

There exists another possibility to define the canonical lift of a vector field, which is equivalent to
the definition we gave above. This alternative definition is given by its relation to the complete
lift of a function, which we defined in the previous section. We find the following relation.

Theorem 29.5.2. The complete lift
C

X ∈ Vect(TM) is the unique vector field on TM such that

C

(Xf) =
C

X
C

f (29.5.9)

for all functions f ∈ C∞(M,R).

Proof. Recall from section 16.1 that any vector field is uniquely defined by its flow, through the
tangent vectors X(x) = γ̇x to the integral curves γx(t) = ϕt(x). Instead of the vector fields,
we can thus work with their flows. Further, recall from section 16.3 that the action of a vector
field on a function is given by the Lie derivative, and hence

Xf =
d

dt
(f ◦ ϕt)

∣∣∣∣
t=0

. (29.5.10)

To calculate the complete lift of Xf , consider a vector v ∈ TM , seen as a derivation. By
commuting the action of v and the derivative with respect to t, and then using the definition
of the pushforward, we have

C

(Xf)(v) = v(Xf) =
d

dt
v(f ◦ ϕt)

∣∣∣∣
t=0

=
d

dt
ϕt∗(v)(f)

∣∣∣∣
t=0

. (29.5.11)

Now using the definition of the complete lift of f again, the expression under the derivative
becomes

ϕt∗(v)(f) =
C
f(ϕt∗(v)) =

( C
f ◦ ϕt∗

)
(v) , (29.5.12)

and so we see that we can write
C

(Xf)(v) as the action of a vector on
C
f , which arises as the

tangent vector to the curve t 7→ ϕt∗(v) ∈ TM . By the relation (29.5.9), this tangent vector
defines

C
X(v), i.e.,

(
C
X

C
f)(v) =

C

(Xf)(v) =
d

dt

( C
f ◦ ϕt∗

)
(v)

∣∣∣∣
t=0

. (29.5.13)

This shows that the flow
C
ϕ of

C
X and ϕ∗ agree at t = 0, and so it uniquely defines

C
X. ■

It is helpful to derive a coordinate expression for the canonical lift using the induced coordinates
on the tangent bundle. Denote the coordinates of the vector v ∈ TM by (xa, x̄a). Its base point
τ(v) therefore has coordinates (xa). Further, we write the coordinates of ϕt∗(v) as (x′a, x̄′a),
and hence τ(ϕt∗(v)) = ϕt(τ(v)) has coordinates (x′a). By definition of the differential and the
induced coordinates we have

x̄′a =
∂x′a

∂xb
x̄b . (29.5.14)
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Using the definition of the flow of a vector field X = Xa∂a, one then finds

C
X =

dx′a

dt

∣∣∣∣
t=0

∂a +
dx̄′a

dt

∣∣∣∣
t=0

∂̄a

=
dx′a

dt

∣∣∣∣
t=0

∂a +
d

dt

(
∂x′a

∂xb
x̄b
)∣∣∣∣

t=0

∂̄a

=
dx′a

dt

∣∣∣∣
t=0

∂a + x̄b
∂

∂xb
dx′a

dt

∣∣∣∣
t=0

∂̄a

= Xa∂a + x̄b∂bX
a∂̄a .

(29.5.15)

One can compare this derivation with the alternative definition given in theorem 29.5.2. Using
C
f = x̄a∂af , the left hand side of (29.5.9) reads

C

(Xf) = x̄a∂a(X
b∂bf) = x̄a∂aX

b∂bf + x̄aXb∂a∂bf . (29.5.16)

For the right hand side, we write
C
X =

C
Xa∂a+

C

X̄a∂̄a with yet to be determined components
C
Xa

and
C

X̄a. This yields
C
X

C
f =

C
Xax̄b∂a∂bf +

C

X̄a∂af . (29.5.17)

By comparison with the left hand side, one thus identifies
C
Xa = Xa and

C

X̄a = x̄b∂bX
a, which

yields again the formula (29.5.15).

The complete lift has a number of interesting properties. A question which naturally arises is
whether it is homogeneous, and of which order. This is answered by the following statement.

Theorem 29.5.3. The complete lift
C

X of a vector field X ∈ Vect(M) is a homogeneous vector
field on TM of order 0.

Proof. Again it is most convenient to use the definition 19.9.3 for the proof. Using the linearity
of the pushforward one finds(

χ∗λ
C
X
)
(v) = χ−λ∗

( C
X(χλ(v))

)
= χ−λ∗

( C
X(eλv)

)
= χ−λ∗

(
d

dt
ϕt∗(e

λv)

∣∣∣∣
t=0

)
=

d

dt
χ−λ(ϕt∗(e

λv))

∣∣∣∣
t=0

=
d

dt
χ−λ(e

λϕt∗(v))

∣∣∣∣
t=0

=
d

dt
ϕt∗(v)

∣∣∣∣
t=0

=
C
X(v)

(29.5.18)

for all X ∈ Vect(X), λ ∈ R and v ∈ TM . ■

Of course, this can also be derived using the coordinate expression (29.5.15). Together with the
statement 19.9.1, we can write

Lc

C
X = [c,

C
X]

= [x̄c∂̄c, X
a∂a + x̄b∂bX

a∂̄a]

= x̄cδbc∂bX
a∂̄a − x̄b∂bXaδca∂̄c

= x̄b∂bX
a∂̄a − x̄b∂bXa∂̄a

= 0 .

(29.5.19)
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One may wonder whether there is any relation between the complete and vertical lifts of a
vector field. This is indeed the case, and it is given by the tangent structure as follows.

Theorem 29.5.4. The vertical and complete lifts of a vector field X ∈ Vect(M) are related by
V

X = J
C

X.

Proof. We can use the fact that both the vertical and complete lift, as well as the tangent struc-
ture, are defined via tangent vectors to certain curves, and explicitly construct the corresponding
curves. For v ∈ TM we then find(

J
C
X
)
(v) =

d

ds

(
ϖ(

C
X(v)) + sτ∗(

C
X(v))

)∣∣∣∣
s=0

=
d

ds

(
v + sτ∗

(
d

dt
ϕt∗(v)

∣∣∣∣
t=0

))∣∣∣∣
s=0

=
d

ds

(
v + s

d

dt
τ(ϕt∗(v))

∣∣∣∣
t=0

)∣∣∣∣
s=0

=
d

ds

(
v + s

d

dt
ϕt(τ(v))

∣∣∣∣
t=0

)∣∣∣∣
s=0

=
d

ds
(v + sX(τ(v)))

∣∣∣∣
s=0

=
V
X(v) ,

(29.5.20)

where ϕ denotes the flow of X. Here we made use of the pushforward of the tangent vector of
a curve given by theorem 10.2.1 to conclude

τ∗

(
d

dt
ϕt∗(v)

∣∣∣∣
t=0

)
=

d

dt
τ(ϕt∗(v))

∣∣∣∣
t=0

, (29.5.21)

and theorem 10.1.1 that the differential is a vector bundle homomorphism covering the original
map to conclude

τ(ϕt∗(v)) = ϕt(τ(v)) . ■ (29.5.22)

This can also be seen easily by using coordinates. From the expressions (29.2.6) and (29.5.15)
follows

J
C
X = (∂̄c ⊗ dxc)(Xa∂a + x̄b∂bX

a∂̄a) = Xa∂̄a =
V
X . (29.5.23)

Another helpful set of relations between the complete and vertical lifts of vector fields is given
by the following formulas for their commutators.

Theorem 29.5.5. The Lie bracket and the vertical and complete lifts of vector fields X,Y ∈
Vect(M) satisfy the relations[

V

X,
V

Y
]
= 0 ,

[
V

X,
C

Y
]
=

V

[X,Y ] ,
[

C

X,
C

Y
]
=

C

[X,Y ] . (29.5.24)

Proof. Let f ∈ C∞(TM,R) be a function on the tangent bundle. To show the propositions,
we will make use of the definition 7.5.1 of the commutator of vector fields. This leads to the
following relations:

1. For any v ∈ TM , we have by definition of the vertical lift( V
Xf
)
(v) =

d

dt
f(v + tX(τ(v)))

∣∣∣∣
t=0

, (29.5.25)
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and analogously for Y . Hence, we find( V
X

V
Y f
)
(v) =

d

dt

( V
Y f
)
(v + tX(τ(v)))

∣∣∣∣
t=0

=
d

dt

d

ds
f(v + tX(τ(v)) + sY (τ(v + tX(τ(v)))))

∣∣∣∣
s=0

∣∣∣∣
t=0

=
d

dt

d

ds
f(v + tX(τ(v)) + sY (τ(v)))

∣∣∣∣
s=0

∣∣∣∣
t=0

=
d

ds

d

dt
f(v + tX(τ(v)) + sY (τ(v)))

∣∣∣∣
t=0

∣∣∣∣
s=0

=
d

ds

d

dt
f(v + tX(τ(v + sY (τ(v)))) + sY (τ(v)))

∣∣∣∣
t=0

∣∣∣∣
s=0

=
d

ds

( V
Xf
)
(v + sY (τ(v)))

∣∣∣∣
s=0

=
( V
Y

V
Xf
)
(v) ,

(29.5.26)

where we used the facts that the parameter derivatives with respect to t and s commute
for smooth functions, as well as

τ(v + tX(τ(v))) = τ(v + sY (τ(v))) = τ(v) , (29.5.27)

since the corresponding curves are entirely contained in Tτ(v)M . Thus,
V
X and

V
Y commute,

and so
[ V
X,

V
Y
]
= 0.

2. We can proceed similarly to the previous derivation. First note that by definition of the
complete lift and the flow we have for v ∈ TM :( C

Y f
)
(v) =

d

dt
f(ϕt∗(v))

∣∣∣∣
t=0

, (29.5.28)

where ϕ denotes the flow of Y . Now one may calculate([ V
X,

C
Y
]
f
)
(v) =

( V
X

C
Y f
)
(v)−

( C
Y

V
Xf
)
(v)

=
d

dt

( C
Y f
)
(v + tX(τ(v)))

∣∣∣∣
t=0

− d

ds

( V
Xf
)
(ϕs∗(v))

∣∣∣∣
s=0

=
d

dt

d

ds
f(ϕs∗(v + tX(τ(v))))

∣∣∣∣
s=0

∣∣∣∣
t=0

− d

ds

d

dt
f(ϕs∗(v) + tX(τ(ϕs∗(v))))

∣∣∣∣
t=0

∣∣∣∣
s=0

=
d

dt

d

ds
f(ϕs∗(v) + tϕs∗(X(τ(v))))

∣∣∣∣
s=0

∣∣∣∣
t=0

− d

ds

d

dt
f(ϕs∗(v) + tX(ϕs(τ(v))))

∣∣∣∣
t=0

∣∣∣∣
s=0

=
d

dt
f(v − t(LYX)(τ(v)))

∣∣∣∣
t=0

=
d

dt
f(v + t[X,Y ](τ(v)))

∣∣∣∣
t=0

=
( V

[X,Y ]f
)
(v) .

(29.5.29)

Here we used the facts that the differential ϕs∗ is linear, so that

ϕs∗(v + tX(τ(v))) = ϕs∗(v) + tϕs∗(X(τ(v))) , (29.5.30)
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and that it is a vector bundle homomorphism, so that

τ(ϕs∗(v)) = ϕs(τ(v)) . (29.5.31)

Finally, the Lie derivative follows from

(LYX)(τ(v)) =
d

ds
(X(ϕs(τ(v)))− ϕs∗(X(τ(v))))

∣∣∣∣
s=0

. (29.5.32)

3. We can make use of theorem 29.5.2 which states that for any f ∈ C∞(M,R) holds[ C
X,

C
Y
] C
f =

C
X

C
Y

C
f −

C
Y

C
X

C
f

=
C
X

C

(Y f)−
C
Y

C

(Xf)

=
C

(XY f)−
C

(Y Xf)

=
C

([X,Y ]f)

=
C

[X,Y ]
C
f .

(29.5.33)

Since the action on arbitrary complete lifts
C
f uniquely determines a vector field on TM ,

it follows that
[ C
X,

C
Y
]
=

C

[X,Y ]. ■

The last statement for the complete lift in particular shows that the function C• : Vect(M) →
Vect(TM) is a Lie algebra homomorphism. Again it is convenient to illustrate the result by
explicitly calculating the Lie brackets from the corresponding coordinate expressions:

1. For the vertical lifts one finds[ V
X,

V
Y
]
= [Xa∂̄a, Y

b∂̄b] = Xa∂̄aY
b∂̄b − Y b∂̄bXa∂̄a = 0 , (29.5.34)

which follows from the fact that the coefficients Xa, Y a are functions on the base manifold
M , and thus do not depend on the vertical coordinate x̄a.

2. The mixed commutator is given by[ V
X,

C
Y
]
= [Xa∂̄a, Y

b∂b + x̄c∂cY
b∂̄b]

= Xaδca∂cY
b∂̄b − Y b∂bXa∂̄a

= (Xb∂bY
a − Y b∂bXa)∂̄a

= [X,Y ]a∂̄a

=
V

[X,Y ] .

(29.5.35)

3. Finally, for the complete lifts holds[ C
X,

C
Y
]
= [Xa∂a + x̄c∂cX

a∂̄a, Y
b∂b + x̄d∂dY

b∂̄b]

= Xa∂aY
b∂b +Xax̄d∂a∂dY

b∂̄b + x̄c∂cX
aδda∂dY

b∂̄b

− Y b∂bXa∂a − Y bx̄c∂b∂cXa∂̄a − x̄d∂dY bδcb∂cXa∂̄a

= (Xb∂bY
a − Y b∂bXa)∂a + x̄c∂c(X

b∂bY
a − Y b∂bXa)∂̄a

= [X,Y ]a∂a + x̄c∂c[X,Y ]a∂̄a

=
C

[X,Y ] .

(29.5.36)
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One may wonder whether the vertical and complete lifts of vector fields can be characterized
by their relations with the tangent structure, similar to theorems 29.4.4 and 29.4.5 for the lifts
of functions. It turns out that this is indeed the case. For the vertical lift, we find the following
statement.

Theorem 29.5.6. A vector field X ∈ Vect(TM) is a vertical lift, X =
V

Z for some Z ∈
Vect(M), if and only if JX = 0 and LXJ = 0.

Proof. ▶. . .◀ ■

Similarly, for the complete lift the following relation holds.

Theorem 29.5.7. A vector field X ∈ Vect(TM) is the sum of a complete and a vertical lift,
X =

C

Y +
V

Z for some Y, Z ∈ Vect(M), if and only if LXJ = 0.

Proof. ▶. . .◀ ■

We illustrate these two statements using coordinates. Given a vector field X = Xa∂a+ X̄
a∂̄a ∈

Vect(TM) and an auxiliary vector field V = V a∂a + V̄ a∂̄a ∈ Vect(TM), we use theorem 16.6.1
to calculate the Lie derivative

(LXJ)V = [X, JV ]− J [X,V ]

= [Xa∂a + X̄a∂̄a, V
b∂̄b]− J [Xa∂a + X̄a∂̄a, V

b∂b + V̄ b∂̄b]

= (Xb∂bV
a + X̄b∂̄bV

a − V b∂̄bX̄a)∂̄a − V b∂̄bXa∂a

− (Xb∂bV
a + X̄b∂̄bV

a − V b∂bXa − V̄ b∂̄bXa)∂̄a

= V b(∂bX
a − ∂̄bX̄a)∂̄a + ∂̄bX

a(V̄ b∂̄a − V b∂a) ,

(29.5.37)

so that
LXJ = (∂bX

a − ∂̄bX̄a)∂̄a ⊗ dxb + ∂̄bX
a(∂̄a ⊗ dx̄b − ∂a ⊗ dxb) . (29.5.38)

Now this vanishes if and only if the coefficients in both terms vanish. For the second term,
∂̄bX

a = 0 means that the components Xa are constant along the fibers of TM , as they depend
on the base manifold coordinates xa only. Hence, Xa = Y a for some vector field Y = Y a∂a ∈
Vect(M). The condition from the first term then determines X̄a to be of the form

X̄a = x̄b∂bY
a + Za , (29.5.39)

where also Za does not depend on x̄a, and so gives another vector field Z = Za∂a ∈ Vect(M).
By comparing with the coordinate expressions of the complete and vertical lifts, one sees that
X =

C
Y +

V
Z. Further, JX = 0 if and only if X is vertical, hence Xa = Y a = 0, whence X =

V
Z.

Finally, we come to discuss the relation between the lifts of vector fields and those of functions.
These come in two types, depending on whether we apply a vector field to a function, or multiply
a vector field with a function. They are summarized in the following statement.

Theorem 29.5.8. The vertical and complete lifts of functions and vector fields are related by

C

(Xf) =
C

X
C

f ,
V

(Xf) =
V

X
C

f =
C

X
V

f ,
C

(fX) =
C

f
V

X +
V

f
C

X ,
V

(fX) =
V

f
V

X (29.5.40)

for any function f ∈ C∞(M,R) and vector field X ∈ Vect(M).

Proof. The first relation is simply the statement from theorem 29.5.2, which we repeat here for
completeness, but do not need to prove again. Let v ∈ TM and g ∈ C∞(TM,R), and denote
the flow of X by ϕ. Then the remaining propositions are proven as follows:

362



1. The complete lift of a vector field acts on the vertical lift of a function as( C
X

V
f
)
(v) =

d

dt

V
f(ϕt∗(v))

∣∣∣∣
t=0

=
d

dt
f(τ(ϕt∗(v)))

∣∣∣∣
t=0

=
d

dt
f(ϕt(τ(v)))

∣∣∣∣
t=0

= (Xf)(τ(v))

=
V

(Xf)(v) .

(29.5.41)

2. The vertical lift of a vector field acts on the complete lift of a function as( V
X

C
f
)
(v) =

d

dt

C
f(v + tX(τ(v)))

∣∣∣∣
t=0

=
d

dt
(v + tX(τ(v)))f

∣∣∣∣
t=0

= X(τ(v))f

= (Xf)(τ(v))

=
V

(Xf)(v) .

(29.5.42)

3. For the complete lift
C

(fX) holds

C

(fX)
C
g =

C

(fXg) . (29.5.43)

For the latter, we can use the Leibniz rule, according to which holds

C

(fXg)(v) = v(fXg) = v(f)(Xg)(τ(v)) + f(τ(v))v(Xg) =
C
f(v)

V

(Xg)(v) +
V
f(v)

C

(Xg)(v) .
(29.5.44)

Using the previously proven propositions, we have

V

(Xg) =
V
X

C
g ,

C

(Xg) =
C
X

C
g , (29.5.45)

and so
C

(fX)
C
g =

( C
f

V
X +

V
f

C
X
)

C
g . (29.5.46)

Since this holds for all functions g, the statement follows.

4. We can start from the previous proposition
C

(fX) =
C
f

V
X +

V
f

C
X. Applying J on both sides

yields
V

(fX) = J
C

(fX) =
C
fJ

V
X +

V
fJ

C
X =

V
f

V
X , (29.5.47)

where we used theorem 29.5.4 and the fact that J vanishes on vertical vector fields, whence
J

V
X = 0. ■

Also these formulas are easily illustrated in coordinates. Writing X = Xa∂a ∈ Vect(M), and
hence Xf = Xa∂af , we have the following formulas (for

C

(Xf), see the coordinate calculation
below theorem 29.5.2):

1. Acting with
C
X on

V
f , we get

(Xa∂a + x̄a∂aX
b∂̄b)(f ◦ τ) = (Xa∂af) ◦ τ =

V

(Xf) . (29.5.48)
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2. Conversely, acting with
V
X on

C
f , one finds

Xa∂̄a(x̄
b∂b(f ◦ τ)) = (Xa∂af) ◦ τ =

V

(Xf) . (29.5.49)

3. The complete lift of fX reads

C

(fX) = f(Xa∂a + x̄a∂aX
b∂̄b) + x̄a∂afX

b∂̄b =
V
f

C
X +

C
f

V
X . (29.5.50)

4. Finally, for the vertical lift of fX one has

V

(fX) = fXa∂̄a =
V
f

V
X . (29.5.51)

29.6 Lifts of covector fields

Definition 29.6.1 (Vertical lift of a covector field). Let M be a manifold and ω ∈ Ω1(M)
a covector field. Its vertical lift is the covector field V

ω ∈ Ω1(TM) defined by the pullback

V
ω = τ∗ω . (29.6.1)

Definition 29.6.2 (Complete lift of a covector field). Let M be a manifold and ω ∈ Ω1(M)
a covector field. Its complete lift is the covector field C

ω ∈ Ω1(TM) defined by ▶. . .◀

Theorem 29.6.1. The vertical and complete lifts of a covector field ω ∈ Ω1(M) are related by
V
ω = J∗C

ω.

Proof. ▶. . .◀ ■

Theorem 29.6.2. For every function f ∈ C∞(M,R), the vertical and complete lift of the total
differential satisfy

V

(df) = d
V

f ,
C

(df) = d
C

f . (29.6.2)

Proof. ▶. . .◀ ■

Theorem 29.6.3. For every function f ∈ C∞(M,R) and covector field ω ∈ Ω1(M), the vertical
and complete lift satisfy

V

(fω) =
V

f
V
ω ,

C

(fω) =
V

f
C
ω +

C

f
V
ω . (29.6.3)

Proof. ▶. . .◀ ■

29.7 The canonical involution

Based on the constructions displayed in the previous sections, we now introduce a map, which
we define implicitly by the following conditions.
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Definition 29.7.1 (Canonical involution). Let M be a manifold, τ : TM →M its tangent
bundle and ϖ : TTM → TM the double tangent bundle. The canonical involution of
TTM is the unique diffeomorphism κ : TTM → TTM satisfying

1. τ∗ ◦ κ = ϖ,

2. ϖ ◦ κ = τ∗,

3. κ(ψ)(
C
f) = ψ(

C
f) for all v ∈ TTM and f ∈ C∞(M,R).

▶. . .◀

It is instructive to calculate a coordinate expression for the canonical involution. For this
purpose, consider a double tangent vector ψ = ψa∂a + ψ̄a∂̄a ∈ TvTM , where we assign co-
ordinates (xa, x̄a) to the base point ϖ(ψ) = v. Hence, ψ is fully characterized by the coor-
dinates (xa, x̄a, ψa, ψ̄a) on TTM . The bundle map ϖ, obviously, assigns to ψ the element
ϖ(ψ) = v ∈ TM with coordinates (xa, x̄a). However, we also have a second map which allows
us to obtain an element of TM , namely the differential τ∗ : TTM → TM of the bundle map
τ : TM → M . By construction of the induced coordinates, the latter gives the assignment
τ : (xa, x̄a) 7→ (xa). Hence, its differential acts on the basis vectors of TTM as

τ∗(∂a) = ∂a , τ∗(∂̄a) = 0 , ⇒ τ∗(ψ) = τ∗(ψ
a∂a + ψ̄a∂̄a) = ψa∂a , (29.7.1)

and so assigns to ψ the element of TM with coordinates (xa, ψa). Further, we use the coordinate
expression

C
f(x, x̄) = x̄a∂af(x) for the canonical lift of a function, from which follows

ψ(
C
f) = ψax̄b∂a∂bf(x) + ψ̄a∂af(x) . (29.7.2)

Finally, writing the image κ(ψ) in coordinates as (x′a, x̄′a, ψ′a, ψ̄′a), we have the following rela-
tions:

1. From τ∗ ◦ κ = ϖ follows (x′a, ψ′a) = (xa, x̄a).

2. From ϖ ◦ κ = τ∗ follows (x′a, x̄′a) = (xa, ψa).

3. From κ(ψ)(
C
f) = ψ(

C
f) follows ψ′(ax̄′b) = ψ(ax̄b) (since partial derivatives commute) and

ψ̄′a = ψ̄a.

From the first two conditions thus follows x′a = xa, x̄′a = ψa and ψ′a = x̄a. It thus follows that
ψ′ax̄′b = ψbx̄a, and thus also ψ′(ax̄′b) = ψ(ax̄b) is already satisfied. Finally, we have ψ̄′a = ψ̄a,
so that we can write the canonical involution as

κ : (xa, x̄a, ψa, ψ̄a) 7→ (xa, ψa, x̄a, ψ̄a) . (29.7.3)

With this knowledge, we can study the properties of κ. We start with the following, which is
already suggested by the name we introduced.

Theorem 29.7.1. The canonical involution κ : TTM → TTM is an involution, κ◦κ = idTTM .

Proof. ▶. . .◀ ■

Theorem 29.7.2. The canonical involution is a vector bundle isomorphism from ϖ : TTM →
TM to τ∗ : TTM → TM and vice versa, covering the identity on TM .

Proof. ▶. . .◀ ■
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Theorem 29.7.3. The canonical involution satisfies κ ◦ γ̈ = γ̈ for the second canonical lift
γ̈ ∈ C∞(R, TTM) of every curve γ ∈ C∞(R,M).

Proof. ▶. . .◀ ■
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Chapter 30

Affine connections

30.1 Frame bundle connections

In the chapters 26, 27 and 28 we have discussed different descriptions of connections on various
types of bundles. The most important class of bundles we have encountered so far, since they are
canonically defined for any manifold, are constructed as associated bundles to the tangent frame
bundle, and are given by tensor density bundles and their special cases, including tensor bundles
and scalar density bundles. There are different, equivalent possibilities to define connections
on these bundles. Here we choose to start from the principal bundle, since every other bundle
we will discuss in this chapter can be obtained from the frame bundle. We will thus use the
following definition as the starting point.

Definition 30.1.1 (Affine connection). Let M be a manifold of dimension n. An affine
connection is a principal GL(n,R) connection on the general linear frame bundle FM .

Reminding definition 27.1.2 of a principal G-connection, an affine connection is therefore a
gl(n,R)-valued one-form ϑ ∈ Ω1(FM, gl(n,R)) on the frame bundle FM , which is equivariant
and reverses the operation X 7→ X̃ which assigns to X ∈ gl(n,R) the fundamental vector field
X̃ ∈ Vect(FM).

We illustrate the definition using the coordinates (xµ, pµi) on FM which we introduced in
section 22.6, where (xµ) are coordinates on the base manifold M . A general gl(n,R)-valued
one-form ϑ ∈ Ω1(FM, gl(n,R)) takes the form

ϑ = (ϑijµdx
µ + ϑ̄ijµ

kdpµk)⊗Hij , (30.1.1)

where Hij denotes the basis of the Lie algebra gl(n,R). In order for this to be a principal
connection, we have two conditions. First, we must demand that on the fundamental vector
fields, which generate the right translations, it must recover the generating Lie algebra element.
Using the expression (22.6.6) for the fundamental vector fields, we have

ϑ(ã) = ϑ̄ijµ
kpµla

l
kHij . (30.1.2)

Demanding that this is equal to aijHij , we thus have the condition

ϑ̄ijµ
kpµl = δilδ

k
j , (30.1.3)

and thus
ϑ̄ijµ

k = p−1 iµ δkj , (30.1.4)
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so that ϑ becomes
ϑ = (ϑijµdx

µ + p−1 iµdp
µ
j)⊗Hij . (30.1.5)

The second condition is that of equivariance. Denoting a group element g ∈ GL(n,R) by the
matrix components gij , we can use the expression (22.6.4) for the right translation to calculate
the pullback

R∗gϑ = (ϑ′ijµdx
µ + g−1 ikp

−1 k
µg
l
jdp

µ
l)⊗Hij , (30.1.6)

where ϑ′ijµ indicates that we must evaluate ϑijµ at p · g instead of p. Further, we have the
adjoint representation

Adg(Hij) = gkig
−1 j

lHkl , (30.1.7)

and thus

Adg ◦R∗gϑ = (ϑ′ijµdx
µ + g−1 ikp

−1 k
µg
l
jdp

µ
l)⊗ gmig−1 jnHmn

= (gikg
−1 l

jϑ
′k
lµdx

µ + p−1 iµdp
µ
j)⊗Hij .

(30.1.8)

Note that this agrees with ϑ if and only if the components ϑijµ and ϑ′ijµ at p and p · g are
related by

ϑijµ = gikg
−1 l

jϑ
′k
lµ . (30.1.9)

To solve this condition, it is useful to introduce the coefficients Γνρµ as

ϑijµ = p−1 iνp
ρ
jΓ
ν
ρµ ⇔ Γνρµ = pνip

−1 j
ρϑ
i
jµ , (30.1.10)

so that we have

ϑ′ijµ = g−1 ikp
−1 k

νp
ρ
lg
l
jΓ
′ν
ρµ ⇔ Γ′νρµ = pνkg

k
ig
−1 j

lp
−1 l

ρϑ
′i
jµ . (30.1.11)

With this definition, the equivariance condition simply becomes

Γ′νρµ = Γνρµ , (30.1.12)

which means that these coefficients must be independent of p ∈ FxM , and can depend on x ∈M
only. This allows us to finally write the connection as

ϑ = p−1 iµ(p
ν
jΓ
µ
νρdx

ρ + dpµj)⊗Hij , (30.1.13)

where we relabeled indices to pull out a common factor in the front. We call Γµνρ the connection
coefficients.

30.2 Linear connection in the tangent bundle

Recall from section 28.7 that a connection on a principal bundle induces a Koszul connection on
any associated vector bundle, which we constructed explicitly in theorem 28.7.2. As discussed in
chapter 22, we can obtain the tangent bundle as such an associated vector bundle by using the
canonical representation ρ of the structure group GL(n,R) on Rn. Hence, an affine connection
as defined in section 30.1 as a connection on the frame bundle can also be represented as a
Koszul connection on the tangent bundle.

To illustrate the construction of the Koszul connection, we derive its coordinate expression from
the coordinate expression (30.1.13) of the connection on the frame bundle. Let X = Xµ∂µ ∈
Vect(M) be a vector field on M . Following theorem 27.2.1 (which reduces to theorem 20.3.3 in
this case) we can identify X with the basic zero-form X̂ ∈ Ω0(FM,Rn) given by

X̂ = Xµp−1 iµei . (30.2.1)
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We then calculate its exterior covariant derivative, which takes the form

dϑX̂ = dX̂ + ρ∗(ϑ) ∧ X̂
= (∂νX

µp−1 iµdx
ν −Xµp−1 iνp

−1 j
µdp

ν
j)⊗ ei + p−1 iµ(p

ν
jΓ
µ
νρdx

ρ + dpµj)⊗Xσp−1 jσei

= p−1 iµ(∂ρX
µ + ΓµνρX

ν)dxρ ⊗ ei ,

(30.2.2)

where we used the fact that the canonical representation ρ∗ of the Lie algebra gl(n,Rn) is simply
its matrix representation which we used also in the coordinate expression (30.1.13), and which
takes the form

ρ∗(Hij)ek = δjkei , (30.2.3)

so that
ρ∗(a

i
jHij)(vkek) = aijv

j
ei . (30.2.4)

Following theorem 27.2.2, the result dϑX̂ is a basic one-form, and so we can apply theorem 27.2.1
again to obtain a TM -valued one-form on M , which is given by

∇X = (∂ρX
µ + ΓµνρX

ν)dxρ ⊗ ∂µ , (30.2.5)

which completes the construction of the Koszul connection. Hence, we see that the coefficients
of the latter are simply the coefficients Γµνρ of the affine connection which we introduced for
the connection on the frame bundle.

Given a Koszul connection, we can make use of all constructions shown for linear connections
in chapter 28 apply. In particular, it allows us to define a covariant derivative, which we can
now write in coordinates as

∇XY = Xµ(∂µY
ν + ΓνρµY

ρ)∂ν = Xµ(∇µY ν)∂ν , (30.2.6)

where we used the abbreviation

∇µY ν = ∂µY
ν + ΓνρµY

ρ . (30.2.7)

We can also apply the same construction to other vector bundles which are associated to the
frame bundle, derive the corresponding Koszul connections and covariant derivatives, again
following the procedure outlined for arbitrary vector bundles in chapter 28. In particular, we
then have for a covector field α = αµdx

µ ∈ Ω1(M) the relation

∇µαν = ∂µαν − Γρνµαρ , (30.2.8)

for an arbitrary tensor field A ∈ Γ(T rsM) of rank (r, s) the relation

∇µAν1···νrρ1···ρs = ∂µA
ν1···νr

ρ1···ρs
+ Γν1σµA

σν2···νr
ρ1···ρs + . . .+ ΓνrσµA

ν1···νr−1σ
ρ1···ρs

− Γσρ1µA
ν1···νr

σρ2···ρs − . . .− ΓσρsµA
ν1···νr

ρ1···ρs−1σ ,

(30.2.9)

and for a tensor density A of weight w the relation

∇µAν1···νrρ1···ρs = ∂µA
ν1···νr

ρ1···ρs − wΓσσµAν1···νrρ1···ρs
+ Γν1σµA

σν2···νr
ρ1···ρs + . . .+ ΓνrσµA

ν1···νr−1σ
ρ1···ρs

− Γσρ1µA
ν1···νr

σρ2···ρs − . . .− ΓσρsµA
ν1···νr

ρ1···ρs−1σ ,

(30.2.10)

It should be noted that an affine connection allows for a few additional constructions which are
not defined for linear connections on arbitrary vector bundles, and which we discuss in detail
in the following sections.
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30.3 Curvature

The first property which we discuss and extend for the case of affine connections is the curvature,
which we discussed for linear connections in general in section 28.12. Since it is conventional to
use the symbol R instead of F for the curvature in this case, we provide the following definition.

Definition 30.3.1 (Curvature of an affine connection). LetM be a manifold equipped with
a connection ∇. Its curvature is the endomorphism-valued two-form R ∈ Ω2(M,End(TM))
defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (30.3.1)

for all vector fields X,Y, Z ∈ Vect(M).

It is helpful to derive the curvature also in coordinates. First, we follow the definition and
calculate

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

= ∇Xµ∂µ∇Y ν∂ν (Zρ∂ρ)−∇Y ν∂ν∇Xµ∂µ(Zρ∂ρ)−∇[Xµ∂µ,Y ν∂ν ](Z
ρ∂ρ)

=
(
Xµ{∂µ[Y ν(∂νZρ + ΓρσνZ

σ)] + Γρλµ[Y
ν(∂νZ

λ + ΓλσνZ
σ)]}

− Y ν{∂ν [Xµ(∂µZ
ρ + ΓρσµZ

σ)] + Γρλν [X
µ(∂µZ

λ + ΓλσµZ
σ)]}

− (Xµ∂µY
ν − Y µ∂µXν)(∂νZ

ρ + ΓρσνZ
σ)
)
∂ρ

= XµY ν(∂µΓ
ρ
σν − ∂νΓρσµ + ΓρλµΓ

λ
σν − ΓρλνΓ

λ
σµ)Z

σ∂ρ .

(30.3.2)

Hence, it follows that the components of the curvature are given by

Rρσµν = ∂µΓ
ρ
σν − ∂νΓρσµ + ΓρλµΓ

λ
σν − ΓρλνΓ

λ
σµ . (30.3.3)

These components allow to express the curvature in terms of different interpretations. Following
our definition 30.3.1, we can write it as an endomorphism-valued two-form

R =
1

2
Rρσµνdx

µ ∧ dxν ⊗ ∂ρ ⊗ dxσ . (30.3.4)

It is also conventional, and historically abundant in the literature, to define write it as the
(1, 3)-tensor field

R = Rρσµν∂ρ ⊗ dxσ ⊗ dxµ ⊗ dxν , (30.3.5)

where the different numerical factor is related to the fact that here we use a tensor product
dxµ⊗dxν instead of the exterior product dxµ∧dxν . Here we make use of either interpretation,
depending on which is more convenient.

Clearly, R possesses all the properties of the curvature F of a linear connection detailed in
theorem 28.12.1. Further, following theorem 28.12.2 it is closely related to the curvature Ω ∈
Ω2(FM, gl(n,R)) of the principal connection. In the case of the tangent bundle, the latter can
also be expressed as follows.

Theorem 30.3.1. The curvature form and the curvature tensor of an affine connection are
related by

p ◦ Ωp ◦ p−1 = (ϖ∗R)p (30.3.6)

for all p ∈ FM .

Proof. ▶. . .◀ ■
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Also this relation can easily be illustrated using coordinates. For this purpose, we first use the
coordinate expression (30.1.13) of the principal connection to calculate the curvature form

Ω = dϑ+
1

2
[ϑ ∧ ϑ]

= −p−1 iσp−1 kµdpσk ∧ (pνjΓ
µ
νρdx

ρ + dpµj)⊗Hij

+ p−1 iµ(Γ
µ
νρdp

ν
j + pνj∂σΓ

µ
νρdx

σ) ∧ dxρ ⊗Hij

+
1

2
p−1 iµp

−1 k
σ(p

ν
jΓ
µ
νρdx

ρ + dpµj) ∧ (pτ lΓ
σ
τωdx

ω + dpσl)⊗ [Hij ,Hkl]

=
[
p−1 iµ(Γ

µ
νρdp

ν
j + pνj∂σΓ

µ
νρdx

σ) ∧ dxρ − p−1 iσp−1 kµdpσk ∧ (pνjΓ
µ
νρdx

ρ + dpµj)

+ p−1 iµp
−1 k

σ(p
ν
kΓ

µ
νρdx

ρ + dpµk) ∧ (pτ jΓ
σ
τωdx

ω + dpσj)
]
⊗Hij

=
[
p−1 iµ(Γ

µ
νρdp

ν
j + pνj∂σΓ

µ
νρdx

σ) ∧ dxρ − p−1 iσp−1 kµdpσk ∧ (pνjΓ
µ
νρdx

ρ + dpµj)

+ p−1 iµ(Γ
µ
σρdx

ρ + p−1 kσdp
µ
k) ∧ (pτ jΓ

σ
τωdx

ω + dpσj)
]
⊗Hij

= p−1 iµp
ν
j(∂ρΓ

µ
νσ + Γµλρ ∧ Γλνσ)dx

ρ ∧ dxσ ⊗Hij

=
1

2
p−1 iµp

ν
jR

µ
νρσdx

ρ ∧ dxσ ⊗Hij ,
(30.3.7)

where we used the Lie algebra relation

[Hij ,Hkl] = δjkHil − δliHkj . (30.3.8)

Hence, we find again the components of the curvature.

We have seen in section 28.12 that the curvature F ∈ Ω2(M,End(E)) of a linear connection is
an endomorphism-valued two-form. Hence, together with two vector fields X,Y ∈ Vect(M), it
defines an endomorphism-valued function ιY ιXF = F (X,Y ) ∈ Ω0(M,End(E)). This obviously
also holds for the curvature R ∈ Ω2(M,End(TM)) of an affine connection. However, in this case
there exists also another possibility to define an endomorphism-valued function Z 7→ R(Z, Y )X,
by letting R(•, Y ) act on X instead. The trace of this function has a particular role.

Definition 30.3.2 (Ricci curvature). Let M be a manifold equipped with an affine con-
nection ∇. The Ricci tensor /R ∈ Γ(T 0

2M) is defined as the trace

/R(X,Y ) = tr(R(•, Y )X) (30.3.9)

of the endomorphism • 7→ R(•, Y )X.

In coordinates, we have
R(•, Y )X = RρµσνX

µY ν∂ρ ⊗ dxσ , (30.3.10)

and thus
/R(X,Y ) = RρµρνX

µY ν , (30.3.11)

so that we write the Ricci tensor as the (0, 2)-tensor

/R = Rρµρνdx
µ ⊗ dxν = Rµνdx

µ ⊗ dxν . (30.3.12)

Naturally the question arises whether this tensor has any particular symmetry. The answer to
this question is given by the following statement.

Theorem 30.3.2. The Ricci tensor is symmetric if and only if there exists locally a covariantly
constant volume form.

Proof. ▶. . .◀ ■
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30.4 Torsion

Due to the particular properties of the tangent bundle, an affine connection can be character-
ized by another tensor field, which is not defined for a general linear connection on a vector
bundle. Recall from definition 22.6.7 that the frame bundle of a manifold M of dimension n
is equipped with a canonical Rn-valued one-form θ ∈ Ω1(FM,Rn), which is basic according to
theorem 22.6.5. Given a principal connection on the frame bundle, we may thus calculate the
exterior covariant derivative of the canonical one-form, as given in definition 27.2.2. This yields
the following object.

Definition 30.4.1 (Torsion form). Let ϑ ∈ Ω1(FM, gl(n,R)) be an affine connection on a
manifold M . The torsion form of ϑ is given by

Θ = dϑθ = dθ + ϑ ∧ θ ∈ Ω2(FM,Rn) . (30.4.1)

We have already seen for the curvature that in addition to the description in terms of an
equivariant, vector-valued form on the frame bundle, also a dual description as a tensor field
on the base manifold exists. This is also the case for the torsion, which can equivalently be
described in terms of a tensor field, or a vector-valued two-form on the base manifold. Its
definition in terms of the covariant derivative is given as follows.

Definition 30.4.2 (Torsion of an affine connection). Let M be a manifold equipped with
a connection ∇. Its torsion is the vector-valued two-form T ∈ Ω2(M,TM) defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ] (30.4.2)

for all vector fields X,Y ∈ Vect(M).

Note that this definition relies on the fact that an affine connection is not simply a Koszul
connection on an arbitrary vector bundle, but on the tangent bundle in particular, so that one
can take the covariant derivative of vector fields. Note that in order for T to be a vector-valued
two-form as claimed in the definition, it needs to satisfy a number of properties, which we show
next.

Theorem 30.4.1. For all X,Y, Z ∈ Vect(M) and f ∈ C∞(M,R), the torsion F of an affine
connection:

T (Y,X) = −T (X,Y ) , (30.4.3a)
T (X + Y, Z) = T (X,Z) + T (Y,Z) , (30.4.3b)
T (fX, Y ) = fT (X,Y ) . (30.4.3c)

Proof. The first two properties are an immediate consequence of the linearity of the covariant
derivative, as well as the linearity and antisymmetry of the Lie bracket. For the last condition,
one obtains by direct calculation

T (fX, Y ) = ∇fXY −∇Y (fX)− [fX, Y ]

= f∇XY − f∇YX − (Y f)X − f [X,Y ] + (Y f)X

= f(∇XY −∇YX − [X,Y ])

= fT (X,Y ) . ■

(30.4.4)
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From its definition, one can now easily derive a coordinate expression for the torsion. For this
purpose, we calculate

T (X,Y ) = ∇XY −∇YX − [X,Y ]

= ∇Xµ∂µ(Y ν∂ν)−∇Y ν∂ν (Xµ∂µ)− [Xµ∂µ, Y
ν∂ν ]

= Xµ(∂µY
ν + ΓνρµY

ρ)∂ν −Xµ(∂µY
ν + ΓµρνY

ρ)∂µ −Xµ∂µY
ν∂ν + Y ν∂νX

µ∂µ

= XµY ν(Γρνµ − Γρµν)∂ρ .

(30.4.5)

Hence, in the coordinate basis, the torsion is written in the form

T =
1

2
T ρµνdx

µ ∧ dxν ⊗ ∂ρ (30.4.6)

with
T ρµν = Γρνµ − Γρµν . (30.4.7)

We see that the torsion tensor is obtained from the part of the connection coefficients which
is antisymmetrized in its lower indices. In particular, the torsion vanishes if and only if the
connection coefficients are symmetric in these two indices. This justifies the following naming
for this case.

Definition 30.4.3 (Symmetric affine connection). An affine connection is called symmetric
if and only if T (X,Y ) = 0 for all X,Y ∈ Vect(M).

As with the curvature, also for the torsion the question arises how the two descriptions given
on the frame bundle and as a tensor field are related to each other. This relation takes the
following form.

Theorem 30.4.2. The torsion form and the torsion tensor of an affine connection are related
by

p ◦Θp = (ϖ∗T )p (30.4.8)

for all p ∈ FM .

Proof. ▶. . .◀ ■

We also derive the torsion form in coordinates, and find that

Θ = dθ + ϑ ∧ θ
= −p−1 iνp−1 jµdpνj ∧ dxµ ⊗ ei + p−1 iµ(p

ν
jΓ
µ
νρdx

ρ + dpµj) ∧ (p−1 jσdx
σ)⊗ ei

= p−1 iµΓ
µ
νρdx

ρ ∧ dxν ⊗ ei

=
1

2
p−1 iµT

µ
νρdx

ν ∧ dxρ ⊗ ei ,

(30.4.9)

which reproduces the components of the torsion tensor.

30.5 Bianchi identities

We have seen for different types of connections that the curvature satisfies a particular relation,
known as the Bianchi identity - for a general connection in theorem 26.10.3, for a principal
connection in theorem 27.3.4 and for a linear connection in theorem 28.13.3. In the case of
an affine connection, one finds another, similar relation, which concerns the exterior covariant
derivative of the torsion form. It is conventional to denote this set of relations, given below, as
first and second Bianchi identity.
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Theorem 30.5.1 (Bianchi identities). The curvature form Ω and torsion form Θ of an affine
connection satisfy the Bianchi identities

dϑΘ = Ω ∧ θ , dϑΩ = 0 . (30.5.1)

Proof. From the definition 30.4.1 of the torsion form, together with the relation 27.3.5 and the
fact that the canonical one-form is basic of type ρ = idGL(n,R) follows the first Bianchi identity

dϑΘ = dϑdϑθ = Ω ∧ θ . (30.5.2)

The second Bianchi identity is simply the Bianchi identity 27.3.4 for a principal connection. ■

We could also show this in coordinates, but we will defer this to the end of this section, and
continue here with providing another form of the Bianchi identities first. From the fact that
one can equivalently express the curvature and torsion forms by the corresponding objects on
the base manifold M follows that also the curvature R and torsion T should satisfy a similar
set of identities on the base manifold. This is indeed the case, and these identities are given as
follows.

Theorem 30.5.2 (Bianchi identities). The curvature R and torsion T of an affine connection
satisfy the Bianchi identities

CyclX,Y,Z [R(X,Y )Z] = CyclX,Y,Z [T (T (X,Y ), Z) + (∇XT )(Y,Z)] (30.5.3)

and
CyclX,Y,Z [(∇XR)(Y,Z) +R(T (X,Y ), Z)] = 0 , (30.5.4)

where
CyclX,Y,Z [F (X,Y, Z)] = F (X,Y, Z) + F (Y, Z,X) + F (Z,X, Y ) . (30.5.5)

Proof. We make use of the fact that we can write the covariant derivative of the torsion tensor
as

(∇XT )(Y,Z) = ∇X(T (Y,Z))− T (∇XY, Z)− T (Y,∇XZ) . (30.5.6)

Further, we can expand the inner torsion tensor using its definition, to obtain

T (T (X,Y ), Z) = T (∇XY,Z)− T (∇YX,Z)− T ([X,Y ], Z) . (30.5.7)

Using the fact that we can permute X,Y, Z cyclically if they appear under CyclX,Y,Z , as well
as the fact that the torsion is antisymmetric, we can combine these relations to

CyclX,Y,Z [T (T (X,Y ), Z) + (∇XT )(Y, Z)] = CyclX,Y,Z [∇X(T (Y, Z))− T ([X,Y ], Z)] . (30.5.8)

Once again expanding the torsion tensor we have

∇X(T (Y,Z))−T ([X,Y ], Z) = ∇X∇Y Z−∇X∇ZY−∇X [Y,Z]−∇[X,Y ]Z+∇Z [X,Y ]−[[X,Y ], Z] .
(30.5.9)

Under the cyclic sum, the two derivatives acting on Lie brackets cancel, and the last term
vanishes due to the Jacobi identity, so that we are left with

CyclX,Y,Z [T (T (X,Y ), Z) + (∇XT )(Y,Z)] = CyclX,Y,Z [∇X∇Y Z −∇X∇ZY −∇[X,Y ]Z]

= CyclX,Y,Z [∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z]

= CyclX,Y,Z [R(X,Y )Z] .

(30.5.10)

For the second Bianchi identity, we proceed similarly. The derivative of the curvature tensor,
acting on a vector field U , is given by

(∇XR)(Y,Z)U = ∇X(R(Y,Z)U)−R(∇XY,Z)U −R(Y,∇XZ)U −R(Y, Z)∇XU . (30.5.11)
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Expanding the torsion tensor yields

R(T (X,Y ), Z) = R(∇XY,Z)−R(∇YX,Z)−R([X,Y ], Z) . (30.5.12)

Under the cyclic sum, these combine to

CyclX,Y,Z [(∇XR)(Y,Z)U +R(T (X,Y ), Z)U ]

= CyclX,Y,Z [∇X(R(Y,Z)U)−R(Y,Z)∇XU −R([X,Y ], Z)U ] . (30.5.13)

Now we expand the curvature, which yields

∇X(R(Y,Z)U)−R(Y,Z)∇XU −R([X,Y ], Z)U = ∇X∇Y∇ZU −∇X∇Z∇Y U −∇X∇[Y,Z]U

−∇Y∇Z∇XU +∇Z∇Y∇XU +∇[Y,Z]∇XU −∇[X,Y ]∇ZU +∇Z∇[X,Y ]U +∇[[X,Y ],Z]U .
(30.5.14)

Under the cyclic sum, all terms cancel, and we find

CyclX,Y,Z [(∇XR)(Y,Z) +R(T (X,Y ), Z)] = 0 . (30.5.15)
■

We also illustrate this calculation using coordinates. First, we write the appearing terms in
coordinates, which yields

CyclX,Y,Z [R(X,Y )Z] = 3RµνρσX
[ρY σZν] , (30.5.16a)

CyclX,Y,Z [T (T (X,Y ), Z)] = 3TµωνT
ω
ρσX

[ρY σZν] , (30.5.16b)

CyclX,Y,Z [(∇XT )(Y, Z)] = 3∇νTµρσX [νY ρZσ] , (30.5.16c)

CyclX,Y,Z [(∇XR)(Y, Z)] = 3∇ωRµνρσX [ωY ρZσ] , (30.5.16d)

CyclX,Y,Z [R(T (X,Y ), Z)] = 3RµντωT
τ
ρσX

[ρY σZω] , (30.5.16e)

where we used the fact that each in each term two of the vector fields X,Y, Z are contracted
with the antisymmetric indices of a tensor, so that we can replace the cyclic permutation by a
complete antisymmetrization, together with an appropriate normalization factor. Using these
expressions, we can write the Bianchi identities as

Rµ[νρσ] = ∇[νT
µ
ρσ] + Tµω[νT

ω
ρσ] (30.5.17)

and
∇[ωR

µ
|ν|ρσ] +Rµντ [ωT

τ
ρσ] = 0 . (30.5.18)

This can easily be seen by direct calculation. For the first identity (30.5.17), one has

∇[νT
µ
ρσ] = −2∂[νΓµρσ] − 2Γµω[νΓ

ω
ρσ] + 2Γω [ρνΓ

µ
|ω|σ] + 2Γω [σνΓ

µ
ρ]ω , (30.5.19)

and
Tµω[νT

ω
ρσ] = 2Γµω[νΓ

ω
ρσ] − 2Γµ[ν|ω|Γ

ω
ρσ] . (30.5.20)

Combining these two terms, and sorting the indices, one obtains the expression

∇[ωR
µ
|ν|ρσ] + Tµω[νT

ω
ρσ] = 2∂[ρΓ

µ
νσ] + 2Γµω[ρΓ

ω
νσ] = Rµ[νρσ] , (30.5.21)

which is the left hand side of the Bianchi identity (30.5.17). Similarly, the second iden-
tity (30.5.18) can be proven. Expanding the covariant derivative in the first term yields

∇[ωR
µ
|ν|ρσ] = ∂[ωR

µ
|ν|ρσ] + Γµτ [ωR

τ
|ν|ρσ] − Γτ ν[ωR

µ
|τ |ρσ] − Γτ [ρωR

µ
|ντ |σ] − Γτ [σωR

µ
|ν|ρ]τ .

(30.5.22)
Now it is easy to see that the last two terms are identical,

Γτ [σωR
µ
|ν|ρ]τ = −Γτ [σωRµ|ντ |ρ] = Γτ [ρωR

µ
|ντ |σ] . (30.5.23)
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Further using the expression (30.4.7) for the torsion, as well as cyclically rearranging the indices
within square brackets, the last two terms of the expansion (30.5.22) can be combined to

−2Γτ [ρωRµ|ντ |σ] = −Rµντ [ωTµρσ] , (30.5.24)

which cancels the second term of the Bianchi identity (30.5.18). It remains to show that the first
three terms on the right hand side of the expansion (30.5.22) vanish. Expanding the curvature
in the derivative term using the expression (30.3.3) yields

∂[ωR
µ
|ν|ρσ] = 2∂[ω∂ρΓ

µ
|ν|σ] + 2∂[ωΓ

µ
|τ |ρΓ

τ
|ν|σ] + 2Γµτ [ρ∂ωΓ

τ
|ν|σ] . (30.5.25)

The first term on the right hand side vanishes, since partial derivatives commute. In the re-
maining two terms one can substitute the derivatives on the connection coefficients by curvature
tensors, which yields

2∂[ωΓ
µ
|τ |ρΓ

τ
|ν|σ] = Γτ ν[σR

µ
|τ |ωρ] − 2Γτ ν[σΓ

µ
|ϕ|ωΓ

ϕ
|τ |ρ] , (30.5.26a)

2Γµτ [ρ∂ωΓ
τ
|ν|σ] = Γµτ [ρR

τ
|ν|ωσ] − 2Γµτ [ρΓ

τ
|ϕ|ωΓ

ϕ
|ν|σ] . (30.5.26b)

After permuting the indices in square brackets, one finds that the two curvature terms found here
cancel the second and third term on the right hand side of the expansion (30.5.22). Finally, for
the two terms cubic in the connection coefficients, one can exchange the dummy indices τ ↔ ϕ
in the first term to find

Γµτ [ωΓ
τ
|ϕ|ρΓ

ϕ
|ν|σ] + Γµτ [ρΓ

τ
|ϕ|ωΓ

ϕ
|ν|σ] = 0 , (30.5.27)

due to the antisymmetry in the indices ρ and ω. This completes the proof of the second Bianchi
identity (30.5.18).

Note that there is a fundamental difference between the expressions for the Bianchi identities in
theorems 30.5.1 and 30.5.2: in contrast to the former, the latter contains additional terms where
the torsion and curvature tensors are multiplied with another torsion tensor. These additional
terms are related to the fact that in theorem 30.5.2 R and T are tensors in the tangent bundle,
and since ∇ is a connection in the tangent bundle, it acts on all tensor indices, including those
which turn R and T into vector-valued two-forms. In contrast, in theorem 30.5.1 the connection
acts only on the representation space indices, and the two-form indices are inert.

▶. . .◀

We can also show this in coordinates. First calculating

dϑΘ = dΘ+ ϑ ∧Θ

= −1

2
p−1 iµp

−1 j
σT

σ
νρdp

µ
j ∧ dxν ∧ dxρ ⊗ ei +

1

2
p−1 iσ∂µT

σ
νρdx

µ ∧ dxν ∧ dxρ ⊗ ei

+
1

2
p−1 iµ(p

ν
jΓ
µ
νρdx

ρ + dpµj) ∧ (p−1 jσT
σ
τωdx

τ ∧ dxω)⊗ ei

=
1

2
p−1 iσ(∂[µT

σ
νρ] + Γσω[µT

ω
νρ])dx

µ ∧ dxν ∧ dxρ ⊗ ei

=
1

2
p−1 iσ(∇[µT

σ
νρ] + Γω [νµT

σ
|ω|ρ] + Γω [ρµT

σ
ν]ω)dx

µ ∧ dxν ∧ dxρ ⊗ ei

=
1

2
p−1 iσ(∇[µT

σ
νρ] + Tσω[ρT

ω
µν])dx

µ ∧ dxν ∧ dxρ ⊗ ei ,

(30.5.28)

using the fact that the exterior product is totally antisymmetric, we find the right hand side of
the first Bianchi identity (30.5.17). Similarly, we have

Ω ∧ θ = 1

2
p−1 iσR

σ
[ρµν]dx

µ ∧ dxν ∧ dxρ ⊗ ei , (30.5.29)
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which is the right hand side of the first Bianchi identity (30.5.17). For the second Bianchi
identity, we calculate

dϑΩ = dΩ + ad(ϑ) ∧ Ω

= dΩ + [ϑ ∧ Ω]

=
1

2
p−1 iµR

µ
νρσdp

ν
j ∧ dxρ ∧ dxσ ⊗Hij −

1

2
p−1 iµp

−1 k
σp
ν
jR

σ
νρσdp

µ
k ∧ dxρ ∧ dxσ ⊗Hij

+
1

2
p−1 iµp

ν
j∂ωR

µ
νρσdx

ω ∧ dxρ ∧ dxσ ⊗Hij

+
1

2
p−1 iω(p

τ
jΓ
ω
τλdx

λ + dpωj) ∧ (p−1 kµp
ν
lR

µ
νρσdx

ρ ∧ dxσ)⊗ [Hij ,Hkl]

=
1

2
p−1 iµR

µ
νρσdp

ν
j ∧ dxρ ∧ dxσ ⊗Hij −

1

2
p−1 iµp

−1 k
σp
ν
jR

σ
νρσdp

µ
k ∧ dxρ ∧ dxσ ⊗Hij

+
1

2
p−1 iµp

ν
j∂ωR

µ
νρσdx

ω ∧ dxρ ∧ dxσ ⊗Hij

+
1

2
p−1 iω(p

τ
kΓ

ω
τλdx

λ + dpωk) ∧ (p−1 kµp
ν
jR

µ
νρσdx

ρ ∧ dxσ)⊗Hij

− 1

2
(pτ jΓ

ν
τλdx

λ + dpνj) ∧ (p−1 iµR
µ
νρσdx

ρ ∧ dxσ)⊗Hij

=
1

2
p−1 iµp

ν
j(∂[ωR

µ
|ν|ρσ] + Γµτ [ωR

τ
|ν|ρσ] − Γτ ν[ωR

µ
|τ |ρσ])dx

ω ∧ dxρ ∧ dxσ ⊗Hij

=
1

2
p−1 iµp

ν
j(∇[ωR

µ
|ν|ρσ] + Γτ [ρωR

µ
|ντ |σ] + Γτ [σωR

µ
|ν|ρ]τ )dx

ω ∧ dxρ ∧ dxσ ⊗Hij

=
1

2
p−1 iµp

ν
j(∇[ωR

µ
|ν|ρσ] +Rµντ [ωT

τ
ρσ])dx

ω ∧ dxρ ∧ dxσ ⊗Hij ,
(30.5.30)

and so we indeed find the second Bianchi identity (30.5.18).

30.6 Higher order covariant derivatives

The fact that affine connections constitute Koszul connections in any vector bundle associated
to the tangent frame bundle, and thus in particular the tangent bundle, its dual and any
tensor bundles constructed from these, allows for another construction, which is not possible
for arbitrary vector bundles. Recall that given a (r, s)-tensor field A ∈ Γ(T rsM) on a manifold
M equipped with an affine connection ∇, applying the Koszul connection yields a section
∇A ∈ Γ(TM ⊗ T rsM). However, keeping in mind that TM ⊗ T rsM ∼= T rs+1M , we see that ∇A
is again a tensor field to which we can apply the Koszul connection ∇ in T rs+1M , and thus
construct ∇∇A. Note that this is not the case for an arbitrary vector bundle π : E →M , since
a Koszul connection on E yields a section of T ∗M ⊗ E, which is not equipped with a Koszul
connection by the Koszul connection on E. Also note that the construction∇∇A is distinct from
other iterated covariant derivatives which exist for arbitrary vector bundles, namely ∇X∇YA
with two vector fields X,Y ∈ Vect(M) and the exterior covariant derivative d∇d∇A, as we will
show below. The reason for this is closely related to the fact that even though we use the same
symbol ∇ for the two Koszul connections in the expression ∇∇A, these act on different bundles
T rsM and T rs+1M . We start our discussion with the following definition.

Definition 30.6.1 (Higher order covariant derivative). Let M be a manifold equipped
with an affine connection ∇ and A ∈ Γ(T rsM) a tensor field. For n ∈ N, we denote by

∇nA = ∇ · · ·∇︸ ︷︷ ︸
n times

A (30.6.1)
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the n times iterated Koszul connection, giving rise to the nth order covariant derivative

∇nXn,...,X1
A = tr11 · · · trnn(Xn ⊗ . . .⊗X1 ⊗∇nA) (30.6.2)

for n vector fields X1, . . . , Xn ∈ Vect(M).

Note in particular that there are no derivatives acting on the vector fields X1, . . . Xn, since they
are simply contracted with the tensor field ∇nA. Note also the order of the vector fields in this
notation, which indicates that X1 is contracted with the slot resulting from the first application
of the Koszul connection, while Xn is paired with the last application of the Koszul connection,
i.e., derivatives are applied in the order from right (closed to A) to left (furthest from A). Given
coordinates (xµ) on M , this is also illustrated by the notation

∇nA = ∇ρn · · · ∇ρ1Aµ1···µr
ν1···νsdx

ρn ⊗ . . .⊗ dxρ1 ⊗ ∂µ1
⊗ . . .⊗ ∂µr ⊗ dxν1 ⊗ . . .⊗ dxνs

= Aµ1···µr
ν1···νs;ρ1···ρndx

ρn ⊗ . . .⊗ dxρ1 ⊗ ∂µ1
⊗ . . .⊗ ∂µr ⊗ dxν1 ⊗ . . .⊗ dxνs ,

(30.6.3)

where covariant derivatives ∇ρ and basis elements dxρ are prepended on the left, where we
follow the same convention as usual for the Koszul connection discussed in section 28.2. Another
convention, which is also used in the literature, is to append basis elements dxρ on the right
instead, as suggested by the order of indices in the semicolon notation, where derivative indices
are appended right of the semicolon. Irrespective of the choice of convention, the higher order
covariant derivative with respect to n vector fields is given by

∇nXn,...,X1
A = Xρn

n · · ·Xρ1
1 ∇ρn · · · ∇ρ1Aµ1···µr

ν1···νs∂µ1
⊗ . . .⊗ ∂µr ⊗ dxν1 ⊗ . . .⊗ dxνs

= Xρn
n · · ·Xρ1

1 Aµ1···µr
ν1···νs;ρ1···ρn∂µ1

⊗ . . .⊗ ∂µr ⊗ dxν1 ⊗ . . .⊗ dxνs .

(30.6.4)

In the following, we will study the properties of this higher order covariant derivative, and its
relation to constructions which we have encountered before. We start with the following helpful
relation.

Theorem 30.6.1. For two vector fields X,Y ∈ Vect(M), the second order covariant derivative
of a tensor field A satisfies

∇2
X,YA = ∇X∇YA−∇∇XYA . (30.6.5)

Proof. By definition, we have

∇X∇YA = ∇X tr11(Y ⊗∇A)
= tr11(∇XY ⊗∇A+ Y ⊗∇X∇A)
= tr11(∇XY ⊗∇A) + tr11(X ⊗ Y ⊗∇∇A)
= ∇∇XYA+∇2

X,YA . ■

(30.6.6)

We also show this in coordinates, which is instructive to understanding the coordinate notation.
The calculation in the proof above then takes the form

(∇X∇YA)Aµ1···µr
ν1···νs = Xρ∇ρ(Y σ∇σAµ1···µr

ν1···νs)

= Xρ∇ρY σ∇σAµ1···µr
ν1···νs +XρY σ∇ρ∇σAµ1···µr

ν1···νs

= (∇∇XYA+∇2
X,YA)

µ1···µr
ν1···νs .

(30.6.7)

This relation turns out to be helpful in the following calculations, where we discuss in particular
the relevance of the order of the appearing vector fields in the higher order covariant derivative.
We first introduce the following notion.
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Definition 30.6.2 (Covariant Hessian). Let M be a manifold equipped with an affine
connection ∇ and f ∈ C∞(M,R) a function. The covariant Hessian of f is the (0, 2)-
tensor field ∇2f .

Hence, we can write the coordinate expression for the covariant Hessian as

∇µ∇νf = ∂µ∂νf − Γρνµ∂ρf . (30.6.8)

In vector analysis, the Hessian is defined with partial derivatives with respect to the Cartesian
coordinates, and from the fact that partial derivatives commute follows that the Hessian is
symmetric. However, this is in general not the case for covariant derivatives, and so the covariant
Hessian turns out to be not symmetric in general, as indicated by the presence of the connection
coefficients in the coordinate expression above. We will show this as follows.

Theorem 30.6.2. For a scalar function f ∈ C∞(M,R), the commutator of second order co-
variant derivatives satisfies

∇2
X,Y f −∇2

Y,Xf = −∇T (X,Y )f (30.6.9)

for all vector fields X,Y ∈ Vect(M).

Proof. Recall that on a scalar function the covariant derivative acts as ∇Xf = Xf , indepen-
dently of the connection. We can thus use theorem 30.6.1 to calculate

∇2
X,Y f −∇2

Y,Xf = ∇X∇Y f −∇∇XY f −∇Y∇Xf +∇∇YXf
= X(Y f)− (∇XY )f − Y (Xf) + (∇YX)f

= ([X,Y ]−∇XY +∇YX)f

= −T (X,Y )f

= −∇T (X,Y )f . ■

(30.6.10)

We also see this relation in coordinates, where we can now omit the vector fields X and Y ,
which we used above to indicate the order of differentiation, which we can indicate by indices
in the coordinate notation, so that we find

2∇[µ∇ν]f = ∇µ∂νf −∇ν∂µf
= ∂µ∂νf − Γρνµ∂ρf − ∂ν∂µf + Γρµν∂ρf

= −T ρµν∂ρf
= −T ρµν∇ρf .

(30.6.11)

Hence, we find that the antisymmetric part of the Hessian is closely related to the torsion of the
connection. Note that the proof relied on the fact that we can substitute covariant derivatives
on a function by the application of the vector field, and so it is valid for scalar functions only.
In order to generalize this result to tensor fields of higher rank, we continue with the case of a
vector field.

Theorem 30.6.3. For a vector field V ∈ Vect(M), the commutator of second order covariant
derivatives satisfies

∇2
X,Y V −∇2

Y,XV = R(X,Y )V −∇T (X,Y )V (30.6.12)

for all vector fields X,Y ∈ Vect(M).

Proof. Using again theorem 30.6.1, we calculate

∇2
X,Y V −∇2

Y,XV = ∇X∇Y V −∇∇XY V −∇Y∇XV +∇∇YXV
= R(X,Y )V +∇[X,Y ]V −∇∇XY V +∇∇YXV
= R(X,Y )V −∇T (X,Y )V . ■

(30.6.13)
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We also show this in coordinates, where now we have

2∇[µ∇ν]V ρ = ∇µ(∂νV ρ + ΓρσνV
σ)−∇ν(∂µV ρ + ΓρσµV

σ)

= ∂µ(∂νV
ρ + ΓρσνV

σ)− Γωνµ(∂ωV
ρ + ΓρσωV

σ) + Γρωµ(∂νV
ω + ΓωσνV

σ)

− ∂ν(∂µV ρ + ΓρσµV
σ) + Γωµν(∂ωV

ρ + ΓρσωV
σ)− Γρων(∂µV

ω + ΓωσµV
σ)

= ∂µΓ
ρ
σνV

σ + Γρσν∂µV
σ − Γωνµ(∂ωV

ρ + ΓρσωV
σ) + Γρωµ(∂νV

ω + ΓωσνV
σ)

− ∂νΓρσµV σ − Γρσµ∂νV
σ + Γωµν(∂ωV

ρ + ΓρσωV
σ)− Γρων(∂µV

ω + ΓωσµV
σ)

= (∂µΓ
ρ
σν − ∂νΓρσµ + ΓρωµΓ

ω
σν − ΓρωνΓ

ω
σµ)V

σ

+ (Γωµν − Γωνµ)(∂ωV
ρ + ΓρσωV

σ)

= RρσµνV
σ − Tωµν∇ωV ρ .

(30.6.14)

We then continue with the second order covariant derivative of a covector field.

Theorem 30.6.4. For a covector field α ∈ Ω1(M), the commutator of second order covariant
derivatives satisfies

Z ¬ (∇2
X,Y α−∇2

Y,Xα) = −(R(X,Y )Z) ¬ α− Z ¬ ∇T (X,Y )α (30.6.15)

for all vector fields X,Y, Z ∈ Vect(M).

Proof. It is helpful to use the Leibniz rule

∇X(Z ¬ α) = (∇XZ) ¬ α+ Z ¬ ∇Xα , (30.6.16)

as well as its second application

∇X∇Y (Z ¬ α) = (∇X∇Y Z) ¬ α+(∇Y Z) ¬ ∇Xα+(∇XZ) ¬ ∇Y α+Z ¬ ∇X∇Y α . (30.6.17)

Then we can calculate

Z ¬ (∇2
X,Y α−∇2

Y,Xα) = Z ¬ (∇X∇Y α−∇∇XY α−∇Y∇Xα+∇∇YXα)
= ∇X∇Y (Z ¬ α)− (∇X∇Y Z) ¬ α− (∇Y Z) ¬ ∇Xα− (∇XZ) ¬ ∇Y α
−∇Y∇X(Z ¬ α) + (∇Y∇XZ) ¬ α+ (∇XZ) ¬ ∇Y α+ (∇Y Z) ¬ ∇Xα
−∇∇XY (Z ¬ α) + (∇∇XY Z) ¬ α+∇∇YX(Z ¬ α)− (∇∇YXZ) ¬ α

= ∇2
X,Y (Z

¬ α)−∇2
Y,X(Z ¬ α)− (∇2

X,Y Z −∇2
Y,XZ)

¬ α
= −∇T (X,Y )(Z

¬ α)− [R(X,Y )Z −∇T (X,Y )Z]
¬ α

= −(R(X,Y )Z) ¬ α− Z ¬ ∇T (X,Y )α . ■

(30.6.18)

In the proof given above, the vector field Z plays an auxiliary role, as it allows us to make use
of the theorems 30.6.2 and 30.6.3 which we have proven earlier. If we calculate in coordinates,
we can omit this vector field (as we have also omitted X and Y before) and replace it by a free
index. Then we obtain

2∇[µ∇ν]αρ = ∇µ(∂ναρ − Γσρνασ)−∇ν(∂µαρ − Γσρµασ)

= ∂µ(∂ναρ − Γσρνασ)− Γωνµ(∂ωαρ − Γσρωασ)− Γωρµ(∂ναω − Γσωνασ)

− ∂ν(∂µαρ − Γσρµασ) + Γωµν(∂ωαρ − Γσρωασ) + Γωρν(∂µαω − Γσωµασ)

= −∂µΓσρνασ + Γσρν∂µασ − Γωνµ(∂ωαρ − Γσρωασ)− Γωρµ(∂ναω − Γσωνασ)

+ ∂νΓ
σ
ρµασ − Γσρµ∂νασ + Γωµν(∂ωαρ − Γσρωασ) + Γωρν(∂µαω − Γσωµασ)

= −(∂µΓσρν − ∂νΓσρµ + ΓσωµΓ
ω
ρν − ΓσωνΓ

ω
ρµ)ασ

+ (Γωµν − Γωνµ)(∂ωαρ − Γσρωασ)

= −Rσρµνασ − Tωµν∇ωαρ .
(30.6.19)
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By comparing the results for the scalar, vector and covector case, we can already deduce a
pattern, which we may expect to hold also for tensors of higher rank. To see this, it is helpful
to recall that the curvature R(X,Y ) contracted with two vector fields is a tensor field of rank
(1, 1). We can thus write the statement of theorem 30.6.3 as

∇2
X,Y V −∇2

Y,XV = tr11(V ⊗R(X,Y ))−∇T (X,Y )V , (30.6.20)

while the statement of theorem 30.6.4 becomes

∇2
X,Y α−∇2

Y,Xα = − tr11(α⊗R(X,Y ))−∇T (X,Y )α . (30.6.21)

▶. . .◀

Theorem 30.6.5. For a tensor field A ∈ Γ(T rsM) of rank (r, s), the commutator of second
order covariant derivatives satisfies

▶ . . . ◀ (30.6.22)

Proof. Since a Koszul connection is linear by definition, and any tensor field of rank (r, s) can
be expressed as a sum of tensor products of r vector fields and s covector fields, it is sufficient
to prove the statement for such tensor products. First, note that for any tensor fields A,B the
Leibniz rule yields

∇2
X,Y (A⊗B)−∇2

Y,X(A⊗B) = (∇2
X,YA−∇2

Y,XA)⊗B +A⊗ (∇2
X,YB −∇2

Y,XB) , (30.6.23)

which can be shown in analogy to the proof of theorem 30.6.4. Let V1, . . . , Vr ∈ Vect(M) be
vector fields and α1, . . . , αs ∈ Ω1(M) be covector fields, and set

A = V1 ⊗ . . .⊗ Vr ⊗ α1 ⊗ . . .⊗ αs . (30.6.24)

By repeated application of the Leibniz rule, as well as theorems 30.6.3 and 30.6.4, we have

∇2
X,YA−∇2

Y,XA = (∇2
X,Y V1 −∇2

Y,XV1)⊗ . . .⊗ Vr ⊗ α1 ⊗ . . .⊗ αs
+ . . .

+ V1 ⊗ . . .⊗ (∇2
X,Y Vr −∇2

Y,XVr)⊗ α1 ⊗ . . .⊗ αs
+ V1 ⊗ . . .⊗ Vr ⊗ (∇2

X,Y α1 −∇2
Y,Xα1)⊗ . . .⊗ αs

+ . . .

+ V1 ⊗ . . .⊗ Vr ⊗ α1 ⊗ . . .⊗ (∇2
X,Y αs −∇2

Y,Xαs)

= [tr11(V1 ⊗R(X,Y ))−∇T (X,Y )V1]⊗ . . .⊗ Vr ⊗ α1 ⊗ . . .⊗ αs
+ . . .

+ V1 ⊗ . . .⊗ [tr11(Vr ⊗R(X,Y ))−∇T (X,Y )Vr]⊗ α1 ⊗ . . .⊗ αs
− V1 ⊗ . . .⊗ Vr ⊗ [tr11(α1 ⊗R(X,Y )) +∇T (X,Y )α1]⊗ . . .⊗ αs
− . . .
− V1 ⊗ . . .⊗ Vr ⊗ α1 ⊗ . . .⊗ [tr11(αs ⊗R(X,Y )) +∇T (X,Y )αs]

= tr11(V1 ⊗R(X,Y ))⊗ . . .⊗ Vr ⊗ α1 ⊗ . . .⊗ αs
+ . . .

+ V1 ⊗ . . .⊗ tr11(Vr ⊗R(X,Y ))⊗ α1 ⊗ . . .⊗ αs
− V1 ⊗ . . .⊗ Vr ⊗ tr11(α1 ⊗R(X,Y ))⊗ . . .⊗ αs
− . . .
− V1 ⊗ . . .⊗ Vr ⊗ α1 ⊗ . . .⊗ tr11(αs ⊗R(X,Y ))

−∇T (X,Y )(V1 ⊗ . . .⊗ Vr ⊗ α1 ⊗ . . .⊗ αs) .

(30.6.25)

By linearity of the affine connection, it follows that this holds also if A is any tensor fields of
rank (r, s). ■
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While the statement above is rather cumbersome to write (but nevertheless straightforward to
calculate) without using coordinates, it can be written compactly in coordinates as

2∇[µ∇ν]Aρ1···ρrσ1···σs = Rρ1ωµνA
ωρ2···ρr

σ1···σs + . . .+RρrωµνA
ρ1···ρr−1ω

σ1···σs
−Rωσ1µνA

ρ1···ρr
ωσ2···σs − . . .−RωσsµνAρ1···ρrσ1···σs−1ω

− Tωµν∇ωAρ1···ρrσ1···σs ,

(30.6.26)

where we omit the calculation, as it becomes significantly more lengthy.

30.7 Autoparallel curves

Recall from section 26.7 that a connection on a fiber bundle π : E → M defines a notion
of horizontal curves in the total space E of the bundle, and in particular the notion of the
horizontal lift of a curve from the base manifold M to the total space E. In the case of an affine
connection, this bundle is the tangent bundle τ : TM →M . From section 7.3 we know another
way of lifting curves from the base manifold into the tangent bundle, known as the canonical
lift. One may thus wonder whether there is any relation between this notions. While this is not
the case in general, there exists a class of curves which is distinguished by the fact that these
notions agree, and which we denote as follows.

Definition 30.7.1 (Autoparallel curve). Let M be a manifold equipped with a connec-
tion ∇. An autoparallel curve is a curve γ ∈ C∞(R,M) such that its canonical lift
γ̇ ∈ C∞(R, TM) is horizontal.

The name originates from the fact that for an autoparallel, the tangent vector at any point of
the curve is obtained via parallel transport from any other point, following section 26.8. Using
the coordinate expression for the connection in terms of connection coefficients, one can derive
a coordinate expression for autoparallel curves as follows. ▶. . .◀

Theorem 30.7.1. For every tangent vector v ∈ TM , an affine connection defines a unique
autoparallel curve γ : R→M such that γ̇(0) = v.

Proof. ▶. . .◀ ■

30.8 Affine bundle of connections

30.9 Pullback and Lie derivative

We have seen in the previous section 30.8 that an affine connection on a manifold M can be
seen as a section of an affine bundle modeled over the tensor bundle T 1

2M . Since the latter is a
natural bundle, which means that there exists a natural lift of diffeomorphisms from the base
manifold M into the total space of the bundle, one may expect that the same holds also for
the bundle of affine connections. We will now show that this is the case, and discuss a few of
its properties, using the different approaches to affine connections encountered so far. We start
with the following definition, which makes use of the representation of an affine connection as
a principal connection on the tangent frame bundle.
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Definition 30.9.1 (Pullback of a connection in the tangent frame bundle). Let N be
a manifold of dimension dimN = n equipped with a principal gl(n,R)-connection ϑ ∈
Ω1(FN, gl(n,R)) on its frame bundle FN and φ :M → N a diffeomorphism. The pullback
of ϑ along φ is the principal gl(n,R)-connection φ∗◦ϑ ∈ Ω1(FM, gl(n,R)) on FM .

It is instructive to study this also in coordinates. First, recall from section ▶Construct this
in tangent frame bundle section. . .◀ We thus find that the pullback of the connection can be
expressed in coordinates as

ϑ′(x, p) = (ϑ′ijµ(x, p)dx
µ + ϑ̄ijµ

kdpµk)⊗Hij

=

[
ϑijµ(x

′, p′)

(
∂x′µ

∂xν
dxν +

∂x′µ

∂pνk
dpνk

)
+ p′−1 iµ

(
∂p′µj
∂xν

dxν +
∂p′µj
∂pνk

dpνk

)]
⊗Hij

=

[
ϑijµ(x

′, p′)
∂x′µ

∂xν
dxν + p−1 iρ

∂xρ

∂x′µ

(
pσj

∂x′µ

∂xσ∂xν
dxν +

∂x′µ

∂xν
δkj dp

ν
k

)]
⊗Hij

=

[(
ϑijν(x

′, p′)
∂x′ν

∂xµ
+ p−1 iρp

σ
j
∂xρ

∂x′ν
∂x′ν

∂xσ∂xµ

)
dxµ + p−1 iµdp

µ
j

]
⊗Hij ,

(30.9.1)

and so we can read off the coefficients given by

ϑ′ijµ(x, p) = ϑijν(x
′, p′)

∂x′ν

∂xµ
+ p−1 iρp

σ
j
∂xρ

∂x′ν
∂x′ν

∂xσ∂xµ
= p−1 iνp

ρ
jΓ
′ν
ρµ(x) , (30.9.2)

where the last equality is obtained by expressing the pullback of the connection in terms of the
transformed connection coefficients Γ′µνρ. Solving for the latter yields

Γ′µνρ(x) = pµip
−1 j

νϑ
′i
jµ(x, p)

= pµip
−1 j

ν

[
ϑijσ(x

′, p′)
∂x′σ

∂xρ
+ p−1 iωp

τ
j
∂xω

∂x′σ
∂x′σ

∂xτ∂xρ

]
= pµip

−1 j
ν

[
p′−1 iλp

′ψ
jΓ
λ
ψσ(x

′)
∂x′σ

∂xρ
+ p−1 iωp

τ
j
∂xω

∂x′σ
∂x′σ

∂xτ∂xρ

]
= pµip

−1 j
ν

[
p−1 iωp

τ
j
∂xω

∂x′λ
∂x′ψ

∂xτ
Γλψσ(x

′)
∂x′σ

∂xρ
+ p−1 iωp

τ
j
∂xω

∂x′σ
∂x′σ

∂xτ∂xρ

]
=
∂xµ

∂x′λ
∂x′ψ

∂xν
∂x′σ

∂xρ
Γλψσ(x

′) +
∂xµ

∂x′σ
∂x′σ

∂xν∂xρ
,

(30.9.3)

which confirms the expectation that these components can only depend on the base manifold
coordinates xµ, but not on the fiber coordinates. Note the appearance the second, inhomoge-
neous term, which indicates that the connection coefficients do not transform as the components
of a tensor field, for which no such term appears.

Recall from section 30.2 that we have equivalently expressed as affine connection as a Koszul
connection on the tangent bundle, and hence by the corresponding covariant derivative acting
on vector fields. Recalling from section 12.1 that we can also pull back vector fields along
diffeomorphisms, we arrive at the following alternative and independent definition.

Definition 30.9.2 (Pullback of a linear connection in the tangent bundle). Let N be a
manifold equipped with an affine connection ∇ and φ : M → N a diffeomorphism. The
pullback of ∇ along φ is the affine connection φ∗∇ on M defined such that

(φ∗∇)XY = φ∗[∇φ−1 ∗X(φ−1 ∗Y )] = φ−1∗ ◦ ∇φ∗◦X◦φ−1(φ∗ ◦ Y ◦ φ−1) ◦ φ (30.9.4)

for all X,Y ∈ Vect(M).
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Also using this formulation we can derive a coordinate expression. Denoting the pullbacks of
the vector fields as X ′ = φ−1 ∗X and Y ′ = φ−1 ∗Y , these are given in coordinates by

X ′(x′) = Xµ(x)
∂x′ν

∂xµ
∂′ν , Y ′(x′) = Y µ(x)

∂x′ν

∂xµ
∂′ν . (30.9.5)

Now we can calculate their covariant derivative with respect to the connection ∇ at the point
x′, from which we find

[∇φ−1 ∗X(φ−1 ∗Y )](x′) = Xµ(x)
∂x′σ

∂xµ

[
∂′σ

(
Y ν(x)

∂x′ω

∂xν

)
+ Γωτσ(x

′)Y ν(x)
∂x′τ

∂xν

]
∂′ω

= Xµ(x)
∂x′σ

∂xµ

[
∂xρ

∂x′σ
∂ρY

ν(x)
∂x′ω

∂xν
+ Y ν(x)

∂xρ

∂x′σ
∂x′ω

∂xρ∂xν
+ Γωτσ(x

′)Y ν(x)
∂x′τ

∂xν

]
∂′ω

= Xµ(x)

[
∂µY

ν(x)
∂x′ω

∂xν
+ Y ν(x)

∂x′ω

∂xµ∂xν
+ Γωτσ(x

′)Y ν(x)
∂x′τ

∂xν
∂x′σ

∂xµ

]
∂′ω .

(30.9.6)

Taking the pullback to the point x, we thus find

[(φ∗∇)XY ](x) = Xµ(x)

[
∂µY

ν(x)
∂x′ω

∂xν
+ Y ν(x)

∂x′ω

∂xµ∂xν
+ Γωτσ(x

′)Y ν(x)
∂x′τ

∂xν
∂x′σ

∂xµ

]
∂xλ

∂x′ω
∂λ

= Xµ(x)

[
∂µY

ν(x) + Y ρ(x)
∂xν

∂x′ω

(
∂x′ω

∂xµ∂xρ
+ Γωτσ(x

′)
∂x′τ

∂xρ
∂x′σ

∂xµ

)]
∂ν

= Xµ(x) [∂µY
ν(x) + Γ′νρµ(x)Y

ρ(x)] ∂ν ,

(30.9.7)

so that we can finally read off the connection coefficients

Γ′νρµ(x) =
∂xν

∂x′ω

(
∂x′ω

∂xµ∂xρ
+ Γωτσ(x

′)
∂x′τ

∂xρ
∂x′σ

∂xµ

)
. (30.9.8)

Hence, we find the same coordinate expression as from the principal connection approach. This
result suggests that both approaches are equivalent, which can be formulated as follows.

Theorem 30.9.1. The Koszul connection φ∗∇ is induced by the principal connection φ∗◦ϑ and
vice versa.

Proof. ▶. . .◀ ■

Once again recalling that affine connections form sections of an affine bundle modeled over
T 1
2M , it follows that the difference φ∗∇−∇ is a section of T 1

2M . This remains true if instead
of a single diffeomorphism φ we consider a one-parameter group t 7→ φt of diffeomorphisms,
generated by a vector field X = Xµ∂µ. In analogy to the case of tensor fields, we can thus
define the Lie derivative of an affine connection as follows.

Definition 30.9.3 (Lie derivative of an affine connection). Let ∇ be an affine connection
and X ∈ Vect(M) a vector field on a manifold M . Let ϕ : R×M ⊇ U →M be the flow of
X. The Lie derivative of ∇ with respect to X is the (1, 2)-tensor field defined by

LX∇ = lim
t→0

ϕ∗t∇−∇
t

. (30.9.9)

It is straightforward to derive a coordinate expression, in analogy to the Lie derivative of a
tensor field. For this purpose, recall that the components of the tensor field we aim to calculate
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are given by the difference of the connection coefficients of the two connections, and so we can
write

(LX∇)ρµν(x) = lim
t→0

Γ′ρt µν(x)− Γρµν(x)

t
=

d

dt
Γ′ρt µν(x)

∣∣∣∣
t=0

, (30.9.10)

where we wrote

Γ′ρt µν(x) =
∂xρ

∂x′ωt
(x′t(x))

(
∂x′ωt

∂xµ∂xν
(x) + Γωτσ(x

′
t(x))

∂x′τt
∂xρ

(x)
∂x′σt
∂xµ

(x)

)
. (30.9.11)

As for a tensor field, we have

d

dt
Γωτσ(x

′
t(x))

∣∣∣∣
t=0

= Xλ(x)∂λΓ
ω
τσ(x) , (30.9.12)

where we used the fact that the vector field is related to the flow by

Xµ(x) =
d

dt
x′µt (x)

∣∣∣∣
t=0

. (30.9.13)

Further using the relations

d

dt

∂x′νt
∂xµ

(x)

∣∣∣∣
t=0

= ∂µX
ν(x) ,

d

dt

∂xµ

∂x′νt
(x′t(x))

∣∣∣∣
t=0

= −∂νXµ(x) , (30.9.14)

which we have derived in section 16.2, we are only left with the term

d

dt

∂x′ρt
∂xµ∂xν

(x)

∣∣∣∣
t=0

= ∂µ∂νX
ρ(x). (30.9.15)

Putting all terms together, we thus finally arrive at the expression

(LX∇)ρµν = Xσ∂σΓ
ρ
µν − ∂σXρΓσµν + ∂µX

σΓρσν + ∂νX
σΓρµσ + ∂µ∂νX

ρ . (30.9.16)

Note that this result differs from that for a tensor field by the appearance of the last term, which
originates from the inhomogeneous term in the transformation of the connection coefficients,
which contains the second derivative of the coordinate transformation. By construction, we
know that this result must constitute the components of a tensor field. We will thus derive
another expression, from which this conclusion will be obvious.

Theorem 30.9.2. The Lie derivative of an affine connection satisfies

(LX∇)(Y, Z) = ∇2
Z,YX −R(Z,X)Y −∇Z(T (Y,X)) + T (∇ZY,X) (30.9.17)

for all vector fields X,Y, Z ∈ Vect(M) .

Proof. We need to consider the vector field

(φ∗t∇)ZY = φ∗t [∇φ−1 ∗
t Z(φ

−1 ∗
t Y )] , (30.9.18)

which approaches ∇ZY for t→ 0, in order to calculate

(LX∇)(Y,Z) = lim
t→0

(φ∗t∇)ZY −∇ZY
t

=
d

dt
(φ∗t∇)ZY

∣∣∣∣
t=0

= [X,∇ZY ]−∇[X,Z]Y −∇Z [X,Y ]

= ∇X∇ZY −∇∇ZYX − T (X,∇ZY )−∇X∇ZY +∇Z∇XY
+R(X,Z)Y +∇Z [T (X,Y )−∇XY +∇YX]

= ∇Z∇YX −∇∇ZYX + T (∇ZY,X)−R(Z,X)Y −∇Z(T (Y,X))

= ∇2
Z,YX −R(Z,X)Y −∇Z(T (Y,X)) + T (∇ZY,X) . ■

(30.9.19)

385



We also illustrate this result in coordinates. Making use of the coordinate expressions of the
curvature, the torsion and the covariant derivative in terms of the connection coefficients, one
has

(LX∇)(Y, Z) = [ZνY µ∇ν∇µXρ −RρµνσY µZνXσ − Zν∇ν(T ρµσY µXσ) + T ρµσZ
ν∇νY µXσ]∂ρ

= Y µZν [∇ν∇µXρ −RρµνσXσ −∇ν(XσT ρµσ)]∂ρ

= Y µZν{∂ν(∂µXρ + ΓρσµX
σ) + Γρων(∂µX

ω + ΓωσµX
σ)− Γωµν(∂ωX

ρ + ΓρσωX
σ)

− (∂νΓ
ρ
µσ − ∂σΓρµν + ΓρωνΓ

ω
µσ − ΓρωσΓ

ω
µν)X

σ − ∂ν [Xσ(Γρσµ − Γρµσ)]

+ Γρων [X
σ(Γωσµ − Γωµσ)]− Γωµν [X

σ(Γρσω − Γρωσ)]}∂ρ
= Y µZν(Xσ∂σΓ

ρ
µν − ∂σXρΓσµν + ∂µX

σΓρσν + ∂νX
σΓρµσ + ∂µ∂νX

ρ)∂ρ

= (LX∇)ρµνY µZν∂ρ ,
(30.9.20)

which agrees with our previous result.

In the proof of theorem 30.9.2 we have encountered the Lie derivative of the covariant derivative
of a vector field. It turns out that this is a special case of a more general result, which we show
as follows.

Theorem 30.9.3. The Lie derivative of the covariant derivative of a tensor field A of rank
(r, s) satisfies

LX(∇YA) = ∇Y (LXA) +∇[X,Y ]A+▶ . . . ◀ (30.9.21)

and
LX(∇A) = ∇(LXA) +▶ . . . ◀ (30.9.22)

for all vector fields X,Y ∈ Vect(M).

Proof. ▶. . .◀ ■

In coordinates, this expression becomes ▶. . .◀

Finally, recall that we have constructed two tensor fields from the connection itself, namely
the torsion and the curvature. It is natural to expect that also their Lie derivatives are fully
expressed in terms of the Lie derivative of the affine connection, and hence ultimately in terms
of covariant derivatives, as well as the curvature and torsion tensor. We now show that this is
indeed the case, by proving the following statement.

Theorem 30.9.4. The Lie derivatives of the curvature and the torsion satisfy

(LVR)(X,Y )Z = (LV∇)(X,∇Y Z)− (LV∇)(Y,∇XZ)
+∇X [(LV∇)(Y, Z)]−∇Y [(LV∇)(X,Z)]− (LV∇)([X,Y ], Z) (30.9.23)

and
(LV T )(X,Y ) = (LV∇)(X,Y )− (LV∇)(Y,X) (30.9.24)

for all vector fields V,X, Y, Z ∈ Vect(M).

Proof. By direct calculation, making use of the Jacobi identity, one finds for the torsion

(LV T )(X,Y ) = [V, T (X,Y )]− T ([V,X], Y )− T (X, [V, Y ])

= [V,∇XY −∇YX − [X,Y ]]−∇[V,X]Y +∇Y [V,X] + [[V,X], Y ]

−∇X [V, Y ] +∇[V,Y ]X + [X, [V, Y ]]

= [V,∇XY ]− [V,∇YX]−∇[V,X]Y +∇Y [V,X]−∇X [V, Y ] +∇[V,Y ]X

+ [[X,Y ], V ] + [[V,X], Y ] + [[Y, V ], X]

= (LV∇)(X,Y )− (LV∇)(Y,X) ,

(30.9.25)
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while for the curvature one obtains

(LVR)(X,Y )Z = [V,R(X,Y )Z]−R([V,X], Y )Z −R(X, [V, Y ])Z −R(X,Y )[V,Z]

= [V,∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z]−∇X∇Y [V,Z] +∇Y∇X [V,Z] +∇[X,Y ][V,Z]

−∇[V,X]∇Y Z +∇Y∇[V,X]Z +∇[[V,X],Y ]Z −∇X∇[V,Y ]Z +∇[V,Y ]∇XZ +∇[X,[V,Y ]]Z

= [V,∇X∇Y Z]− [V,∇Y∇XZ]− [V,∇[X,Y ]Z] +∇[X,Y ][V,Z] +∇[V,[X,Y ]]Z

−∇X∇Y [V,Z] +∇Y∇X [V,Z]−∇[V,X]∇Y Z +∇Y∇[V,X]Z −∇X∇[V,Y ]Z +∇[V,Y ]∇XZ
= (LV∇)(X,∇Y Z) +∇X [V,∇Y Z]− (LV∇)(Y,∇XZ)−∇Y [V,∇XZ]
−∇X∇Y [V,Z] +∇Y∇X [V,Z] +∇Y∇[V,X]Z −∇X∇[V,Y ]Z − (LV∇)([X,Y ], Z)

= (LV∇)(X,∇Y Z)− (LV∇)(Y,∇XZ)
+∇X [(LV∇)(Y,Z)]−∇Y [(LV∇)(X,Z)]− (LV∇)([X,Y ], Z) . ■

(30.9.26)

To illustrate this result in coordinates, it is most straightforward to start from the right hand
sides derived above, so that intermediate terms can be canceled during the calculation. ▶. . .◀
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Chapter 31

(Pseudo-)Riemannian geometry

31.1 Riemannian and pseudo-Riemannian metrics

One of the most important and most widely used geometric structures in physics is that of a
metric. We first give the definition we will be using, before adding a number of clarifications.

Definition 31.1.1 (Pseudo-Riemannian metric). A pseudo-Riemannian (or semi-
Riemannian) metric on a manifold M is a symmetric tensor field g of rank (0, 2), i.e.,
a section of the bundle Sym2 T ∗M , such that at each point p ∈ M , it defines a non-
degenerate, symmetric bilinear form gp on TpM with constant signature on M .

In the literature both terms pseudo-Riemannian and semi-Riemannian metric are in use for
a metric whose signature is either unspecified or indefinite. Some authors also use the term
Riemannian metric for the indefinite case. However, we reserve this term for the positive definite
case, which we define as follows.

Definition 31.1.2 (Riemannian metric). A pseudo-Riemannian metric is called Rieman-
nian if and only if it is positive definite.

Another case which is of particular importance in physics likewise deserves its own name.

Definition 31.1.3 (Lorentzian metric). A pseudo-Riemannian metric on a manifold of
dimension n is called Lorentzian if and only if it is of signature (1, n− 1).

Here the signature refers to the signature of the symmetric bilinear form. Following Sylvester’s
law of inertia, a vector space equipped with a non-degenerate, symmetric, bilinear form ⟨•, •⟩
possesses a (non-unique) basis (ϵa), such that

⟨ϵa, ϵb⟩ = η(ea, eb) = ηab =


−1 a = b ∈ {1, . . . , k} ,
1 a = b ∈ {k + 1, . . . , k + l} ,
0 otherwise,

(31.1.1)
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with k+ l being the dimension of the vector space, where η is the canonical symmetric bilinear
form of signature (k, l) on Rk+l with basis (ea). Hence, we use the convention that a pseudo-
Riemannian metric is said to be of signature (k, l) if the corresponding bilinear form in an
orthonormal basis is given by

η = diag(−1, . . . ,−1︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
l times

) . (31.1.2)

Note that we demanded in definition 31.1.1 that the signature is constant over the manifold M .
We included this condition, since we allow manifolds with multiple connected components. If we
considered only connected components, we could drop this condition and rely on the following
theorem.

Theorem 31.1.1. Let M be a manifold and g a symmetric tensor field g of rank (0, 2), i.e., a
section of the bundle Sym2 T ∗M , such that at each point p ∈ M , it defines a non-degenerate,
symmetric bilinear form gp on TpM . Then the signature of g is constant on every connected
component of M .

Proof. ▶. . .◀ ■

Given coordinates (xµ), we can write a pseudo-Riemannian metric in the coordinate basis

g = gµνdx
µ ⊗ dxν , (31.1.3)

where the components gµν = g(µν) constitute a symmetric, non-degenerate matrix.

It should be noted that even though we represent a metric by a section of a vector bundle,
namely the symmetric power of the cotangent bundle, the space of all metrics with signature
(k, l) does not form a vector space, and is not in one-to-one correspondence with the sections
of a vector bundle, due to the restrictions on the signature and that of non-degeneracy: we are
only allowed to multiply a metric g by a positive (or nonzero if k = l) real number, and also
the sum of two metrics of the same signature does not necessarily lead to another metric of the
same signature. Nevertheless, it will turn out that the space of metrics of a given signature
is still given by the sections of a fiber bundle, albeit not a vector bundle. We will reveal this
bundle in section 31.4.

31.2 Inverse metric

From the condition that the metric is everywhere non-degenerate follows that it possesses an
inverse, which can be defined in various, equivalent ways. Here we use the following definition.

Definition 31.2.1 (Inverse metric). Let M be a manifold with a pseudo-Riemannian met-
ric g ∈ Γ(Sym2 T ∗M). Its inverse is the unique tensor field g−1 ∈ Γ(Sym2 TM) which
satisfies tr11(g ⊗ g−1) = δ, where δ ∈ Γ(T 1

1M) is the unit section.

Here we essentially use the fact that g induces a vector bundle isomorphism TM → T ∗M and
define g−1 such that it induces the inverse vector bundle isomorphism T ∗M → TM ; we will
properly define these morphisms in section 31.3.

Using the coordinate expression (31.1.3) of the metric, as well as δ = ∂µ ⊗ dxµ = δµν ∂µ ⊗ dxν ,
we can express the inverse metric in the form

g−1 = gµν∂µ ⊗ ∂ν , gρµgρν = δµν . (31.2.1)
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Note that it is conventional to write the components of the inverse metric as gµν , instead of the
more cumbersome (g−1)µν . Hence, if one expresses the components gµν of the metric in matrix
form, this matrix is invertible, and the components gµν of the inverse metric are expressed by
the inverse matrix.

Now the following is straightforward.

Theorem 31.2.1. Let M be a manifold with a pseudo-Riemannian metric g of signature (k, l).
Then the inverse metric g−1 induces a non-degenerate, symmetric, bilinear form with the same
signature on every cotangent space.

Proof. ▶. . .◀ ■

31.3 Musical isomorphisms

Due to the fact that, by definition 31.1.1, a pseudo-Riemannian metric is non-degenerate, and
hence possesses an inverse, it induces a bijective mapping from tangent vectors to covectors and
vice versa. These mappings are commonly called “musical isomorphisms”1, and can be defined
as follows.

Definition 31.3.1 (Flat isomorphism). Let M be a manifold equipped with a pseudo-
Riemannian metric g. The flat isomorphism is the unique vector bundle isomorphism
♭ : TM → T ∗M such that X♭ = ♭ ◦X ∈ Ω1(M) is the one-form defined by X♭ = g(X, •)
for all X ∈ Vect(M).

Definition 31.3.2 (Sharp isomorphism). Let M be a manifold equipped with a pseudo-
Riemannian metric g. The sharp isomorphism is the unique vector bundle isomorphism
♯ : T ∗M → TM such that ω♯ = ♯◦ω ∈ Vect(M) is the vector field defined by ω♯ = g−1(ω, •)
for all ω ∈ Ω1(M).

In a coordinate basis, we can write these two operations as

X♭ = gµνX
µ dxν = Xν dx

ν (31.3.1)

and
ω♯ = gµνωµ ∂ν = ων ∂ν , (31.3.2)

where we also introduced the common notation of “lowering” and “raising” indices. The latter,
together with the musical notation ♭ for lowering and ♯ for raising the pitch of a note, are the
reason for the naming and notation of the musical isomorphisms.

The musical isomorphisms are sometimes useful to express the action of the metric g on vector
fields and covector fields. Given vector fields X,Y ∈ Vect(M) and covector fields α, β ∈ Ω1(M)
one immediately writes

g(X,Y ) = X ¬ Y ♭ = Y ¬ X♭ , (31.3.3)

as well as
g−1(α, β) = α♯ ¬ β = β♯ ¬ α . (31.3.4)

1As denoted by [Ber02, sec. 15.2]. The term is also used in [Lee13, ch. 13] and [Lee18, ch. 2]. See also
[Fec11, sec. 2.4].
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31.4 Orthonormal frame bundle

In section 22.6 we have encountered the tangent frame bundle FM as the bundle whose elements
over x ∈ M are linear bijections f : RdimM → TxM . Given a pseudo-Riemannian metric, one
may consider a particular set of frames, which relates the metric structure of the tangent spaces
to a bilinear form η of the same signature on the vector space RdimM . We define these frames
as follows.

Definition 31.4.1 (Orthonormal frame bundle). Let M be a manifold with a pseudo-
Riemannian metric g of signature (k, l) and η the symmetric bilinear form on Rk+l with the
same signature. An orthonormal frame at x ∈ M is a bijective linear function f : Rk+l →
TxM such that η = f∗g. The set of all orthonormal frames constitutes the orthonormal
frame bundle O(M, g) with projection mapping f : Rk+l → TxM to x ∈M .

The defining property which distinguishes an orthonormal frame is that it pulls the metric back
to the canonical symmetric bilinear form η of signature (k, l) on Rk+l. In other words, a frame
f is orthonormal if and only if

g(f(v), f(w)) = η(v, w) (31.4.1)

for all v, w ∈ Rk+l. Using the coordinate expression (31.1.3), the basis expansion (31.1.1) and
the basis expansion

f(v) = f(vaea) = vaf(ea) = vafa = fµav
a ∂µ (31.4.2)

of a frame f , we find that f is orthonormal if and only if

gµνf
µ
af

ν
b = ηab . (31.4.3)

Recall from example 15.1.3 that one may define the orthogonal group O(k, l) as the set of linear
bijections A : Rk+l → Rk+l which leave the bilinear form η invariant, η(Av,Aw) = η(v, w) for
all v, w ∈ Rk+l. This suggests a relation between the orthonormal frame bundle and the group
O(k, l). We state this relation as follows.

Theorem 31.4.1. The orthonormal frame bundle O(M, g) over a manifold M with pseudo-
Riemannian metric g of signature (k, l) is a principal fiber bundle with structure group O(k, l),
where the right action is given by f ·A = f ◦A for f ∈ O(M, g) and A ∈ O(k, l).

Proof. We show that O(k, l) acts freely and transitively on the fibers Fx(M, g) of O(M, g) for
x ∈M :

• Let f ∈ Fx(M, g) be an orthonormal frame at x and A ∈ O(k, l). Then

g(f(Av), f(Aw)) = η(Av,Aw) = η(v, w) (31.4.4)

for all v, w ∈ Rk+l, and so f ◦A ∈ Fx(M, g). Hence, O(k, l) acts on the fibers Fx(M, g).

• Let f, f ′ ∈ Fx(M, g) be orthonormal frames at x. Then define A = f−1 ◦f ′ : Rk+l → Rk+l
as the unique linear bijection satisfying f ′ = f ◦A. Observe that

η(Av,Aw) = η(f−1(f ′(v)), f−1(f ′(w))) = g(f ′(v), f ′(w)) = η(v, w) (31.4.5)

for all v, w ∈ Rk+l, and so A ∈ O(k, l). This element is unique, and thus the action is free
and transitive.

To complete the proof, one still needs to construct the local trivializations of O(M, g) and show
its bundle structure, i.e., that the total space O(M, g) carries the structure of a smooth manifold
and that it defines a fiber bundle. We will not show this here, and remark that this can be done
by using an atlas of M . ■
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Obviously, the orthonormal frame bundle is canonically included in the general linear frame
bundle, O(M, g) ↪→ FM . Recalling the construction of principal bundle reductions detailed in
section 20.6, one arrives at the following property.

Theorem 31.4.2. The orthonormal frame bundle together with the canonical inclusion O(M, g) ↪→
FM is a O(k, l)-reduction of the general linear frame bundle FM .

Proof. It follows by construction that the inclusion O(M, g) ↪→ FM is a principal bundle
homomorphism covering the identity, so that the diagram (20.6.1) commutes. ■

Using the preceding statement about the orthonormal frame bundle, we can now also get a
deeper insight into the geometry of the bundle whose sections constitute metrics of a given
signature. Recall from definition 31.1.1 that a pseudo-Riemannian metric is a section of the
bundle Sym2 T ∗M with the additional constraints that it is non-degenerate and of constant
signature. Hence, for a fixed signature (k, l), for x ∈ M the fiber over x of the bundle we
consider contains only those elements of Sym2 T ∗xM which yield a symmetric bilinear form of
signature (k, l). This space, in contrast to Sym2 T ∗xM , is not a vector space, since its zero
element would be degenerate, and so the bundle of pseudo-Riemannian metrics is not a vector
bundle. It does, however, have another structure, which we can see as follows.

Theorem 31.4.3. The bundle of pseudo-Riemannian metrics of signature (k, l) is isomorphic
to the associated bundle FM ×ρ G/H with G = GL(k + l,R), H = O(k, l) and ρ the canonical
left action of G on the coset space G/H.

Proof. The proof is carried out by the following steps:

1. Let f ∈ FM with ϖ(f) = x ∈ M and A ∈ G, so that AH ∈ G/H. This allows us to
define a bilinear form g = (A−1 ◦ f−1)∗η on TxM , which thus satisfies

g(v, w) = η(A−1(f−1(v)), A−1(f−1(w))) . (31.4.6)

This is clearly of signature (k, l), since A−1 ◦ f−1 : TxM → Rk+l is a vector space
isomorphism and η is of signature (k, l). Further, it does not depend on the choice of the
representative A of AH, since for any A′ = AB with B ∈ H one has

g′(v, w) = η(A′−1(f−1(v)), A′−1(f−1(w)))

= η(B−1(A−1(f−1(v))), B−1(A−1(f−1(w))))

= η(A−1(f−1(v)), A−1(f−1(w))) = g(v, w) .

(31.4.7)

Hence, it is fully determined by f and AH. Finally, it does not depend on the choice of
the representative (f,AH) of [f,AH], since for B ∈ G and thus another representative

(f ′, A′H) = (f ◦B,B−1AH) ∈ [f,AH] (31.4.8)

one has

A′−1 ◦ f ′−1 = (B−1A)−1 ◦ (f ◦B)−1 = A−1 ◦B ◦B−1 ◦ f−1 = A−1 ◦ f−1 . (31.4.9)

Hence, g depends only on the element [f,AH] ∈ FM ×ρ G/H. We thus have a mapping
from FM ×ρ G/H to the bundle of metrics of signature (k, l).

2. To construct the inverse mapping, let g be a non-degenerate bilinear form of signature
(k, l) on TxM and f ∈ FxM an orthonormal frame for x ∈ M , i.e., let f be chosen such
that f∗g = η. Then consider the element [f, eH] ∈ FM ×ρ G/H, where e ∈ G is the
unit element. Note that this does not depend on the choice of f , since for any other
orthonormal frame f ′ = f ·A with A ∈ H we have

[f ′, eH] = [f ·A, eH] = [f,AH] = [f, eH] . (31.4.10)

Hence, it is uniquely defined by the bilinear form g on TxM . This defines a mapping from
the space of bilinear forms of signature (k, l) on TxM to FxM ×ρ G/H.
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3. Finally, we have to show that the two mappings we have constructed are inverses of each
other:

(a) Starting from a bilinear form g, we choose an orthonormal frame f , to construct
[f, eH]. Since f is orthonormal, it satisfies f∗g = η. Hence, g = (f−1)∗η agrees with
the metric constructed from [f, eH].

(b) Conversely, starting from [f,AH] ∈ FM×ρG/H we construct the metric g = (A−1 ◦
f−1)∗η. By construction, it follows that f · A is an orthonormal frame. For the
mapping in the converse direction, we can thus choose f ·A, and obtain the element
[f · A, eH]. From the action of G which defines the elements of FM ×ρ G/H we
finally find [f ·A, eH] = [f,AH].

Hence, the two mappings we have constructed are inverses of each other, and we find a
one-to-one correspondence between bilinear forms of signature (k, l) on TxM and elements
of FxM×ρG/H. Performing this for all x ∈M , we obtain a fiber bundle isomorphism. ■

31.5 Twisted volume form

From a pseudo-Riemannian metric we can define a number of other interesting geometric objects.
In this section we will discuss the following construction, which is most easily defined in terms
of corresponding principal bundles.

Definition 31.5.1 (Twisted volume form of a Riemannian metric). Let M be a mani-
fold with a pseudo-Riemannian metric g. Its twisted volume form is the section volg ∈
Γ(D−−1(TM)) defined such that for all f ∈ O(M, g) holds

[f, 1]ρ−−1
= volg(ϖ(f)) , (31.5.1)

where ϖ : O(M, g)→M is the orthonormal frame bundle.

To see that this definition is independent of the representative f , let f ′ = f ·A with A ∈ O(k, l)
be another orthonormal frame over the same base point ϖ(f) = ϖ(f ′). Then we have

[f ′, 1]ρ−−1
= [f ·A, 1]ρ−−1

= [f, ρ−−1(A, 1)]ρ−−1
= [f, |detA|]ρ−−1

= [f, 1]ρ−−1
, (31.5.2)

since |detA| = 1 for an orthogonal matrix. In other words, we define the twisted volume form
volg such that all g-orthonormal frames are volg-normalized. We can also state this as follows.

Theorem 31.5.1. The normalized frame bundle SL±(M, volg) of the twisted volume form volg
is given by

SL±(M, volg) = {f ·A, f ∈ O(M, g), A ∈ SL±(k,R)} . (31.5.3)

Proof. ▶. . .◀ ■

Theorem 31.5.2. The orthonormal frame bundle O(M, g) of a pseudo-Riemannian metric
with signature (k, l) is a O(k, l) reduction of the normalized frame bundle SL±(M, volg) of the
twisted volume form volg induced by g.

Proof. ▶. . .◀ ■

▶Show relation with det g and derive coordinate expression.◀
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Theorem 31.5.3. The twisted volume form volg ∈ Γ(D−−1(TM)) induced by a pseudo-Riemannian
metric g of signature (k, l) satisfies

det g = (−1)k volg ⊗ volg . (31.5.4)

Proof. ▶. . .◀ ■

31.6 Differential forms on Riemannian manifolds

We have seen in section 31.2 that a metric, due to being non-degenerate, possesses an inverse,
which is a non-degenerate bilinear form acting on covector fields, or one-forms. This bilinear
form can be generalized also to differential forms of higher degree as follows.

Definition 31.6.1 (Riemannian bilinear form on differential forms). Let M be a manifold
with a pseudo-Riemannian metric g. The induced bilinear form on Ωq(M) is the unique
bilinear form ⟨•, •⟩g such that

⟨α1 ∧ . . . ∧ αq, β1 ∧ . . . ∧ βq⟩g = det g−1(α•, β•) (31.6.1)

for all α1, . . . , αq, β1, . . . , βq ∈ Ω1(M).

This definition needs a few explanations. First note that g−1(αi, βj) ∈ C∞(M) denotes the
bilinear form g−1 acting on the one-forms αi and βj , in coordinates given by

g−1(αi, βj) = gµναi µβj ν , (31.6.2)

where i, j label the one-forms α1, . . . , αq, β1, . . . , βq ∈ Ω1(M), while a, b label the components
of each one-form in the coordinate basis dxa. Calculating this for each pair i, j of labels, one
obtains a matrix, and so one can take the determinant

⟨α1 ∧ . . . ∧ αq, β1 ∧ . . . ∧ βq⟩g = det

g
−1(α1, β1) · · · g−1(α1, βq)

...
. . .

...
g−1(αq, β1) · · · g−1(αq, βq)

 . (31.6.3)

Now recall that we can also write the determinant with the help of the totally antisymmetric
Levi-Civita symbol as

det g−1(α•, β•) =
1

q!
ϵi1···iqϵj1···jqg−1(αi1 , βj1) · · · g−1(αiq , βjq ) , (31.6.4)

which in components becomes

det g−1(α•, β•) =
1

q!
ϵi1···iqϵj1···jqgµ1ν1 · · · gµqνqαi1 µ1

· · ·αiq µqβj1 ν1 · · ·βjq νq . (31.6.5)

From this expression we can recognize the exterior product

α1 ∧ . . . ∧ αq = α1µ1
· · ·αq µqdxµ1 ∧ . . . ∧ dxµq =

1

q!
ϵi1···iqαi1 µ1

· · ·αiq µqdxµ1 ∧ . . . ∧ dxµq ,

(31.6.6a)

β1 ∧ . . . ∧ βq = β1 ν1 · · ·βq νqdxν1 ∧ . . . ∧ dxνq =
1

q!
ϵj1···jqβj1 ν1 · · ·βjq νqdxν1 ∧ . . . ∧ dxνq ,

(31.6.6b)
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where we made use of the fact that the exterior product is totally antisymmetric with respect
to reordering of the factors. Defining

α =
1

q!
αµ1···µqdx

µ1 ∧ . . . ∧ dxµq , β =
1

q!
βν1···νqdx

ν1 ∧ . . . ∧ dxνq , (31.6.7)

we thus have

αµ1···µq = ϵi1···iqαi1 µ1 · · ·αiq µq , βν1···νq = ϵj1···jqβj1 ν1 · · ·βjq νq . (31.6.8)

Since a bilinear form is by definition bilinear, we thus have the general expression

⟨α, β⟩g =
1

q!
gµ1ν1 · · · gµqνqαµ1···µqβν1···νq . (31.6.9)

In particular, we see that it reduces to g−1 for one-forms in the case q = 1. Also the following
is now straightforward.

Theorem 31.6.1. The bilinear form ⟨•, •⟩g induced by a pseudo-Riemannian metric is non-
degenerate.

Proof. At each point x ∈M , we can pick an orthogonal basis (ϵa) of the cotangent space T ∗xM ,
so that g−1(ϵa, ϵb) = ηab. This generates a basis

(ϵa1 ∧ . . . ∧ ϵaq , 1 ≤ a1 < . . . < aq ≤ dimM) . (31.6.10)

Calculating the bilinear form on two basis vectors yields

⟨ϵa1 ∧ . . . ∧ ϵaq , ϵb1 ∧ . . . ∧ ϵbq ⟩g = ηa1b1 · · · ηaqbq , (31.6.11)

where we used the fact that any term in the matrix g−1(ϵai , ϵbj ) appearing in the definition of
the bilinear form is equal to ηaibj and thus non-zero if and only if ai = bj , which, together with
the fact that the indices ai and bj are in strictly ascending order, shows that this matrix is
non-degenerate only if ai = bi for all 1 ≤ i ≤ q, in which case it becomes diag(ηa1b1 , . . . , ηaqbq ).
Hence, the basis (31.6.10) is orthonormal, and so the bilinear form ⟨•, •⟩g is non-degenerate. ■

The bilinear form has a number of properties which are often useful in calculations. We thus
show the following helpful formula.

Theorem 31.6.2. The bilinear form ⟨•, •⟩g induced by a pseudo-Riemannian metric satisfies

⟨α, γ ∧ β⟩g = ⟨γ♯ ¬ α, β⟩g (31.6.12)

for all q-forms α ∈ Ωq(M), (q − 1)-forms β ∈ Ωq−1(M) and one-forms γ ∈ Ω1(M).

Proof. It is sufficient to show this for differential forms

α = α1 ∧ . . . αq , β = β1 ∧ . . . βq−1 , (31.6.13)

and conclude on the general case by linearity. In this case we have

γ♯ ¬ α = (γ♯ ¬ α1) ∧ α2 ∧ . . . ∧ αq − α1 ∧ (γ♯ ¬ α2) ∧ . . . ∧ αq + . . .

=

q∑
i=1

(−1)q−1(γ♯ ¬ αi) ∧ α1 ∧ . . . ∧ α̂i ∧ . . . ∧ αq

=

q∑
i=1

(−1)q−1g−1(γ, αi)α1 ∧ . . . ∧ α̂i ∧ . . . ∧ αq .

(31.6.14)
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Now we find that

⟨γ♯ ¬ α, β⟩g = g−1(γ, α1) det

g
−1(α2, β1) · · · g−1(α2, βq−1)

...
. . .

...
g−1(αq, β1) · · · g−1(αq, βq−1)



− g−1(γ, α2) det


g−1(α1, β1) · · · g−1(α1, βq−1)
g−1(α3, β1) · · · g−1(α3, βq−1)

...
. . .

...
g−1(αq, β1) · · · g−1(αq, βq−1)

+ . . .

= det

g
−1(α1, γ) g−1(α1, β1) · · · g−1(α1, βq−1)

...
...

. . .
...

g−1(αq, γ) g−1(αq, β1) · · · g−1(αq, βq−1)


= ⟨α, γ ∧ β⟩g . ■

(31.6.15)

In the definition 31.6.1 we have considered the case that α and β are differential forms, and
bilinearity implies that if one multiplies any of these forms by a function f ∈ C∞(M,R), the
result is the same as if one multiplied the whole expression instead,

⟨fα, β⟩g = ⟨α, fβ⟩g = f⟨α, β⟩g . (31.6.16)

One can straightforwardly extend the definition of the bilinear form by demanding that this
also holds for pseudoscalars. We thus define the following.

Definition 31.6.2 (Riemannian bilinear form on twisted differential forms). Let M be
a manifold with a pseudo-Riemannian metric g. The induced bilinear form on Ωq(M) is
extended to the space Ω̄q(M) of twisted differential forms by demanding that

⟨α⊗ a, β⟩g = ⟨α, β ⊗ a⟩g = ⟨α, β⟩g ⊗ a , ⟨α⊗ a, β ⊗ b⟩g = ⟨α, β⟩g ⊗ a⊗ b (31.6.17)

for all α, β ∈ Ωq(M) and a, b ∈ Ω̄0(M).

Note that if one of the two arguments is a twisted differential form, then the (extended) bilinear
form yields a pseudoscalar, while for two twisted differential forms one obtains a scalar function.
It is straightforward to check that the properties we have proven for the bilinear form ⟨•, •⟩g
hold also for its extension to twisted forms, since all operations used in their proofs are linear
also with respect to multiplication by pseudoscalars.

31.7 Hodge dual

Using the results from the previous section, we can now show the following.

Theorem 31.7.1. Let β ∈ Ωq(M) be a q-form on a pseudo-Riemannian manifold (M, g) of
dimension dimM = n. Then there exists a unique twisted (n − q)-form ⋆β ∈ Ω̄n−q(M) such
that

α ∧ ⋆β = ⟨α, β⟩g volg (31.7.1)

for all α ∈ Ωq(M).

Proof. ▶. . .◀ ■
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This leads to the following definition.

Definition 31.7.1 (Hodge operator). Let (M, g) be a pseudo-Riemannian manifold of
dimension dimM = n. The Hodge operator is the operator ⋆ : Ωq(M) → Ω̄n−q(M)
constructed in theorem 31.7.1, and is extended to twisted differential forms by demanding

⋆(α⊗ a) = (⋆α)⊗ a (31.7.2)

for all α ∈ Ωq(M) and a ∈ Ω̄0(M).

While theorem 31.7.1 uniquely defines the Hodge operator, it is useful to consider a more
constructive approach. Recalling that any differential q-form can be obtained as an exterior
product of q one-forms, one would like to have a formula for the Hodge operator applied to such
a product. We can arrive at this construction in two steps. We start with the following.

Theorem 31.7.2. The Hodge operator satisfies ⋆1 = volg.

Proof. This is simply a special case of theorem 31.7.1 with α = β = 1. ■

Now we continue with the following.

Theorem 31.7.3. The Hodge operator satisfies

⋆(β ∧ γ) = γ♯ ¬ ⋆β (31.7.3)

for all q-forms β ∈ Ωq(M) and one-forms γ ∈ Ω1(M).

Proof. For all (q + 1)-forms α ∈ Ωq+1(M) we have

α ∧ ⋆(β ∧ γ) = ⟨α, β ∧ γ⟩g volg
= (−1)q⟨γ♯ ¬ α, β⟩g volg
= (−1)q(γ♯ ¬ α) ∧ ⋆β
= α ∧ (γ♯ ¬ ⋆β) ,

(31.7.4)

where in the last line we used the identity

0 = γ♯ ¬ (α ∧ ⋆β) = (γ♯ ¬ α) ∧ ⋆β − (−1)qα ∧ (γ♯ ¬ ⋆β) , (31.7.5)

which follows from the fact that α ∧ ⋆β is a differential form of rank n + 1 on a manifold of
dimension dimM = n and thus vanishes identically. Since this holds for all α, and the Hodge
operator is unique, the proposition follows. ■

From a repeated application of the theorem above now follows immediately that we can express
the Hodge operator applied to the q-fold exterior product of one-forms as

⋆(β1 ∧ . . . ∧ βq) = β♯q
¬ ⋆(β1 ∧ . . . ∧ βq−1)

= β♯q
¬ β♯q−1 ¬ ⋆(β1 ∧ . . . ∧ βq−2)

= . . .

= β♯q
¬ . . . ¬ β♯1 ¬ ⋆1

= β♯q
¬ . . . ¬ β♯1 ¬ volg ,

(31.7.6)

and so we have an explicit formula. We can use this formula to show the following.
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Theorem 31.7.4. The Hodge dual of the volume form on a pseudo-Riemannian manifold
(M, g) of signature (k, l) is given by

⋆ volg = (−1)k . (31.7.7)

Proof. ▶. . .◀ ■

Theorem 31.7.5. The bilinear form and Hodge operator on a pseudo-Riemannian manifold
(M, g) of signature (k, l) satisfy

⟨⋆α, ⋆β⟩g = (−1)k⟨α, β⟩g (31.7.8)

for all q-forms α, β ∈ Ωq(M).

Proof. ▶. . .◀ ■

Theorem 31.7.6. The Hodge operator on a pseudo-Riemannian manifold (M, g) of signature
(k, l) with dimension dimM = n = k + l satisfies

⋆⋆α = (−1)q(n−q)+kα (31.7.9)

for all q-forms α ∈ Ωq(M).

Proof. ▶. . .◀ ■

31.8 Codifferential

Definition 31.8.1 (Codifferential). Let (M, g) be a pseudo-Riemannian manifold of di-
mension dimM = n. The codifferential is the unique operator δ : Ωq(M)→ Ωq−1(M) such
that ∫

M

⟨α, δβ⟩g volg =
∫
M

⟨dα, β⟩g volg (31.8.1)

for all q ∈ {1, . . . , n} and compactly supported α ∈ Ωq−1(M) and β ∈ Ωq(M).

Theorem 31.8.1. The codifferential of a q-form β ∈ Ωq(M) on a pseudo-Riemannian (M, g)
manifold of signature(k, l) with dimension dimM = n = k + l is given by

δβ = −(−1)n(q−1)+k⋆d⋆β . (31.8.2)

Proof. By Stokes’ theorem we have

0 =

∫
M

d(α ∧ ⋆β)

=

∫
M

(dα ∧ ⋆β + (−1)qα ∧ d⋆β)

=

∫
M

(⟨dα, β⟩g + (−1)q⟨α, ⋆−1d⋆β⟩g) volg

=

∫
M

(⟨dα, β⟩g + (−1)q+q(n−q)+k⟨α, ⋆d⋆β⟩g) volg

= ▶ . . . ◀

(31.8.3)

▶. . .◀ ■

Theorem 31.8.2. The codifferential satisfies δ2 = 0.

Proof. ▶. . .◀ ■
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31.9 Laplace-de Rham operator

Definition 31.9.1 (Laplace-de Rham operator). Let (M, g) be a pseudo-Riemannian man-
ifold. The Laplace-de Rham operator is the operator △̂ = dδ + δd : Ωq(M)→ Ωq(M).

Theorem 31.9.1. The Laplace-de Rham operator commutes with the hodge operator, ⋆△̂α =
△̂⋆α for all α ∈ Ωq(M).

Proof. ▶. . .◀ ■

Theorem 31.9.2. The Laplace-de Rham operator on a pseudo-Riemannian manifold (M, g)
satisfies ∫

M

⟨α, △̂β⟩g volg =
∫
M

⟨△̂α, β⟩g volg (31.9.1)

for all compactly supported q-forms α, β ∈ Ωq(M).

Proof. ▶. . .◀ ■

Definition 31.9.2 (Harmonic differential form). A differential q-form α ∈ Ωq(M) is called
harmonic if and only if △̂α = 0. The space of all harmonic q-forms is denoted Hq△(M).

Theorem 31.9.3. If a differential form α ∈ Ωq(M) is harmonic, then also ⋆α is harmonic,
and vice versa.

Proof. ▶. . .◀ ■

Theorem 31.9.4. If (M, g) is a Riemannian manifold (i.e., the metric g is positive definite),
then a differential form α ∈ Ωq(M) is harmonic, △̂α = 0, if and only if dα = 0 and δα = 0.

Proof. ▶. . .◀ ■

31.10 Levi-Civita connection

Given a pseudo-Riemannian metric, one may define another geometric object which is naturally
compatible with the metric. Since the metric is a tensor field, one may ask for a connection
which leaves this tensor field invariant. Indeed one finds that such connections exist. Moreover,
it turns out that there exists a unique connection which is singled out by the additional demand
that its torsion vanishes. This we formulate as follows.

Theorem 31.10.1. Let M be a manifold with a pseudo-Riemannian metric g. Then there exists
a unique linear connection ∇ on TM such that the metric is covariantly constant, ∇g = 0, and
the torsion of ∇ vanishes, ∇XY −∇YX − [X,Y ] = 0 for all X,Y ∈ Vect(M).

Proof. Let X,Y, Z ∈ Vect(M) be vector fields. Recall that the metric, being a section of the
tensor product bundle Sym2 T ∗M , is covariantly constant if and only if

0 = (∇Zg)(X,Y ) = Z(g(X,Y ))− g(∇ZX,Y )− g(X,∇ZY ) . (31.10.1)
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Consider the linear combination

X(g(Y, Z))+Y (g(X,Z))−Z(g(X,Y )) = g(∇XY+∇YX,Z)+g(∇XZ−∇ZX,Y )+g(∇Y Z−∇ZY,X) ,
(31.10.2)

where we used the fact that g is symmetric and bilinear. Assuming that ∇ is torsion-free, the
right hand side evaluates to

2g(∇XY,Z)− g([X,Y ], Z) + g([X,Z], Y ) + g([Y, Z], X) . (31.10.3)

Solving this yields the Koszul formula

g(∇XY, Z) =
1

2
{X(g(Y,Z)) + Y (g(X,Z))− Z(g(X,Y )) + g([X,Y ], Z)− g([X,Z], Y )− g([Y,Z], X)} .

(31.10.4)
Since Z is arbitrary and g is non-degenerate, this uniquely defines ∇XY for all vector fields
X,Y ∈ Vect(M). ■

This connection also has its own name, and we define:

Definition 31.10.1 (Levi-Civita connection). The unique metric compatible, torsion-free
connection from theorem 31.10.1 is called the Levi-Civita connection of the metric g.

From the Koszul formula (31.10.4) one may easily derive a coordinate expression for the connec-
tion coefficients of the Levi-Civita connection. For arbitrary vector fields X,Y, Z ∈ Vect(M),
we can write the left hand side in the form

g(∇XY,Z) = g(∇Xµ∂µY ν∂ν , Zρ∂ρ) = gµνX
ρ(∂ρY

µ + ΓµσρY
σ)Zν . (31.10.5)

Using the Koszul formula, this is equal to

g(∇XY, Z) =
1

2

{
Xµ∂µ(gνρY

νZρ) + Y µ∂µ(gνρX
νZρ)− Zµ∂µ(gνρXνY ρ)

+ gµν [(X
ρ∂ρY

µ − Y ρ∂ρXµ)Zν − (Xρ∂ρZ
µ − Zρ∂ρXµ)Y ν − (Y ρ∂ρZ

µ − Zρ∂ρY µ)Xν ]
}

=
1

2
∂µgνρ(X

µY νZρ + Y µXνZρ − ZµXνY ρ) + gµνX
ρ∂ρY

µZν

= gµνX
ρ

[
∂ρY

µ +
1

2
gµσ(∂ωgσρ + ∂ρgωσ − ∂σgωρ)Y ω

]
Zν ,

(31.10.6)

where most of the derivatives appearing in the first step cancel. By comparison of the last two
coordinate expressions one reads off the formula for the connection coefficients

Γµνρ =
1

2
gµσ(∂νgσρ + ∂ρgνσ − ∂σgνρ) , (31.10.7)

which, in the particular case of the Levi-Civita connection, are also called Christoffel symbols.
With this formula one now easily verifies also in components the metric compatibility,

∇µgνρ = ∂µgνρ − Γσνµgσρ − Γσρµgνσ = 0 , (31.10.8)

and vanishing torsion,
Tµνρ = Γµρν − Γµνρ = 0 . (31.10.9)
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31.11 Laplace-Beltrami operator

31.12 Curvature tensors

Recall from section 30.3 that the curvature tensor of an affine connection can be written in the
form

Rµνρσ∂µ ⊗ dxν ⊗ dxρ ⊗ dxσ , (31.12.1)

and is antisymmetric in the last two indices. In the case of the Levi-Civita connection defined
in the previous section, we have a number of further identities, which we list in the following,
and which can be used in order to transform expressions involving the curvature tensor and its
derivatives. It is helpful to lower the first index with the metric,

Rµνρσ = gµωR
ω
νρσ , (31.12.2)

and use the metric also for further lowering and raising of indices, as usual. Here we list the
following identities:

1. Symmetries of the Riemann tensor:

Rµνρσ = −Rνµρσ = −Rµνσρ = Rρσµν . (31.12.3)

2. First Bianchi identity:

Rµ[νρσ] = 0 ⇔ Rµνρσ +Rµρσν +Rµσνρ = 0 . (31.12.4)

3. Second Bianchi identity:

Rµν[ρσ;ω] = 0 ⇔ Rµνρσ;ω +Rµνσω;ρ +Rµνωρ;σ = 0 . (31.12.5)

Recall from definition 30.3.2 that an affine connection defines a tensor field

Theorem 31.12.1. The Ricci tensor of the Levi-Civita connection of a pseudo-Riemannian
metric is symmetric.

Proof. ▶. . .◀ ■

Definition 31.12.1 (Ricci scalar). Let M be a manifold with a pseudo-Riemannian metric
g. The Ricci scalar (or scalar curvature) is the metric trace of the Ricci curvature tensor,

R = tr11 tr
2
2 g
−1 ⊗ /R . (31.12.6)

R = gµνRµν (31.12.7)

31.13 Ricci decomposition

31.14 Geodesics

31.15 Isometries

Given a pseudo-Riemannian manifold (M, g), one is often interested in diffeomorphisms φ :
M →M which leave the metric invariant. These carry their own name:
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Definition 31.15.1 (Isometry). Let (M, g) be a pseudo-Riemannian manifold. A diffeo-
morphism φ :M →M is called an isometry if and only if φ∗g = g.

Most often it is sufficient to consider infinitesimal diffeomorphisms, i.e., one-parameter groups
of diffeomorphisms generated by a vector field X. Also these carry their own name, given in
the following definition.

Definition 31.15.2 (Killing vector field). Let (M, g) be a pseudo-Riemannian manifold.
A vector field X ∈ Vect(M) on M is called a Killing vector field if and only if LXg = 0.

Using the fact that one can rewrite the Lie derivative with the help of the Levi-Civita covariant
derivative of the metric, and that this derivative vanishes by definition, one can also find another
expression for the condition LXg = 0. The most common coordinate-free form is the following.

Theorem 31.15.1 (Killing equation). A vector field X ∈ Vect(M) on a manifold M with
pseudo-Riemannian metric g is a Killing vector field if and only if

g(∇YX,Z) + g(∇ZX,Y ) = 0 (31.15.1)

for all vector fields Y,Z ∈ Vect(M).

Proof. We use the Koszul formula for the Levi-Civita connection to obtain

g(∇YX,Z) + g(∇ZX,Y ) =
1

2

{
Y (g(X,Z)) +X(g(Y, Z))− Z(g(Y,X))

+ g([Y,X], Z)− g([Y,Z], X)− g([X,Z], Y )

+ Z(g(X,Y )) +X(g(Z, Y ))− Y (g(Z,X))

+ g([Z,X], Y )− g([Z, Y ], X)− g([X,Y ], Z)
}

= X(g(Z, Y ))− g([X,Y ], Z)− g([X,Z], Y )

= (LXg)(Y,Z) ,

(31.15.2)

which vanishes for all Y,Z ∈ Vect(M) if and only if X is a Killing vector field. ■

In the theorem and its proof above the vector fields Y,Z are used as auxiliary quantities to
contract the free indices of the tensor field LXg, so that the contracted expression vanishes
for all Y,Z if and only if the tensor field itself vanishes. To derive the equivalent condition
in coordinates, they can be omitted, and we can calculate the Lie derivative of the metric as
follows:

(LXg)µν = Xρ∂ρgµν + ∂µX
ρgρν + ∂νX

ρgµρ

= Xρ(∇ρgµν + Γσµρgσν + Γσνρgµσ) + (∇µXρ − ΓρσµX
σ)gρν + (∇νXρ − ΓρσνX

σ)gµρ

= Xρ[∇ρgµν + (Γσµρ − Γσρµ)gσν + (Γσνρ − Γσρν)gµσ] +∇µXρgρν +∇νXρgµρ

= ∇µXν +∇νXµ .

(31.15.3)

Here we have used the fact that the covariant derivative of the metric and the torsion of the
Levi-Civita connection vanish in order to omit these terms, and then used the former again to
contract the metric under the covariant derivative, hence lowering the indices of the vector field
X. This is the most commonly encountered coordinate form of the Killing equation.
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From the theorem above we have seen that there is a close relationship between the Lie derivative
of the metric and its Levi-Civita connection. Recalling from section 30.9 that we have also
defined the Lie derivative of an affine connection, one may expect that also the latter is defined
from that of the metric. We can show this as follows.

Theorem 31.15.2. The Lie derivative of the Levi-Civita connection is given by

(LV∇)(X,Y ) = ▶ . . . ◀ (31.15.4)

Proof.

g((LV∇)(X,Y ), Z) = g([V,∇YX]−∇[V,Y ]X −∇Y [V,X], Z)

= V g(∇YX,Z)− (LV g)(∇YX,Z)− g(∇YX, [V,Z])− g(∇[V,Y ]X,Z)− g(∇Y [V,X], Z)

=
1

2
V
{
Y (g(X,Z)) +X(g(Y,Z))− Z(g(Y,X))

+ g([Y,X], Z)− g([Y, Z], X)− g([X,Z], Y )
}
− (LV g)(∇YX,Z)

− 1

2

{
Y (g(X, [V,Z])) +X(g(Y, [V,Z]))− [V,Z](g(Y,X))

+ g([Y,X], [V,Z])− g([Y, [V,Z]], X)− g([X, [V,Z]], Y )
}

− 1

2

{
[V, Y ](g(X,Z)) +X(g([V, Y ], Z))− Z(g([V, Y ], X))

+ g([[V, Y ], X], Z)− g([[V, Y ], Z], X)− g([X,Z], [V, Y ])
}

− 1

2

{
Y (g([V,X], Z)) + [V,X](g(Y,Z))− Z(g(Y, [V,X]))

+ g([Y, [V,X]], Z)− g([Y,Z], [V,X])− g([[V,X], Z], Y )
}

=

(31.15.5)

■
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Chapter 32

Metric-affine geometry

32.1 Nonmetricity

Definition 32.1.1 (Nonmetricity). For a metric-affine

32.2 Connection decomposition

Theorem 32.2.1. Let M be a manifold with a pseudo-Riemannian metric g. Then any affine
connection ∇ on M is uniquely determined by its torsion T and nonmetricity Q and vice versa.

Proof. We proceed in analogy to the proof of theorem 31.10.1. Let X,Y, Z ∈ Vect(M) be vector
fields. From the definition 32.1.1 of the nonmetricity follows

Q(Z,X, Y ) = (∇Zg)(X,Y ) = Z(g(X,Y ))− g(∇ZX,Y )− g(X,∇ZY ) . (32.2.1)

Consider the linear combination

Q(Z,X, Y )−Q(X,Z, Y )−Q(Y,X,Z) = Z(g(X,Y )) + g(∇XY +∇YX,Z)
−X(g(Y, Z)) + g(∇XZ −∇ZX,Y )

− Y (g(X,Z)) + g(∇Y Z −∇ZY,X)

= Z(g(X,Y ))−X(g(Y,Z))− Y (g(X,Z))

− g([X,Y ], Z) + g([X,Z], Y ) + g([Y, Z], X)

− g(T (X,Y ), Z) + g(T (X,Z), Y ) + g(T (Y, Z), X)

+ 2g(∇XY,Z) ,
(32.2.2)

where we used the fact that g is symmetric and bilinear, and inserted the definition of the
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torsion. Solving this yields the formula

g(∇XY,Z) =
1

2

{
X(g(Y,Z)) + Y (g(X,Z))− Z(g(X,Y ))

+ g([X,Y ], Z)− g([X,Z], Y )− g([Y,Z], X)

+ g(T (X,Y ), Z)− g(T (X,Z), Y )− g(T (Y, Z), X)

+Q(Z,X, Y )−Q(X,Z, Y )−Q(Y,X,Z)
}

=
1

2

{
g(T (X,Y ), Z)− g(T (X,Z), Y )− g(T (Y, Z), X)

+Q(Z,X, Y )−Q(X,Z, Y )−Q(Y,X,Z)
}
+ g(∇̊XY, Z) .

(32.2.3)

Since Z is arbitrary and g is non-degenerate, this uniquely defines ∇XY for all vector fields
X,Y ∈ Vect(M). ■
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Chapter 33

Weyl geometry

33.1 Orthogonal frame bundle
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Chapter 34

Weitzenböck geometry
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Chapter 35

Symplectic geometry

35.1 Symplectic forms

In chapter 31 we have introduced the pseudo-Riemannian metric and studied it in subsequent
chapters. It constitutes a non-degenerate, symmetric bilinear form on each tangent space, and
hence induces a bijective mapping between tangent and cotangent spaces. We now come to a
structure which has a similar property, but instead of being symmetric, it is antisymmetric, and
which is crucial for the Hamilton theory we discuss in chapter 53. Here we mostly follow the
treatment and conventions of [Ber01]. We start our discussion with the following definition.

Definition 35.1.1 (Almost symplectic form). An almost symplectic form on a manifold
M is a non-degenerate differential 2-form ω, i.e., at each point p ∈ M , ω defines a non-
degenerate, antisymmetric, bilinear form ωp on TpM .

For a pseudo-Riemannian metric, it follows from Sylvester’s law of inertia that there are pseudo-
Riemannian metrics of arbitrary signature (k, l) on manifolds of dimension k + l. For almost
symplectic forms, a similar statement exists, which comes from the properties of antisymmetric,
non-degenerate bilinear forms. However, this statement is far more restrictive.

Theorem 35.1.1. A manifold M endowed with an almost symplectic form ω is necessarily
even-dimensional.

Proof. This follows from the Jacobi’s theorem, which states that an antisymmetric matrix A of
odd dimension n satisfies

detA = detAt = det(−A) = (−1)n detA = −detA , (35.1.1)

and hence detA = 0, so that it must be degenerate. ■

Further, one can show that for every non-degenerate, antisymmetric, bilinear form there exists
a basis in which it is represented by the matrix

Ω =

(
0 1n

−1n 0

)
. (35.1.2)

While various of the statements we discuss in the following sections hold for almost symplectic
forms, there are some which require an additional condition, which can be regarded as an
integrability condition. Imposing this condition yields the following definition.
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Definition 35.1.2 (Symplectic form). An almost symplectic form ω is called a symplectic
form if and only if it is closed.

Since a symplectic form ω is closed, there exists locally (and if ω is exact also globally) an object
which we define as follows.

Definition 35.1.3 (Symplectic potential). A one-form θ ∈ Ω1(M), such that ω = dθ is a
symplectic form, is called a symplectic potential of ω.

In the following, we will encounter several examples of symplectic geometries.

35.2 Symplectic structure on the cotangent bundle

An important example for a manifold which carries a canonical symplectic structure is the
cotangent bundle, and we will study some of its properties in this section.

Definition 35.2.1 (Tautological one-form). Let M be a manifold and τ̄ : T ∗M → M its
cotangent bundle. For α ∈ T ∗M , define θα ∈ T ∗αT ∗M by

θα : TαT
∗M → R
ξ 7→ ⟨τ̄∗(ξ), α⟩ . (35.2.1)

The tautological one-form θ ∈ Ω1(T ∗M) is the map defined by

θ : T ∗M → T ∗T ∗M
α 7→ θα

. (35.2.2)

This construction can be understood as follows. For ξ ∈ TαT ∗M , there exists the pushforward
τ̄∗(ξ) ∈ Tτ̄(α)M . Further, we have α ∈ T ∗τ̄(α)M . Via the canonical pairing ⟨•, •⟩ of the tangent
and cotangent space, we thus have ⟨τ̄∗(ξ), α⟩ ∈ R. This expression is linear in ξ, and so it
defines a linear map θα : TαT

∗M → R, hence an element θα ∈ T ∗αT ∗M . Doing this for every
α ∈ T ∗M yields a section of T ∗T ∗M , which is a one-form θ ∈ Ω1(T ∗M). It has a few interesting
properties, as we will show in the following.

Theorem 35.2.1. The tautological one-form is homogeneous of order 1.

Proof. Let χ : R × T ∗M → T ∗M denote the dilatations, given in definition 19.9.1, and c ∈
Vect(T ∗M) their generating vector field, the Liouville vector field as in definition 19.9.2. For
α ∈ T ∗M , ξ ∈ TαT ∗M and λ ∈ R we have

⟨ξ, (χ∗λθ)α⟩ = ⟨χλ∗(ξ), θχλ(α⟩
= ⟨τ̄∗(χλ∗(ξ)), χλ(α)⟩
= ⟨(τ̄ ◦ χλ)∗(ξ), eλα⟩
= eλ⟨τ̄∗(ξ), α⟩
= eλ⟨ξ, θα⟩ ,

(35.2.3)
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and so χ∗λθ = eλθ. Hence, θ is 1-homogeneous. ■

Another useful property is the following.

Theorem 35.2.2. For every one-form σ ∈ Ω1(M) holds σ∗(θ) = σ.

Proof. First note that the left hand side indeed defines a one-form on M , since θ is a one-form
on T ∗M and σ :M → T ∗M is a map relating these manifolds. Consider x ∈M and v ∈ TxM .
Then we have

⟨v, (σ∗θ)x⟩ = ⟨σ∗(v), θσ(x)⟩
= ⟨τ̄∗(σ∗(v)), σ(x)⟩
= ⟨(τ̄ ◦ σ)∗(v), σ(x)⟩
= ⟨v, σ(x)⟩ .

(35.2.4)

Since this holds for all x ∈M and v ∈ TxM , it follows that σ∗(θ) = σ. ■

With this statement in place, one can now prove the following.

Theorem 35.2.3. Let σ ∈ Ω1(M) be a one-form, and define

Σ : T ∗M → T ∗M
α 7→ α+ σ(τ̄(α))

. (35.2.5)

Then Σ∗θ = θ + τ̄∗(σ).

Proof. Let α ∈ T ∗M and ξ ∈ TαT ∗M . Then we have

⟨ξ, (Σ∗θ)α⟩ = ⟨Σ∗(ξ), θΣ(α)⟩
= ⟨τ̄∗(Σ∗(ξ)),Σ(α)⟩
= ⟨(τ̄ ◦ Σ)∗(ξ), α+ σ(τ̄(α))⟩
= ⟨τ̄∗(ξ), α+ σ(τ̄(α))⟩
= ⟨τ̄∗(ξ), α⟩+ ⟨τ̄∗(ξ), σ(τ̄(α))⟩
= ⟨ξ, θα⟩+ ⟨ξ, (τ̄∗σ)α⟩
= ⟨ξ, (θ + τ̄∗σ)α⟩ .

(35.2.6)

Since this holds for all α ∈ T ∗M and ξ ∈ TαT ∗M , the proposition follows. ■

One now easily shows the following.

Theorem 35.2.4. The tautological one-form θ is a symplectic potential for the symplectic form
ω = dθ

Proof. Obviously, ω is closed, dω = ddθ = 0. It remains to show that ω is non-degenerate,
which will be done in several steps. Since θ is 1-homogeneous as of theorem 35.2.1, one has

θ = Lcθ = ιcdθ + dιcθ . (35.2.7)

Here the second term vanishes, since c is vertical, and hence τ̄∗ ◦ c = 0, and so we have

θ = ιcω . (35.2.8)

Now consider a one-form σ ∈ Ω1(M). ▶. . .◀ ■
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We finally derive coordinate expressions for the tautological one-form and its symplectic form.
It is conventional to denote the coordinates on M by (qa), and to introduce coordinates (qa, pa)
on T ∗M to denote covectors as pa dqa ∈ T ∗qM . Given α = (qa, pa) ∈ T ∗M , we can express
ξ ∈ TαT ∗M as

ξ = ξa
∂

∂qa
+ ξ̄a

∂

∂pa
∈ TαT ∗M (35.2.9)

in the coordinate basis of TT ∗M . Its pushforward is given by

τ̄∗(ξ) = ξa
∂

∂qa
∈ Tτ̄(α)M (35.2.10)

in the coordinate basis of TM . The canonical pairing then yields

⟨τ̄∗(ξ), α⟩ = paξ
a . (35.2.11)

Hence, the tautological one-form is given by

θ = pa dq
a ∈ Ω1(T ∗M) . (35.2.12)

Its exterior derivative yields the symplectic form

ω = dθ = dpa ∧ dqa . (35.2.13)

35.3 Hamiltonian vector field

In section 31.3 we have introduced the musical isomorphisms, which relate the tangent and
cotangent bundles of a manifold equipped with a pseudo-Riemannian metric. In particular, we
used the map ♯ to obtain a vector field from a one-form. We can perform a similar operation
using a symplectic form, and combine this with the total differential acting on functions. This
yields the following definition.

Definition 35.3.1 (Hamiltonian vector field). Let M be a manifold equipped with an
almost symplectic form ω and f ∈ C∞(M,R). The Hamiltonian vector field of f is the
unique vector field Xf ∈ Vect(M) such that ιXfω = df .

Note that there are different sign conventions used in the literature. Here we follow [Ber01, def.
3.2]. We also remark that for the definition above we only need ω to be non-degenerate, but
not necessarily closed. This is also enough to show the following properties.

Theorem 35.3.1. The assignment X• : C∞(M,R) → Vect(M) is a linear function which
satisfies the Leibniz rule,

Xfg = fXg + gXf , (35.3.1)

for f, g ∈ C∞(M,R).

Proof. We make use of the properties 8.4.1 of the total differential. Linearity follows from

ιXµf+νgω = d(µf + νg) = µdf + ν dg = µιXfω + νιXgω = ιµXf+νXgω (35.3.2)

for f, g ∈ C∞(M,R) and µ, ν ∈ R. Similarly, one shows the Leibniz rule

ιXfgω = d(fg) = f dg + g df = fιXgω + gιXfω = ιfXg+gXfω (35.3.3)

for f, g ∈ C∞(M,R). ■
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Also the following property holds for almost symplectic forms.

Theorem 35.3.2. Every function f ∈ C∞(M,R) is constant along its Hamiltonian vector field,
Xff = 0.

Proof. This follows immediately from

Xff = ιXfdf = ιXf ιXfω = 0 , (35.3.4)

due to the antisymmetry of the interior product. ■

Given an arbitrary vector field, one may now pose the question whether this vector field happens
to be the Hamiltonian vector field Xf of some function f . In other words, we are looking for a
possibility to characterize all Hamiltonian vector fields. Looking at the definition 35.3.1, we see
that the existence of f is equivalent to stating that ιXfω is exact. This leads us to the following
definition.

Definition 35.3.2 (Hamiltonian vector fields). Let M be a manifold equipped with an
almost symplectic form ω. A vector field Y ∈ Vect(M) is called:

1. Hamiltonian, Y ∈ Ham(M,ω), if ιY ω is exact,

2. locally Hamiltonian, Y ∈ Ham0(M,ω), if ιY ω is closed.

Obviously, every Hamiltonian vector field is also locally Hamiltonian, and hence Ham(M,ω) ⊆
Ham0(M,ω). Further, we see that Ham(M,ω) and Ham0(M,ω) are vector spaces, and Xf ∈
Ham(M,ω) for all f ∈ C∞(M,R). We can find a few more interesting relations, which we will
now discuss, starting with the following.

Theorem 35.3.3. Let M be a manifold equipped with an almost symplectic form ω, and n ∈ N
be the number of connected components of M . There exists an exact sequence

0 // Rn �
� // C∞(M,R) X• // // Ham(M,ω) // 0 (35.3.5)

of vector spaces, where Rn ↪→ C∞(M,R) is the canonical inclusion which assigns to c =
(c1, . . . , cn) ∈ Rn the constant function • 7→ ci on the i’th connected component of M .

Proof. The map X• is surjective, since, by definition, a vector field is Hamiltonian if and only
if it is the image of a function f ∈ C∞(M,R) under X•. The kernel is given by those functions
for which df = 0, since ω is non-degenerate. These are the functions which are constant on the
connected components of M . ■

Recall that the vector fields Vect(M) on a manifold M , equipped with the commutator, form a
Lie algebra. One may wonder whether this holds also for the subspace of (locally) Hamiltonian
vector fields. It turns out that this is the case only for symplectic (and hence closed) forms
ω. We show this in several steps. First, we give another characteristic property of locally
Hamiltonian vector fields.

Theorem 35.3.4. Let M be a manifold equipped with a symplectic form ω and Y ∈ Vect(M).
Then Y is locally Hamiltonian if and only if ω is constant along Y , i.e., LY ω = 0.

Proof. By direct calculation we have, if and only if ιY ω is closed,

LY ω = dιY ω + ιY dω = 0 , (35.3.6)

where the second term vanishes due to dω = 0. ■
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Now we can state the property for locally Hamiltonian vector fields.

Theorem 35.3.5. Let M be a manifold equipped with a symplectic form ω. Then the locally
Hamiltonian vector fields Ham0(M,ω) form a Lie subalgebra of Vect(M).

Proof. Let Y,Z ∈ Ham0(M,ω). Then we have

L[Y,Z]ω = LY LZω − LZLY ω = 0 , (35.3.7)

and so [Y, Z] ∈ Ham0(M,ω). ■

This holds also for Hamiltonian vector fields.

Theorem 35.3.6. Let M be a manifold equipped with a symplectic form ω. Then the Hamil-
tonian vector fields Ham(M,ω) form a Lie subalgebra of Vect(M).

Proof. We defer this proof to the proof of theorem 35.4.3, where we give an explicit formula for
the commutator of two Hamilton vector fields, and show that it is again Hamiltonian. ■

35.4 Poisson bracket

A symplectic form ω equips a manifold with a number of other interesting objects, which are
relevant for physical application. A particularly important example will be discussed in this
section. We start with the following definition.

Definition 35.4.1 (Poisson structure). Let M be a manifold. A Poisson structure is a
R-bilinear mapping {•, •} : C∞(M,R) × C∞(M,R) → C∞(M,R) which satisfies for all
f, g, h ∈ C∞(M,R):

1. Antisymmetry: {f, g} = −{g, f},

2. Jacobi identity: {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0,

3. Leibniz rule: {fg, h} = f{g, h}+ {f, h}g.

The first two properties state that the Poisson bracket equips the set C∞(M,R) of real functions
on M with a Lie algebra structure. The Leibniz rule states that for f ∈ C∞(M,R) and x ∈M ,
the Poisson bracket defines a derivation

{•, f}x : C∞(M,R) → R
g 7→ {g, f}(x) (35.4.1)

at x, since

{gh, f}x = {gh, f}(x) = g(x){h, f}(x) + {g, f}(x)h(x) = g(x){h, f}x + {g, f}xh(x) , (35.4.2)

and hence a tangent vector {•, f}x ∈ TxM . Doing this for every x ∈M , we thus obtain a vector
field. Note that this is reminiscent of the Hamiltonian vector field from definition 35.3.1. To see
that these are indeed related, we first show how to obtain a Poisson bracket from a symplectic
form.

Theorem 35.4.1. Let M be a manifold equipped with a symplectic form ω. Then

{•, •} : C∞(M,R)× C∞(M,R) → C∞(M,R)
(f, g) 7→ {f, g} = ω(Xf , Xg)

(35.4.3)

defines a Poisson structure.
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Proof. We have to show that {•, •} satisfies the properties given in definition 35.4.1. Note first
that {•, •} is bilinear, which follows from the linearity 35.3.1 of the Hamiltonian vector fields
and the bilinear form ω. We further show:

1. Antisymmetry:
{f, g} = ω(Xf , Xg) = −ω(Xg, Xf ) = −{g, f} , (35.4.4)

due to the antisymmetry of ω.

2. By explicit calculation, using theorem 9.4.3, we have

{h, {f, g}} = ω(Xh, ω(Xf , Xg))

= −ιXhdω(Xf , Xg)

= −LXhω(Xf , Xg)

= −(LXhω)(Xf , Xg)− ω(LXhXf , Xg)− ω(Xf ,LXhXg)

= −(ιXhdω)(Xf , Xg)− (dιXhω)(Xf , Xg)− ω([Xh, Xf ], Xg)− ω(Xf , [Xh, Xg])

= −ιXg ιXf ιXhdω − ιXg ιXfdιXhω − ιXgdιXhιXfω + ιXfdιXhιXgω

− ιXg ιXhdιXfω + ιXf ιXhdιXgω + 2ιXg ιXfdιXhω + 2ιXg ιXf ιXhdω

= −ιXgdω(Xf , Xh) + ιXfdω(Xg, Xh)

− ιXg ιXhddf + ιXf ιXhddg + ιXg ιXfddh+ dω(Xh, Xf , Xg)

= ω(Xg, ω(Xf , Xh))− ω(Xf , ω(Xg, Xh))

= −{g, {h, f}} − {f, {g, h}} ,
(35.4.5)

where we used dω = 0.

3. From the properties 35.3.1 of the Hamilton vector fields follows

{fg, h} = ω(Xfg, Xh)

= ω(fXg + gXf , Xh)

= fω(Xg, Xh) + gω(Xf , Xh)

= f{g, h}+ {f, h}g . ■

(35.4.6)

Note in particular that the validity of the Jacobi identity depends on the condition dω = 0 that
ω is closed, i.e., it does not hold if ω is only an almost symplectic form, but it must indeed be a
symplectic form. With this knowledge, we can now return to our observation that, due to the
Leibniz rule, {•, f} constitutes a vector field, by its action on functions. We now show that this
vector field is already familiar.

Theorem 35.4.2. Let M be a manifold equipped with a symplectic form ω and {, } the induced
Poisson structure. For f ∈ C∞(M,R), the Hamilton vector field Xf ∈ Vect(M) of f is the
unique vector field such that Xfg = {g, f} for all g ∈ C∞(M,R).

Proof. By definition of the Hamiltonian vector field and the Poisson bracket we have

Xfg = ιXfdg = ιXf ιXgω = ω(Xg, Xf ) = {g, f} . (35.4.7)

Further, Xf is unique, since g is arbitrary and a vector field is uniquely defined by its actions
on functions g. ■

Observe further that the Poisson bracket, due to being bilinear and antisymmetric and satisfying
the Jacobi identity, equips C∞(M,R) with the structure of a Lie algebra. One may therefore
ask whether X• : C∞(M,R)→ Vect(M) preserves this Lie algebra structure, since also vector
fields form a Lie algebra. We now show that this is the case.
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Theorem 35.4.3. The Poisson bracket, the commutator of vector fields and the Hamiltonian
vector fields are related by

X{f,g} = −[Xf , Xg] (35.4.8)

for f, g ∈ C∞(M,R) .

Proof. We show two different proofs. Using the Jacobi identity of the Poisson bracket we have

X{f,g}h = {h, {f, g}}
= −{f, {g, h}} − {g, {h, f}}
= −XfXgh+XgXfh

= −[Xf , Xg]h

(35.4.9)

for arbitrary f, g, h ∈ C∞(M,R), and X{f,g} is uniquely defined by its action, since h is arbi-
trary.

Alternatively, using theorem 9.4.3 we have

ιX{f,g}ω = d{f, g}
= dιXg ιXfω

= −ι[Xf ,Xg ]ω + ιXfdιXgω − ιXgdιXfω − ιXg ιXfdω
= −ι[Xf ,Xg ]ω + ιXfddg − ιXgddf
= −ι[Xf ,Xg ]ω ,

(35.4.10)

where we used dω = 0. We remark that this latter property also entered the proof of the Jacobi
identity, hence this holds only if ω is a symplectic form. ■

Note that the negative sign in the relation implies that not X•, but −X• : C∞(M,R) →
Vect(M) is a Lie algebra homomorphism. This fact depends on the sign convention chosen
when defining X•, and where we follow [Ber01]. If one uses the opposite sign convention, then
the sign in (35.4.8) changes and X• becomes a Lie algebra homomorphism instead.

35.5 Moment map

35.6 Symplectic frame bundle

Definition 35.6.1 (Symplectic frame bundle). Let M be a manifold of dimension 2n
equipped with an almost symplectic form ω and Ω the canonical antisymmetric bilinear
form on R2n. A symplectic frame at x ∈ M is a bijective linear function p : R2n → TxM
such that Ω = p∗ω. The set of all symplectic frames constitutes the symplectic frame bundle
Sp(M,ω) with projection mapping p : R2n → TxM to x ∈M .

Theorem 35.6.1. The symplectic frame bundle Sp(M,ω) over a manifold M of dimension 2n
with almost symplectic form ω is a principal fiber bundle with structure group Sp(2n,R), where
the right action is given by p ·A = p ◦A for p ∈ Sp(M,ω) and A ∈ Sp(2n,R).

Proof. ▶. . .◀ ■

Theorem 35.6.2. The symplectic frame bundle together with the canonical inclusion Sp(M,ω) ↪→
FM is a Sp(2n,R)-reduction of the general linear frame bundle FM .
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Proof. ▶. . .◀ ■

Theorem 35.6.3. The bundle of almost symplectic forms on a manifold M of dimension 2n
is isomorphic to the associated bundle FM ×ρG/H with G = GL(2n,R), H = Sp(2n,R) and ρ
the canonical left action of G on the coset space G/H.

Proof. ▶. . .◀ ■

35.7 Symplectomorphisms
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Chapter 36

Contact geometry

36.1 Contact forms

Definition 36.1.1 (Contact form). A contact form on a manifold M of odd dimension
2k + 1 is a differential one-form α, such that

α ∧ dα ∧ . . . ∧ dα︸ ︷︷ ︸
k times

(36.1.1)

is nowhere vanishing.

36.2 Reeb vector field
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Chapter 37

Non-linear connections in the
tangent bundle

37.1 Distributions in the double tangent bundle

Since the tangent bundle is a vector bundle, one most often considers linear connections on
the tangent bundle, as defined for a general vector bundle in chapter 28, and discussed in the
particular case of the tangent bundle in section 30. Here we relax this condition and consider
general, non-linear connections on the tangent bundle, and different possibilities to specify these
connections. These are most conveniently defined via horizontal distributions, as a special case
of definition 26.1.1, as follows.

Definition 37.1.1 (Non-linear tangent bundle connection). A non-linear connection on
the tangent bundle TM of a manifold M is a horizontal distribution HTM over TM .

As discussed in section 26.1, the choice of a horizontal distribution allows a unique decomposition
of a tangent vector ψ ∈ TTM , which lies in the tangent bundle over the total space TM of
the bundle τ : TM → M , into horizontal and vertical parts. In the context of non-linear
connections of the tangent bundle, one makes frequent use of these projectors, and it is most
convenient to regard them as vector bundle endomorphisms on TTM , or equivalently as (1, 1)
tensor fields on TM , as we did with the tangent structure in section 29.2. This leads us to the
following definitions.

Definition 37.1.2 (Horizontal and vertical projectors). For a horizontal distribution
HTM on a manifold M , the horizontal and vertical projectors are the vector bundle ho-
momorphisms h : TTM → TTM and v : TTM → TTM from ϖ : TTM → TM to itself,
covering the identity on TM , which satisfy:

1. kerh = imv = V TM ,

2. imh = kerv = HTM ,

3. h+ v = idTTM ,

4. h ◦ h = h,
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5. v ◦ v = v,

6. h ◦ v = v ◦ h = 0.

We have also discussed in sections 26.1 and 26.2 that a convenient coordinate expression for
the projections onto the horizontal and vertical subbundles can be obtained by introducing
a particular basis of the tangent bundle over the total space, which respects the split into
horizontal and vertical parts. In the case of non-linear connections on the tangent bundle, this
basis has a particular name, and we define it as follows.

Definition 37.1.3 (Berwald basis). Let M be a manifold equipped with a non-linear
connection. The Berwald basis of the tangent bundle is given by

(δa = ∂a −N b
a∂̄b, ∂̄a) , (37.1.1)

while that of the cotangent bundle reads

(dxa, δx̄a = dx̄a +Na
bdx

b) , (37.1.2)

where (δa) is a basis of the horizontal tangent bundle HTM , (∂̄a) is a basis of the vertical
tangent bundle V TM , (dxa) is a basis of the horizontal cotangent bundle H∗TM and (δx̄a)
is a basis of the vertical cotangent bundle V ∗TM , and Na

b = Na
b(x, x̄) are the coefficients

of the connection.

The connection coefficients, which are usually denoted Na
b for a non-linear tangent bundle

connection, are simply the coefficients characterizing the connection form introduced in sec-
tion 26.2. Indeed, writing the horizontal and vertical projectors in the Berwald basis, where
they take the convenient form

h = δa ⊗ dxa , v = ∂̄a ⊗ δx̄a , (37.1.3)

we see that the vertical projector is nothing but the connection form, for which we found the
same coordinate expression (26.2.8).

We have discussed in chapter 26 that there are various different possibilities to specify connec-
tions on general fiber bundles. For the special case of the tangent bundle, there exist various
additional and similarly useful possibilities, since it is canonically equipped with further geomet-
ric objects, in particular the tangent and cotangent structures. Given a non-linear connection,
these turn out to obey a helpful set of rules, which we write as follows.

Theorem 37.1.1. The horizontal and vertical projectors and the tangent structure satisfy the
relations

v ◦ J = J ◦ h = J , h ◦ J = J ◦ v = 0 . (37.1.4)

Proof. Recall from theorem 29.2.3 that J vanishes on vertical vectors, which immediately implies
J ◦ v = 0. From v + h = idTTM then follows

J ◦ h = J ◦ (idTTM − v) = J − 0 = J . (37.1.5)

Similarly, recall from theorem 29.2.2 that the image of J is vertical. From the fact that h
vanishes on vertical vectors, while v restricts to the identity on V TM , then follows h ◦ J = 0
and v ◦ J = J . ■

From the previous statement we find another helpful relation.
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Theorem 37.1.2. The restriction of the tangent structure to the horizontal tangent bundle is
a vector bundle isomorphism J |HTM : HTM → V TM .

Proof. ▶. . .◀ ■

37.2 Characterizing tensors

Having shown that the horizontal and vertical subbundles are isomorphic, one naturally arrives
at the question for the inverse isomorphism. We can construct such an isomorphism by de-
manding certain properties, which guarantee that it becomes the inverse of J , if it is properly
restricted to V TM . These are given in the following definition.

Definition 37.2.1 (Adjoint structure). An adjoint structure on a manifold M is a vector
bundle homomorphism Θ : TTM → TTM from ϖ : TTM → TM to itself, covering the
identity on TM , which satisfies Θ ◦Θ = 0 and Θ ◦ J + J ◦Θ = idTTM .

The tangent and adjoint structures have in common that they are nilpotent, since both square
to zero. However, there is also a fundamental difference. While the tangent structure, alongside
with its image and kernel V TM , is canonically defined on the tangent bundle of any manifold,
this is not the case for the adjoint structure, its image and kernel. In fact, it turns out that
the latter are uniquely given by the horizontal distribution of a non-linear connection, which
we state as follows.

Theorem 37.2.1. There is a one-to-one correspondence between horizontal distributions HTM
on a manifold M and adjoint structures Θ on M , which is given by imΘ = kerΘ = HTM .

Proof. Let Θ be an adjoint structure, and define

h = Θ ◦ J , v = J ◦Θ . (37.2.1)

To check that h is a horizontal projector, and hence v the corresponding vertical projector,
note first that for all ψ ∈ V TM one has hψ = ΘJψ = 0. Conversely, given ψ ∈ TTM with
hψ = 0, one has

ψ = ΘJψ + JΘψ = JΘψ ∈ im J = V TM . (37.2.2)

Hence, kerh = V TM . Further,

h ◦ h = Θ ◦ J ◦Θ ◦ J = Θ ◦ (idTTM −Θ ◦ J) ◦ J = Θ ◦ J = h , (37.2.3)

so that h is indeed a horizontal projector.

To prove the converse direction, let TTM = HTM ⊕ V TM be a non-linear connection on the
tangent bundle and define Θ such that Θ|HTM = 0 and Θ|V TM as the unique inverse of the
vector bundle isomorphism J |HTM : HTM → V TM . One easily checks that this is an adjoint
structure. ■

From the image and the kernel of the adjoint structure one now easily derives the following
helpful relations.

Theorem 37.2.2. The horizontal and vertical projectors and the adjoint structure satisfy the
relations

h ◦Θ = Θ ◦ v = Θ , v ◦Θ = Θ ◦ h = 0 . (37.2.4)
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Proof. The proof proceeds in full analogy to theorem 37.1.1, using the fact that imΘ = kerΘ =
HTM . ■

It is now straightforward to calculate an explicit expression for the adjoint structure, using
the relations given in definition 37.2.1 and theorem 37.2.2. This is most easily done using the
Berwald basis, in which the adjoint structure takes the simple form

Θ = δa ⊗ δx̄a . (37.2.5)

Next, we proceed with another object, which can similarly be defined by a number of properties
it is supposed to satisfy. These are given as follows.

Definition 37.2.2 (Almost product structure). An almost product structure compatible
with the tangent structure J on the tangent bundle TM a manifold M is a vector bundle
homomorphism P : TTM → TTM from ϖ : TTM → TM to itself, covering the identity
on TM , which satisfies J ◦ P = J and P ◦ J = −J .

Conventionally, the term “almost product structure” denotes a vector space (or vector bundle)
endomorphism which squares to the identity, and thus has eigenvalues ±1 on some respective
subspaces or subbundles. Indeed this is the case also for the almost product structure P defined
above, and we shall see in the following theorem that these subbundles are simply the horizontal
and vertical bundles corresponding to a non-linear connection.

Theorem 37.2.3. There is a one-to-one correspondence between horizontal distributions HTM
on a manifold M and almost product structures P compatible with J on TM , which is given by
P|HTM = idHTM and P|V TM = −idV TM .

Proof. Let P be an almost product structure compatible with J . Then we can construct a
horizontal distribution as follows:

• First recall that im J = V TM , so that we can write any element of V TM as Jψ for some
ψ ∈ TTM . By definition 37.2.2 we have PJψ = −Jψ. Hence, for all σ ∈ V TM we have
Pσ = −σ.

• Conversely, let ψ ∈ TTM with Pψ = −ψ. Acting with J , we find

−Jψ = JPψ = Jψ , (37.2.6)

and hence Jψ = 0. It thus follows that ψ ∈ V TM .

• Taking the previous two items together, we find that Pψ = −ψ if and only if ψ ∈ V TM .

• Let ψ ∈ TTM and σ = Pψ − ψ. Note that σ ∈ V TM , since

Jσ = JPψ − Jψ = Jψ − Jψ = 0 . (37.2.7)

We then have
P2ψ = P(ψ + σ) = Pψ + Pσ = ψ + σ − σ = ψ , (37.2.8)

and hence P ◦ P = idTTM .

• Set
h =

idTTM + P
2

, v =
idTTM − P

2
. (37.2.9)

Clearly, h is a horizontal projector, since kerh = V TM and

h ◦ h =
idTTM + 2P+ P ◦ P

4
=

idTTM + P
2

= h , (37.2.10)

and v is the corresponding vertical projector.
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To prove the converse direction, given a non-linear connection, set P = h−v. One easily checks
that this satisfies the conditions given in section 37.2.2. ■

From the result obtained above one may now easily derive the following properties, which relate
the almost product structure to the horizontal and vertical projectors.

Theorem 37.2.4. The horizontal and vertical projectors and the almost product structure sat-
isfy the relations

h ◦ P = P ◦ h = h , v ◦ P = P ◦ v = −v . (37.2.11)

Proof. This follows directly from the formula P = h−v and the properties of the projectors. ■

Finally, from the coordinate expression (37.1.3) of the horizontal and vertical projectors in the
Berwald basis one immediately finds that the almost product structure can be written in the
form

P = δa ⊗ dxa − ∂̄a ⊗ δx̄a . (37.2.12)

The last tensor field we discuss in this section has a similar property compared to the almost
product structure. While the latter squares to unity, we now consider a structure whose square
(in the sense of function composition) is just the negative of unity. Such an object is usually
known as an almost complex structure, and in the particular context we are studying here we
define it as follows.

Definition 37.2.3 (Almost complex structure). An almost complex structure compatible
with the tangent structure J on the tangent bundle TM a manifold M is a vector bundle
homomorphism F : TTM → TTM from ϖ : TTM → TM to itself, covering the identity
on TM , which satisfies F ◦ F = −idTTM and F ◦ J + J ◦ F = idTTM .

We see that the almost complex structure shares the same relation with the tangent structure as
the adjoint structure. This suggests that one may obtain a non-linear connection by following
the same procedure as in the proof of theorem 37.2.1. To see that also the converse construction
is possible, we prove the following statement.

Theorem 37.2.5. There is a one-to-one correspondence between horizontal distributions HTM
on a manifold M and almost complex structures F compatible with J on TM , which is given by
im(F+ J) = ker(F+ J) = HTM .

Proof. The proof proceeds similarly to the analogous theorem 37.2.1 for the adjoint structure.
Given an almost complex structure F as in definition 37.2.3, define

h = F ◦ J , v = J ◦ F . (37.2.13)

To check that h is a horizontal projector, and hence v the corresponding vertical projector,
note first that for all ψ ∈ V TM one has hψ = FJψ = 0. Conversely, given ψ ∈ TTM with
hψ = 0, one has

ψ = FJψ + JFψ = JFψ ∈ im J = V TM . (37.2.14)

Hence, kerh = V TM . Further,

h ◦ h = F ◦ J ◦ F ◦ J = F ◦ (idTTM − F ◦ J) ◦ J = F ◦ J = h , (37.2.15)

so that h is indeed a horizontal projector.
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Conversely, given a non-linear connection with adjoint structure Θ, define F = Θ − J . This
immediately yields

F ◦ J + J ◦ F = Θ ◦ J + J ◦Θ = idTTM (37.2.16)

and
F ◦ F = (Θ− J) ◦ (Θ− J) = −J ◦Θ−Θ ◦ J = −idTTM , (37.2.17)

so that F is an almost complex structure compatible with J . ■

Hence, we have another tensor field which equivalently characterizes a non-linear connection.
Its properties are easily studied. First note the following relations with the projection operators.

Theorem 37.2.6. The horizontal and vertical projectors and the almost complex structure
satisfy the relations

h ◦ F = F ◦ v = Θ , v ◦ F = F ◦ h = −J . (37.2.18)

Proof. This follows directly from the formula F = Θ− J and the properties of the tangent and
adjoint structures given in theorems 37.1.1 and 37.2.2. ■

Also we can use the formula F = Θ− J to derive the coordinate expression

F = δa ⊗ δx̄a − ∂̄a ⊗ dxa (37.2.19)

in the Berwald basis.

37.3 Horizontal lift

We have discussed in section 26.4 how general connections on fiber bundles give rise to the
notion of horizontal lifts, thus allowing to lift certain objects from the base manifold to the
total space. In particular, we have introduced in definition 26.6.1 the horizontal lift of a vector
field. This can, of course, also be applied to non-linear connections on the tangent bundle. In
analogy with the previous definitions in section 29.5 we introduce the following notation.

Definition 37.3.1 (Horizontal lift of a vector field). Let M be a manifold equipped with a
non-linear connection on the tangent bundle and X ∈ Vect(M) a vector field. Its horizontal
lift is the unique vector field

H
X ∈ Vect(TM) which satisfies h

H
X =

H
X and τ∗ ◦

H
X = X ◦ τ .

Indeed, we see that this is just a special case of the general definition 26.6.1 we gave earlier.
It is worth mentioning again that the horizontal lift is indeed unique. This follows from the
fact that under a non-linear connection the double tangent bundle splits in the form TTM =

HTM ⊕V TM , so that every vector field Y ∈ Vect(TM) splits into Y = hY +vY . For Y =
H
X,

we see that the first condition fixes the vertical part to vanish, v
H
X = 0. The horizontal part

is uniquely fixed by the second condition, since ker τ∗ = V TM . In the Berwald basis, one thus
finds the expression

H
X = Xaδa = Xa(∂a −N b

a∂̄b) . (37.3.1)

In the particular case of the tangent bundle, there exist also the vertical and complete lift
introduced in section 29.5. We find that the horizontal lift is related to them by a number of
useful relations, such as the following.

Theorem 37.3.1. The vertical and horizontal lifts of a vector field X ∈ Vect(M) are related
by

H

X = Θ
V

X and
V

X = J
H

X.
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Proof. We start with the second proposition. Following the definitions 29.2.1 of the tangent
structure and 29.5.1 of the vertical lift as tangent vectors of curves, we have for v ∈ TM :

(J
H
X)(v) =

d

dt

[
v + t(τ∗ ◦

H
X)(v)

]∣∣∣∣
t=0

=
d

dt
[v + t(X ◦ τ)(v)]

∣∣∣∣
t=0

=
V
X(v) . (37.3.2)

We then use this result to show the first proposition. Writing the horizontal projector as
h = Θ ◦ J , we have

Θ
V
X = ΘJ

H
X = h

H
X =

H
X , (37.3.3)

since
H
X is horizontal by definition. ■

This relation can also be illustrated using the Berwald basis. Given a vector field X ∈ Vect(M),
which we write in the form X = Xa∂a using the coordinate basis of TM , its horizontal lift is
simply given by

H
X = Xaδa in the Berwald basis. Now one easily sees that

J
H
X = Xa∂̄a =

V
X , (37.3.4)

while conversely
Θ

V
X = Xaδa =

H
X . (37.3.5)

Another helpful relation is the following.

Theorem 37.3.2. The complete and horizontal lifts of a vector field X ∈ Vect(M) are related
by

H

X = h
C

X.

Proof. Since h
H
X =

H
X, it is sufficient to show that the difference

H
X−

C
X is vertical for any vector

field X ∈ Vect(M). This can be see using theorems 29.5.4 and 37.3.1, from which follows

J(
H
X −

C
X) =

V
X −

V
X = 0 . (37.3.6)

so that their difference lies in ker J = V TM . Hence,

h
C
X = h

H
X =

H
X . ■ (37.3.7)

Also this becomes obvious in coordinates, since

h
C
X = (δc ⊗ dxc)(Xa∂a + x̄b∂bX

a∂̄a) = Xaδa =
H
X . (37.3.8)

37.4 Homogeneous connections

A class of non-linear connections which is of particular interest is given by homogeneous con-
nections. As we will see later in chapter 38, there exists a relation between homogeneous
connections and sprays, and in chapter 40 we will see how to derive a particular homogeneous
connection from a Finsler geometry. We start our discussion of homogeneous connections with
the following definition.

Definition 37.4.1 (Homogeneous connection). A non-linear connection on the tangent
bundle TM of a manifold M is called homogeneous if and only if χλ∗ψ ∈ HTM for all
λ ∈ R and ψ ∈ HTM , where χ : R× TM → TM denotes the dilatations.
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In other words, we demand that the horizontal distribution is invariant under dilatations. While
this definition is the most intuitive from a geometric point of view, it is not necessarily the most
practical in terms of proving the homogeneity or non-homogeneity of a given connection. It is
simpler if instead of finite diffeomorphisms, we can study infinitesimal operations. Recalling
that the dilatations are infinitesimally generated by the Liouville vector field, we come to the
following statement.

Theorem 37.4.1. A non-linear connection is homogeneous if and only if v[c,hX] = 0 for all
X ∈ Vect(TM).

Proof. In case of a homogeneous non-linear connection, one has

v[c,hX] = vLchX

= v lim
λ→0

χ∗λhX − hX

λ

= lim
λ→0

vχ∗λhX − vhX

λ

= 0 ,

(37.4.1)

where we used the fact that the pullback of a horizontal vector field along χλ, defined via the
pushforward of every vector along the inverse χ−λ following definition 12.1.1, is again horizontal
for a homogeneous connection:

(vχ∗λhX)(v) = (v ◦ χ−λ∗ ◦ (hX) ◦ χλ)(v) = 0 (37.4.2)

for v ∈ TM . Conversely, let ψ ∈ HTM . ▶. . .◀ ■

We can simplify this statement even further. Recall that we have characterized non-linear
connections by a number of tensor fields in section 37.2, and so it would be most convenient
if we could employ those in order to assess the homogeneity of a connection. We will now see
that this is indeed the case. For this purpose, it is useful to introduce the following tensor field.

Definition 37.4.2 (Tension). Let M be a manifold equipped with a non-linear connection
on the tangent bundle. Its tension is the vector-valued one-form T ∈ Ω1(TM, TTM) defined
by the Lie derivative T = 1

2LcP, where P is the almost product structure.

We have seen in the preceding sections that the Lie derivative with respect to the Liouville
vector field measures the order of homogeneity of tensor fields defined on the tangent bundle.
This applies also here. In fact, it turns out that we can check the homogeneity of a non-linear
connection as follows.

Theorem 37.4.2. A non-linear connection is homogeneous if and only if it has vanishing
tension, T = 0, i.e., its almost product structure P is 0-homogeneous, LcP = 0.

Proof. By direct calculation, we have for any vector field X ∈ Vect(TM):

TX =
1

2
(LcP)X

=
1

2
([c,PX]− P[c, X])

=
1

2
{(h+ v)[c, (h− v)X]− (h− v)[c, (h+ v)X]}

= v[c,hX]− h[c,vX]

= v[c,hX] ,

(37.4.3)
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where the last term vanishes since both c and vX, and hence also their Lie bracket, is vertical.
We thus find that v[c,hX] = 0 for all X ∈ Vect(TM) if and only if the tension vanishes,
T = 0. Following theorem 37.4.1, the former is equivalent to the non-linear connection being
homogeneous, and hence the same holds for the latter. ■

We now illustrate the calculations shown in this section by using coordinates. We start by
calculating the tension. From the coordinate expression 37.2.12 for the almost product structure
in the Berwald basis follows:

T =
1

2
LcP

=
1

2
Lx̄a∂̄a(δb ⊗ dxb − ∂̄b ⊗ δx̄b)

=
1

2

{
[x̄a∂̄a, ∂b −N c

b∂̄c]⊗ dxb + δb ⊗ dιx̄a∂̄adx
b + ιx̄a∂̄addx

b

− [x̄a∂̄a, ∂̄b]⊗ δx̄b − ∂̄b ⊗ dιx̄a∂̄a(dx̄
b +N b

cdx
c)− ∂̄b ⊗ ιx̄a∂̄ad(dx̄b +N b

cdx
c)
}

=
1

2

(
Na

b∂̄a ⊗ dxb − x̄a∂̄aN c
b∂̄c ⊗ dxb + ∂̄b ⊗ δx̄b − ∂̄b ⊗ dx̄b − x̄a∂̄aN b

c∂̄b ⊗ dxc
)

= (Na
b − x̄c∂̄cNa

b)∂̄a ⊗ dxb .

(37.4.4)

We thus see that the non-linear connection is homogeneous if and only if its coefficients satisfy

x̄c∂̄cN
a
b = Na

b , (37.4.5)

and hence are homogeneous functions of order 1. For comparison, let X = Xaδa + X̄a∂̄a and
calculate

v[c,hX] = v[x̄a∂̄a, X
b(∂b −N c

b∂̄c)]

= v(x̄a∂̄aX
bδb − x̄aXb∂̄aN

c
b∂̄c +XbNa

b∂̄a)

= (Na
b − x̄c∂̄cNa

b)X
b∂̄a ,

(37.4.6)

in agreement with the coordinate-free calculation (37.4.3).

▶Calculate pushforward and homogeneity in coordinates.◀

Theorem 37.4.3. A non-linear connection on TM is homogeneous if and only the horizontal
lift of every vector field from M to TM is a homogeneous vector field of order 0.

Proof. For the complete lift of a vector field X ∈ Vect(M) we have

T
C
X =

1

2
(LcP)

C
X

=
1

2

([
c,P

C
X
]
− P

[
c,

C
X
])

=
1

2

[
c, 2h

C
X −

C
X
]

=
[
c,h

C
X
]

=
[
c,

H
X
]
.

(37.4.7)

This vanishes if and only if
H
X is 0-homogeneous. ▶Show that then also T = 0.◀ ■

Also this can be illustrated in coordinates, using the relation (37.3.1) which states that the
horizontal lift of a vector field X ∈ Vect(M) is given by

H
X = Xaδa. We then have[

c,
H
X
]
= [x̄c∂̄c, X

a(∂a −N b
a∂̄b)] = Xa(N b

a − x̄c∂̄cN b
a)∂̄b = T

C
X , (37.4.8)

which vanishes for every vector field X if and only if the homogeneity condition (37.4.5) is
satisfied.
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37.5 Torsion

For a non-linear connection, different notions of torsion exist. Here we start with the following
definition.

Definition 37.5.1 (Weak torsion). Let M be a manifold equipped with a non-linear
connection on the tangent bundle. Its weak torsion is the vector-valued two-form t ∈
Ω2(TM, TTM) defined by the Frölicher-Nijenhuis bracket t = Jh, JK, where h is the hori-
zontal projector.

One can easily expand this expression by using the definition and properties of the Frölicher-
Nijenhuis bracket as follows.

Theorem 37.5.1. For any two vector fields X,Y ∈ Vect(TM), the weak torsion t of the
non-linear connection satisfies

t(X,Y ) = J [hX,hY ]− v[JX,hY ]− v[hX, JY ] . (37.5.1)

Proof. A direct calculation using theorem 17.6.5 yields

t(X,Y ) = Jh, JK(X,Y )

= J([hX,Y ] + [X,hY ]) + h([JX, Y ] + [X, JY ])− [JX,hY ]− [hX,JY ]− (Jh+ hJ)[X,Y ]

= h([JX,hY ] + [hX, JY ])− [JX,hY ]− [hX, JY ]− J([X,Y ]− [hX,Y ]− [X,hY ])

= J [hX,hY ]− v[JX,hY ]− v[hX, JY ] ,

(37.5.2)

where we used the fact that the vertical distribution is integrable, so that [vX,vY ] is vertical,
and hence J [vX,vY ] = 0. ■

It thus follows in particular that the weak torsion vanishes on any vertical vector field, and that
it is itself vertical, hence

t(vX,Y ) = t(X,vY ) = ht(X,Y ) = 0 . (37.5.3)

Using the relation (37.5.1), one can now easily derive a coordinate expression for the weak
torsion. For this purpose, we expand the vector fields X = Xaδa+ X̄

a∂̄a and Y = Y aδa+ Ȳ
a∂̄a

in the Berwald basis. A straightforward calculation then shows that

t(X,Y ) = J [hX,hY ]− v[JX,hY ]− v[hX, JY ]

= J [Xaδa, Y
bδb]− v[Xa∂̄a, Y

bδb]− v[Xaδa, Y
b∂̄b]

= J [Xa(∂a −N c
a∂̄c), Y

b(∂b −Nd
b∂̄d)]

− v[Xa∂̄a, Y
b(∂b −Nd

b∂̄d)]− v[Xa(∂a −N c
a∂̄c), Y

b∂̄b]

= J(XaδaY
b∂b − Y bδbXa∂a)

− v(XaδaY
b∂̄b − Y bδbXa∂̄a −XaY b∂̄aN

d
b∂̄d + Y bXa∂̄bN

c
a∂̄c)

= 2XaY b∂̄[aN
c
b]∂̄c ,

(37.5.4)

where we used the fact that J vanishes on vertical vectors, while v vanishes on horizontal
vectors, to omit various terms which appear at intermediate steps. Hence, we can write the
weak torsion as

t = ∂̄[aN
c
b]∂̄c ⊗ dxa ∧ dxb . (37.5.5)

In particular, one may consider non-linear connections whose weak torsion vanishes. These are
given their own name:
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Definition 37.5.2 (Symmetric non-linear connection). A non-linear connection on a man-
ifold M is called symmetric if and only if its weak torsion vanishes, t = 0.

It is straightforward to see that a non-linear connection is symmetric if and only if

∂̄[aN
c
b] = 0 , (37.5.6)

hence justifying the name.

Another type of torsion which we may define for a non-linear connection is the following.

Definition 37.5.3 (Strong torsion). Let M be a manifold equipped with a non-linear
connection on the tangent bundle. Its strong torsion is the vector-valued one-form T ∈
Ω1(TM, TTM) defined by T = ιΘct+ T.

Also for the strong torsion one easily derives a coordinate expression. Using the Berwald basis,
one has Θc = x̄aδa. Using the coordinate expression (37.5.5) for the weak torsion, one thus has

ιΘct = 2x̄c∂̄[cN
a
b]∂̄a ⊗ dxb , (37.5.7)

and therefore
T = ιΘct+ T

=
[
2x̄c∂̄[cN

a
b] + (Na

b − x̄c∂̄cNa
b)
]
∂̄a ⊗ dxb

= (Na
b − x̄c∂̄bNa

c)∂̄a ⊗ dxb .

(37.5.8)

This can also be expressed as follows.

Theorem 37.5.2. The strong torsion of a non-linear connection is given by

TX = J [Θc,hX]− v[Θc, JX] . (37.5.9)

Proof. By theorem 37.5.1, the weak torsion satisfies

ιΘct(X) = t(Θc, X)

= J [hΘc,hX]− v[JΘc,hX]− v[hΘc, JX]

= J [Θc,hX]− v[c,hX]− v[Θc, JX] .

(37.5.10)

Note that the second term is just the tension according to theorem 37.4.2. Hence, we find

TX = ιΘctX + TX = J [Θc,hX]− v[Θc, JX] . (37.5.11)
■

To derive this in coordinates, let X = Xaδa + X̄a∂̄a and calculate

TX = J [x̄bδb, X
aδa]− v[x̄bδb, X

a∂̄a]

= ∂̄e ⊗ dxe[x̄b(∂b −N c
b∂̄c), X

a(∂a −Nd
a∂̄d)]− ∂̄e ⊗ (dx̄e +Ne

fdx
f )[x̄b(∂b −N c

b∂̄c), X
a∂̄a]

=
[
x̄b(∂b −N c

b∂̄c)X
a +XbNa

b − x̄b(∂b −N c
b∂̄c)X

a −Xcx̄b∂̄cN
a
b

]
∂̄a

= Xb(Na
b − x̄c∂̄bNa

c)∂̄a ,

(37.5.12)

in agreement with the previous result (37.5.8).

It is clear from the definition 37.5.3 of the strong torsion that if the weak torsion and the
tension vanish, also the strong torsion vanishes. We can, however, find an even stronger result
as follows.
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Theorem 37.5.3. The strong torsion of a non-linear connection vanishes, T = 0, if and only
if both its weak torsion and tension vanish, t = 0 and T = 0.

Proof. We defer this proof to the proof of theorem 38.5.4. ■

The result is easily obtained using coordinates. If the strong torsion vanishes, T = 0, we have

Na
b = x̄c∂̄bN

a
c (37.5.13)

and thus
∂̄[aN

c
b] = ∂̄[a(x̄

d∂̄b]N
c
d) = −∂̄[aN c

b] , (37.5.14)

which must therefore vanish, and so t = 0. It then further follows from (37.5.8) that also T = 0.
The converse statement is obvious from the definition of the strong torsion.

37.6 Curvature

Since any non-linear connection on the tangent bundle is in particular a connection, it also
possesses a notion of curvature. In this case, one conventionally employs the following definition.

Definition 37.6.1 (Curvature of a non-linear connection). Let M be a manifold equipped
with a non-linear connection on the tangent bundle. Its curvature is the vector-valued
two-form R ∈ Ω2(TM, TTM) defined by the Nijenhuis tensor R = −Nh, where h is the
horizontal projector.

The obvious question arises how this notion is related to the definition 26.10.1. The following
statement answers this question.

Theorem 37.6.1. For any two vector fields X,Y ∈ Vect(TM), the curvature R of the non-
linear connection satisfies

R(X,Y ) = −v[hX,hY ] . (37.6.1)

Proof. A direct calculation using theorem 17.6.6 yields

R(X,Y ) = −Nh(X,Y )

= h ([hX,Y ] + [X,hY ])− h2[X,Y ]− [hX,hY ]

= −h[vX,vY ]− v[hX,hY ]

= −v[hX,hY ] ,

(37.6.2)

where in the last line we used the fact that the vertical distribution is integrable, so that
[vX,vY ] is vertical. ■

37.7 Autoparallel curves

Definition 37.7.1 (Autoparallel curve). Let M be a manifold equipped with a non-linear
connection on the tangent bundle. An autoparallel curve is a curve γ ∈ C∞(R,M) such
that its canonical lift γ̇ ∈ C∞(R, TM) is horizontal, v ◦ γ̈ = 0 .
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Theorem 37.7.1. For every tangent vector v ∈ TM , an non-linear connection defines a unique
autoparallel curve γ : R→M such that γ̇(0) = v.

Proof. ▶. . .◀ ■

37.8 Affine bundle of connections

37.9 Pullback and Lie derivative

37.10 Linear connections
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Chapter 38

Sprays and semisprays

38.1 Semisprays

In the previous chapter on non-linear connections, we have been working intensively with vector
fields defined over the tangent bundle TM of a manifold M . We now come to a particular class
of such vector fields, which have particularly useful properties which make them suitable for the
description of higher order differential equations, as we will discuss in section 48.2, and which
are closely related to non-linear connections, as shown in section 38.3. To introduce these vector
fields, we start with the following definition.

Definition 38.1.1 (Semispray). Let M be a manifold. A vector field X ∈ Vect(TM) on
the tangent bundle TM of M is called a semispray (or second-order vector field) if and
only if JX = c, where J is the tangent structure and c is the Liouville vector field.

Here we follow the definition given in [BM07, def. 4.1.1]. In contrast, the same definition is only
called second-order vector field in [SLK14, def. 5.1.1], while demanding additional properties
for a semispray in [SLK14, 5.1.23].

From this definition one can easily derive the most general form of a semispray in induced
coordinates (xa, x̄a) on TM , as introduced in section 29.1. Recall that in these coordinates
the tangent structure has the form (29.2.6), while the Liouville vector field is given by (19.9.2).
Writing a general vector field X ∈ Vect(TM) as X = Xa∂a+ X̄

a∂̄a, we thus have the condition

x̄a∂̄a = c = JX = (∂̄b ⊗ dxb)(Xa∂a + X̄a∂̄a) = Xa∂̄a . (38.1.1)

Hence, X is a semispray if and only if Xa = x̄a. We thus find that a semispray has the general
coordinate expression X = x̄a∂a+ X̄a∂̄a, and so it is fully characterized by the coefficients X̄a.
In the following, we will show further, equivalent possibilities to come to this conclusion is by
using the following statement.

Theorem 38.1.1. A vector field X ∈ Vect(TM) on the tangent bundle TM of a manifold M
is a semispray if and only if τ∗ ◦X = idTM , where τ : TM → M is the projection map of the
tangent bundle.

Proof. Recall that a vector field on TM is a map X : TM → TTM . Its composition with the
differential τ∗ : TTM → TM of the tangent bundle projection τ is thus indeed a map from TM
to itself. Let v ∈ TM and ψ = X(v), and so v = ϖ(ψ), where ϖ : TTM → TM is the bundle
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projection of the double tangent bundle. Then recall from definition 29.2.1 that the tangent
structure J assigns to ψ the tangent vector γ̇ψ(0) of the curve

γψ : R → TM
λ 7→ γψ(λ) = ϖ(ψ) + λτ∗(ψ)

. (38.1.2)

Hence, JX : TM → TTM is the map that assigns to v ∈ TM the tangent vector γ̇X(v)(0).

We now compare this construction to the Liouville vector field c ∈ Vect(TM). Recall that the
latter is the generator of dilatations. This means that c(v) ∈ TTM is the tangent vector χ̇v(0)
to the curve

χv : R → TM
λ 7→ χv(λ) = eλv

. (38.1.3)

for any v ∈ TM . One easily sees that χv(0) = v = γX(v)(0). Further, since both curves lie
inside the vector space TvTM , taking the derivative with respect to λ shows that their tangent
vectors at λ = 0 agree, χ̇v(0) = γ̇X(v)(0), if and only if

v = τ∗(ψ) = τ∗(X(v)) . (38.1.4)

It thus follows that this holds for all v ∈ TM , and hence c = JX, so that X is a semispray, if
and only if τ∗ ◦X = idTM . ■

We can now check that this leads to the same coordinate form of a semispray X, making use of
the coordinate expression (29.7.1). Writing v in induced coordinates as (xa, x̄a), and X(v) as
(xa, x̄a, Xa, X̄a), we have

τ∗(X(v)) = τ∗(X
a∂a + X̄a∂̄a) = Xa∂a , (38.1.5)

and hence v = τ∗(X(v)) if and only if Xa = x̄a.

Theorem 38.1.2. A vector field X ∈ Vect(TM) on the tangent bundle TM of a manifold M
is a semispray if and only if κ ◦X = X, where κ : TTM → TTM is the canonical involution
of the double tangent bundle.

Proof. ▶. . .◀ ■

Theorem 38.1.3. A vector field X ∈ Vect(TM) on the tangent bundle TM of a manifold M
is a semispray if and only if every integral curve, i.e., every curve Γ : R→ TM with Γ̇ = X ◦Γ,
is the canonical lift of a curve on M .

Proof. Recall from theorem 10.2.3 that a curve Γ on TM is a canonical lift if and only if
τ∗ ◦ Γ̇ = Γ. For an integral curve of X, this means that it is a canonical lift if and only if
τ∗ ◦X ◦ Γ = Γ. Hence, every integral curve is a canonical lift if and only if τ∗ ◦X = idTM , and
hence if and only if X is a semispray according to theorem 38.1.1. ■

Having obtained several characterizations of semisprays, we now study their properties. An
important result, which finds application in numerous other theorems, is the following.

Theorem 38.1.4 (Grifone’s identity). For every semispray X ∈ Vect(TM) and arbitrary vector
field Y ∈ Vect(TM) holds

J [JY,X] = JY . (38.1.6)
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Proof. We make use theorem 29.2.7, which states that the Nijenhuis tensor NJ of J vanishes,
as well as theorem 17.6.6 to compute

0 = NJ(X,Y )

=
1

2
JJ, JK(X,Y )

= [JX, JY ] + J2[X,Y ]− J([JX, Y ] + [X, JY ])

= [c, JY ]− J [c, Y ]− J [X, JY ]

= (LcJ)Y + J [JY,X]

= −JY + J [JY,X] ,

(38.1.7)

where we used the defining property JX = c of a semispray, the relation 16.6.1 for the Lie
derivative of an endomorphism and the homogeneity of the tangent structure J stated in theo-
rem 29.2.5. ■

Given a semispray, we can also obtain another semispray as follows.

Theorem 38.1.5. For any semispray X ∈ Vect(TM), also [c, X] is a semispray.

Proof. This follows from Grifone’s identity 38.1.4, since

J [c, X] = J [JX,X] = JX = c . ■ (38.1.8)

We may also regard a semispray as a vector-valued zero-form on the tangent bundle, and apply
the theory of graded derivations detailed in chapter 17, to derive a few more useful properties
of semisprays, which directly follow from their definition. This allows us to state the following.

Theorem 38.1.6. If X ∈ Vect(TM) is a semispray, then it satisfies

[ιX , ιJ ] = ιc , [ιX ,LJ ] = Lc + ιJJ,XK . (38.1.9)

Proof. The first relation can be shown using the explicit expression for the Nijenhuis-Richardson
bracket given in theorem 17.4.4, from which follows

[X,J ]∧ = ιXJ − (−1)1·2ιJX = ιXJ = JX = c , (38.1.10)

and thus
[ιX , ιJ ] = ι[X,J]∧ = ιc . (38.1.11)

For the second relation, we use theorem 17.7.2, from which follows

[ιX ,LJ ] = LιXJ − (−1)1·1ιJJ,XK = Lc + ιJJ,XK . (38.1.12)
■

In the last statement, the Frölicher-Nijenhuis bracket JJ,XK ∈ Ω1(TM, TTM) between the
tangent structure and the semispray X appeared. This object has a number of interesting
properties. Note that by definition it is a tensor field of rank (1, 1) on TM , and so it can be
applied to vector fields. By theorem 17.6.7 it is given by

JJ,XK = −LXJ . (38.1.13)

This relation is helpful in proving the following identities.

Theorem 38.1.7. For every semispray X ∈ Vect(TM), the Frölicher-Nijenhuis bracket JJ,XK
is an involution,

JJ,XK ◦ JJ,XK = idTM . (38.1.14)
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Proof. We defer this proof to theorem 38.3.1, where it will be shown that JJ,XK is an almost
product structure. Further, in theorem 37.2.3 it was shown that an almost product structure
is an involution. ■

We may now use the fact that an involution on a vector space, and hence also on a vector
bundle, always has eigenvalues ±1. One may thus ask what are the eigenspaces corresponding
to these eigenvalues. We find the following statement about the negative one.

Theorem 38.1.8. For every semispray X ∈ Vect(TM) and vector field Y ∈ Vect(TM), the
Frölicher-Nijenhuis bracket satisfies

JJ,XKY = −Y (38.1.15)

if and only if Y is vertical.

Proof. If JJ,XKY = −Y holds, then

0 = J(JJ,XKY + Y )

= JY − J [X, JY ] + J2[X,Y ]

= 2JY

(38.1.16)

using Grifone’s identity, and so Y is vertical. Conversely, if Y is vertical, it can be written as
Y = JZ, and we find

JZ − [X, J2Z] + J [X, JZ] = JZ + J [X, JZ] = 0 , (38.1.17)

once again using Grifone’s identity. ■

We see that this eigenspace is independent of the choice of the semispray X. This is not the
case for the positive eigenspace. We will explicitly construct it and discuss its properties in
section 38.3.

Theorem 38.1.9. For every semispray X ∈ Vect(TM) and function f ∈ C∞(M,R) the verti-
cal and canonical lifts are related by

X
V

f =
C

f . (38.1.18)

Proof. Let v ∈ TM . Using theorem 38.1.1, which states that τ∗ ◦ X = idTM , as well as the
definition 10.1.1 of the pushforward acting on a function, we have

C
f(v) = v(f) = τ∗(X(v))(f) = X(v)(f ◦ τ) = X(v)

V
f =

(
X

V
f
)
(v) . ■ (38.1.19)

Theorem 38.1.10. For every semispray X ∈ Vect(TM) and vector field Z ∈ Vect(M) the
vertical and canonical lifts satisfy

J
[

V

Z,X
]
=

V

Z , J
[

C

Z,X
]
= 0 . (38.1.20)

Proof. For the first equality, one can use the relation 29.5.4 between the vertical and complete
lifts, as well as Grifone’s identity 38.1.4, to show that

J
[ V
Z,X

]
= J

[
J

C
Z,X

]
= J

C
Z =

V
Z . (38.1.21)

For the second equality, we find

J
[ C
Z,X

]
= J

[ C
Z,X

]
−
[ C
Z, c

]
= J

[ C
Z,X

]
−
[ C
Z, JX

]
= −

(
LC
Z
J
)
X

= 0 .

(38.1.22)
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Here we used theorem 29.5.3 that the complete lift of a vector field is 0-homogeneous to add
a vanishing term in the first line, inserted the semispray via JX = c in the second line, used
the Lie derivative 16.6.1 in the third line, and finally theorem 29.5.7 to show that the latter
vanishes. ■

38.2 Sprays

We now come to a class of semisprays, which are of particular interest. These are defined by
demanding the following additional property.

Definition 38.2.1 (Spray). A semispray X ∈ Vect(TM) on a manifold M is called a spray
if and only if it is homogeneous of order 1.

Note that a spray cannot be homogeneous of any order r ̸= 1. This follows from the defining
property JX = c and the homogeneities of -1 for the tangent structure and 0 for the Liouville
vector field, so that

0 = Lcc

= Lc(JX)

= (LcJ)X + J(LcX)

= (r − 1)JX ,

(38.2.1)

which can be true only for JX = 0, which would contradict the assumption JX = c that X is
a semispray, or r = 1.

One also easily derives how the homogeneity condition restricts the coefficients of X in the
induced coordinates. Writing X = x̄a∂a + X̄a∂̄a, we have

LcX = [c, X]

= [x̄b∂̄b, x̄
a∂a + X̄a∂̄a]

= x̄bδab ∂a + x̄b∂̄bX̄
a∂̄a − X̄aδba∂̄b

= x̄a∂a + (x̄b∂̄bX̄
a − X̄a)∂̄a .

(38.2.2)

For a spray, this must again be equal to X, which is the case if and only if

x̄b∂̄bX̄
a = 2X̄a . (38.2.3)

Hence, while the spray is a homogeneous vector field of order 1, the coefficients are homogeneous
functions of order 2, due to the fact that the coordinate vector fields ∂̄a are homogeneous of
order -1.

One common possibility to measure by how much a semispray fails to be a spray is by defining
the following vector field.

Definition 38.2.2 (Deviation). Let X ∈ VectTM be a semispray. Its deviation is the
vector field

X⋆ = [c, X]−X . (38.2.4)

Obviously we have X⋆ = 0 if and only if X is 1-homogeneous, and hence a spray. Before we
derive a coordinate expression, we prove the following statement.
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Theorem 38.2.1. The deviation of a semispray X ∈ Vect(TM) is vertical.

Proof. We use theorem 38.1.5 that [c, X] is again a semispray, and hence J [c, X] = c, from
which follows

J([c, X]−X) = J [c, X]− JX = c− c = 0 . (38.2.5)

Hence, the deviation lies in the kernel of J , and is thus vertical. ■

We finally calculate the deviation in coordinates. From the expression (38.2.2) we find

X⋆ = (x̄b∂̄bX̄
a − 2X̄a)∂̄a , (38.2.6)

which is obviously vertical and vanishes when the homogeneity condition (38.2.3) is satisfied.

38.3 Non-linear connection induced by a semispray

As already mentioned at the beginning of this chapter, there exists a close relation between
semisprays and non-linear connections on the tangent bundle, which we will now study in detail.
First, we will see how every semispray induces a non-linear connection. Recall from section 37.2
that a non-linear connection can be described by various tensor fields on the tangent bundle
TM . One of these tensor fields is the almost product structure given in definition 37.2.2. We
can obtain an almost product structure from a semispray by virtue of the following statement.

Theorem 38.3.1. Let X be a semispray and J the tangent structure. Then P = −LXJ is an
almost product structure.

Proof. We first show that J ◦ P = J . For this purpose, we use theorem 16.6.1 for the Lie
derivative to obtain

PY = −(LXJ)Y = J [X,Y ]− [X, JY ] (38.3.1)

for any Y ∈ Vect(TM). Applying J , the first term vanishes, since J ◦ J = 0, and so we are left
with

(J ◦ P)Y = −J [X, JY ] = JY , (38.3.2)

using Grifone’s identity 38.1.4. Since this holds for all Y ∈ Vect(TM), we find J ◦ P = J .

To show the opposite order P ◦ J = −J , observe that

(P ◦ J)Y = −(LXJ)JY = J [X, JY ]− [X, J2Y ] = J [X, JY ] = −JY , (38.3.3)

following the same arguments as above. Hence, we find that P indeed satisfies the properties of
an almost product structure. ■

It is instructive to derive a coordinate expression for the almost product structure, and hence
the connection coefficients, from a coordinate expression of the semispray. For this purpose, we
will write the latter as X = x̄a∂a + X̄a∂̄a. Together with the coordinate expression (29.2.6) of
the tangent structure we then find the almost product structure

P = −LXJ
= −Lx̄a∂a+X̄a∂̄a(∂̄b ⊗ dxb)

= −[x̄a∂a + X̄a∂̄a, ∂̄b]⊗ dxb − ∂̄b ⊗ dιx̄a∂a+X̄a∂̄adx
b

= (δab ∂a + ∂̄bX̄
a∂̄a)⊗ dxb − ∂̄b ⊗ dx̄b

= ∂̄bX̄
a∂̄a ⊗ dxb + ∂a ⊗ dxa − ∂̄b ⊗ dx̄b

(38.3.4)
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We can compare this with the coordinate expression (37.2.12) of the almost product structure,
which reads, after expanding the Berwald basis,

P = (∂a −N b
a∂̄b)⊗ dxa − ∂̄a ⊗ (dx̄a +Na

bdx
b)

= −2Na
b∂̄a ⊗ dxb + ∂a ⊗ dxa − ∂̄b ⊗ dx̄b .

(38.3.5)

We see that this is of the same form, and that the connection coefficients can be obtained from
the coefficients of the semispray as

Na
b = −

1

2
∂̄bX̄

a . (38.3.6)

We also remark that the obtained non-linear connection is not arbitrary, but satisfies certain
additional properties. In particular, we find the following relation.

Theorem 38.3.2. The non-linear connection defined from a semispray X by the almost product
structure P = −LXJ is symmetric.

Proof. For the proof we make use of the theory of graded derivations and the Frölicher-Nijenhuis
bracket defined in section 17.6. Recall from definition 37.5.1 that the weak torsion is given by
the Frölicher-Nijenhuis bracket Jh, JK = JJ,hK. Similarly, following theorem 17.6.7 we can write
the almost product structure as P = −JX, JK = JJ,XK. This allows us to write the weak torsion
as

t = JJ,hK =
1

2
JJ, idTTM + PK =

1

2
JJ, JJ,XKK , (38.3.7)

where the first part JJ, idTTM K = 0 vanishes following theorem 17.6.4. Using the graded Jacobi
identity, we now have

JJ, JJ,XKK = JJJ, JK, XK− JJ, JJ,XKK = −JJ, JJ,XKK , (38.3.8)

where the first term vanishes due to the vanishing of the Nijenhuis tensor NJ = 0 of the tangent
structure. Hence, we find t = 0, so that the induced connection is symmetric. ■

This can also be seen very easily from the coordinate expressions. Using the relation (37.5.6)
for a non-linear connection one has

∂̄[aN
c
b] = −

1

2
∂̄[a∂̄b]X̄

c = 0 , (38.3.9)

which vanishes, since the appearing vertical derivatives commute.

38.4 Semispray induced by a non-linear connection

So far we have thus constructed a (symmetric) non-linear connection from a semispray. We
now follow the inverse direction and construct a semispray from a non-linear connection. The
following statement shows that this is indeed possible.

Theorem 38.4.1. Let M be a manifold equipped with a non-linear connection on the tangent
bundle. Then X̃ = Θc is a semispray, where Θ is the adjoint structure and c is the Liouville
vector field.

Proof. This follows from the fact that the Liouville vector field is vertical, and hence

JX̃ = (J ◦Θ)c = vc = c . ■ (38.4.1)
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Again it is instructive to derive a coordinate expression for the semispray X from that of the
adjoint structure. Using the relations (19.9.2) for the Liouville vector field and (37.2.5) for the
adjoint structure in the Berwald basis follows

X̃ = Θc = (δa ⊗ δx̄a)yb∂̄b = x̄aδa = x̄a(∂a −N b
a∂̄b) . (38.4.2)

This obviously satisfies the condition (38.1.1) for a semispray, and we see that its coefficients
are given by ¯̃Xa = −x̄bNa

b.

The semispray induced by a non-linear connection has several interesting properties, which we
will prove in the following. The first properly allows for an alternative characterization, and is
stated as follows.

Theorem 38.4.2. Let M be a manifold equipped with a non-linear connection on the tangent
bundle. Then X̃ = Θc is the unique horizontal semispray, and it satisfies

X̃ = h[c, X̃] . (38.4.3)

Proof. For the first part of the proposition, let X be a horizontal semispray. Then we have

X = hX = ΘJX = Θc = X̃ , (38.4.4)

and so X̃ = X is unique.

For the second statement, recall from theorem 38.1.5 that for any semispray X̃, also [c, X̃] is
a semispray. Applying the first part of the proposition, where we have shown that hX = X̃
for any semispray X, to the semispray X = [c, X̃], we find that its horizontal part is again the
unique horizontal semispray X̃. ■

Also this can easily be seen from the coordinate expressions. From the Berwald basis one sees
immediately that X̃ = x̄aδa is horizontal. Further, any semispray X = x̄a∂a + X̄a∂̄a which is
horizontal must satisfy

0 = vX = (X̄a + x̄bNa
b)∂̄a , (38.4.5)

and so its coefficients X̄a = −x̄bNa
b are uniquely determined. Finally, one may directly calcu-

late

h[c, X̃] = h[x̄c∂̄c, x̄
a(∂a −N b

a∂̄b)]

= h(x̄aδa − x̄ax̄c∂̄cN b
a∂̄b + x̄aN b

a∂̄b)

= x̄aδa

= X̃ .

(38.4.6)

38.5 Relation between mutual inductions

Since now we have two constructions for obtaining a non-linear connection from a semispray
and vice versa, one may pose the question how these constructions are related to each other.
The first step towards the answer to this question is the following statement.

Theorem 38.5.1. Let X be a semispray, which induces a non-linear connection with almost
product structure P = −LXJ and adjoint structure Θ. Then the semispray X̃ = Θc is given by

X̃ =
1

2
(X + [c, X]) . (38.5.1)
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Proof. Following theorem 38.4.2, X̃ is the horizontal part of X, and so

X̃ = Θc

= ΘJX

= hX

=
1

2
(X + PX)

=
1

2
(X + J [X,X]− [X,JX])

=
1

2
(X + [c, X]) . ■

(38.5.2)

Also this construction can nicely be illustrated using coordinates. Writing the semisprays as
X = x̄a∂a+X̄

a∂̄a and X̃ = x̄a∂a+
¯̃Xa∂̄a, we find from the coordinate expressions of the induced

non-linear connection and of the induced semispray the relation

¯̃Xa = −x̄bNa
b =

1

2
x̄b∂̄bX̄

a . (38.5.3)

Using theorem 38.5.1, we find the expression

X̃ =
1

2
(X + [c, X])

=
1

2

(
x̄a∂a + X̄a∂̄a + [x̄b∂̄b, x̄

a∂a + X̄a∂̄a]
)

=
1

2

(
x̄a∂a + X̄a∂̄a + x̄bδab ∂a + x̄b∂̄bX̄

a∂̄a − X̄aδba∂̄b
)

= x̄a∂a +
1

2
x̄b∂̄bX̄

a∂̄a ,

(38.5.4)

which obviously agrees with the result obtained by direct calculation.

One may wonder under which circumstances one obtains the same semispray, X = X̃, and how
this is related to the properties of the connection. Also this question has a simple answer, as
we shall see below.

Theorem 38.5.2. Let X be a semispray. The following conditions are equivalent:

1. X is a spray.

2. X is horizontal with respect to its non-linear connection induced via the almost product
structure P = −LXJ .

3. The semispray X̃ = Θc obtained from the induced non-linear connection is equal to X.

Further, from any of these conditions follows that the induced non-linear connection is homo-
geneous.

Proof. We prove the equivalence of the first three statements above using the following steps:

1. Recall that the horizontal projector is given by h = 1
2 (P+ idTTM ). Using theorem 38.3.1,

as well as JX = c for a semispray, we have

X − hX =
1

2
(X − PX)

=
1

2
(X − J [X,X] + [X, JX])

=
1

2
(X − [c, X])

=
1

2
(X − LcX) ,

(38.5.5)
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so that X = hX if and only if X is 1-homogeneous, i.e., a spray.

2. From the relation (38.5.1) we find

X̃ −X =
1

2
([c, X]−X) =

1

2
(LcX −X) , (38.5.6)

and so X̃ = X if and only if X is 1-homogeneous, i.e., a spray.

Finally, if X is a spray, and hence 1-homogeneous, it follows from theorem 19.9.6 that P is
0-homogeneous, so that the connection is homogeneous. ■

Using coordinates, the statement of the theorem becomes obvious. We see that the three
equivalent conditions are expressed in coordinates as follows:

1. X is a spray, and hence 1-homogeneous:

x̄b∂̄bX̄
a = 2X̄a . (38.5.7)

2. X is horizontal with respect to its induced non-linear connection:

0 = vX = (X̄a + x̄bNa
b)∂̄a =

(
X̄a − 1

2
x̄b∂̄bX̄

a

)
∂̄a . (38.5.8)

3. The semispray X̃ = Θc obtained from the induced non-linear connection is equal to X:

X̄a = ¯̃Xa =
1

2
x̄b∂̄bX̄

a . (38.5.9)

This is obviously the same condition on the spray coefficients X̄a in all three cases. Finally, the
homogeneity of the induced non-linear connection follows from any of these, since in this case

x̄c∂̄cN
a
b = x̄c∂̄c∂̄bX̄

a

= ∂̄b(x̄
c∂̄cX̄

a)− (∂̄bx̄
c)∂̄cX̄

a

= 2∂̄bX̄
a − ∂̄bX̄a

= Na
b ,

(38.5.10)

which is simply the relation (37.4.5) for a homogeneous non-linear connection.

Note that the last property, the homogeneity follows from the other, equivalent properties, but
the converse is not true: a homogeneous connection does not imply that X is a spray. To see
this, let X be a spray, so that P = −LXJ is the almost product structure of a homogeneous
connection, and Z ∈ Vect(M). Then we have that

V
Z is a −1-homogeneous vertical vector field

satisfying J
V
Z = 0 and LV

Z
J = 0, following theorems 29.5.1 and 29.5.6. Hence, X ′ = X +

V
Z

is not 1-homogeneous, so that it is only a semispray, since it still satisfies JX ′ = c, but
−LX′J = −LXJ defines the same homogeneous connection as induced by X.

The latter can also be seen in coordinates. Let X = x̄a∂a + X̄a∂̄a be a spray and Z = Za∂a ∈
Vect(M) a vector field on M . Its vertical lift is given by

V
Z = Za∂̄a. Hence, also

X ′ = X +
V
Z = x̄a∂a + (X̄a + Za)∂̄a (38.5.11)

is a semispray, but not a spray. Still the induced non-linear connection has coefficients

Na
b = −

1

2
∂̄b(X̄

a + Za) = −1

2
∂̄bX̄

a , (38.5.12)

since ∂̄bZa = 0, and so is the same as that induced by X, and thus homogeneous.
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Finally, we also consider the case in which we start from a non-linear connection with coefficients
Na

b, construct its induced semispray X̃, and from the latter again the induced connection,
whose coefficients we denote by Ña

b. Again one may pose the question under which conditions
the resulting non-linear connection agrees with the original one. The answer is given by the
following theorem.

Theorem 38.5.3. Let M be a manifold equipped with a non-linear connection on the tangent
bundle, X̃ = Θc the induced semispray, and P̃ = −LX̃J the almost product structure of the
non-linear connection induced by X̃. Then the difference of the corresponding almost product
structures is given by the strong torsion of the original connection,

P− P̃ = −T . (38.5.13)

Proof. Using horizontal and vertical projectors, we have for any vector field X ∈ Vect(TM) the
almost product structures

PX = hX − vX (38.5.14)

and
P̃X = −(LΘcJ)X = J [Θc, X]− [Θc, JX] . (38.5.15)

Together with the formula from theorem 37.5.2 we then have

PX − P̃X +TX = hX − vX − J [Θc,vX] + h[Θc, JX] . (38.5.16)

Note that the first and the last term are horizontal and vanish if X is vertical, while the
remaining two terms are vertical and vanish if X is horizontal. It thus suffices to check them
individually. Let first X be vertical and write X = JY for some vector field Y ∈ Vect(TM).
Then

JY + J [Θc, JY ] = 0 (38.5.17)

due to Grifone’s identity, since Θc is a semispray. This shows that the vertical terms cancel.
For the horizontal terms, we apply J and find

JX + J [Θc, JX] = 0 , (38.5.18)

which vanishes for the same reasons as above. Hence, also the horizontal terms cancel. ■

Also this can be seen easily in coordinates. Using the previously derived coordinate expressions
we have

Ña
b = −

1

2
∂̄b

¯̃Xa =
1

2
∂̄b(x̄

cNa
c) =

1

2
(Na

b + x̄c∂̄bN
a
c) . (38.5.19)

The almost product structures of the non-linear connections are thus given by

P = δa ⊗ dxa − ∂̄a ⊗ δx̄a = (∂a −N b
a∂̄b)⊗ dxa − ∂̄a ⊗ (dx̄a +Na

bdx
b) (38.5.20)

and analogously for P̃. For their difference we then find

P− P̃ = 2(Ña
b −Na

b)∂̄a ⊗ dxb = (x̄c∂̄bN
a
c −Na

b)∂̄a ⊗ dxb = −T . (38.5.21)

This relation is useful to characterize a non-linear connection by its properties. We use it to
show the following.

Theorem 38.5.4. Let M be a manifold equipped with a non-linear connection on the tangent
bundle, X̃ = Θc the induced semispray, and P̃ = −LX̃J the almost product structure of the
non-linear connection induced by X̃. Then the induced non-linear connection agrees with the
original one if and only if the latter is symmetric and homogeneous.
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Proof. Assume first that the connections agree, P = P̃. From theorem 38.3.2 follows that the
induced non-linear connection defined by P̃ is symmetric, and so it can agree with the original
connection only if the latter is symmetric as well. Further, theorem 38.4.2 states that X̃ is
horizontal with respect to P. If P = P̃, then it is also horizontal with respect to P̃. From
theorem 38.5.2 then follows that the induced connection defined by P̃, and hence the original
connection defined by P, is homogeneous.

Conversely, if the original connection is homogeneous and symmetric, then T = 0 and t = 0,
whence T = 0 and thus P = P̃ according to theorem 38.5.3.

Note that this proves that T = 0 if and only if T = 0 and t = 0, as claimed in theorem 37.5.3. ■

We can also see this from the coordinate expressions we derived above. Already the first
equality in (38.5.19) shows that the induced connection is symmetric, ∂̄[aÑ c

b] = 0, as shown
in theorem 38.3.2. A necessary condition for the equality of both connections, Ña

b = Na
b, is

therefore that also the original connection is symmetric, ∂̄[aN c
b] = 0. Imposing this condition,

we have
Ña

b =
1

2
(Na

b + x̄c∂̄bN
a
c) . =

1

2
(Na

b + x̄c∂̄cN
a
b) , (38.5.22)

and so both connections are equal if and only if in addition holds

Na
b = x̄c∂̄cN

a
b , (38.5.23)

which means that the original (and hence also the induced) connection is homogeneous.

The previous theorem shows that a homogeneous and symmetric connection is fully determined
by its induced semispray. This can be generalized to the case of an arbitrary non-linear con-
nection as follows.

Theorem 38.5.5. A non-linear connection is uniquely determined by its induced semispray Θc
and strong torsion T.

Proof. Let P1 and P2 be the almost product structures of two non-linear connections, and
assume that they have the same strong torsion T1 = T2 = T and the same induced semispray,
which hence gives the same induced non-linear connection P̃1 = P̃2 = P̃. From theorem 38.5.3
then follows

P1 = P̃−T = P2 . (38.5.24)
■

38.6 Semisprays and autoparallel curves

The previous sections have shown that there exists a close relationship between semisprays and
non-linear connections. This relationship can be used in order to express concepts from one of
these notions to the other. Here we apply this relationship to autoparallel curves, where we
find the following useful relation.

Theorem 38.6.1. Let M be a manifold equipped with a non-linear connection. A curve γ : R→
M is autoparallel if and only if its canonical lift is an integral curve of the induced semispray.

Proof. Let Θ be the adjoint structure of a non-linear connection and Θc the induced semispray.
We proceed in two steps.

1. According to theorem 38.1.3, every integral curve of a semispray is the canonical lift of a
curve on M . This curve is horizontal, since Θc is horizontal. Following definition 37.7.1,
a curve γ : R → M is an autoparallel if and only if its canonical lift γ̇ : R → TM is
horizontal. Hence, every integral curve of Θc is the canonical lift of an autoparallel curve.
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2. Let γ : R → M be an autoparallel curve, and so its canonical lift γ̇ : R → TM is
horizontal, i.e., it is a horizontal lift of γ. ▶. . .◀

■
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Chapter 39

D-tensors and d-connections

39.1 Pullback formalism

[Ant03]

39.2 D-tensors

[MA94]

39.3 D-connections and N-linear connections

Following the definitions in section 39.2, we can express d-tensors as tensors on the tangent
bundle of a manifold equipped with a non-linear connection, which respect the split of the
double tangent bundle into horizontal and vertical parts. Given such tensor fields, one is
naturally interested in taking their derivatives with respect to a linear connection, hence in this
case a Koszul connection on the bundle ϖ : TTM → M . However, such a connection will, in
general, not preserve the split TTM ∼= HTM⊗V TM into horizontal and vertical bundles. The
class of connections which has this property may be considered distinguished, in the same sense
as d-tensors. We define them as follows.

Definition 39.3.1 (D-connection). Let M be a manifold with a non-linear connection.
A Koszul connection ∇ on the double tangent bundle ϖ : TTM → TM is called a d-
connection (or distinguished connection) if and only if ∇P = 0, where P is the almost
product structure of the non-linear connection.

Here we have chosen to use the almost product structure in the definition. However, we could
just as well have used any of the projectors, as the following statement shows.

Theorem 39.3.1. A Koszul connection on the double tangent bundle ϖ : TTM → TM is a d-
connection if and only if it preserves the horizontal projector, ∇h = 0 (and hence, equivalently,
also the vertical projector, ∇v = 0).

Proof. For any Koszul connection and vector field X one has

(∇idTTM )X = ∇(idTTMX)− idTTM∇X = ∇X −∇X = 0 . (39.3.1)
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Since the almost product structure, the horizontal and the vertical projector only differ up to
the identity idTTM and constant factors, any of them is preserved by the connection if and only
if any other is. ■

With this theorem in place, it is now easy to show that a d-connection indeed preserves the
horizontal and vertical distributions. We state this property as follows.

Theorem 39.3.2. A d-connection ∇ preserves the horizontal and vertical parts of a vector
field,

∇XY = h∇XhY + v∇XvY (39.3.2)

for all X,Y ∈ Vect(TM).

Proof. Since ∇h = ∇v = 0 for a d-connection, we have

h∇XhY + v∇XvY = h2∇XY + v2∇XY = h∇XY + v∇XY = ∇XY . (39.3.3)
■

As discussed in section 39.1, we can regard d-tensors also as tensors over a particular pullback
bundles, and find isomorphisms between horizontal and vertical bundles. In order to also
preserve these isomorphism, we need to impose an additional condition on the d-connection,
which leads us to the following definition.

Definition 39.3.2 (N -linear connection). A d-connection ∇ on a manifold M is called a
N -linear connection if and only if ∇J = 0, where J is the tangent structure.

One may now expect that also the other bundle isomorphisms we constructed are preserved by
a N -linear connection. The following statement shows that this expectation is justified.

Theorem 39.3.3. A d-connection ∇ is a N -linear connection if and only if ∇Θ = 0, or
equivalently ∇F = 0.

Proof. Since F = Θ − J , it is sufficient to consider only one of these objects, and so we will
prove it for Θ. Given a N -linear connection ∇ and a vector field X,Y ∈ Vect(TM), we have

(∇XΘ)Y = ∇XΘY −Θ∇XY
= h∇XΘY −Θ∇XY
= ΘJ∇XΘY −Θ∇XY
= Θ∇XJΘY −Θ∇XY
= Θ∇XvY −Θ∇XY
= Θv∇XY −Θ∇XY
= Θ∇XY −Θ∇XY
= 0 .

(39.3.4)

Conversely, let ∇ be a d-connection such that ∇Θ = 0. Then we have

(∇XJ)Y = ∇XJY − J∇XY
= v∇XJY − J∇XY
= JΘ∇XJY − J∇XY
= J∇XΘJY − J∇XY
= J∇XhY − J∇XY
= Jh∇XY − J∇XY
= J∇XY − J∇XY
= 0 .

(39.3.5)
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Since this holds for all vector fields X,Y , both conditions are equivalent. ■

For practical calculations, it is useful to study also the component expressions of a N -linear
connection. Since any d-connection preserves the horizontal and vertical distributions, it is
most convenient to work in the Berwald basis, and it follows immediately that the covariant
derivatives of the basis vectors with respect to a d-connection can be expressed in the form

∇δaδb = F cbaδc , ∇δa ∂̄b = F̄ cba∂̄c , (39.3.6a)
∇∂̄aδb = Ccbaδc , ∇∂̄a ∂̄b = C̄cba∂̄c , (39.3.6b)

since the covariant derivative of a horizontal (vertical) vector field must again be horizontal
(vertical). For a N -linear connection, in addition also the tangent structure must be preserved.
This yields the further conditions

0 = J∇δaδb −∇δaJδb = F cbaJδc −∇δa ∂̄b = F cba∂̄c − F̄ cba∂̄c , (39.3.7a)
0 = J∇∂̄aδb −∇∂̄aJδb = CcbaJδc −∇∂̄a ∂̄b = Ccba∂̄c − C̄cba∂̄c , (39.3.7b)

so that for a N -linear connection we have F cba = F̄ cba and Ccba = C̄cba. Hence, in a given co-
ordinate system (xa, x̄a), a N -linear connection is fully determined by its coefficients F cba(x, x̄)
and Ccba(x, x̄), in addition to the coefficients N b

a(x, x̄), which determine the non-linear con-
nection and hence the Berwald basis.

Given a d-tensor Q, its covariant derivative ∇Q with respect to a N -linear connection will still
not be a d-tensor field, since ∇ introduces both horizontal and vertical components for the
additional tensor factor. In order to obtain a d-tensor field, one must thus project onto either
of the corresponding subspaces. This can be achieved by the following definition.

Definition 39.3.3 (Horizontal and vertical part of a N -linear connection). Let ∇ be a N -
linear connection on a manifold M . Its horizontal and vertical part ∇h and ∇v are defined
such that

∇hXY = ∇hXY , ∇vXY = ∇vXY (39.3.8)

for all vector fields X,Y ∈ Vect(TM).

Note that ∇h and ∇v by themselves are not Koszul connections, since

∇hXf = hXf ̸= Xf , ∇vXf = vXf ̸= Xf (39.3.9)

for general vector fields X and functions f . Only their sum is a Koszul connection.

39.4 Torsion

As for any linear connection on a tangent bundle, one can define the torsion as detailed in
section 30.4. Making the necessary replacement M → TM in definition 30.4.2, we arrive at the
following definition.

Definition 39.4.1 (Torsion of a N -linear connection). Let ∇ be a N -linear connection on
a manifold M . Its torsion is the vector-valued two-form T ∈ Ω2(TM, TTM) defined by

T (X,Y ) = ∇XY −∇YX − [X,Y ] (39.4.1)

for all vector fields X,Y ∈ Vect(TM).
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It is instructive to decompose the torsion into its horizontal and vertical parts, i.e., first decom-
pose the vector fields X and Y into their horizontal and vertical parts, and then decompose
T (X,Y ). Using the fact that a d-connection preserves horizontal and vertical parts of vector
fields according to theorem 39.3.2, and that the commutator of vertical vector fields is again
vertical, we find the following expressions for the components:

1. The (h)h-torsion:

hT (hX,hY ) = ∇hXhY −∇hY hX − h[hX,hY ] . (39.4.2a)

2. The (v)h-torsion:
vT (hX,hY ) = −v[hX,hY ] = R(X,Y ) . (39.4.2b)

3. The (h)hv-torsion:
hT (hX,vY ) = −∇vY hX − h[hX,vY ] . (39.4.2c)

4. The (v)hv-torsion:
vT (hX,vY ) = ∇hXvY − v[hX,vY ] . (39.4.2d)

5. The (h)v-torsion:
hT (vX,vY ) = 0 . (39.4.2e)

6. The (v)v-torsion:

vT (vX,vY ) = ∇vXvY −∇vY vX − v[vX,vY ] . (39.4.2f)

In the case of a general affine connection discussed in section 30.4 we have called a connection
symmetric if and only if its torsion vanishes. However, in the case of N -linear connections, this
condition turns out to be too restrictive. Depending on the choice of the non-linear connection,
there may not exist any N -linear connection with vanishing torsion. This can be seen from the
decomposition shown above, since the component vT (hX,hY ) = R(X,Y ) is fully determined
by the curvature of the non-linear connection. Hence, if the non-linear connection has non-
vanishing curvature, any N -linear connection must have non-vanishing torsion. For a N -linear
connection, one therefore uses a weaker condition to define a notion of being symmetric, which
restricts only independent components of the connection. This is defined as follows.

Definition 39.4.2 (Symmetric N -linear connection). A N -linear connection is called sym-
metric if and only if hT (hX,hY ) = vT (vX,vY ) = 0 for all X,Y ∈ Vect(TM).

Using the expression (39.3.6) for the N -linear connection coefficients, as well as the Berwald
basis (37.1.1), one can calculate the components of the torsion in the Berwald basis. One finds
that these are given by

hT (δa, δb) = (F cba − F cab)δc , (39.4.3a)
vT (δa, δb) = (δaN

c
b − δbN c

a)∂̄c , (39.4.3b)
hT (∂̄a, δb) = Ccbaδc , (39.4.3c)
vT (∂̄a, δb) = (∂̄aN

c
b − F cab)∂̄c , (39.4.3d)

vT (∂̄a, ∂̄b) = (Ccba − Ccab)∂̄c . (39.4.3e)

We thus see that for a symmetric N -linear connection, as given in definition 39.4.2, the con-
nection coefficients are symmetric in their lower indices, F a[bc] = Ca[bc] = 0, in analogy to the
symmetry of the connection coefficients for an affine connection shown in section 30.4. Also note
that the coefficients F abc and Cabc are fully determined by the non-linear connection coefficients
Na

b, as well as the mixed torsion components T (hX,vY ).
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39.5 Curvature

Since a N -connection is a connection, we can define its curvature, thus specializing the notions
given in sections 26.10, 28.12 and in particular 30.3. From the latter we simply replaceM → TM
to arrive at the following definition.

Definition 39.5.1 (Curvature of a N -linear connection). Let ∇ be a N -linear con-
nection on a manifold M . Its curvature is the endomorphism-valued two-form R ∈
Ω2(TM,End(TTM)) defined by

R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z (39.5.1)

for all vector fields X,Y, Z ∈ Vect(TM).

We can now in principle proceed as for the torsion shown in section 39.4 and decompose the
curvature into its horizontal and vertical components. Since in the definition 39.5.1 three vector
fields appear, and the result is again a vector field, decomposing each of them would yield 16
components, and 12 if we take into account the antisymmetry of the curvature in its two form
arguments. However, it turns out that this task can be simplified significantly if we take into
account the properties of N -linear connections. First, we use the fact that a d-connection
preserves the horizontal and vertical to show the following.

Theorem 39.5.1. The curvature R of a N -linear connection preserves the horizontal and
vertical distributions,

R(X,Y )Z = hR(X,Y )hZ + vR(X,Y )vZ (39.5.2)

for all vector fields X,Y, Z ∈ Vect(TM).

Proof. By theorem 39.3.2, a d-connection preserves the horizontal and vertical distributions,
such that

R(X,Y )Z = h∇X∇Y hZ + v∇X∇Y vZ − h∇Y∇XhZ − v∇Y∇XvZ − h∇[X,Y ]hZ − v∇[X,Y ]vZ

= hR(X,Y )hZ + vR(X,Y )vZ . ■

(39.5.3)

Further, we can use the fact that a N -linear connection acts identically on horizontal and
vertical vectors, i.e., it commutes with the tangent structure. Hence, the same holds also for
the curvature,

R(X,Y )JZ = JR(X,Y )Z , (39.5.4)

and so it suffices to consider only horizontal (or only vertical) vector fields Z. Thus, we have
to decompose only X and Y into horizontal and vertical parts, and consider each of them
separately, leaving only three independent components of the curvature. Writing them as en-
domorphisms acting on d-vector fields, we find that their components are given as follows.

1. The horizontal part:

R(δa, δb) =[
δaF

d
cb − δbF dca + F deaF

e
cb − F debF eca + Cdce(δaN

e
b − δbNe

a)
]
(δd⊗dxc+∂̄d⊗δx̄c) .

(39.5.5a)

2. The mixed part:

R(δa, ∂̄b) =
(
δaC

d
cb − ∂̄bF dca + F deaC

e
cb − CdebF eca − Cdce∂̄bNe

a

)
(δd⊗dxc+∂̄d⊗δx̄c) .

(39.5.5b)
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3. The vertical part:

R(∂̄a, ∂̄b) =
(
∂̄aC

d
cb − ∂̄bCdca + CdeaC

e
cb − CdebCeca

)
(δd ⊗ dxc + ∂̄d ⊗ δx̄c) . (39.5.5c)

39.6 Bianchi identities

39.7 Autoparallel curves

39.8 Berwald connection

We have seen in section 39.3 that we can specify a N -linear connection by its action on the
Berwald basis, hence fixing the connection coefficients (39.3.6), and that these are fully deter-
mined from the mixed components of the torsion, as detailed in section 39.4. Since the torsion
is tensorial, there exists a canonical choice, namely to demand that these torsion components
vanish. This leads to a canonically defined N -linear connection, which is fully determined from
the non-linear connection as follows.

Definition 39.8.1 (Berwald connection). Let M be a manifold with a non-linear connec-
tion. The Berwald connection is the unique N -linear connection

Be
∇ satisfying

Be
T (hX,vY ) =

0 for all X,Y ∈ Vect(TM).

By comparison with the component expressions (39.4.3) for the torsion, one finds that the
connection coefficients of the Berwald connection are given by

Be
F abc = ∂̄bN

a
c ,

Be
Cabc = 0 . (39.8.1)

One can also express the Berwald connection without resorting to tensor components. It turns
out that the following useful formula holds.

Theorem 39.8.1. The Berwald connection is given by

Be

∇XY = v[hX,vY ] + h[vX,hY ] + J [vX,ΘY ] + Θ[hX, JY ] (39.8.2)

for all X,Y ∈ Vect(TM).

Proof. We first check that the defining relation (39.8.2) yields a linear connection on the tangent
bundle. For this purpose we check the linearity

Be
∇fXY = v[fhX,vY ] + h[fvX,hY ] + J [fvX,ΘY ] + Θ[fhX, JY ]

= fv[hX,vY ] + fh[vX,hY ] + fJ [vX,ΘY ] + fΘ[hX, JY ]

− (vY f)vhX − (hY f)hvX − (ΘY f)JvX − (JY f)ΘhX

= f
Be
∇XY ,

(39.8.3)

as well as the Leibniz rule
Be
∇X(fY ) = v[hX, fvY ] + h[vX, fhY ] + J [vX, fΘY ] + Θ[hX, fJY ]

= fv[hX,vY ] + fh[vX,hY ] + fJ [vX,ΘY ] + fΘ[hX, JY ]

+ (hXf)vvY + (vXf)hhY + (vXf)JΘY + (hXf)ΘJY

= f
Be
∇XY + (Xf)Y .

(39.8.4)
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Next, we check that it is a d-connection, by calculating the covariant derivative of the almost
product structure:

Be
∇X(PY )− P

Be
∇XY = v[hX,−vY ] + h[vX,hY ] + J [vX,−ΘY ] + Θ[hX, JY ]

+ v[hX,vY ]− h[vX,hY ] + J [vX,ΘY ]−Θ[hX,JY ]

= 0 .

(39.8.5)

To check that it is a N -linear connection, one similarly calculates the covariant derivative of
the tangent structure:

Be
∇X(JY )− J

Be
∇XY = v[hX,vJY ] + h[vX,hJY ] + J [vX,ΘJY ] + Θ[hX,JJY ]

− Jv[hX,vY ]− Jh[vX,hY ]− JJ [vX,ΘY ]− JΘ[hX, JY ]

= v[hX, JY ] + J [vX,hY ]− J [vX,hY ]− v[hX,JY ]

= 0 .

(39.8.6)

Finally, we calculate the torsion component
Be
T (hX,vY ) =

Be
∇hX(vY )−

Be
∇vY (hX)− [hX,vY ]

= v[hX,vY ]− h[vY,hX]− [hX,vY ]

= 0 .

(39.8.7)

From the torsion decomposition in section 39.4 follows that this uniquely determines the N -
linear connection. ■

Of course, one can also use the formula (39.8.2) to obtain a coordinate expression for the
Berwald connection. Writing the vector fields X,Y as X = Xaδa+X̄

a∂̄a and Y = Y aδa+ Ȳ
a∂̄a

in the Berwald basis, one finds the covariant derivative
Be
∇XY = Xa

[(
δaY

b + ∂̄cN
b
aY

c
)
δb +

(
δaȲ

b + ∂̄cN
b
aȲ

c
)
∂̄b
]
+ X̄a

(
∂̄aY

bδb + ∂̄aȲ
b∂̄b
)
,

(39.8.8)
which follows from [δa, ∂̄b] = ∂̄bN

c
a∂̄c and shows that its connection coefficients are given by

the formula (39.8.1).

We now apply the formula introduced above to show the following.

Theorem 39.8.2. The Berwald connection of a homogeneous non-linear connection satisfies

∇Xc = vX (39.8.9)

for all vector fields X ∈ Vect(TM).

Proof. Since the Liouville vector field is vertical, we have for a homogeneous non-linear connec-
tion

∇Xc = v[hX, c] + J [vX,Θc]

= v[hX, c] + J [vX,Θc]

= −PvX − TX
= vX ,

(39.8.10)

using theorem 37.4.2 and the properties of induced semisprays and induced non-linear connec-
tions, where the latter in particular implies that the tension T vanishes. ■

39.9 Dynamical covariant derivative

From the Berwald connection and the induced semispray of the underlying non-linear connection
one can construct a particular derivative operator, which is defined as follows.
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Definition 39.9.1 (Dynamical covariant derivative). Let M be a manifold with a non-
linear connection. The dynamical covariant derivative of a d-tensor field is its Berwald
derivative ▼ =

Be
∇Θc with respect to the induced semispray Θc.

Given this operator, we may now study its action on various geometric objects. We start with
a few tensors which we have previously encountered.

Theorem 39.9.1. The tangent structure, almost product structure, almost complex structure
and adjoint structure are covariantly constant with respect to the dynamical covariant derivative,

▼J = ▼P = ▼F = ▼Θ = 0 . (39.9.1)

Proof. This immediately follows from the fact that the Berwald connection is a N -linear con-
nection. ■

Another interesting case is the action on vertical lifts of functions and vector fields.

Theorem 39.9.2. For every function f ∈ C∞(M,R) and vector field X ∈ Vect(M) the dy-
namical covariant derivative satisfies

▼
V

f =
C

f , ▼
V

X = v
C

X . (39.9.2)

Proof. The first statement immediately follows from the fact that the covariant derivative of
a function is simply the application of the induced semispray Θc and theorem 38.1.9. For the
second statement we calculate

▼
V
X = v[Θc,

V
X] = v[Θc, J

C
X] = ▶ . . . ◀ (39.9.3)

■

39.10 Affine bundle of d-connections

39.11 Pullback and Lie derivative of d-tensors

39.12 Pullback and Lie derivative of d-connections
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Chapter 40

Finsler geometry

40.1 Finsler functions and length functionals

The basic idea behind Finsler geometry is to introduce a length measure for curves, or more
precisely singular curve segments γ : [0, 1] → M on a manifold M . This length measure is
assumed to be as general as possible, with the restriction that it should not depend on the
parametrization of the curve. We will see below that this can be achieved by introducing a
function on the tangent bundle TM . However, this function will not be differentiable at the
zero section on TM . To overcome with the technical issues arising from this fact, we define the
following bundle.

Definition 40.1.1 (Slit tangent bundle). Let M be a manifold. Its slit tangent bundle
◦
TM = TM \ {0} is the fiber bundle ◦

τ :
◦
TM → M obtained from the tangent bundle TM

by removing the zero section,
◦
TM =

⋃
x∈M

TxM \ {0x} . (40.1.1)

Note that
◦
TM is not a vector bundle, since its fibers are not vector spaces - they do not have

a zero element. However, the total space
◦
TM is still a smooth manifold, and ◦

τ :
◦
TM → M

is a fiber bundle with typical fiber Rn \ {0}, where n = dimM . Also we find that various
structures we introduced on TM can be restricted to

◦
TM . This applies in particular to the

dilatations introduced in definition 19.9.1, which yield an action of (R,+) on
◦
TM , and hence

also the Liouville vector field from definition 19.9.2, which restricts to a vector field on
◦
TM .

This allows us to define homogeneity also for objects defined on
◦
TM . We make use of this fact

in the following definition.

Definition 40.1.2 (Finsler function). Let M be a manifold. A non-negative function
F : TM → R is called a Finsler function if and only if it satisfies the following conditions:

1. F is positive on
◦
TM .

2. F is smooth on
◦
TM and continuous on TM .

3. F is positively homogeneous of order 1.
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4. The bilinear form gu : T◦
τ(u)M × T◦

τ(u)M → R defined by

gu(v, w) =
1

2

∂2

∂s∂t
F 2(u+ sv + tw)

∣∣∣∣
s=t=0

(40.1.2)

is non-degenerate for all u ∈
◦
TM and has constant signature.

There are different alternative definitions, in particular concerning the bilinear form gu. In
the classical definition of Finsler geometry, one demands that gu is positive definite [Run59,
BCS91, MA94, She01b, SLK14, SS16]. Another definition does not make any restrictions on
the signature [She01a]. Here we follow a definition which requires only that the signature is the
same everywhere [BM07]. Another property of the Finsler function is usually not part of its
definition, but may be included as well:

Definition 40.1.3 (Reversible Finsler function). A Finsler function F on a manifold M is
called reversible if F (−v) = F (v) for all v ∈ TM .

With the help of the Finsler function, we can now define the length of a curve, as we aimed for.

Definition 40.1.4 (Finsler length). Let M be a manifold with Finsler function F and
γ : [a, b]→M a singular curve segment. The Finsler length of γ is the integral

ℓ(γ) =

∫ b

a

(F ◦ γ̇)(t) dt . (40.1.3)

In the previous definition, γ̇ : [a, b] → TM denotes the canonical lift of γ, following defini-
tion 7.3.2. By the virtue of the homogeneity of the Finsler function, we can now show the
following.

Theorem 40.1.1. The Finsler length of a singular curve segment is invariant under orientation-
preserving reparametrization.

Proof. Consider a smooth function φ : [a, b] → [ã, b̃] with φ(a) = ã, φ(b) = b̃ and φ′(t) > 0 for
all t ∈ [a, b], and define γ = γ̃ ◦ φ : [a, b]→M . Then we have

γ̇(t) = φ′(t) ˙̃γ(φ(t)) (40.1.4)

for all t ∈ [a, b]. From the positive 1-homogeneity of F then follows

F (γ̇(t)) = φ′(t)F ( ˙̃γ(φ(t))) (40.1.5)
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for all t ∈ [a, b]. From the change-of-variable formula for integrals finally follows the length

ℓ(γ) =

∫ b

a

(F ◦ γ̇)(t) dt

=

∫ b

a

F (γ̇(t)) dt

=

∫ b

a

F ( ˙̃γ(φ(t)))φ′(t) dt

=

∫ b̃

ã

F ( ˙̃γ(t̃)) dt̃

=

∫ b̃

ã

(F ◦ ˙̃γ)(t̃) dt̃

= ℓ(γ̃) . ■

(40.1.6)

40.2 Finsler metric

The bilinear form introduced in the definition 40.1.2 is very commonly used, and therefore
carries its own name.

Definition 40.2.1 (Finsler metric). The Finsler metric g ∈ Γ(
◦
τ∗ Sym2 T ∗M) is defined

by

gu(v, w) =
1

2

∂2

∂s∂t
F 2(u+ sv + tw)

∣∣∣∣
s=t=0

. (40.2.1)

40.3 Hilbert form

There is another possible interpretation for the Finsler length integral. Recall from section 25.1
that one-forms may be integrated over curve segments. One may wonder whether also the
Finsler length can be expressed in this way as an integral of a one-form. This is indeed the case,
however, the one-form will be defined on the tangent bundle instead of the manifold itself. We
define it as follows.

Definition 40.3.1 (Hilbert one-form). Let M be a manifold with Finsler function F . The
Hilbert one-form is the horizontal one-form α ∈ Ω1(

◦
TM) defined by

α = J∗(dF ) . (40.3.1)

One easily checks the following property.

Theorem 40.3.1. The Hilbert form is homogeneous of order 0.

Proof. This follows from the fact that F is 1-homogeneous, while J∗ is homogeneous of order
-1. ■
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It is also helpful to note the coordinate expression of the Hilbert form, using the induced
coordinates on

◦
TM . From the differential of F , given by

dF = ∂aF dxa + ∂̄aF dx̄a (40.3.2)

and the coordinate expression (29.3.6) of the cotangent structure J∗ one finds

α = ∂̄aF dxa . (40.3.3)

Using the Hilbert form, we can now come to the following statement.

Theorem 40.3.2. The Finsler length of a singular curve segment γ : [a, b] → M is given by
the pullback of the Hilbert form as

ℓ(γ) =

∫
[a,b]

γ̇∗α . (40.3.4)

Proof. The one-form on [a, b] under the integral can be written as

γ̇∗α = γ̇∗J∗dF = ⟨∂t, γ̇∗J∗dF ⟩dt = ⟨(J ◦ γ̇∗)(∂t),dF ⟩dt , (40.3.5)

by expanding in the canonical coordinate basis and using the definition of the pullback of a
differential form. Note that the pushforward γ̇∗(∂t) of the coordinate basis vector at t is just
the tangent vector γ̈(t), and so we have

(J ◦ γ̇∗)(∂t) = (J ◦ γ̈)(t) = (c ◦ γ̇)(t) , (40.3.6)

using theorem 29.2.8. Using the fact that F is 1-homogeneous by definition, and so

c ¬ dF = cF = F , (40.3.7)

we have
γ̇∗α = ⟨(c ◦ γ̇)(t),dF ⟩dt = (F ◦ γ̇)(t)dt , (40.3.8)

which leads to the length functional given in definition 40.1.4. ■

40.4 Cartan forms

There is another set of differential forms which are commonly used in Finsler geometry, which
differ from the Hilbert form by their homogeneity and which we define here for later use when
we discuss connections and geodesics. We start with the following definition.

Definition 40.4.1 (Cartan one-form). Let M be a manifold with Finsler function F . The
Cartan one-form is the horizontal one-form θ ∈ Ω1(

◦
TM) defined by

θ =
1

2
J∗(dF 2) = Fα . (40.4.1)

Before we discuss its properties, we continue with another definition.

Definition 40.4.2 (Cartan two-form). Let M be a manifold with Finsler function F . The
Cartan two-form is the two-form ω ∈ Ω2(

◦
TM) defined by

ω = dθ . (40.4.2)
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The following is now straightforward.

Theorem 40.4.1. The Cartan one- and two-forms are homogeneous of order 1.

Proof. From the homogeneity of F and α follows, using definition 40.4.1, that θ is 1-homogeneous.
Using theorem 19.9.4, the same follows also for ω. ■

The Cartan two-form plays an important role in Finsler geometry. It equips the tangent bundle
with the structure of a symplectic manifold, as we will show next.

Theorem 40.4.2. The Cartan two-form is a symplectic form.

Proof. Following definition 35.1.2, we must show that ω is closed and non-degenerate. The first
property follows directly from the definition, since

dω = ddθ = 0 . (40.4.3)

To show that it is non-degenerate, consider two vector fields X,Y ∈ Vect(M), as well as their
lifts

V
X = J

C
X and

C
Y . From theorem 9.4.2 we have

C
Y ¬

V
X ¬ ω =

C
Y ¬

V
X ¬ dθ

=
V
X(

C
Y ¬ θ)−

C
Y (

V
X ¬ θ)− [

V
X,

C
Y ] ¬ θ

=
1

2

[ V
X(

C
Y ¬ J∗(dF 2))−

C
Y (

V
X ¬ J∗(dF 2))−

V

[X,Y ] ¬ J∗(dF 2)
]

=
1

2

[ V
X(J

C
Y ¬ dF 2)−

C
Y (J

V
X ¬ dF 2)− J

V

[X,Y ] ¬ dF 2
]

=
1

2

V
X

V
Y F 2 .

(40.4.4)

Following the definition 29.5.1 of the vertical lift, as well as the proof of theorem 29.5.5, we
have for u ∈

◦
TM the relation

1

2

( V
X

V
Y
)
F 2(u) =

1

2

∂2

∂s∂t
F 2(u+ sX(

◦
τ(u)) + tY (

◦
τ(u)))

∣∣∣∣
s=t=0

= gu(X(
◦
τ(u)), Y (

◦
τ(u))) .

(40.4.5)
By definition, the Finsler metric is non-degenerate. It follows that for every vertical vector
at u, which can be expressed as the vertical lift of a vector field on M evaluated at u, there
exists a vector at ◦

τ(u) so that the expression given in the preceding equation is non-vanishing.
Conversely, for every vector at ◦

τ(u), there exists a vertical vector at u such that the expression
given above is again non-vanishing. Since the vertical and complete lifts span T

◦
TM , it follows

that ω is non-degenerate. ■

Note in particular that the expression we obtained at the end of the proof is symmetric in X
and Y . This is not a coincidence, and we will now prove this in a more general approach.

Theorem 40.4.3. For any two vector fields X,Y , the Cartan two-form satisfies

ω(JX, Y ) = ω(JY,X) . (40.4.6)
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Proof. We use the fact that the Nijenhuis tensor of the tangent structure vanishes and calculate

0 =
1

2
NJ(X,Y ) ¬ dF 2

=
1

2
([JX, JY ] + J2[X,Y ]− J [JX, Y ]− J [X, JY ]) ¬ dF 2

=
1

2

{
([JX, JY ] ¬ dF 2 − [JX, Y ] ¬ J∗dF 2 − [X, JY ] ¬ J∗dF 2

}
=

1

2

[
(JX)((JY )F 2)− (JY )((JX)F 2)

]
− [JX, Y ] ¬ θ − [X, JY ] ¬ θ

= (JX)(Y ¬ θ)− (JY )(X ¬ θ)− [JX, Y ] ¬ θ − [X,JY ] ¬ θ
= dθ(JX, Y )− dθ(JY,X) + Y (JX ¬ θ)−X(JY ¬ θ)
= ω(JX, Y )− ω(JY,X) ,

(40.4.7)

where we used the fact that θ vanishes on the vertical vector fields JX and JY . ■

Also for the Cartan one- and two-forms one may easily derive coordinate expressions. For the
Cartan one-form one easily finds, in analogy to the Hilbert form (40.3.3), the expression

θ =
1

2
∂̄aF

2 dxa = F ∂̄aF dxa = gabx̄
adxb . (40.4.8)

For the Cartan two-form, it is now straightforward to take the exterior derivative and obtain

ω = dθ =
1

2
∂a∂̄bF

2 dxa ∧ dxb +
1

2
∂̄a∂̄bF

2 dx̄a ∧ dxb . (40.4.9)

40.5 Geodesic spray

Having introduced the Cartan one- and two-forms, it is not straightforward to arrive at another
important notion in Finsler geometry, which we define as follows.

Definition 40.5.1 (Geodesic spray). Let M be a manifold with Finsler function F . The
geodesic spray S is the unique vector field on

◦
TM which satisfies

ιSω = −1

2
dF 2 . (40.5.1)

The reason for the first part of its name will become clear in the following section 40.6, where
we discuss Finsler geodesics. The second part of the name indicates that S is a spray, which we
will check next.

Theorem 40.5.1. The geodesic spray S is a spray.

Proof. In the following we will make use of the fact that the Cartan two-form is non-degenerate.
Let X ∈ Vect(

◦
TM) be a vector field. Using the relationship 40.4.3 between the Cartan two-form

and the tangent structure, we have

ω(JS, X) = −ω(S, JX) =
1

2
JX ¬ dF 2 = X ¬ θ . (40.5.2)
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We can compare this to

ω(c, X) = dθ(c, X)

= c(X ¬ θ)−X(c ¬ θ)− [c, X] ¬ θ
= Lc(X

¬ θ)− [c, X] ¬ θ
= X ¬ Lcθ

= X ¬ θ ,

(40.5.3)

where we use the fact that c is vertical, so that c ¬ θ vanishes, the commutator (16.5.8) of the
Lie derivative with the interior product and the 1-homogeneity of θ. We thus see that

ω(JS, X) = X ¬ θ = ω(c, X) (40.5.4)

for arbitrary vector fields X, Since ω is non-degenerate, it thus follows that JS = c. Further,
by theorem 40.4.1, the Cartan two-form is 1-homogeneous, while F 2 is 2-homogeneous, since
the Finsler function is 1-homogeneous by definition. Since the Cartan two-form is furthermore
non-degenerate, it preserves the homogeneity (i.e., its interior product with a vector field will
not drop any components of the vector field, and send any homogeneous component to another
homogeneous component of homogeneity increased by 1). Hence, the geodesic spray must be
1-homogeneous, and thus a spray. ■

The geodesic spray has a number of useful properties, which we will study now and in the
following sections. The following property is immediately evident.

Theorem 40.5.2. The Finsler function is constant along the geodesic spray, SF = 0.

Proof. Using the fact that the Finsler function is non-vanishing, we can write

SF = ιSdF =
1

2F
ιSdF

2 = − 1

F
ιSιSω = 0 . (40.5.5)

■

These properties can also easily be seen from a coordinate derivation. First, we expand

dF 2 = ∂aF
2dxa + ∂̄aF

2dx̄a . (40.5.6)

Denoting S = Sa∂a + S̄a∂̄a, we further have

−2ιSω = Sb(∂a∂̄bF
2 − ∂b∂̄aF 2)dxa + ∂̄a∂̄bF

2(Sbdx̄a − S̄adxb)
=
[
Sb(∂a∂̄bF

2 − ∂b∂̄aF 2)− 2S̄bgab
]
dxa + 2Sbgabdx̄

a ,
(40.5.7)

using the coordinate expression for the Finsler metric to arrive at the second line. We thus
obtain the two equations

∂aF
2 = Sb(∂a∂̄bF

2 − ∂b∂̄aF 2)− 2S̄bgab , (40.5.8a)

∂̄aF
2 = 2Sbgab . (40.5.8b)

Using the properties of the Finsler metric derived in section 40.2, we can thus solve the second
equation, from which we derive

Sa =
1

2
gab∂̄bF

2 = x̄a . (40.5.9)

We can then insert this result into the first equation, which we solve to obtain

S̄a =
1

2
gab
[
x̄c(∂b∂̄cF

2 − ∂c∂̄bF 2)− ∂bF 2
]

=
1

2
gab(∂bF

2 − x̄c∂c∂̄bF 2) ,

(40.5.10)
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using the homogeneity of the Finsler function to obtain the second line.

From the obtained result we now see the aforementioned properties of the geodesic spray. The
expression for Sa shown in equation (40.5.9) is the characteristic property of a semispray. In
order see that it is a spray, we use the expression for S̄a from equation (40.5.10) to obtain

x̄b∂̄bS̄
a =

1

2
x̄d∂̄d

[
gab(∂bF

2 − x̄c∂c∂̄bF 2)
]

=
1

2
gab
(
x̄d∂̄d∂bF

2 − x̄d∂̄dx̄c∂c∂̄bF 2 − x̄cx̄d∂̄d∂c∂̄bF 2
)

=
1

2
gab
(
2∂bF

2 − x̄c∂c∂̄bF 2 − x̄c∂c∂̄bF 2
)

= gab(∂bF
2 − x̄c∂c∂̄bF 2)

= 2S̄a ,

(40.5.11)

using the homogeneity of the Finsler metric and the Finsler function, and so one obtains desired
homogeneity property, which shows that S is a spray. Finally, for the Finsler function one has

SF 2 = x̄a∂aF
2 +

1

2
gab(∂bF

2 − x̄c∂c∂̄bF 2)∂̄aF
2

= x̄a∂aF
2 + x̄b(∂bF

2 − x̄c∂c∂̄bF 2)

= 0 ,

(40.5.12)

once again using its homogeneity and the properties of the Finsler metric.

40.6 Finsler geodesics

40.7 Induced non-linear connection

We have seen in the previous section that the Finsler function defines a distinguished spray,
which we called the geodesic spray. Following our discussion in section 38.3, a spray induces a
unique homogeneous and torsion-free non-linear connection. This holds, of course, also for the
geodesic spray. From theorem 38.3.1 we derive the following definition.

Definition 40.7.1 (Induced non-linear connection). Let M be a manifold with Finsler
function F . The induced non-linear connection on M is defined by its almost product
structure P as

P = −LSJ , (40.7.1)

where S is the geodesic spray.

Using the relation (38.3.6) derived in section 38.3, as well as the expression (40.5.10) for the
geodesic spray, one finds that the coefficients of the non-linear connection are given by

Na
b = −

1

2
∂̄bS̄

a =
1

4
∂̄b
[
gad(x̄c∂c∂̄dF

2 − ∂dF 2)
]
. (40.7.2)

A few properties of the induced non-linear connection follow immediately from its definition in
terms of a spray, and have been proven already in chapter 38. We briefly summarize them here:

1. The induced non-linear connection is symmetric: t = 0 (theorem 38.3.2).

2. The induced non-linear connection is homogeneous: T = 0 (theorem 38.5.2).
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3. The geodesic spray is the unique horizontal semispray (theorem 38.4.2), and is induced
by the connection: S = Θc (theorem 38.5.2).

Besides these properties, the non-linear connection also has a close relationship with the Finsler
function from which it is induced. We find the following property.

Theorem 40.7.1. The Finsler function is constant along any horizontal vector field.

Proof. We can write any horizontal vector field in the form hX for an arbitrary vector field X.
Using the definition of the induced non-linear connection, we then have

2hXF 2 = (X + PX)F 2

= [X − (LSJ)X]F 2

= (X + J [S, X]− [S, JX])F 2

= XF 2 + J [S, X] ¬ dF 2 − S((JX)F 2) + (JX)(SF 2)

= XF 2 + [S, X] ¬ J∗dF 2 − S(X ¬ J∗dF 2)

= XF 2 + 2[S, X] ¬ θ − 2S(X ¬ θ)
= XF 2 + 2S(X ¬ θ)− 2X(S ¬ θ)− 2X ¬ S ¬ dθ − 2S(X ¬ θ)
= XF 2 −X(S ¬ J∗dF 2)− 2X ¬ S ¬ ω
= XF 2 −X(JS ¬ dF 2) +X ¬ dF 2

= XF 2 −X(c ¬ dF 2) +XF 2

= 2XF 2 −X(cF 2)

= 2XF 2 − 2XF 2

= 0 ,

(40.7.3)

where we used the numerous definitions and theorems given previously in this chapter. ■

This can also be seen from the coordinate expression (40.7.2) of the non-linear connection.
Using the fact that the horizontal vector fields are spanned by the Berwald basis elements δa,
we have

δaF = (∂a −N b
a∂̄b)F

= ∂aF −
1

4
∂̄a
[
gbc(x̄d∂d∂̄cF

2 − ∂cF 2)
]
∂̄bF

= ∂aF −
1

4F

[
gbc∂̄a(x̄

d∂d∂̄cF
2 − ∂cF 2)− gbfggc∂̄agfg(x̄d∂d∂̄cF 2 − ∂cF 2)

]
gbex̄

e

= ∂aF −
1

4F

[
x̄c∂̄a(x̄

d∂d∂̄cF
2 − ∂cF 2)− 1

2
x̄fggc∂̄a∂̄f ∂̄gF

2(x̄d∂d∂̄cF
2 − ∂cF 2)

]
= ∂aF −

1

4F

(
x̄c∂a∂̄cF

2 + x̄cx̄d∂̄a∂d∂̄cF
2 − x̄c∂̄a∂cF 2

)
= ∂aF −

1

4F

(
2∂aF

2 + x̄d∂̄a∂dF
2 − x̄c∂̄a∂cF 2

)
= ∂aF −

1

4F
4F∂aF

= 0 .

(40.7.4)

Given a non-linear connection, it is most convenient to express tensor fields on the (slit) tan-
gent bundle in terms of the Berwald basis introduced in definition 37.1.3. For the geodesic
spray, it follows already from the fact that it is induced by the non-linear connection and the
relation (38.4.2) that it is given by

S = x̄aδa . (40.7.5)
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For the Cartan two-form, we have

ω =
1

2
∂a∂̄bF

2 dxa ∧ dxb + gabdx̄
a ∧ dxb

=
1

2
∂a∂̄bF

2 dxa ∧ dxb + gab(δx̄
a −Na

cdx
c) ∧ dxb

=

(
1

2
∂a∂̄bF

2 − gbcN c
a

)
dxa ∧ dxb + gabδx̄

a ∧ dxb

=
1

2

(
∂a∂̄bF

2 −N c
a∂̄c∂̄bF

2
)
dxa ∧ dxb + gabδx̄

a ∧ dxb

=
1

2
δa∂̄bF

2dxa ∧ dxb + gabδx̄
a ∧ dxb .

(40.7.6)

For the first term, note that only the part antisymmetric in a and b contributes, and we can
further exchange the derivatives as

δ[a∂̄b]F
2 = ∂̄[bδa]F

2 + ∂̄[bN
c
a]∂̄cF

2 = 0 , (40.7.7)

where the first term vanishes as the consequence of theorem 40.7.1, while the second term is
the weak torsion (37.5.5), and thus also vanishes, since the non-linear connection is symmetric.
We are thus left with

ω = gabδx̄
a ∧ dxb . (40.7.8)

Note that from this expression also our result from theorem 40.4.2 becomes evident, where we
showed that the Cartan two-form is non-degenerate.

40.8 Induced d-tensors

Having constructed a non-linear connection from the Finsler geometry, one also has a notion of
d-tensors and the Berwald linear derivative. Some of the former we have already encountered,
such as the horizontal geodesic spray, the vertical Liouville vector field and the horizontal
Cartan 1-form. We will now construct further helpful d-tensors which are obtained by taking
derivatives of the Finsler function. The first one we study is essentially already familiar.

Definition 40.8.1 (Finsler metric). Let M be a manifold with Finsler function F . The
Finsler metric is the d-tensor defined by

g =
1

2

Be
∇v

Be
∇vF 2 . (40.8.1)

Theorem 40.8.1. The dynamical covariant derivative of the Finsler metric vanishes.

Proof. ▶. . .◀ ■

Definition 40.8.2 (Cartan tensor). Let M be a manifold with Finsler function F . The
Cartan tensor is the d-tensor defined by

C =
1

2

Be
∇vg =

1

4

Be
∇v

Be
∇v

Be
∇vF 2 . (40.8.2)

461



Definition 40.8.3 (Landsberg tensor). Let M be a manifold with Finsler function F . The
Landsberg tensor is the d-tensor defined by

P =
1

2

Be
∇hg =

1

4

Be
∇h

Be
∇v

Be
∇vF 2 . (40.8.3)

Theorem 40.8.2. The Cartan and Landsberg tensors are related by

P = −J∗▼C . (40.8.4)

Proof. ▶. . .◀ ■

40.9 Sasaki metric

Definition 40.9.1 (Sasaki metric). Let M be a manifold with Finsler function F . The
Sasaki metric G is the metric on the tangent bundle TM which is defined such that for
vector fields X,Y ∈ Vect(

◦
TM) holds

G(X,Y ) = ω

(
X, JY − ΘY

F 2

)
, (40.9.1)

where ω is the Cartan two-form.

40.10 Volume form

40.11 Induced linear connections

We have seen in section 40.7 that a Finsler geometry uniquely defines a non-linear, homogeneous
connection on the tangent bundle. Following our treatment in section 39.3.1, we thus have the
possibility to define the notion of a d-connection on Finsler geometries. In this section we
will show that we can derive a number of particular d-connections from the Finsler function,
each defined such that it satisfies a number of particular properties. We have, in fact, already
encountered an example for such a d-connection, namely the Berwald connection in section 39.8,
which is defined by any non-linear connection, and hence in particular also by the non-linear
connection we derived from the Finsler geometry in section 40.7. We can, however, also bypass
constructing the non-linear connection first, and define the Berwald connection directly from the
Finsler function (alongside the non-linear connection, but without using the formula (40.7.1)).
This construction is given by the following statement.

Theorem 40.11.1. The Berwald connection on a Finsler geometry is the unique N -linear
connection which satisfies the following:

1. The Liouville vector field is horizontally constant:
Be

∇hc = 0.

2. The Finsler function is horizontally constant:
Be

∇hF 2 = 0.

3. The torsion satisfies h
Be

T (hX,hY ) =
Be

T (hX,vY ) = 0 for all X,Y ∈ Vect(
◦
TM).
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Proof. ▶. . .◀ ■

Given a Finsler function, one may define a number of other connections besides the Berwald
connection, by imposing different sets of defining conditions. One of the most natural, which
is reminiscent of the Levi-Civita connection discussed in section 31.10.1, is to demand that the
Finsler metric g is covariantly constant and that it is symmetric, in the sense of definition 39.4.2.
This leads us to the following definition.

Definition 40.11.1 (Cartan linear connection). The Cartan linear connection on a Finsler
geometry is the unique N -linear connection which satisfies the following:

1. The Liouville vector field is horizontally constant:
Ca
∇hc = 0.

2. The Finsler metric is covariantly constant:
Ca
∇g = 0.

3. The connection is symmetric: h
Ca
T (hX,hY ) = v

Ca
T (vX,vY ) = 0 for all X,Y ∈

Vect(
◦
TM).

▶Derive coordinate expression.◀

Ca
F abc =

1

2
gad(δbgdc + δcgbd − δdgbc) ,

Ca
Cabc =

1

2
gad∂̄dgbc . (40.11.1)

One may also combine the conditions which are imposed for the Berwald and Cartan connec-
tions. One possibility is to demand that the Finsler metric is only horizontally constant. This
leads to the following definition.

Definition 40.11.2 (Chern-Rund linear connection). The Chern-Rund linear connection
on a Finsler geometry is the unique N -linear connection which satisfies the following:

1. The Liouville vector field is horizontally constant:
CR
∇hc = 0.

2. The Finsler metric is horizontally constant:
CR
∇hg = 0.

3. The torsion satisfies h
CR
T (hX,Y ) = 0 for all X,Y ∈ Vect(

◦
TM).

▶Derive coordinate expression.◀

CR
F abc =

1

2
gad(δbgdc + δcgbd − δdgbc) ,

CR
Cabc = 0 . (40.11.2)

Another possibility to define a N -linear connection is now straightforward, namely to demand
that the Finsler metric is only vertically constant. This leads to the following definition.

Definition 40.11.3 (Hashiguchi linear connection). The Hashiguchi linear connection on
a Finsler geometry is the unique N -linear connection which satisfies the following:

1. The Liouville vector field is horizontally constant:
Ha
∇hc = 0.
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2. The Finsler function is horizontally constant:
Ha
∇hF 2 = 0.

3. The Finsler metric is vertically constant:
Ha
∇vg = 0.

4. The torsion satisfies h
Ha
T (hX,hY ) = v

Ha
T (X,vY ) = 0 for all X,Y ∈ Vect(

◦
TM).

▶Derive coordinate expression.◀

Ha
F abc = ∂̄bN

a
c ,

Ha
Cabc =

1

2
gad∂̄dgbc . (40.11.3)

We can thus summarize the connection coefficients of the four N -linear connections as follows:

Be
F abc =

Ha
F abc = ∂̄bN

a
c ,

Ca
F abc =

CR
F abc =

1

2
gad(δbgdc + δcgbd − δdgbc) , (40.11.4a)

Be
Cabc =

CR
Cabc = 0 ,

Ca
Cabc =

Ha
Cabc =

1

2
gad∂̄dgbc . (40.11.4b)

40.12 Unit tangent bundle
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Chapter 41

Klein geometries and homogeneous
spaces

In the following we will study a class of spaces, which can be viewed from two different per-
spectives, and are then denoted either as Klein geometries (after Felix Klein, who studied these
spaces as part of his Erlangen programme) or as homogeneous spaces. This chapter mostly
follows the treatment in [Sha97, ch. 4].

41.1 Klein geometries

In this section, we start with the first perspective on Klein geometries. For this purpose, we
start with the definition of the central object we discuss in this section.

Definition 41.1.1 (Klein geometry). A Klein geometry is a pair (G,H), where G is a Lie
group, called the principal group of the Klein geometry, and H is a closed subgroup of G,
such that the (left) coset space G/H, called the space of the Klein geometry, is connected.

By its definition, a Klein geometry gives rise to a number of interesting and useful geometric
structures. First, recall from the definition 15.4.1 of a coset space G/H that its elements are
the cosets (equivalence classes) gH for g ∈ G, or in other words the orbits of the right action
· : G × H → G, (g, h) 7→ gh of H on G by right multiplication. For the definition of a Klein
geometry, we have demanded that H is a closed subgroup of G - not without reason, as the
following statement shows.

Theorem 41.1.1. The space G/H of a Klein geometry (G,H) is a smooth manifold of dimen-
sion dimG/H = dimG− dimH.

Proof. The proof makes use of the exponential map from definition 15.7.2, and is only briefly
sketched here. Let m = dimH and n = dimG. One first chooses a basis (a1, . . . , an) of g, such
that (a1, . . . , am) is a basis of h. To construct a chart of G around the unit element e ∈ G,
one uses the fact that there exists an open set U ⊂ G with e ∈ U such that exp |exp−1(U) is
a diffeomorphism onto U . Similarly, there exists an open set V ⊂ H with e ∈ V such that
exp |exp−1(V ) is a diffeomorphism onto V . To obtain a chart around eH on G/H, ▶. . .◀ ■

Further, a Klein geometry defines a number of maps relating the manifolds G, H and G/H.
First, we note the existence of the following group action.
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Theorem 41.1.2. The principal group G of a Klein geometry (G,H) acts transitively on its
space G/H from the left via the group action ρ : (g, g̃H) 7→ (gg̃)H.

Proof. We have already shown that G/H is a smooth manifold. To see that the prescription ρ
given above constitutes a (left) group action, one uses the associativity of group multiplication
to find

ρ(g1.ρ(g2, g3H)) = ρ(g1, (g2g3)H) = (g1g2g3)H = ρ(g1g2, g3H) (41.1.1)

for all g1, g2, g3 ∈ G. Smoothness of ρ follows from the fact that multiplication in a Lie group
is smooth. Finally, to see that ρ is transitive, let g1, g2 ∈ G. To check that there exists g ∈ G
such that ρ(g, g1H) = g2H, simply choose g = g2g

−1
1 . ■

Another important action in the context of Klein geometries is that of the group H on G. It
allows us to define a principal fiber bundle as follows:

Theorem 41.1.3. The canonical projection π : G → G/H, g 7→ gH from a group G onto the
coset space G/H defined by a closed subgroup H ⊂ G defines a principal H-bundle, where the
right action · : G×H → G of H on G is given by multiplication from the right, (g, h) 7→ g·h = gh.

Proof. Again, we only sketch the proof. We have already show in theorem 41.1.1 that G/H
is a manifold. To further see that π : G → G/H is a fiber bundle, one first constructs a
local trivialization around the coset eH ∈ G/H of the unit element e ∈ G, again by using the
exponential map from definition 15.7.2. From this one obtains for all g ∈ G a trivialization
around gH ∈ G/H by left multiplication with g. This defines the fiber bundle geometry.

To complete the proof, we explicitly show that the fiber bundle we constructed carries a free,
transitive, fiber preserving right action of H, given by g · h = gh ∈ G for g ∈ G and h ∈ H. To
show this, note first that for g, g′ ∈ G we have gH = π(g) = π(g′) = g′H if and only if

{gh, h ∈ H} = {g′h, h ∈ H} , (41.1.2)

and hence if and only if there exists h ∈ H such that g′ = gh. This has two implications. First,
it follows that π(gh) = π(g), so that the action preserves the fibers. Second, if g and g′ belong
to the same fiber, π(g) = π(g′), there exists h ∈ H such that g′ = gh, and so the action is
transitive on the fibers. Also h is unique, since if we would have any other h′ ∈ H which also
satisfies g′ = gh′, we could multiply from the left by g−1 and obtain

h = g−1g′ = h′ . (41.1.3)

It thus follows that the group action is also free on the fibers. Hence, it defines a principal
H-bundle. ■

41.2 Geometric orientation

Depending on the properties of the Lie groups G and H, we can distinguish different types of
Klein geometries.

Definition 41.2.1 (Geometrically oriented Klein geometry). A Klein geometry (G,H) is
called geometrically oriented if its principal group G is connected.

It must be noted that the space G/H of a geometrically oriented Klein geometry (G,H) is
in general not orientable in the sense of definition 23.5.5! An example is given by projective
spaces. In fact, given a Klein geometry which is not geometrically oriented, we can still obtain
a geometrically oriented one by the following construction.
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Definition 41.2.2 (Associated geometrically oriented Klein geometry). Let (G,H) be a
Klein geometry, G0 ⊂ G the connected component of the identity in G and H0 = G0 ∩H.
Then (G0, H0) is called the associated geometrically oriented Klein geometry of (G,H).

Naturally the question arises how the Klein geometries (G,H) and (G0, H0) are related to each
other. One finds that the following relations hold in the case that the coset space G/H is
connected.

Theorem 41.2.1. Let (G,H) be a Klein geometry such that G/H is connected and (G0, H0)
its associated geometrically oriented Klein geometry. Then G = G0 ·H and G/H ∼= G0/H0.

Proof. To show the first part of the proposition, note that for every g ∈ G there exists a
path in G/H connecting gH and eH, since G/H is connected, i.e., a curve γ : [0, 1] → G/H
with γ(0) = eH and γ(1) = gH. Since π : G → G/H is a fiber bundle, there exists a curve
Γ : [0, 1] → G such that γ = π ◦ Γ, Γ(1) = g and Γ(0) = h ∈ π−1(eH) = H. From this
another curve Γ′ : [0, 1] → G, t 7→ Γ(t)h−1 is obtained, which satisfies Γ′(0) = hh−1 = e and
Γ′(1) = gh−1. Since this path connects e and gh−1, it follows that gh−1 ∈ G0 lies in the identity
component G0 of G. Hence, g = gh−1h can be written as a product of gh−1 ∈ G0 and h ∈ H.

To show the second part, consider a map ▶. . .◀ ■

We will keep the discussion of geometrically oriented Klein geometries for later, when we consider
Cartan geometries modeled on these Klein geometries, where the notion will become relevant.

41.3 Kernel and effective Klein geometries

Another important characterization of Klein geometries arises from the question whether the
action of G on G/H is effective. To study this question, it is useful to first define the following
subgroup.

Definition 41.3.1 (Kernel of a Klein geometry). Let (G,H) be a Klein geometry. Its
kernel is the largest subgroup K ⊂ H that is normal in G.

Recall from group theory that a subgroup K ⊂ G is normal subgroup (written as K ◁G) if and
only if gkg−1 ∈ K for all k ∈ K and g ∈ G. While this definition of the kernel appears rather
abstract, it still has a very direct geometric interpretation for the Klein geometry. It turns out
that it can alternatively be characterized by the following property.

Theorem 41.3.1. The kernel K of a Klein geometry (G,H) is the subgroup of G defined by

K = {k ∈ G : ρ(k, x) = x∀x ∈ G/H} , (41.3.1)

where ρ : G×G/H → G/H is the canonical left action, i.e., K is the subgroup containing those
elements k which act trivially on G/H.

Proof. From the fact that ρ is a group action follows that

ρ(kk′, x) = ρ(k, ρ(k′, x)) = ρ(k, x) = x , (41.3.2)
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as well as
x = ρ(k−1k, x) = ρ(k−1, ρ(k, x)) = ρ(k−1, x) (41.3.3)

for all k, k′ ∈ K and x ∈ G/H, and so K is a subgroup of G. Further, setting in particular
x = eH leads to

kH = ρ(k, eH) = eH , (41.3.4)

and so k ∈ H. Hence, K ⊂ H is a subgroup of H. To show that it is normal in G, let g ∈ G.
Then we have

ρ(gkg−1, x) = ρ(g, ρ(k, ρ(g−1, x))) = ρ(g, ρ(g−1, x)) = x , (41.3.5)

so that also gkg−1 ∈ K, showing that K is normal in G. Finally, we need to show that K is
maximal. For this purpose, let K ′ ∈ H any subgroup of H which is normal in G. Then for any
k ∈ K ′ and x ∈ G/H, we choose a representative g ∈ G such that x = gH, and find

ρ(k, gH) = ρ(kg, eH) = ρ(gk′g−1g, eH) = ρ(gk′, eH) = ρ(g, eH) = gH , (41.3.6)

where we used the fact that k′ ∈ K ′ sinceK ′ was assumed normal inG, as well as ρ(k′, eH) = eH
since we assumed K ′ ⊂ H. Hence, K ′ stabilizes every x ∈ G/H, and so K ′ ⊂ K, proving that
K is maximal. ■

From this property we can now define a particular type of Klein geometries.

Definition 41.3.2 (Effective Klein geometry). A Klein geometry is called effective if its
kernel is trivial, i.e., it contains only the identity element.

The name already suggests that there exists a relation between effective Klein geometries and
effective Lie group actions, following their definition 15.3.2. The following turns out to be true.

Theorem 41.3.2. A Klein geometry (G,H) is effective if and only if the action of G on G/H
is effective.

Proof. Recall from definition 15.3.2 that a Lie group action ρ : G × G/H → G/H is effective
if and only if for every distinct g, g′ ∈ G there exists x ∈ G/H such that ρ(g, x) ̸= ρ(g′, x). In
particular, we may choose g′ = e, from which follows that ρ is effective if and only if for every
g ∈ G \ {e} there exists x ∈ G/H such that

ρ(g, x) ̸= ρ(e, x) = x , (41.3.7)

i.e., if and only if g /∈ K, where K is the kernel of (G,H). Hence, ρ is effective if and only if
K = {e}, and so (G/H) is effective. ■

Definition 41.3.3 (Locally effective Klein geometry). A Klein geometry is called locally
effective if its kernel is discrete, i.e., it consists of isolated points of G.

Theorem 41.3.3. Let (G,H) be a Klein geometry with kernel K and N ⊂ K a closed subgroup
which is normal in G. Then (G/N,H/N) is a Klein geometry whose space (G/N)/(H/N) is
canonically diffeomorphic to G/H.

Proof. ▶. . .◀ ■

Theorem 41.3.4. The Klein geometry (G/N,H/N) from theorem 41.3.3 is effective if and
only if N = K.
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Proof. ▶. . .◀ ■

Definition 41.3.4 (Associated effective Klein geometry). Let (G,H) be a Klein geometry
with kernel K. Its associated effective Klein geometry is the Klein geometry (G/K,H/K).

One may wonder why one considers ineffective Klein geometries at all, if the coset space is also
described by their (unique) associated effective Klein geometry, instead of demanding effective-
ness from the beginning. One reason is the fact that ineffective Klein geometries naturally in
physics. One example is the description of spin, and the usage of spin groups, which we discuss
in chapter 45.

41.4 Homogeneous spaces

Another approach towards essentially the same type of geometric structure starts not from the
closed subgroup H of G, but from the space on which G acts. We define this space, equipped
with a suitable action, as follows.

Definition 41.4.1 (Homogeneous space). A homogeneous space is a manifold M together
with a transitive left action ρ : G×M of a Lie group G.

Theorem 41.4.1. Let (G,H) be a Klein geometry. Then G/H, together with the canonical
action of G on G/H, is a homogeneous space.

Proof. This follows directly from the definition 41.4.1 of a homogeneous space and the state-
ments 41.1.1 that G/H is a manifold, and 41.1.2 that G acts transitively on G/H. ■

Theorem 41.4.2. Let M be a connected homogeneous space with left action ρ of a Lie group g.
Further, let x ∈M and Hx = {h ∈ G, ρ(h, x) = x} the stabilizer of x. Then (G,Hx) is a Klein
geometry and there exists an equivariant diffeomorphism φ : G/Hx →M such that φ(eH) = x.

Proof. First, we must check that Hx is closed. This follows from the fact that Hx = ρ−1x (x) is
the preimage of the closed set {x} under the (by definition continuous) map

ρx : G → M
g 7→ ρ(g, x)

. (41.4.1)

Next, consider the map
φ : G/Hx → M

gHx 7→ ρ(g, x)
. (41.4.2)

First, we have to check that this is well-defined, i.e., that φ(gHx) = φ(ghHx) for all g ∈ G and
h ∈ Hx. This follows from the fact that ρ is a left action and Hx is the stabilizer of x, so that

φ(ghHx) = ρ(gh, x) = ρ(g, ρ(h, x)) = ρ(g, x) = φ(gHx) . (41.4.3)

Next, we check that it is injective. For this purpose, consider g, g′ ∈ G with g−1g′ /∈ Hx.

▶. . .◀

We then check surjectivity. Let y ∈M . From the assumption that ρ is a transitive group action
follows that there exists g ∈ G such that y = ρ(g, x) = φ(gHx), so that φ is indeed surjective,
and hence bijective.
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Finally, we must still check that φ is a diffeomorphism, i.e., that both φ and its inverse are
smooth. ▶. . .◀ ■

There are many examples of homogeneous spaces and Klein geometries. One of the nicest
examples is the following.

Example 41.4.1. Let G = SO(n + 1). One can see SO(n + 1) as the group of rotations in
n+1 dimensions, i.e., linear maps g : Rn+1 → Rn+1 which map the unit sphere Sn ⊂ Rn+1

to itself. This means that SO(n+1) acts (from the left) on the sphere Sn. One easily checks
that this action is transitive, so that this turns the sphere into a homogeneous space. Let
H be the stabilizer of the north pole, i.e., the set of those linear maps h ∈ SO(n+1) which
map the north pole o ∈ Sn to itself. The matrix representation of such an element h has a
block form (

A 0
0 1

)
, (41.4.4)

where A ∈ SO(n) ∼= H. To relate Sn to the coset space G/H, recall that G acts transitively,
and so for every x ∈ Sn there exists a g ∈ G such that x = g(o). This element is unique
up to right multiplication by h ∈ H, since the stabilizer of x is given by gHh−1. A
coset gH can thus uniquely be identified by the image g(o) ∈ Sn. This identification
defines a diffeomorphism, so that (SO(n+1),SO(n)) is a Klein geometry with space SO(n+
1)/SO(n) ∼= Sn.

Many other examples can be constructed in a similar fashion. Here we list a few of the most
relevant examples encountered in physics.

Example 41.4.2. The following manifolds are obtained as homogeneous spaces:

• The sphere Sn ∼= SO(n+ 1)/SO(n), as detailed in example 41.4.1.

• Euclidean space En ∼= Rn ∼= ISO(n)/SO(n), with the Euclidean group ISO(n) =
Rn ⋊ SO(n) acting by translations and rigid rotations.

• Hyperbolic space

Hn = {(x0, x⃗) ∈ Rn, x20 − ∥x⃗∥2 = 1} ∼= SO(1, n)/SO(n) , (41.4.5)

with the symmetry group SO(1, n).

• Affine space An ∼= Rn ∼= IGL(n)/GL(n), with the affine group IGL(n) = Rn ⋊GL(n)
acting by affine transformations, i.e., translations and linear transformations.

• Minkowski space of n dimensions ISO(1, n − 1)/SO(1, n − 1), with the action of the
Poincaré group ISO(1, n− 1).

• De Sitter space of n dimensions SO(1, n)/SO(1, n−1), with the action of the de Sitter
group SO(1, n).

• Anti de Sitter space of n dimensions SO(2, n− 1)/SO(1, n− 1), with the action of the
anti de Sitter group SO(2, n− 1).

41.5 Tangent bundle

Theorem 41.5.1. For every Klein geometry (G,H), there exists a canonical isomorphism
between the vector bundles T (G/H) and G ×Ad g/h, where G is understood as a principal H-
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bundle over G/H and Ad denotes the adjoint representation of H on g/h.

Proof. ▶. . .◀ ■

41.6 Mutation

Definition 41.6.1 (Geometrical isomorphism of Klein geometries). Let (G1, H1) and
(G2, H2) be Klein geometries. A geometrical isomorphism relating (G1, H1) and (G2, H2) is
a Lie group isomorphism φ : G1 → G2 such that φ(H1) = H2. If a geometrical isomorphism
exists, (G1, H1) and (G2, H2) are called geometrically isomorphic.

Definition 41.6.2 (Mutation of Klein geometries). Let (G1, H1) and (G2, H2) be Klein
geometries. A mutation relating (G1, H1) and (G2, H2) is a pair (φ, λ), where φ : H1 → H2

is a Lie group isomorphism and λ : g1 → g2 is a vector space isomorphism such that
λ(a) = φ∗e(h) and

λ(Ad(h)(a)) = Ad(φ(h))(λ(a)) (41.6.1)

for all h ∈ H1 and a ∈ g1. If a mutation exists, (G1, H1) and (G2, H2) are called mutants.
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Chapter 42

Cartan geometry

42.1 Cartan connection

Using the notion of a Klein geometry, or equivalently a homogeneous space, introduced in the
previous section, we can now come to the definition of a Cartan geometry. This is achieved as
follows.

Definition 42.1.1 (Cartan geometry). A Cartan geometry modeled on a Klein geometry
(G,H) is a principal H-bundle π : P →M together with a g-valued one-form A ∈ Ω1(P, g)
on P (the Cartan connection), such that

1. For each p ∈ P , Ap : TpP → g is a linear isomorphism.

2. A is H-equivariant: (Rh)
∗A = Ad(h−1) ◦A ∀h ∈ H.

3. A(ã) = a for all a ∈ h, where ã denotes the fundamental vector field of a.

A few remarks are in order.

1. From the condition that there exists an isomorphism between tangent spaces TpP and
g ∼= TeG, where e ∈ G is the unit element, follows dimP = dimG. Further, since the
fibers of a principal H-bundle have dimension dimH, one has dimM = dimG−dimH =
dimG/H.

2. By fixing a basis of g, a Cartan connection induces a basis of every tangent space TpP ,
i.e., a section of the frame bundle. It thus follows that P is necessarily parallelizable.
Note, however, that M need not be parallelizable.

3. A Cartan connection shares several properties with a principal connection as given in
definition 27.1.2, in particular its equivariance and its action on the fundamental vector
fields generated by the action of the structure group H on P . However, it is different,
since it takes values in a different Lie algebra g instead of h, and it has non-vanishing
kernel, whereas a principal connection has the horizontal distribution as its kernel.

4. Since the fundamental vector fields span the vertical tangent space V P , it follows that a
vector field X ∈ Vect(P ) is vertical if and only if ιXA takes values in h.

The fact that the Cartan connection defines a linear bijection between every tangent space TpP
and the Lie algebra g can also be stated differently. For this purpose, consider the following
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commutative diagram:

V P

ν

!!

� _

��

P × h
pr1

||

� _

��

_?
•̃oooo

P

TP

τ

==

� �

(τ,A)
// // P × g

pr1

bb

(42.1.1)

The corners of this diagram show four vector bundles over P : the vertical tangent bundle
ν : V P → P , the tangent bundle τ : TP → P and the two trivial bundles P × g and P × h,
together with their respective projections onto the first factor P . Further, one has the canonical
inclusions, since V P ⊂ TP and P × h ⊂ P × g. The upper arrow represents the fundamental
vector fields obtained from the right action on P , i.e., the map (p, a) 7→ ã(p), where ã ∈ Vect(P )
is the fundamental vector field. This map is a vector bundle isomorphism covering the identity
on P , since it establishes a linear isomorphism between h and VpP for all p ∈ P . The latter
also holds for the map represented by the lower arrow, due to the first condition on a Cartan
connection. Since TP and P × g are isomorphic, it follows that TP is trivial, so that P is
parallelizable. Finally, the last condition in the definition 42.1.1 demands that the outer square
of this diagram commutes.

The picture above now also allows to consider a dual picture, by taking the inverse of the lower
arrow, to introduce a map (τ,A)−1 : P × g → TP . Similarly to the fundamental vector fields
represented by the upper arrow, we can fix a ∈ g, and obtain a map A(a) : P → TP , satisfying
τ ◦A(a) = idP ; this is a vector field on TP . This yields the following definition.

Definition 42.1.2 (Associated vector fields). Let (π : P → M,A) be a Cartan geometry
modeled on the Klein geometry (G,H). For each a ∈ g the associated vector field A(a) ∈
Vect(P ) is the unique vector field such that A(A(a)) = a.

Since the associated vector fields uniquely define the Cartan connection and vice versa, one can
equivalently define a Cartan geometry in terms of the associated vector fields instead of the
Cartan connection. In this case also the associated vector fields must satisfy an equivalent set
of conditions, which takes the following form.

Theorem 42.1.1. The associated vector fields A of a Cartan connection satisfy the following
conditions, which are equivalent to the conditions on the Cartan connection posed in defini-
tion 42.1.1:

1. For each p ∈ P , Ap : g→ TpP is a linear isomorphism.

2. A is H-equivariant: Rh∗ ◦A = A ◦Ad(h−1) ∀h ∈ H.

3. A restricts to the fundamental vector fields on h: A(a) = ã ∀a ∈ h.

Proof. These properties follow immediately from the definition 42.1.2 of the associated vector
fields and the corresponding properties in definition 42.1.1 of a Cartan connection:

1. A Cartan connection defines for every p ∈ P a linear isomorphism Ap : TpP → g. The
associated vector fields are defined via its inverse, Ap = A−1p , which is again a linear
isomorphism.

2. Let p ∈ P , h ∈ H and v ∈ TpP . From the equivariance of the Cartan connection A follows

A(Rh∗(v)) = ((Rh)
∗(A))(v) = Ad(h−1)(A(v)) . (42.1.2)
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Denoting a = A(v) ∈ g, and hence v = Ap(a), it then follows that

Rh∗(Ap(a)) = ARh(p)(Ad(h−1)(a)) , (42.1.3)

which is the invariance condition for the associated vector fields.

3. The last condition follows immediately from the construction of A as the inverse of A. ■

The equivariance establishes a relation for the Cartan connection at different points belonging
to the same fiber of P . It states that these are related by the group action in terms of right
translations. Since these are generated by the fundamental vector fields, one also finds the
following helpful statement.

Theorem 42.1.2. The Lie derivative of the Cartan connection A and associated vector fields
A with respect to the fundamental vector fields ã satisfies

LãA = −[a,A] , LãA(b) = A([a, b]) (42.1.4)

for all a ∈ h and b ∈ g.

Proof. ▶. . .◀ ■

So far we have focused on the total space P of the principal bundle. We now turn our attention
to the base manifold M , whose geometry we aim to describe using the Cartan connection. The
first step towards this aim is the following important property.

Theorem 42.1.3. For every Cartan geometry (π : P → M,A), there exists a canonical iso-
morphism between the vector bundles TM and P ×Ad g/h, where Ad denotes the adjoint repre-
sentation of H on g/h.

Proof. Let p ∈ P and w ∈ TpP , and denote x = π(p) ∈ M and v = π∗(w). The Cartan
connection defines a unique element a = Ap(w) ∈ g, and hence a unique equivalence class
a+ h ∈ g/h. This further defines a unique element [p, a+ h] ∈ P ×Ad g/h. We now study how
this element depends on the choice of p and w. This will be done in two steps.

1. Let w′ ∈ TpP . Note that π∗(w′) = v = π∗(w) if and only if w−w′ ∈ VpP . Further, denote
a′ = Ap(w

′), and note that a′ + h = a + h, i.e., a − a′ ∈ h, if and only if w − w′ ∈ VpP .
Since the map [p, •] : g/h → Pπ(p) ×Ad g/h is a diffeomorphism, it follows that also
[p, a+ h] = [p, a′ + h] if and only if w − w′ ∈ VpP .

2. Let p̃ ∈ P . Then π(p̃) = x = π(p) if and only if there exists h ∈ H such that p̃ = Rhp.
Further, Pπ(p̃) ×Ad g/h = Pπ(p) ×Ad g/h if and only if p̃ = Rhp for h ∈ H. Now denote
w̃ = Rh∗w. Then we have

π∗(w̃) = π∗(Rh∗w) = (π ◦Rh)∗(w) = π∗(w) = v . (42.1.5)

It further follows from the equivariance of the Cartan connection that

ã = Ap̃(w̃) = Ap·h(Rh∗w) = ((Rh)
∗A)p(w) = Ad(h−1)(Ap(w)) = Ad(h−1)(a) . (42.1.6)

Hence, we have
[p̃, ã+ h] = [p · h,Ad(h−1)(a) + h] = [p, a+ h] . (42.1.7)

In summary, we find that for p̃ ∈ P and w′ ∈ Tp̃P we have that [p̃, Ap̃(w′) + h] = [p,Ap(w) + h]
if and only if p̃ = Rp and w′−Rh∗w ∈ Vp̃P , i.e., if and only if π(p) = π(p̃) and π∗(w) = π∗(w′).
We thus have a one-to-one correspondence between elements of P ×Ad g/h and vectors in TM ,
and this one-to-one correspondence preserves the base point x ∈M . Moreover, it follows from
the linearity of π∗ and Ap that it also preserves the vector space structure on the fibers of these
bundles, and hence constitutes a vector bundle isomorphism. ■

474



Example 42.1.1. Let M be a two-dimensional manifold, embedded in R3, and consider a
sphere S2, likewise embedded in R3. ▶. . .◀

42.2 Curvature

Definition 42.2.1 (Curvature of a Cartan connection). Let (π : P → M,A) be a Cartan
geometry modeled on the Klein geometry (G,H). The curvature of the Cartan connection
is the g-valued two-form

F = dA+
1

2
[A ∧A] ∈ Ω2(P, g) . (42.2.1)

Theorem 42.2.1. The curvature F and associated vector fields A of a Cartan geometry (π :
P →M,A) satisfy the relations

A([a, b])− [A(a), A(b)] = A(F (A(a), A(b))) (42.2.2)

for all a, b ∈ g.

Proof. ▶. . .◀ ■

Theorem 42.2.2. The curvature F of a Cartan geometry (π : P → M,A) is horizontal, i.e.,
ιXF = 0 for any vertical vector field X ∈ Γ(V P ) on P .

Proof. ▶. . .◀ ■

Theorem 42.2.3 (Bianchi identity). The curvature F of a Cartan connection A satisfies dF =
[F ∧A].

Proof. ▶. . .◀ ■

42.3 First-order Cartan geometries

Definition 42.3.1 (First-order Cartan geometry). A Cartan geometry with model Klein
geometry (G,H) is called first-order Cartan geometry if the quotient representation of the
adjoint representations H on g/h is faithful. Otherwise, it is called higher-order Cartan
geometry.

Definition 42.3.2 (Admissible frame). Let (π : P →M,A) be a first-order Cartan geom-
etry with model (G,H). An admissible frame over x ∈ M is a vector space isomorphism
f : g/h → TxM such that f = φ−1 ◦ [p, •] for some p ∈ P , where φ : TM → P ×Ad g/h
denotes the bundle isomorphism from theorem 42.1.3.
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Theorem 42.3.1. The set Q of admissible frames f of a first-order Cartan geometry (π :
P → M,A) forms a principal H-bundle over M with right action f · h = φ−1 ◦ [p · h, •] for
f = φ−1 ◦ [p, •], which is canonically isomorphic to P .

Proof. ▶. . .◀ ■

42.4 Reductive Cartan geometries

Definition 42.4.1 (Reductive Cartan geometry). A Cartan geometry with model Klein
geometry (G,H) is called reductive if the Lie algebra g allows a decomposition of the form
g = h⊕ z into subrepresentations of the adjoint representation of H.

42.5 Cartan development

Definition 42.5.1 (Cartan development). Let (π : P → M,A) be a Cartan geometry
modeled on (G,H) and ϕ : G → G/H the canonical projection onto the coset space.
The Cartan development of a curve γ ∈ C∞(R, P ) through z ∈ G/H is the unique curve
χ ∈ C∞(R, G/H) such that χ(0) = z and χ = ϕ ◦ ψ, where ψ ∈ C∞(R, G) satisfies

ψ̇(t) = Lψ(t)∗A(γ̇(t)) (42.5.1)

for all t ∈ R.

Theorem 42.5.1. Let γ1, γ2 ∈ C∞(R, P ) be two curves with π◦γ1 = π◦γ2. Then their Cartan
developments χ1, χ2 ∈ C∞(R, G/H) through a common point z ∈ G/H are the same.

Proof. ▶. . .◀ ■
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Chapter 43

Complex geometry

43.1 Almost complex structures

So far we have considered manifolds as objects which locally inherit the geometric, and in
particular differential, structure of real, Euclidean space. For several applications in physics
it is helpful to consider a different approach, which allows introducing additional structure
from the complex numbers. As is well known, the complex numbers C can be obtained by
extending the real numbers R with an imaginary unit element i satisfying i2 = −1, which acts
by multiplication on complex numbers as z 7→ iz. We have already encountered an object with
similar properties in defining 37.2.3 of an almost complex structure in the context on non-linear
connections on the tangent bundle. We can define a generalized version of this object as follows.

Definition 43.1.1 (Almost complex structure). An almost complex structure on a manifold
M is a rank (1, 1) tensor field J which satisfies J ◦ J = −idTM when regarded as a vector
bundle endomorphism J : TM → TM covering the identity on M .

For every p ∈ M , the almost complex structure equips the tangent space TpM with an au-
tomorphism ξ 7→ Jξ which squares to the identity, and is therefore indeed reminiscent of the
multiplication by i on a complex vector space. Recall that, forgetting about this operation, a
complex vector space may be regarded as a real vector space, which is of even dimension, and
allows for a canonical orientation. We find that an almost complex structure induces similar
properties.

Theorem 43.1.1. A manifold equipped with an almost complex structure is even-dimensional
and orientable.

Proof. From the product rule 23.4.1 for the determinant of tensor densities follows

(det J)2 = det(J ◦ J) = det(−δ) = (−1)dimM . (43.1.1)

Since det J is real, the right hand side must be non-negative, and so dimM must be even.
Orientability will be proven alongside theorem 43.4.2. ■

For the almost complex structure in the context of non-linear connections we have found a
simple coordinate expression (37.2.19). There is no such canonical expression for generic almost
complex structures; however, if we add another condition, we will find such an expression in
the next section. To illustrate the notion, we give a simple example.
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Example 43.1.1 (Almost complex structure on the sphere). Let

M = {x⃗ ∈ R3, ∥x⃗∥ = 1} ∼= S2 (43.1.2)

be the unit sphere, and note that its tangent bundle is described by the isomorphism

TM ∼= {(x⃗, u⃗) ∈ R3 × R3, ∥x⃗∥ = 1, x⃗ · u⃗ = 0} . (43.1.3)

Define
J : TM → TM

(x⃗, u⃗) 7→ (x⃗, x⃗× u⃗) . (43.1.4)

First, we check that its image indeed lies in TM . For this purpose, we write

(x⃗′, u⃗′) = J(x⃗, u⃗) = (x⃗, x⃗× u⃗) . (43.1.5)

Now we have
∥x⃗′∥ = ∥x⃗∥ = 1 (43.1.6)

and
x⃗′ · u⃗′ = x⃗ · (x⃗× u⃗) = 0 . (43.1.7)

Further, the vector product is smooth and linear in the fiber component u⃗, and J covers
the identity since x⃗′ = x⃗. Hence, it is a vector bundle endomorphism covering the identity.
We then calculate

J(J(x⃗, u⃗)) = J(x⃗, x⃗× u⃗)
= (x⃗, x⃗× (x⃗× u⃗))
= (x⃗, (x⃗ · u⃗)x⃗− (x⃗ · x⃗)u⃗)
= (x⃗,−u⃗)
= −(x⃗, u⃗) ,

(43.1.8)

where in the last line it is important to keep in mind that the vector space operations, and
this taking the negative element, only act on the fiber part u⃗, but leave the base point x⃗
unchanged. Hence, J is an almost complex structure on M .

43.2 Complex vector bundles

We have seen that an almost complex structure equips each tangent space with a (real) linear
function whose double application sends each tangent vector to its negative, similar to the
multiplication by the imaginary unit i in a complex vector space. In the following, it will thus
be useful to consider vector bundles whose fibers are not real, but complex vector spaces. Recall
from definition 3.1.1 that we demanded the local trivializations of a vector bundle to restrict to
linear functions on every fiber, in order for the linear and differentiable structures on the vector
bundle to be compatible with each other, so that, e.g., the sections of a vector bundle form
again a vector space. We demand a similar property also for complex vector bundles, but in
this case taking the fibers to be complex vector spaces, and we demand that the complex linear
structure is compatible with the differentiable one. To achieve this, the local trivializations
must restrict to complex linear functions on every fiber. We make this precise as follows.

Definition 43.2.1 (Complex vector bundle). A complex vector bundle of rank k ∈ N is a
fiber bundle (E,B, π,Ck) such that for all p ∈ B the fiber Ep = π−1(p) is a complex vector
space of complex dimension k and such that the restrictions of the local trivializations
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ϕ : π−1(U)→ U ×Ck to a fiber Ep for p ∈ U are complex vector space isomorphisms from
Ep to {p} × Ck.

We will encounter various examples of complex vector bundles in the following sections. As for
real vector bundles, we also need a notion of morphisms between complex vector bundles which
preserve both the bundle structure and the complex vector space structure on each fiber. It is
thus straightforward to define them as follows, in full analogy to the real case.

Definition 43.2.2 (Complex vector bundle morphism). Let (E1, B1, π1,Ck1) and
(E2, B2, π2,Ck2) be complex vector bundles. A complex vector bundle morphism (or com-
plex vector bundle homomorphism) is a bundle morphism θ : E1 → E2 covering a map
ϑ : B1 → B2 such that for each p ∈ B1 the restriction of θ to the fiber π−11 (p) is a complex
linear function between the complex vector spaces π−11 (p) and π−12 (ϑ(p)).

Finally, as in the case of real vector bundle morphisms, we can define an isomorphism as an
invertible morphism.

Definition 43.2.3 (Complex vector bundle isomorphism). A complex vector bundle iso-
morphism is a bijective complex vector bundle morphism whose inverse is also a complex
vector bundle morphism. If a complex vector bundle morphism between two complex vector
bundles exists, these bundles are called isomorphic.

43.3 Complexification of real vector bundles

We have already learned that every manifold is naturally equipped with several (real) vector
bundles. To discuss the case of complex vector bundles, we now show that every real vector
bundle gives rise to a complex one by means of the following construction.

Definition 43.3.1 (Complexification of a vector bundle). Let (E,B, π,Rk) be a real vector
bundle of rank k. Its complexification is the vector bundle EC = E ⊗ C, whose fibers are
the vector spaces EC

p = Ep ⊗ C for all p ∈ B

To illustrate this definition, let (ϵµ, µ = 1, . . . , k) be a local basis of E. We may regard C as
a real, two-dimensional vector space with basis (1, i). On the tensor product, regarded as a
real vector bundle of rank 2k, we may thus use the induced basis (ϵ1, . . . , ϵk, iϵ1, . . . , iϵk). For a
vector w = uµϵµ + ivµϵµ ∈ E expressed in this basis, we define multiplication with a complex
number z = x+ iy ∈ C in the natural way as

zw = (xuµ − yvµ)ϵµ + i(xvµ + yuµ)ϵµ . (43.3.1)

Alternatively, one may regard the tensor product as the direct sum

E ⊗ C ∼= E ⊕ iE , (43.3.2)
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whose basis is likewise given by (ϵ1, . . . , ϵk, iϵ1, . . . , iϵk), and the complex multiplication is de-
fined as above. One may expect that this construction yields a complex vector bundle. We
prove this more formally.

Theorem 43.3.1. The complexification EC of a real vector bundle (E,B, π,Rk) of rank k is a
complex vector bundle (EC, B, πC,Ck) of rank k.

Proof. We have to construct local trivializations of EC, and show that these restrict to complex
linear functions on every fiber. Let ϕ : π−1(U) → U × Rk be a local trivialization of E over
U ⊂ B. Consider Ck ∼= Rk ⊗ C, and let ϕC : πC−1(U) → U × Ck be defined via the tensor
product, i.e., for w = u+ iv ∈ EC

p with u, v ∈ Ep for p ∈ U define

ϕC(w) = ϕC(u+ iv) = ϕ(u) + iϕ(v) ∈ {p} × Ck . (43.3.3)

Then this preserves the complex multiplication on every fiber, since

ϕC(zw) = ϕC(xu− yv + ixv + iyu)

= ϕC((x+ iy)(u+ iv))

= ϕ(xu− yv) + iϕ(xv + yu)

= xϕ(u)− yϕ(v) + i[xϕ(v) + yϕ(u)]

= (x+ iy)[ϕ(u) + iϕ(v)]

= zϕC(w)

(43.3.4)

for all z = x+ iy ∈ C, and hence restricts to complex linear functions. ■

Similarly to the complexification of a real vector space, also the complexification of a real vector
bundle carries an additional structure due to the decomposition (43.3.2) as a tensor product or
a direct sum, which is not present for general complex vector bundles. This additional structure
is induced by the vector bundle homomorphisms we found for direct sum bundles in section 4.2
- in particular, the projection maps. These allow us to define the following.

Definition 43.3.2 (Real and imaginary part). Let EC be the complexification of a real
vector bundle. For each w = u+ iv ∈ EC, the real and imaginary part are defined via the
projection maps

ℜ : EC → E
u+ iv 7→ u

(43.3.5)

and
ℑ : EC → E

u+ iv 7→ v
. (43.3.6)

Making also use of the inclusion maps, we further have the following.

Definition 43.3.3 (Complex conjugate). Let EC be the complexification of a real vector
bundle. For each w = u+ iv ∈ EC, the complex conjugate is defined via the map

•̄ : EC → EC

u+ iv 7→ u− iv . (43.3.7)

480



It follows immediately from their definition, as well as theorems 4.2.2 and 4.2.3, that these maps
are real vector bundle homomorphisms, the last one being a real vector bundle isomorphism.
However, note that it is not a complex vector bundle isomorphism, since it is not complex
linear on each fiber, but antilinear. Finally, it is clear that we can also compose these maps
with a section σ : B → EC, and thus define the real and imaginary part as well as the complex
conjugate of any section as

ℜσ = ℜ ◦ σ , ℑσ = ℑ ◦ σ , σ̄ = •̄ ◦ σ , (43.3.8)

by a simplification of notation.

43.4 Complex frame bundles

Definition 43.4.1 (Complex frame bundle). Let M be a manifold of dimension dimM =
2n equipped with an almost complex structure J . A complex frame at p ∈M is a bijective
R-linear function f : Cn → TpM such that J ◦ f = f ◦ (i•). The set of all complex frames
constitutes the complex frame bundle with projection mapping f : Cn → TpM to p ∈M .

Theorem 43.4.1. The complex frame bundle of a manifold of dimension 2n is a principal fiber
bundle with structure group GL(n,C).

Proof. We show that GL(n,C) acts freely and transitively on the fibers over p ∈M :

• Let f : Cn → TpM be a complex frame at p and A ∈ GL(n,C). Then

J((f ◦A)(v)) = J(f(Av)) = f(iAv) = f(A(iv)) = (f ◦A)(iv) (43.4.1)

for all v ∈ Cn, since A is C-linear, and so f ◦A is a complex frame. Hence, GL(n,C) acts
on the fibers.

• Let f, f ′ : Cn → TpM be complex frames at p. Then define A = f−1 ◦ f ′ : Cn → Cn as
the unique bijection satisfying f ′ = f ◦ A. Observe that A is R-linear, A ∈ GL(2n,R),
since f and f ′ are R-linear bijections. Further, A must be C-linear, since

A(iv) = f−1(f ′(iv)) = f−1(J(f ′(v))) = −f−1(J−1(f ′(v))) = −1

i
f−1(f ′(v)) = iAv .

(43.4.2)
for all v ∈ Cn, and so A ∈ GL(n,C). This element is unique, and thus the action is free
and transitive.

To complete the proof, one still needs to construct the local trivializations of the complex frame
bundle and show its bundle structure. We will not show this here, and remark that this can be
done by using an atlas of M . ■

Theorem 43.4.2. Let M be a manifold of dimension dimM = 2n. There exists a one-to-one
correspondence between almost complex structures on M and reductions of the frame bundle via
the inclusion GL(n,C) ↪→ GL(2n,R).

Proof. ▶. . .◀ ■
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43.5 Complex structures

While the algebraic structure of an almost complex structure J already yields a number of
useful properties, it is not yet sufficient in order to arrive at the notion of a complex geometry.
This step requires another property, which relates the values of J at nearby points. This is
captured in the following definition.

Definition 43.5.1 (Complex structure). An almost complex structure J is called a complex
structure if and only if it is integrable, i.e., if its Nijenhuis tensor NJ vanishes.

The importance of the integrability will become clear in the following section. For now we study
a simple example.

Example 43.5.1 (Complex structure on the sphere). We consider again the almost complex
structure J given on the sphereM = S2 defined in example 43.1.1. To check the integrability
of J , we make use of the charts constructed in example 1.2.1. Defining coordinates (v1, v2)
as

(v1, v2) =

(
x1

1 + x3
,

x2

1 + x3

)
(43.5.1)

on M \ {(0, 0,−1)}, we have covered the sphere except for one point. The inverse mapping
is given by

x⃗ = (x1, x2, x3) =

(
2v1

1 + (v1)2 + (v2)2
,

2v2

1 + (v1)2 + (v2)2
,

2

1 + (v1)2 + (v2)2
− 1

)
.

(43.5.2)
Using these coordinates to write a tangent vector as w = w1∂1 + w2∂2, we have

u⃗ = (u1, u2, u3) =(
2(1− (v1)2 + (v2)2)w1 − 4v1v2w2, 2(1 + (v1)2 − (v2)2)w2 − 4v1v2w1,−4(v1w1 + v2w2)

)
(1 + (v1)2 + (v2)2)

2 .

(43.5.3)

One easily checks that indeed x⃗ · u⃗ = 0. Further, one finds

u⃗′ = x⃗× u⃗ =(
−2(1− (v1)2 + (v2)2)w2 − 4v1v2w1, 2(1 + (v1)2 − (v2)2)w1 + 4v1v2w2, 4(v1w2 − v2w1)

)
(1 + (v1)2 + (v2)2)

2 ,

(43.5.4)

which we can now also write as

w′ = w′1∂1 + w′2∂2 = w1∂2 − w2∂1 . (43.5.5)

Hence, we have
J = ∂2 ⊗ dv1 − ∂1 ⊗ dv2 . (43.5.6)

With this coordinate expression for J , we can now calculate the Nijenhuis tensor NJ , making
use of theorem 17.6.3. Taking a closer look at the formula (17.6.8), we see that the first term
vanishes, since the commutator [∂a, ∂b] of coordinate vector fields vanishes. Also the last
term vanishes, since the exterior derivative ddva of the basis one-forms vanishes. Finally,
also the Lie derivatives L∂advb vanish, and hence we find NJ = 0. Repeating this calculation
using another chart which covers all points except (0, 0, 1), defining coordinates

(ṽ1, ṽ2) =

(
x1

1− x3 ,
x2

1− x3
)
, (43.5.7)
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one finds that NJ vanishes everywhere. Thus, the almost complex structure J constructed
on the sphere in example 43.1.1 is integrable, and thus a complex structure.

43.6 Complex manifolds

The objects defined in the previous sections are in some way reminiscent of the operation z 7→ iz
on the complex vector space Cn, which likewise squares to −idCn . It is therefore not surprising
that there exists another, closely related approach, which allows to locally relate a manifold to
the complex vector space Cn. To see this, we start with a suitable definition.

Definition 43.6.1 (Complex manifold). A complex manifold is a manifold M of even
dimension dimM = 2n for which there exists an atlas A, such that for any two charts
(U1, ϕ1) and (U2, ϕ2), with ϕ̃i : Ui → Cn via the identification Cn ∼= R2n, the transition
functions

ϕ̃12 : ϕ̃1(U1 ∩ U2)→ ϕ̃2(U1 ∩ U2) , ϕ̃12 = ϕ̃2|U1∩U2
◦ ϕ̃−11 |ϕ̃1(U1∩U2)

(43.6.1)

are holomorphic.

The complex charts ϕ̃ : U → Cn define local complex coordinates (za, a = 1, . . . , n) on U ⊂M ,
which can be decomposed as za = xa + iya to give a distinguished class of real coordinates
(xa, ya). It is often useful to work either with the complex or distinguished real coordinates, as
we will see later.

The relation between complex manifolds and the structures we have defined earlier in this
chapter is given by the following important theorem.

Theorem 43.6.1 (Newlander-Nirenberg). There exists a one-to-one correspondence between
complex manifolds and manifolds equipped with a complex structure.

Proof. We first show that every complex manifold M naturally possesses a complex structure.
For p ∈M , let ϕ̃ : U → Cn be a complex chart, and ϕ̃∗ : TU → TCn its differential. Note that
ϕ̃∗ establishes a bijection between the tangent spaces TpM and Tϕ̃(p)C

n ∼= Cn. The latter is a
complex vector space, and hence allows multiplication by the imaginary unit i. For ξ ∈ TpM ,
we may thus define J(ξ) = ϕ̃−1∗ (iϕ̃∗(ξ)). Note that this definition is independent of the choice
of the chart, since for any other chart ψ̃ : V → Cn the transition functions ψ̃ ◦ ϕ̃−1|ϕ̃(U∩V ) and
ϕ̃ ◦ ψ̃−1|ψ̃(U∩V ) are holomorphic, and hence

ψ̃−1∗ (iψ̃∗(ξ)) = ▶ . . . ◀ (43.6.2)

Doing this for every p ∈ M , we obtain a map J : TM → TM , covering the identity on M .
This map is R-linear on every tangent space TxM , since the differentials ϕ̃∗ restrict to linear
functions on every tangent space, and so J is a vector bundle morphism. Further, we have

(J ◦ J)(ξ) = ϕ̃−1∗ (iϕ̃∗(ϕ̃
−1
∗ (iϕ̃∗(ξ)))) = ϕ̃−1∗ (−ϕ̃∗(ξ)) = −ξ , (43.6.3)

and so J ◦J = −idTM , so that J constitutes an almost complex structure. Finally, its Nijenhuis
tensor is given by

NJ = ▶ . . . ◀ (43.6.4)

which shows that J is integrable, and hence a complex structure.

Conversely, let J be a complex structure on a manifold M of dimension 2n. ▶. . .◀ ■
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The complex structure J can most easily be expressed using the distinguished coordinates
(xa, ya) we introduced before. In the induced coordinate basis, the differential ϕ̃∗ reads

ϕ̃∗

(
ξa

∂

∂xa
+ ηa

∂

∂ya

)
= (ξa + iηa)ea , (43.6.5)

where (ea) is the canonical basis of Cn. This is obviously linear and bijective, and we have

J

(
ξa

∂

∂xa
+ ηa

∂

∂ya

)
= ϕ̃−1∗ ((iξa − ηa)ea) = −ηa

∂

∂xa
+ ξa

∂

∂ya
, (43.6.6)

so that on the basis elements J yields

J

(
∂

∂xa

)
=

∂

∂ya
, J

(
∂

∂ya

)
= − ∂

∂xa
. (43.6.7)

In other words, we can write J as

J =
∂

∂ya
⊗ dxa − ∂

∂xa
⊗ dya . (43.6.8)

Now one easily calculates the Nijenhuis tensor

2NJ = JJ, JK

=

s
∂

∂ya
⊗ dxa,

∂

∂yb
⊗ dxb

{
+

s
∂

∂xa
⊗ dya,

∂

∂xb
⊗ dyb

{

−
s
∂

∂xa
⊗ dya,

∂

∂yb
⊗ dxb

{
−

s
∂

∂ya
⊗ dxa,

∂

∂xb
⊗ dyb

{
.

(43.6.9)

To see that this vanishes, we make use of theorem 17.6.3. Note that each term in the for-
mula (17.6.8) contains as a factor either the Lie bracket of the involved vector fields, the Lie
derivative of one of the involved differential forms or their exterior derivative. The latter ob-
viously vanishes in this case, since ddxa = ddya = 0. The same holds for the Lie bracket of
coordinate vector fields, and so[

∂

∂xa
,
∂

∂xb

]
=

[
∂

∂ya
,
∂

∂yb

]
=

[
∂

∂xa
,
∂

∂yb

]
= 0 . (43.6.10)

For the Lie derivatives of dxa and dya, one can use Cartan’s magic formula, and realize that the
interior product with any of the given coordinate vector fields is constant, and so its exterior
derivative vanishes. Hence, all terms in the Frölicher-Nijenhuis bracket vanish.

Example 43.6.1 (Riemann sphere). Consider the space

M = CP 1 = {[w, z], (w, z) ∈ C2} , (43.6.11)

where [w, z] denotes the equivalence class

[w, z] = {(λw, λz), λ ∈ C \ {0}} . (43.6.12)

We can construct two complex charts as follows. First, we consider the chart (U1, ϕ1) with

ϕ1 : U1 → C
[w, z] 7→ u = z

w

, (43.6.13)

which is defined on the domain
U1 =M \ {[0, 1]} (43.6.14)

that lacks a single point. Another chart (U2, ϕ2) is given by

ϕ2 : U2 → C
[w, z] 7→ ũ = w

z

, (43.6.15)
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and is defined on the domain
U2 =M \ {[1, 0]} . (43.6.16)

These two charts cover M . On their overlap one finds the transition function

ϕ2 ◦ ϕ−11 : C \ {0} → C \ {0}
u 7→ ũ = 1

u

, (43.6.17)

which is holomorphic. Hence, M is a complex manifold. To get an understanding of the
geometry of this space, we write these coordinates as

u = x+ iy , ũ = x̃+ iỹ , (43.6.18)

and so the transition function becomes

x̃+ iỹ =
x− iy
x2 + y2

. (43.6.19)

With the identification

v1 = x , v2 = y , ṽ1 = x̃ , ṽ2 = −ỹ , (43.6.20)

we see that this is the transition function of the sphere, given in example 1.2.1. Also the
induced complex structure (43.6.8) agrees with (43.5.6). This complex manifold is also
known as the Riemann sphere.

43.7 Holomorphic maps

The complex structure allows the definition of a certain class of maps, which we will also use
later.

Definition 43.7.1 (Holomorphic map). Let M,N be complex manifolds. A holomorphic
map from M to N is a function f : M → N such that for each point p ∈ M exist charts
(U, ϕ) of M and (V, χ) on N such that:

• p ∈ U and f(U) ⊂ V .

• The function χ̃ ◦ f ◦ ϕ̃−1 : ϕ̃(U)→ χ̃(V ) is holomorphic.

Note that, using the notation of definition 43.6.1, ϕ̃(U) and χ̃(V ) are subsets of Cm and Cn,
where dimM = 2m and dimN = 2n are the real dimensions of M and N , and so there exists
a well-defined notion of holomorphic functions between these sets. Denoting local coordinates
by za = xa + iya on U and wµ = uµ + ivµ on V , a function is holomorphic if and only if

∂wµ

∂z̄a
= 0 , (43.7.1)

or equivalently, if
∂uµ

∂xa
=
∂vµ

∂ya
,

∂uµ

∂ya
= −∂v

µ

∂xa
. (43.7.2)

As in the case of real manifolds, one also considers a class of maps which yields an equivalence
relation among complex manifolds, by the following definition.
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Definition 43.7.2 (Biholomorphic map). A holomorphic map f :M → N which is bijec-
tive and whose inverse f−1 : N →M is again a holomorphic map, is called a biholomorphic
map.

43.8 Holomorphic vector bundles

A particularly interesting class of complex vector bundles can be defined if also the base manifold
is a complex manifold, and the same holds for the total space. We define these as follows.

Definition 43.8.1 (Holomorphic vector bundle). A holomorphic vector bundle of rank
k ∈ N is a complex vector bundle (E,B, π,Ck) with complex manifolds E and B such that
the projection π is a holomorphic map and such that the local trivializations ϕ : π−1(U)→
U × Ck are biholomorphic maps.

Theorem 43.8.1. A complex vector bundle (E,B, π,Ck) over a complex manifold B is holo-
morphic if and only if all transition functions are holomorphic.

Proof. ▶. . .◀ ■

Definition 43.8.2 (Holomorphic vector bundle morphism). Let (E1, B1, π1,Ck1) and
(E2, B2, π2,Ck2) be holomorphic vector bundles. A holomorphic vector bundle morphism
(or holomorphic vector bundle homomorphism) is a complex vector bundle morphism
θ : E1 → E2 which is also a holomorphic map.

Definition 43.8.3 (Holomorphic vector bundle isomorphism). A holomorphic vector bun-
dle isomorphism is a biholomorphic complex vector bundle isomorphism, i.e., a bijective
holomorphic vector bundle morphism whose inverse is also a holomorphic vector bundle
morphism. If a holomorphic vector bundle morphism between two holomorphic vector
bundles exists, these bundles are called isomorphic.

43.9 Holomorphic tangent bundle

We now come to an important example for a holomorphic vector bundle, which we can construct
explicitly. Recall from chapter 7 that every differentiable manifold M possesses a canonically
defined vector bundle, which is the tangent bundle TM , and which is one of the most elementary
structures in differential geometry. For a complex manifold, a role of similar importance is played
by the holomorphic tangent bundle. In fact, it can also be defined given an almost complex
structure, which is how we will proceed.
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Definition 43.9.1 (Holomorphic tangent bundle). Let M be a manifold equipped with an
almost complex structure J . Its holomorphic tangent bundle is the complex vector bundle

T (1,0)M = {Ξ ∈ TCM,J(Ξ) = iΞ} , (43.9.1)

while its antiholomorphic tangent bundle is the complex vector bundle

T (0,1)M = {Ξ ∈ TCM,J(Ξ) = −iΞ} . (43.9.2)

The spaces of sections of these bundles will be denoted Vect(1,0)(M) = Γ(T (1,0)M) and
Vect(0,1)(M) = Γ(T (0,1)M).

We then show a few properties of the holomorphic and antiholomorphic tangent bundles. By
theorem 43.3.1, TCM is a complex vector bundle of rank dimM = 2n. Since the holomorphic
and antiholomorphic tangent bundles are constructed from eigenvectors, one can further show
the following.

Theorem 43.9.1. The holomorphic and antiholomorphic tangent bundles of a manifold M
of dimension 2n equipped with an almost complex structure J are complex vector bundles of
complex rank n.

Proof. For each p ∈ M the eigenspaces of J in TC
pM are again complex vector spaces, since

J acts by complex linear extension, and so J(zΞ) = zJ(Ξ) for all Ξ ∈ TC
pM and z ∈ C.

Hence, the fibers of T (1,0)M and T (0,1)M are complex vector spaces. Further, we need to
construct the local trivializations and check that these are complex linear on each fiber. Let
ϕ : τ−1(U)→ U × R2n be a local trivialization of the tangent bundle τ : TM → M defined on
U ⊂ M and ϕC : τC−1(U) → U × C2n its complexification. Then we can define the real and
imaginary part

ℜϕC(ξ + iη) = ϕ(ξ) , ℑϕC(ξ + iη) = ϕ(η) (43.9.3)

for ξ, η ∈ TpM with p ∈ U . Note that ξ ∈ T (1,0)M if and only if

0 = J(ξ + iη)− i(ξ + iη) = J(ξ) + η + i(J(η)− ξ) . (43.9.4)

Since the real and imaginary parts are independent, this is equivalent to η = −J(ξ) and ξ =
J(η), which are equivalent conditions, since J ◦J = −idTM . Similarly, one finds ξ+iη ∈ T (0,1)M
if and only if

0 = J(ξ + iη) + i(ξ + iη) = J(ξ)− η + i(J(η) + ξ) . (43.9.5)

▶. . .◀ ■

Further, it follows from the condition J ◦J = −idTM on an almost complex structure that these
two bundles together yield the complexified tangent bundle as follows.

Theorem 43.9.2. The complexified tangent bundle of a manifold M equipped with an almost
complex structure J is given by TCM = T (1,0)M ⊕ T (0,1)M .

Proof. ▶. . .◀ ■

The construction of the holomorphic and antiholomorphic tangent bundle follows a curious
principle. First, we complexify the tangent bundle, hence combining two copies of this real
vector bundle into a complex vector bundle by taking their direct sum TM ⊕ iTM . Then we
decompose this newly created vector bundle into a different direct sum T (1,0)M ⊕ T (0,1)M ,
where now both parts are complex vector bundles. Viewing them as real vector bundles again,
one might expect that these are still isomorphic to the original bundle, i.e., the tangent bundle
TM . We now check that this is the case.
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Theorem 43.9.3. The maps φ = πi ◦ ι : TM → T (1,0)M and φ̄ = π−i ◦ ι : TM → T (0,1)M ,
where ι : TM ↪→ TCM is the canonical inclusion and π±i are the projectors onto the eigenspaces
of J , are (real) vector bundle isomorphisms, such that the diagrams

TM

J

��

φ // T (1,0)M

i·•
��

TM
φ
// T (1,0)M

(43.9.6)

and
TM

J

��

φ̄ // T (0,1)M

−i·•
��

TM
φ̄
// T (0,1)M

(43.9.7)

commute.

Proof. Using the general formula for projectors onto eigenspaces, one calculates

πi =
J + iidTCM

2i
=

idTCM − iJ
2

(43.9.8)

and
π−i =

J − iidTCM

−2i =
idTCM + iJ

2
, (43.9.9)

so that
φ : TM → T (1,0)M

ξ 7→ ξ−iJ(ξ)
2

(43.9.10)

and
φ̄ : TM → T (0,1)M

ξ 7→ ξ+iJ(ξ)
2

. (43.9.11)

One finds that the images of these maps indeed lie in the respective bundle, since

J(φ(ξ)) =
J(ξ)− iJ2(ξ)

2
=
J(ξ) + iξ

2
= iφ(ξ) (43.9.12)

and

J(φ̄(ξ)) =
J(ξ) + iJ2(ξ)

2
=
J(ξ)− iξ

2
= −iφ̄(ξ) . (43.9.13)

These maps are smooth, preserve the fibers and act linearly on them. To see that they are
vector bundle isomorphisms, and hence bijective, note that an element of TCM is of the general
form ξ + iη, where ξ, η ∈ TM , and that it belongs to T (1,0)M if and only if

0 = J(ξ + iη)− i(ξ + iη) = J(ξ) + η + i(J(η)− ξ) . (43.9.14)

Since the real and imaginary parts are independent, this is equivalent to η = −J(ξ) and ξ =
J(η), which are equivalent conditions, since J ◦ J = −idTM . Hence, ξ + iη ∈ T (1,0)M if and
only if it is of the form φ(ξ) for some ξ ∈ TM . Similarly, one finds ξ+ iη ∈ T (0,1)M if and only
if

0 = J(ξ + iη) + i(ξ + iη) = J(ξ)− η + i(J(η) + ξ) , (43.9.15)

so that it must be of the form φ̄(ξ) for some ξ ∈ TM . Finally, commutativity of the diagrams
follows from

φ(J(ξ)) =
J(ξ)− iJ2(ξ)

2
=
J(ξ) + iξ

2
= iφ(ξ) (43.9.16)

and

φ̄(J(ξ)) =
J(ξ) + iJ2(ξ)

2
=
J(ξ)− iξ

2
= −iφ̄(ξ) . (43.9.17)

■
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For the properties above we have only assumed that J is an almost complex structure, i.e., we
have made no assumptions on its integrability. We now pose the question whether the holomor-
phic tangent bundle also possesses properties, which hold only if J is also integrable, and hence
a complex structure. Indeed, we find a property which is even in one-to-one correspondence
with the integrability of J , which we see as follows.

Theorem 43.9.4. An almost complex structure J is integrable, NJ = 0, if and only if any of
the following equivalent conditions holds:

1. [X,Y ] ∈ Vect(1,0)(M) for all X,Y ∈ Vect(1,0)(M).

2. [X,Y ] ∈ Vect(0,1)(M) for all X,Y ∈ Vect(0,1)(M).

Proof. By theorem 17.6.6 we have for all X,Y ∈ Vect(1,0)(M)

NJ(X,Y ) = [JX, JY ] + J2[X,Y ]− J([JX, Y ] + [X, JY ])

= [iX, iY ]− [X,Y ]− J([iX, Y ]− [X, iY ])

= −2i(J [X,Y ]− i[X,Y ]) ,

(43.9.18)

which vanishes if and only if J [X,Y ] = i[X,Y ], hence [X,Y ] ∈ Vect(1,0)(M). Analogously, for
X,Y ∈ Vect(0,1)(M) we have

NJ(X,Y ) = [JX, JY ] + J2[X,Y ]− J([JX, Y ] + [X, JY ])

= [−iX,−iY ]− [X,Y ]− J([−iX, Y ]− [X,−iY ])

= 2i(J [X,Y ] + i[X,Y ]) ,

(43.9.19)

which vanishes if and only if J [X,Y ] = −i[X,Y ], hence [X,Y ] ∈ Vect(0,1)(M). ■

Recall from theorem 43.6.1 that J is integrable if and only if M is a complex manifold. Given
local complex coordinates (za = xa + iya), one can easily construct bases for the holomorphic
and antiholomorphic tangent bundles. From the coordinate expression (43.6.8) of the complex
structure, which also holds for its extension to the complexified tangent bundle TCM , one finds

J

(
∂

∂xa
− i ∂

∂ya

)
= i

∂

∂xa
+

∂

∂ya
= i

(
∂

∂xa
− i ∂

∂ya

)
, (43.9.20a)

J

(
∂

∂xa
+ i

∂

∂ya

)
= −i ∂

∂xa
+

∂

∂ya
= −i

(
∂

∂xa
+ i

∂

∂ya

)
. (43.9.20b)

Hence, defining

∂

∂za
=

1

2

(
∂

∂xa
− i ∂

∂ya

)
,

∂

∂z̄a
=

1

2

(
∂

∂xa
+ i

∂

∂ya

)
, (43.9.21)

we see that the former constitutes a basis of T (1,0)M , while the latter constitutes a basis
of T (0,1)M . This allows us to express sections of these bundles using (complex) component
functions Za. The reason for the particular choice of basis elements will become clear when we
discuss the dual bundles.

In theorem 43.9.1 we have shown that the holomorphic tangent bundle and its antiholomorphic
counterpart are complex vector bundles. In the case of a complex manifold, an even stronger
statement holds, albeit only for the holomorphic tangent bundle, which justifies its nomencla-
ture.

Theorem 43.9.5. The holomorphic tangent bundle T (1,0)M of a complex manifold M is a
holomorphic vector bundle.
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Proof. ▶. . .◀ ■

Since the total space of a holomorphic vector bundle is again a complex manifold, one may
consider holomorphic sections. In the case of the holomorphic tangent bundle, these deserve
their own name.

Definition 43.9.2 (Holomorphic vector field). A holomorphic vector field on a complex
manifold M is a holomorphic section Z :M → T (1,0)M of the holomorphic tangent bundle
T (1,0)M .

For practical purposes, it is also helpful to derive the coordinate expression of holomorphic
vector fields. ▶. . .◀

43.10 Complex differential forms

In analogy to the tangent bundle, one may also decompose the cotangent bundle into holomor-
phic and antiholomorphic subbundles, to be defined as follows. Note that again we start by
assuming only an almost complex structure, which is sufficient to define some of the notions
we discuss here, and only later come to the special case of a complex structure, i.e., consider
integrability.

Definition 43.10.1 (Holomorphic cotangent bundle). Let M be a manifold equipped with
an almost complex structure J , and denote by J∗ : T ∗M → T ∗M the dual vector bundle
morphism defined such that

⟨J(ξ), α⟩ = ⟨ξ, J∗(α)⟩ (43.10.1)

for all (ξ, α) ∈ TM ×M T ∗M . The holomorphic cotangent bundle is the complex vector
bundle

T ∗(1,0)M = {α ∈ T ∗CM,J∗(α) = iα} , (43.10.2)

while its antiholomorphic cotangent bundle is the complex vector bundle

T ∗(0,1)M = {α ∈ T ∗CM,J∗(α) = −iα} , (43.10.3)

One may expect that the holomorphic and antiholomorphic cotangent bundles share some of
the properties of the similarly defined tangent bundle analogous. We start with the following,
elementary property.

Theorem 43.10.1. The holomorphic and antiholomorphic cotangent bundles of a manifold M
of dimension 2n equipped with an almost complex structure J are complex vector bundles of
complex rank n.

Proof. ▶. . .◀ ■

Next, we find that we can decompose the complexified cotangent bundle in full analogy to the
tangent bundle.

Theorem 43.10.2. The complexified cotangent bundle of a manifold M equipped with an almost
complex structure J is given by T ∗CM = T ∗(1,0)M ⊕ T ∗(0,1)M .
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Proof. ▶. . .◀ ■

The decomposition of the cotangent bundle is also inherited by its exterior powers. In other
words, we can decompose the r-th exterior power of the complexified cotangent bundle into
certain subbundles, which we define as follows.

Definition 43.10.2 (Complex differential form). Let M be a manifold equipped with an
almost complex structure J . A complex differential (p, q)-form is a section of the bundle

ΛpT ∗(1,0)M ⊗ ΛqT ∗(0,1)M . (43.10.4)

The space of all (p, q)-forms on M is denoted Ω(p,q)(M).

This now leads us to the following decomposition.

Theorem 43.10.3. The complexified exterior power bundle ΛkT ∗M ⊗C is given by the direct
sum

ΛkT ∗M ⊗ C =
⊕
p+q=k

ΛpT ∗(1,0)M ⊗ ΛqT ∗(0,1)M . (43.10.5)

Proof. ▶. . .◀ ■

We also remark that the (complex) ranks of the vector bundles on the right hand side of the
relation (43.10.5) are given by∑

p+q=k

(
n

p

)(
n

q

)
=

k∑
j=0

n!

j!(n− j)!
n!

(k − j)!(n− k + j)!

= ▶ . . . ◀

(43.10.6)

Further, this decomposition allows us to generalize the action of the dual almost complex
structure to complex differential forms of arbitrary rank. By an abuse of notation, we define it
as follows.

▶. . .◀

43.11 Dolbeault operators

We have seen that at almost complex structure induces a decomposition of the space of complex
differential forms based on theorem 43.10.3 into spaces which are generated by the holomorphic
and antiholomorphic cotangent bundles. One may then ask how certain differential forms are
decomposed, such as the exterior derivative of a complex differential form, i.e., whether the
exterior covariant derivative is compatible with the decomposition. In order to study this
question, we first define the following two operators.

Definition 43.11.1 (Dolbeault operators). Let M be a manifold equipped with an almost
complex structure J , and denote by πp,q : Ωp+q(M) ⊗ C → Ω(p,q)(M) the projector onto
the spaces of complex (p, q)-forms. On the space Ω(p,q)(M) of complex (p, q)-forms the
Dolbeault operators are given by

∂ = πp+1,q ◦ d : Ω(p,q)(M)→ Ω(p+1,q)(M) , (43.11.1a)

∂̄ = πp,q+1 ◦ d : Ω(p,q)(M)→ Ω(p,q+1)(M) . (43.11.1b)

491



Note that in the definition above we have not made any assumption on the sum of the Dol-
beault operators, and we have not assumed anything about the image of the exterior derivative
acting on a complex (p, q)-form. We only know that it increases the total degree p + q of the
differential form by one, but we have not made any statement on the individual holomorphic
and antiholomorphic degrees p and q. In fact, it turns out that the latter is closely linked to the
question whether the almost complex structure J is integrable, and hence a complex structure.
This can be seen as follows.

Theorem 43.11.1. Let M be a manifold equipped with an almost complex structure J . Then
J is a complex structure if and only if the Dolbeault operators satisfy d = ∂ + ∂̄.

Proof. Note first that d = ∂ + ∂̄ if and only if

dω ∈ Ω(p+1,q)(M)⊕ Ω(p,q+1)(M) (43.11.2)

for all ω ∈ Ω(p,q)(M). If it holds for general p, q ∈ N, then in clearly holds for p + q = 1.
Conversely, if it holds for p+ q = 1, then we may consider ω of the form

ω = f ζ1 ∧ . . . ∧ ζp ∧ ζ ′1 ∧ . . . ζ ′q , (43.11.3)

where f ∈ Ω(0,0)(M), ζk ∈ Ω(1,0)(M) and ζ ′k ∈ Ω(0,1)(M), since Ω(p,q)(M) is spanned by such
terms. Clearly, we have df ∈ Ω1C(M) = Ω(1,0)(M) ⊕ Ω(0,1)(M). Further, by the assumption,
we have

dζk ∈ Ω(2,0)(M)⊕ Ω(1,1)(M) , dζ ′k ∈ Ω(1,1)(M)⊕ Ω(0,2)(M) . (43.11.4)

From the Leibniz rule thus follows that dω ∈ Ω(p+1,q)(M)⊕Ω(p,q+1)(M). Hence, in the following
it will be sufficient to consider p+ q = 1.

Let ω ∈ Ω(0,1)(M) and X,Y ∈ Vect(1,0)(M), so that ιXω = ιY ω = 0. By C-linear extension of
theorem 9.4.2, and in particular the relation (9.4.5), we thus have

ιY ιXdω = X(ιY ω)− Y (ιXω)− ι[X,Y ]ω = −ι[X,Y ]ω . (43.11.5)

The left hand side vanishes if and only if dω ∈ Ω(1,1)(M) ⊕ Ω(0,2)(M), and so dω = ∂ω + ∂̄ω,
while the right hand side vanishes if and only if [X,Y ] ∈ Vect(1,0)(M), hence, if and only if the
almost complex structure on M is integrable, by theorem 43.9.4. The same formula holds also
if we assume ω ∈ Ω(1,0)(M) and X,Y ∈ Vect(0,1)(M) instead. ■

We thus find that for a (p, q)-form ω ∈ Ω(p,q)(M) we have dω = ∂ω + ∂̄ω, where ∂ω ∈
Ω(p+1,q)(M) and ∂̄ω ∈ Ω(p,q+1)(M). Using this result, we find another helpful property of
the Dolbeault operators on a complex manifold.

Theorem 43.11.2. Let M be a manifold equipped with an almost complex structure J . Then
J is a complex structure if and only if the Dolbeault operators satisfy any of, and hence all of,
the relations ∂2 = ∂∂̄ + ∂̄∂ = ∂̄2 = 0.

Proof. Let ω ∈ Ω(p,q)(M) be a complex (p, q)-form, and assume that J is integrable, so that
d = ∂ + ∂̄. Then we have

0 = d2ω = ∂2ω + (∂∂̄ + ∂̄∂)ω + ∂̄2ω , (43.11.6)

where each term on the right hand side must vanish individually, since they belong to different
subspaces Ω(p′,q′)(M) with (p′, q′) ∈ {(p+ 2, q), (p+ 1, q + 1), (p, q + 2)}.
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Conversely, assume that ∂2 = 0. For any f ∈ Ω(0,0)(M) and X,Y ∈ Vect(1,0)(M) we then have

0 = ιY ιX∂
2f

= ιY ιXπ
(2,0)d∂f

= ιY ιXd∂f

= X(ιY ∂f)− Y (ιX∂f)− ι[X,Y ]∂f

= X(ιY df)− Y (ιXdf)− ι[X,Y ]∂f

= ιY ιXd2f + ι[X,Y ]df − ι[X,Y ]∂f

= ι[X,Y ]∂̄f ,

(43.11.7)

where we used the fact that df = ∂f + ∂̄f , since f is a (0, 0)-form, as well as ιX ∂̄f = ιY ∂̄f = 0.
Since f is arbitrary, it follows that [X,Y ] ∈ Vect(1,0)(M), and so J is integrable.

Starting from the assumption ∂̄2 = 0, one proceeds similarly, but with X,Y ∈ Vect(0,1)(M). ■

To illustrate this result, it is helpful to express the complex differential forms using a coordinate
basis of the cotangent bundle. For this purpose, let za = xa+ iya be local complex coordinates.
Considering at a point p ∈M the elements

ξa
∂

∂xa
+ ηa

∂

∂ya
∈ TpM , αadx

a + βady
a ∈ T ∗pM , (43.11.8)

as well as the complex structure given by the relation (43.6.8), the canonical pairing between
the tangent and cotangent bundles yields〈
J

(
ξa

∂

∂xa
+ ηa

∂

∂ya

)
, αadx

a + βady
a

〉
= ξaβa−ηaαa =

〈
ξa

∂

∂xa
+ ηa

∂

∂ya
, J∗(αadx

a + βady
a)

〉
,

(43.11.9)
and so we find

J∗ = dxa ⊗ ∂

∂ya
− dya ⊗ ∂

∂xa
. (43.11.10)

By extension to the complexified cotangent bundle, we thus find

J∗(dxa + idya) = idxa − dya = i(dxa + idya) , (43.11.11a)
J∗(dxa − idya) = −idxa − dya = −i(dxa − idya) . (43.11.11b)

Hence, we may define the basis elements

dza = dxa + idya , dz̄a = dxa − idya , (43.11.12)

with the former giving a basis of T ∗(1,0)M , while the latter form a basis of T ∗(0,1)M . Note that
in contrast to the basis elements (43.9.21) of the holomorphic and antiholomorphic tangent
bundles, we have not introduced a factor 1

2 in this case. This has two reasons. The first reason
is that one should be able to obtain the basis element dza by acting with the exterior derivative
d on the coordinate function za = xa + iya. The second reason is the canonical pairing, which
reads 〈

∂

∂za
,dzb

〉
=

1

2

〈
∂

∂xa
− i ∂

∂ya
,dxb + idyb

〉
= δba , (43.11.13a)〈

∂

∂za
,dz̄b

〉
=

1

2

〈
∂

∂xa
− i ∂

∂ya
,dxb − idyb

〉
= 0 , (43.11.13b)〈

∂

∂z̄a
,dzb

〉
=

1

2

〈
∂

∂xa
+ i

∂

∂ya
,dxb + idyb

〉
= 0 , (43.11.13c)〈

∂

∂z̄a
,dz̄b

〉
=

1

2

〈
∂

∂xa
+ i

∂

∂ya
,dxb − idyb

〉
= δba , (43.11.13d)
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so that we have constructed the dual basis. One now easily checks that in this basis the complex
structure is given in diagonal form in terms of its eigenvalues ±i as

J = i

(
∂

∂za
⊗ dza − ∂

∂z̄a
⊗ dz̄a

)
=
i

2

(
∂

∂xa
− i ∂

∂ya

)
⊗ (dxa + idya)− i

2

(
∂

∂xa
+ i

∂

∂ya

)
⊗ (dxa − idya)

=
∂

∂ya
⊗ dxa − ∂

∂xa
⊗ dya .

(43.11.14)

Further, we find that a complex (p, q)-form ω ∈ Ω(p,q)(M) takes the form

ω =
1

p!q!
ωa1···apb1···bqdz

a1 ∧ . . . ∧ dzap ∧ dz̄b1 ∧ . . . ∧ dz̄bq , (43.11.15)

where the coefficients are antisymmetric in each type of indices separately,

ωa1···apb1···bq = ω[a1···ap][b1···bq ] . (43.11.16)

To express the exterior derivative in the complex coordinate basis, consider first a complex
function f ∈ C∞(M,C), for which holds

df =
∂f

∂xa
dxa +

∂f

∂ya
dya

=

(
∂f

∂za
+

∂f

∂z̄a

)
dza + dz̄a

2
− 1

i

(
∂f

∂za
− ∂f

∂z̄a

)
dza − dz̄a

2i

=
∂f

∂za
dza +

∂f

∂z̄a
dz̄a ,

(43.11.17)

so that the usual formula holds also in the complex coordinates, due to the particular definition
of the coordinate bases. For a complex (p, q)-form ω ∈ Ω(p,q)(M) we thus find

dω =
1

p!q!

(
∂ωa1···apb1···bq

∂zc
dzc +

∂ωa1···apb1···bq
∂z̄c

dz̄c
)
∧ dza1 ∧ . . . ∧ dzap ∧ dz̄b1 ∧ . . . ∧ dz̄bq ,

(43.11.18)
so that we read off the Dolbeault operators

∂ω =
1

p!q!

∂ωa1···apb1···bq
∂zc

dzc ∧ dza1 ∧ . . . ∧ dzap ∧ dz̄b1 ∧ . . . ∧ dz̄bq , (43.11.19a)

∂̄ω =
1

p!q!

∂ωa1···apb1···bq
∂z̄c

dz̄c ∧ dza1 ∧ . . . ∧ dzap ∧ dz̄b1 ∧ . . . ∧ dz̄bq . (43.11.19b)

Definition 43.11.2 (Conjugate exterior derivative). Let M be a manifold equipped with
an almost complex structure J . The conjugate exterior derivative is the operator

dc = J−1 ◦ d ◦ J = −J ◦ d ◦ J (43.11.20)

acting on (complex) differential forms on M .

Theorem 43.11.3. Let M be a manifold equipped with an almost complex structure J . Then
J is a complex structure if and only if the Dolbeault operators satisfy dc = −i(∂ − ∂̄).

Proof. ▶. . .◀ ■
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Chapter 44

(Almost) Hermitian manifolds

44.1 Hermitian metrics

While (almost) complex manifolds by themselves already possess a rich geometric structure
which is worth studying, they can also be equipped with additional structure. Demanding that
this additional structure is compatible with the (almost) structure then leads to a number of
new properties, which are not present if only one of them is given. An important example is that
of a Riemannian (and thus positive definite) metric. The notion of compatibility we demand
here is the following.

Definition 44.1.1 (Compatible metric). Let M be manifold equipped with an almost
complex structure J . A Riemannian metric g is called compatible with J if and only if

g(JX, JY ) = g(X,Y ) (44.1.1)

for all vector fields X,Y ∈ Vect(M).

Hence, one demands that J preserves the metric, and thus constitutes an orthogonal endomor-
phism on the tangent bundle. To reveal the additional structure which can be obtained from
this definition, we first show that it is actually equivalent to another structure we can define.

Theorem 44.1.1. Let M be a manifold equipped with an almost complex structure J . Then
there exists a one-to-one correspondence between compatible Riemannian metrics and non-
degenerate two-forms ω ∈ Ω2(M) which satisfy

ω(JX, JY ) = ω(X,Y ) (44.1.2)

for all X,Y ∈ Vect(M) and ω(u, Ju) > 0 for all non-zero u ∈ TM , which is given by

ω(X,Y ) = g(JX, Y ) ⇔ g(X,Y ) = ω(X, JY ) . (44.1.3)

Proof. ▶. . .◀ ■

It is remarkable that under the condition of compatibility with the almost complex structure
the same geometric structure can be defined either by a metric g, which is a symmetric tensor
field, or a two-form ω, which is an antisymmetric tensor field. This is due to the fact that the
compatibility conditions restrict the component of both tensor fields such that only a common
subset of independent components remains, while all other components are uniquely determined
from the compatibility. We can take this even further, and define the following.
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Definition 44.1.2 (Hermitian metric). Let M be a manifold. A Hermitian metric on M
is a section h of the bundle Sym2 T ∗CM such that for each p ∈M , hp : TC

pM × TC
pM → C

is a positive definite Hermitian form on TC
pM , i.e., it satisfies

hp(w,w
′) = hp(w′, w) (44.1.4)

for all w,w′ ∈ TC
pM and

hp(w,w) > 0 (44.1.5)

for all non-zero w ∈ TC
pM .

With this definition in place, we can show the following remarkable result.

Theorem 44.1.2. Let M be a manifold equipped with an almost complex structure J . Then
there exists a one-to-one correspondence between compatible Riemannian metrics g and Hermi-
tian metrics h which satisfy

h(JX, JY ) = h(X,Y ) (44.1.6)

for all complex vector fields X,Y ∈ VectC(M), which is given by complex linear extension of

h(X,Y ) = g(X,Y )− ig(JX, Y ) , (44.1.7)

or conversely by
g(X,Y ) = ℜh(X,Y ) , ω(X,Y ) = −ℑh(X,Y ) (44.1.8)

for all X,Y ∈ Vect(M).

Proof. ▶. . .◀ ■

Definition 44.1.3 ((Almost) Hermitian manifold). A manifoldM equipped with an almost
complex structure J and a Hermitian metric h is called an almost Hermitian manifold. If
J is integrable, i.e., a complex structure, then it is called a Hermitian manifold.

44.2 Unitary frame bundle

44.3 Volume form

Definition 44.3.1 (Hermitian volume form). Let M be an almost Hermitian manifold of
dimension 2n. Its volume form is the (2n)-form

volω =
1

n!
ω ∧ . . . ∧ ω︸ ︷︷ ︸
n times

∈ Ω2n(M) . (44.3.1)
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44.4 Chern connection

44.5 Differential forms on (almost) Hermitian manifolds

Definition 44.5.1 (Lefschetz operator). The Lefschetz operator on an almost Hermitian
manifold M is the operator L : Ω(p,q)(M) → Ω(p+1,q+1)(M) defined by α 7→ Lα = ω ∧ α,
where ω is the associated two-form.

Definition 44.5.2 (Dual Lefschetz operator). The dual Lefschetz operator on an almost
Hermitian manifold M is the unique operator Λ : Ω(p,q)(M)→ Ω(p−1,q−1)(M) satisfying

⟨Λα, β⟩g = ⟨α,Lβ⟩g (44.5.1)

for all α ∈ Ω(p,q)(M) and β ∈ Ωp+q−2(M).

Theorem 44.5.1. The Lefschetz operator and its dual on an almost Hermitian manifold of
dimension 2n satisfy

LΛα− ΛLα = (k − n)α (44.5.2)

for all α ∈ Ωk(M).

Proof. ▶. . .◀ ■

Theorem 44.5.2. The repeated application

Ln−kα (44.5.3)

of the Lefschetz operator to a k-form α ∈ Ωk(M) induces a bijection between Ωk(M) and
Ω2n−k(M) for 0 ≤ k ≤ n, and

Λk−nα (44.5.4)

induces a bijection between Ωk(M) and Ω2n−k(M) for n ≤ k ≤ 2n.

Proof. ▶. . .◀ ■

Definition 44.5.3 (Adjoint derivative operators). ▶d∗,dc∗, ∂∗, ∂̄∗. . .◀

Definition 44.5.4 (Laplace operators). The Laplace operators on an almost Hermitian
manifold are defined by

△d = dd∗ + d∗d , △∂ = ∂∂∗ + ∂∗∂ , △∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄ . (44.5.5)

Theorem 44.5.3. The Laplace operators on a Hermitian manifold are related by

△d = 2△∂ = 2△∂̄ . (44.5.6)
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Proof. ▶. . .◀ ■

Theorem 44.5.4. The Laplace operators on a Hermitian manifold satisfy

[△d,d] = [△d,d
c] = [△d,d

∗] = [△d,d
c∗] = [△d, ∂] = [△d, ∂̄] = [△d, ∂

∗] = [△d, ∂̄
∗] = [△d, ⋆] = 0 .

(44.5.7)

Proof. ▶. . .◀ ■

44.6 Kähler manifolds

A particular class of Hermitian manifolds which play an important role in different areas of
physics, most prominently in string theory, are Kähler manifolds. Since Hermitian manifolds
are characterized by the existence of several compatible geometric structures, there exists a
number of equivalent definitions of Kähler manifolds. We will start from the following, most
commonly encountered definition.

Definition 44.6.1 ((Almost) Kähler manifold). An almost Kähler manifold is a manifold
M equipped with a symplectic form ω (called the Kähler form) and an almost complex
structure J such that g(•, •) = ω(•, J•) is a Riemannian metric. If J is integrable, i.e., a
complex structure. then it is called a Kähler manifold.

This definition is reminiscent of one of the defining properties on an almost Hermitian manifold
in terms of a non-degenerate two-form which is compatible with the almost complex structure,
but differs in two aspects. First, recall from chapter 35 that a symplectic form is not only
non-degenerate, but also closed, dω = 0. Further, we did not require that ω is compatible with
the almost complex structure, but we demanded the existence of a Riemannian metric. We will
now show that this second aspect turns out to be an equivalent condition.

Theorem 44.6.1. Let M be an almost Kähler manifold with symplectic form ω and metric g.
Then both ω and g are compatible with the almost complex structure,

ω(JX, JY ) = ω(X,Y ) , g(JX, JY ) = g(X,Y ) (44.6.1)

for all vector fields X,Y ∈ Vect(M).

Proof. Using the fact that a Riemannian metric is symmetric by definition and that J2 = −idTM
we find

ω(JX, JY ) = g(JX, Y )

= g(Y, JX)

= ω(Y, J2X)

= −ω(Y,X)

= ω(X,Y ) .

(44.6.2)

Similarly, from the antisymmetry of ω follows

g(JX, JY ) = ω(JX, J2Y )

= −ω(JX, Y )

= ω(Y, JX)

= g(Y,X)

= g(X,Y ) . ■

(44.6.3)
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With this result in mind, we can recall that g and ω are equivalent descriptions of an almost
Hermitian manifold. We therefore see that indeed (almost) Kähler manifolds are special cases
of (almost) Hermitian manifolds. The following is thus straightforward to show.

Theorem 44.6.2. A (almost) Kähler manifold is a (almost) Hermitian manifold with a Her-
mitian metric h whose associated two-form is closed, dℑh = 0.

Proof. ▶. . .◀ ■

In the case of a Kähler manifold, we can also use the distinguished coordinates (xa, ya) to derive
a coordinate expression for the Kähler form ω from definition 44.6.1. A general two-form is
given by

ω =
1

2
pabdx

a ∧ dxb + qabdx
a ∧ dyb +

1

2
rabdy

a ∧ dyb , (44.6.4)

where pab = −pba and rab = −rba. Now one has

g

(
ta

∂

∂xa
+ ua

∂

∂ya
, va

∂

∂xa
+ wa

∂

∂ya

)
= ω

(
ta

∂

∂xa
+ ua

∂

∂ya
, va

∂

∂ya
− wa ∂

∂xa

)
= uavbrab − tawbpab + (waub + tavb)qab .

(44.6.5)

We see that this is symmetric if and only if pab = rab and qab = qba. Using the complex
coordinate basis, we can then also write

ω =
1

2
pab(dx

a ∧ dxb + dya ∧ dyb) + qabdx
a ∧ dyb

=
1

8
pab[(dz

a + dz̄a) ∧ (dzb + dz̄b)− (dza − dz̄a) ∧ (dzb − dz̄b)] +
1

4i
qab(dz

a + dz̄a) ∧ (dzb − dz̄b)

=
1

2
pabdz

a ∧ dz̄b +
i

2
qabdz

a ∧ dz̄b

=
1

2
(pab + iqab)dz

a ∧ dz̄b ,

=
i

2
habdz

a ∧ dz̄b .

(44.6.6)

Keeping in mind that pab is antisymmetric and qab is symmetric, and both are real, we find
that hab is Hermitian, hab = hba. ▶. . .◀

Note that we now have two integrability conditions, NJ = 0 and dω = 0, which distinguish
Kähler manifolds among almost Hermitian manifolds, as shown on the outer edges of figure 44.1.
It turns out that demanding both conditions simultaneously can also equivalently be expressed
in terms of a few other conditions, which we show as follows.

almost Hermitian

Hermitian almost Kähler

Kähler

dω = 0NJ = 0

dω = 0 NJ = 0

∇J = 0 ∇ω = 0

Figure 44.1: Conditions relating (almost) Hermitian and (almost) Kähler manifolds.
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Theorem 44.6.3. Let M be an almost Hermitian manifold of dimension 2n. The following
conditions are equivalent:

1. M is a Kähler manifold: NJ = 0 and dω = 0.

2. The almost complex structure is covariantly constant: ∇J = 0.

3. The associated two-form is covariantly constant: ∇ω = 0.

4. The holonomy group of ∇ is contained in the unitary group U(n).

Proof. ▶. . .◀ ■

As a consequence of the integrability conditions, Kähler manifolds have a few useful properties,
which we will study next. The most important one is the existence of a potential for the Kähler
form, similarly to the symplectic potential for a general symplectic form. In this case we can
make use of the complex structure to define the following notion.

Definition 44.6.2 (Kähler potential). Let M be a Kähler manifold with symplectic struc-
ture ω and U ⊂ M . A (local) Kähler potential on U is a function ρ ∈ C∞(U,R) such
that

ω =
i

2
∂∂̄ρ (44.6.7)

on U .

This leads to the following statement.

Theorem 44.6.4. Let M be a Kähler manifold with symplectic structure ω. Then for every
p ∈ M there exists an open neighborhood U ⊂ M of p and a Kähler potential ρ on U satisfy-
ing (44.6.7).

Proof. ▶. . .◀ ■

Theorem 44.6.5 (Kähler identities). The Lefschetz operator and its adjoint and the derivative
operators on a Kähler manifold satisfy the identities

[∂, L] = 0 , [∂,Λ] = −i∂̄∗ , (44.6.8a)
[∂̄, L] = 0 , [∂̄,Λ] = i∂∗ , (44.6.8b)
[∂∗, L] = −i∂̄ , [∂∗,Λ] = 0 , (44.6.8c)
[∂̄, L] = i∂ , [∂̄,Λ] = 0 , (44.6.8d)
[d, L] = 0 , [d,Λ] = dc∗ , (44.6.8e)
[dc, L] = 0 , [dc,Λ] = ▶ . . . ◀ , (44.6.8f)
[d∗, L] = ▶ . . . ◀ , [d∗,Λ] = 0 , (44.6.8g)
[dc∗, L] = ▶ . . . ◀ , [dc∗,Λ] = 0 , (44.6.8h)
[△d, L] = 0 , [△d,Λ] = 0 . (44.6.8i)

Proof. ▶. . .◀ ■

Theorem 44.6.6. The Dolbeault operators and their adjoints on a Kähler manifold satisfy

∂̄∗∂ + ∂∂̄∗ = 0 , ∂∗∂̄ + ∂̄∂∗ = 0 . (44.6.9)

Proof. ▶. . .◀ ■
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44.7 Calabi-Yau manifolds

Theorem 44.7.1. Let M be a compact Kähler manifold of dimension 2n. Then the following
conditions are equivalent:

1. The line bundle Λ2nT ∗M is trivial.

2. There exists a holomorphic n-form which is nowhere vanishing.

3. There exists a SU(n)-reduction of the unitary frame bundle.

4. The holonomy group of ∇ is contained in the special unitary group SU(n).

Proof. ▶. . .◀ ■

Definition 44.7.1 (Calabi-Yau manifold). A Calabi-Yau manifold is a compact Kähler
manifold which satisfies any, and hence all, of the conditions given in theorem 44.7.1.

Theorem 44.7.2. The Ricci curvature on a Calabi-Yau manifold vanishes.

Proof. ▶. . .◀ ■
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Chapter 45

Spin geometry

45.1 Clifford algebras

There are different ways to introduce the mathematical notions, in particular the necessary Lie
groups, which allow the description of spinors. The most straightforward construction is based
on the notion of a Clifford algebra. Here we use the following convention.

Definition 45.1.1 (Clifford algebra). Let V be a vector space over a field K equipped with
a non-degenerate quadratic form Q : V → K. The Clifford algebra Cl(V,Q) is the quotient
algebra of the tensor algebra⊕

k∈N

⊗k
V = K⊕ V ⊕ V ⊗ V ⊕ . . . (45.1.1)

and the two-sided ideal generated by the elements v ⊗ v −Q(v)1.

Note that also other conventions are used in the literature, in particular regarding the choice
of the ideal:

• In [Har90], the ideal is spanned by the elements v ⊗ v + ⟨v, v⟩.

• In [LM89], the opposite sign is used, and the ideal is spanned by v ⊗ v +Q(v)1.

The most common cases are given if V is a finite-dimensional real or complex vector space. In
this case there is a canonical quadratic form, up to the choice of the signature, given by the
symmetric bilinear form η. For the real case, we use the following convention.

Definition 45.1.2 (Real Clifford algebra). The real Clifford algebra Clk,l(R) is the Clifford
algebra Cl(V,Q), where V = Rk+l and

Q(vµeµ) = (v1)2 + . . .+ (vk)2 − (vk+1)2 − . . .− (vk+l)2 = −ηµνvµvν = −η(v, v) . (45.1.2)

Note that we define the quadratic form as Q(v) = −η(v, v). The reason for this choice is that
we have defined η such that it contains k negative and l positive signs, while in most of the
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literature on spin geometry the opposite convention is chosen. In the complex case, no such
ambiguity exists, and one has the following unique definition.

Definition 45.1.3 (Complex Clifford algebra). The complex Clifford algebra Cln(C) is the
Clifford algebra Cl(V,Q), where V = Cn and

Q(vµeµ) = (v1)2 + . . .+ (vn)2 . (45.1.3)

Taking into account that the tensor algebra used in the definition 45.1.1 is infinite-dimensional,
one may wonder whether the Clifford algebras defined above are finite-dimensional. It turns
out that this is indeed the case, and one finds their dimensions as follows.

Theorem 45.1.1. The real and complex Clifford algebras are finite-dimensional real (complex)
algebras of real (complex) dimension 2k+l for Clk,l(R) and 2n for Cln(C).

Instead of a general, abstract proof, we will explicitly construct the bases of the aforementioned
Clifford algebras from a basis (eµ) in which the quadratic form Q is given by the canonical form
used in definitions 45.1.2 and 45.1.3. First note that we have

uv + vu = (u+ v)(u+ v)− uu− vv
= [Q(u+ v)−Q(u)−Q(v)]1

= 2⟨u, v⟩1
(45.1.4)

for u, v ∈ V , where we defined

⟨u, v⟩ = 1

2
[Q(u+ v)−Q(u)−Q(v)] , (45.1.5)

using the relations imposed by the ideal. Hence, given a product eµ1
· · · eµk of k basis vec-

tors, one may always put them in canonical order and remove duplicates, by performing the
substitutions

eνeµ = −eµeν for µ < ν , eµeµ = Q(eµ)1 . (45.1.6)

Hence, a basis of the real or complex Clifford algebra is given by the products

eµ1 · · · eµk , µ1 < . . . < µk . (45.1.7)

This basis has 2n elements, if V is of dimension n. It follows that we can write any (real or
complex) Clifford algebra Cl(V,Q) over a vector space V of dimension n in the form

Cl(V,Q) =

n⊕
k=0

Clk(V,Q) (45.1.8)

with
Clk(V,Q) = span{eµ1

· · · eµk , µ1 < . . . < µk} , (45.1.9)

and that the (real or complex) dimensions of these subspaces are given by

dimClk(V,Q) =

(
n

k

)
=

n!

k!(n− k)! . (45.1.10)

Of course, the formula

dimCl(V,Q) =

n∑
k=0

(
n

k

)
= 2n (45.1.11)

for the dimension of the Clifford algebra holds, and we have the subspaces Cl0(V,Q) ∼= K and
Cl1(V,Q) ∼= V , where ∼= here denotes isomorphisms of vector spaces. In the following, we will
canonically identify these subspaces with K and V , respectively.
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45.2 Involutions

Every Clifford algebra is naturally equipped with a number of involutions, which can be used
to define certain subalgebras and, as we will see later, certain groups, which will allow us to
define the spin geometry we intend to construct. To arrive at these involutions, it is helpful to
first define the notion of an automorphism of a Clifford algebra.

Definition 45.2.1 (Clifford algebra automorphism). Let Cl(V,Q) be a Clifford algebra.
An automorphism of Cl(V,Q) is a linear bijection ϕ : Cl(V,Q) → Cl(V,Q) which is com-
patible with the algebra multiplication and preserves the subspace Cl1(V,Q) ∼= V . The set
of automorphisms of Cl(V,Q) will be denoted Aut(Cl(V,Q)).

It is clear that the automorphisms Aut(Cl(V,Q)) form a group, where the group multiplication
is given by composition, and the group inverse is given by the inverse function, since the
composition of two automorphisms is again an automorphism. It turns out that this group has
a particular form, and is a Lie group which we already encountered.

Theorem 45.2.1. The automorphisms Aut(Cl(V,Q)) of a Clifford algebra form a group which
is isomorphic to the orthogonal group O(V,Q).

Proof. We can explicitly construct the automorphism between Aut(Cl(V,Q)) and O(V,Q).
First, recall that a Clifford automorphism ϕ : Cl(V,Q) → Cl(V,Q) preserves the subspace
Cl1(V,Q) ∼= V . For elements u, v ∈ V we can write

⟨ϕ(u), ϕ(v)⟩1 =
1

2
[ϕ(u)ϕ(v) + ϕ(v)ϕ(u)]

=
1

2
[ϕ(uv) + ϕ(vu)]

=
1

2
ϕ(uv + vu)

= ⟨u, v⟩ϕ(1)
= ⟨u, v⟩1 ,

(45.2.1)

where we used the fact that ϕ is an algebra automorphism, so that ϕ(uv) = ϕ(u)ϕ(v), ϕ(1) = 1

and ϕ is linear. It thus follows that ϕ preserves the inner product ⟨•, •⟩, and so it defines
an element Aϕ = ϕ|V ∈ O(V,Q). Conversely, given A ∈ O(V,Q), we can uniquely construct
an element ϕA ∈ Aut(Cl(V,Q)) such that ϕA|V = A, and extending to a Clifford algebra
automorphism. ■

The orthogonal group has a particular element, namely the reflection with respect to the origin,
which sends every element of V to its inverse. This obviously preserves the quadratic form,
since Q(−v) = Q(v). Hence, by the above theorem, it follows that the reflection induces a
Clifford algebra automorphism. We define this automorphism as follows.

Definition 45.2.2 (Canonical automorphism). Let Cl(V,Q) be a Clifford algebra. The
canonical automorphism is the unique automorphism •̃ : Cl(V,Q) → Cl(V,Q), v 7→ ṽ such
that ṽ = −v for all v ∈ Cl1(V,Q).

Here we use the notation introduced in [Har90]. Another notation found uses •̂ and # sym-
bols [VR16], or •′ instead [Gar11]. The canonical automorphism is denoted by α in most other
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literature [LM89]. Here we prefer the former, in order to avoid potential confusion with the
inner automorphism of Lie groups given in definition 15.2.3.

In addition to the canonical automorphism, also two antiautomorphisms, i.e., linear bijections
which reverse the algebra product, are canonically defined. We start with the following.

Definition 45.2.3 (Clifford transpose). Let Cl(V,Q) be a Clifford algebra. The transpose
is the unique antiautomorphism •̌ : Cl(V,Q) → Cl(V,Q), v 7→ v̌ which maps v1 · · · vr to
vr · · · v1 for all v1, . . . , vr ∈ Cl1(V,Q).

Again we use the notation from [Har90]. The Clifford transpose is occasionally also denoted
with •t. We do not use this notation, in order to avoid confusion with the transpose of a matrix,
when we come to the representation of Clifford algebras in terms of matrices.

Combining the transpose and the canonical automorphism, we arrive at the following.

Definition 45.2.4 (Clifford conjugate). Let Cl(V,Q) be a Clifford algebra. The conjugate
is the antiautomorphism •̂ : Cl(V,Q)→ Cl(V,Q), v 7→ v̂ = ˇ̃v.

Also here we follow [Har90] in the notation.

One now easily checks the following property of the three (anti-)automorphisms we introduced
above.

Theorem 45.2.2. The canonical automorphism, transpose and conjugate operations on a Clif-
ford algebra are involutions.

Proof. We use the fact that any element of a Clifford algebra can be written as a sum of products
of elements of Cl1(V,Q). Since we are dealing with (anti-)automorphisms by definition, these
are in particular linear, and so we can consider their action on a single term in this sum, i.e., a
product v1 · · · vr with v1, . . . , vr ∈ Cl1(V,Q). For the canonical automorphism we have

˜v1 · · · vr = ṽ1 · · · ṽr = (−v1) · · · (−vr) = (−1)rv1 · · · vr , (45.2.2)

and so by applying •̃ again the sign cancels, showing that •̃ is an involution. For the Clifford
transpose we obviously have

v1 · · · vr •̌−→ vr · · · v1 •̌−→ v1 · · · vr , (45.2.3)

showing that this is also an involution. Finally, it is obvious that both operations commute,
and so their composition •̂ is again an involution. ■

For an involution on a vector space, the eigenvalues are ±1, and so we can identify the
eigenspaces corresponding to these eigenvalues. Of particular interest are the eigenspaces of
the canonical automorphism. We define and denote them as follows.

Definition 45.2.5 (Even and odd subspaces of a Clifford algebra). Let Cl(V,Q) be a Clif-
ford algebra. Its even and odd subspaces are the eigenspaces of the canonical automorphism,

Cl+(V,Q) = {v ∈ Cl(V,Q), ṽ = v} , Cl−(V,Q) = {v ∈ Cl(V,Q), ṽ = −v} . (45.2.4)
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Looking at the action of the canonical automorphism on the subspaces Clk(V,Q), we can also
express the even and odd subspaces as follows.

Theorem 45.2.3. The even and odd subspaces of a Clifford algebra Cl(V,Q) are given by

Cl+(V,Q) =
⊕
k∈2Z

Clk(V,Q) , Cl−(V,Q) =
⊕

k∈2Z+1

Clk(V,Q) . (45.2.5)

Proof. ▶. . .◀ ■

It is instructive to study the action of the (anti-)automorphisms on the basis elements (which is
then extended to the whole Clifford algebra by their linearity). For a basis element eµ1

· · · eµk
with µ1 < . . . < µk we have, by definition of the canonical automorphism

˜eµ1
· · · eµk = ẽµ1

· · · ẽµk = (−1)keµ1
· · · eµk , (45.2.6)

which again shows that an element of Clk(V,Q) is even (odd) if and only if k is even (odd). We
find similar rules for the two antiautomorphisms we defined. For the transpose we have

eµ1
ˇ· · ·eµk = eµk · · · eµ1 = (−1)k(k−1)/2eµ1 · · · eµk , (45.2.7)

and combining both we find the conjugate

eµ1
ˆ· · ·eµk = (−1)k(k+1)/2

eµ1
· · · eµk . (45.2.8)

The most convenient way to describe these relation is by realizing that the sign depends only
on k mod 4. For v ∈ Clk(V,Q) one then has

v 7→


•̃ •̌ •̂

k mod 4 = 0 +1 +1 +1
k mod 4 = 1 −1 +1 −1
k mod 4 = 2 +1 −1 −1
k mod 4 = 3 −1 −1 +1

 v . (45.2.9)

This leads us to the following property of the canonical automorphism.

Theorem 45.2.4. The canonical automorphism induces a Z2-grading Cl(V,Q) = Cl+(V,Q)⊕
Cl−(V,Q) of the Clifford algebra.

Proof. Let u, v ∈ Cl(V,Q) be homogeneous elements, i.e., elements of one of the subspaces
Cl±(V,Q), so that there exists σu, σv ∈ {1,−1} such that ũ = σuu and ṽ = σvv. Then we have

ũv = ũṽ = σuσvuv , (45.2.10)

since •̃ is an automorphism, and hence distributes over products. Hence, uv is homogeneous of
degree σuσv. ■

Note that this holds only for the canonical automorphism, but not for the two antiautomor-
phisms we have defined. It follows from the grading that the even elements Cl+(V,Q) constitute
a subalgebra. This will be important to construct the spin groups we will use in the following
sections.

45.3 Clifford, pin and spin groups

An element of a Clifford algebra Cl(V,Q), in general, does not have an inverse, i.e., an element
such that their product yields the identity element 1. Those elements which possess an inverse
form a group, which we define as follows, and whose subgroups we study in this section, following
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mostly the treatment in [Har90, ch. 10], with elements from [LM89, ch. I, §2]. The aim of
this section is to give an overview of the groups which are commonly defined in the literature
and their relations, with a particular focus on the spin groups, which we will then use in the
following sections.

Definition 45.3.1 (Invertible Clifford elements). Let Cl(V,Q) be a Clifford algebra. Its
group of invertible elements is the group constituted by the elements

Cl∗(V,Q) = {A ∈ Cl(V,Q),∃A−1 : AA−1 = A−1A = 1} . (45.3.1)

The definition is thus analogue to the definition of the general linear group in example 15.1.3,
which is given by all invertible elements of a matrix algebra. For the general linear group we
already know that it is a Lie group. One may thus expect the same to hold for the group we
constructed here. This is indeed the case. Here we restrict ourselves to the canonical cases.

Theorem 45.3.1. Cl∗k,l(R) is a real Lie group of real dimension 2k+l, while Cl∗n(C) is a complex
Lie group of complex dimension 2n.

Proof. ▶. . .◀ ■

In the following, we will construct various subgroups of Cl∗(V,Q). In order to construct these
groups, it is helpful to note that the group of invertible elements acts (from the left) on the
Clifford algebra in two canonical ways. We start with the following, which is straightforward.

Definition 45.3.2 (Adjoint representation of a Clifford algebra). Let Cl(V,Q) be a Clifford
algebra and Cl∗(V,Q) the group of invertible elements. The adjoint representation is defined
as the group action

Ad : Cl∗(V,Q)× Cl(V,Q) → Cl(V,Q)
(u, v) 7→ Adu(v) = uvu−1

. (45.3.2)

The adjoint representation is a common operation in the theory of algebras. However, in the
case of Clifford algebras, it turns out that there is another, related representation, which makes
use of the canonical automorphism we provided in definition 45.2.2. This allows us to define
the following.

Definition 45.3.3 (Twisted adjoint representation of a Clifford algebra). Let Cl(V,Q)
be a Clifford algebra and Cl∗(V,Q) the group of invertible elements. The twisted adjoint
representation is defined as the group action

Ãd : Cl∗(V,Q)× Cl(V,Q) → Cl(V,Q)

(u, v) 7→ Ãdu(v) = ũvu−1
. (45.3.3)

Note that here the element u multiplied from the left is replaced by the element ũ obtained
using the canonical automorphism. We now aim to derive actions on the vector space V from
these two representations. Note that for v ∈ Cl1(V,Q) ∼= V , it is not necessarily satisfied that
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also Adu(v) ∈ Cl1(V,Q) or Ãdu(v) ∈ Cl1(V,Q) for arbitrary u. However, there are elements u
which actually satisfy these conditions, and they form groups. This brings us to the following
definition.

Definition 45.3.4 (Reduced Clifford group). Let Cl(V,Q) be a Clifford algebra. Its re-
duced Clifford group is the group P(V,Q) of invertible elements u ∈ Cl∗(V,Q) which satisfy
uvu−1 ∈ Cl1(V,Q) for all v ∈ Cl1(V,Q).

Here we introduced the name reduced Clifford group for reasons which will become clear below.
More common, more widely used and also more important for our following constructions is the
following.

Definition 45.3.5 (Clifford group). Let Cl(V,Q) be a Clifford algebra. Its Clifford group
(or Clifford-Lipschitz group) is the group P̃(V,Q) of invertible elements u ∈ Cl∗(V,Q) which
satisfy ũvu−1 ∈ Cl1(V,Q) for all v ∈ Cl1(V,Q).

A more commonly found notation is Γ(V,Q). In order to study the properties of these groups,
and answer the question why we are interested in particular in the twisted adjoint representation
Ãd and use it to define the Clifford group P̃(V,Q), it is helpful to take a look at some special
elements of this group, namely those that lie in Cl1(V,Q) ∼= V . Obviously, an element u ∈ V is
invertible in Cl(V,Q) if and only if Q(v) ̸= 0, and we have u−1 = u/Q(u), since

uu−1 = u−1u =
uu

Q(u)
=
Q(u)1

Q(u)
= 1 . (45.3.4)

Further, note that ũ = −u, since u ∈ Cl−(V,Q) following theorem 45.2.3. Hence, for its action
on v ∈ Cl1(V,Q) ∼= V we can write

Ãdu(v) = ũvu−1 = − uvu

Q(u)
= u

uv − 2⟨u, v⟩1
⟨u, u⟩ = v − 2u

⟨u, v⟩
⟨u, u⟩ , (45.3.5)

and so we get the reflection along u: we have Ãdu(v) = v if u and v are orthogonal, ⟨u, v⟩ = 0,
and Ãdu(v) = −v if they are collinear, v = λu for some λ ∈ R. Note that this in particular has
the following consequence.

Theorem 45.3.2. The twisted adjoint representation of the Clifford-Lipschitz group P̃(V,Q)
on the vector space V preserves the inner product,

⟨Ãdu(v), Ãdu(w)⟩ = ⟨v, w⟩ (45.3.6)

for all u ∈ P̃(V,Q) and v, w ∈ V .

Proof. By direct calculation, we have

⟨Ãdu(v), Ãdu(w)⟩ =
〈
v − 2u

⟨u, v⟩
⟨u, u⟩ , w − 2u

⟨u,w⟩
⟨u, u⟩ ,

〉
= ⟨v, w⟩ − 2

⟨u, v⟩⟨u,w⟩+ ⟨u,w⟩⟨v, u⟩
⟨u, u⟩ + 4

⟨u, u⟩⟨u, v⟩⟨u,w⟩
⟨u, u⟩2

= ⟨v, w⟩

(45.3.7)

for u ∈ P̃(V,Q) and v, w ∈ V . ■
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Theorem 45.3.3. The Clifford group is given by

P̃(V,Q) = {u1 · · ·ur,▶ . . . ◀} (45.3.8)

Proof. ▶. . .◀ ■

Note that the “length” of u does not matter for the twisted adjoint representation, so we have
Ãdλu = Ãdu for λ ∈ R∗. Hence, we may restrict ourselves to such u which have unit length.
This yields the following group.

Definition 45.3.6 (Pin group). Let Cl(V,Q) be a Clifford algebra. Its pin group Pin(V,Q)
is the group generated by the elements v ∈ Cl1(V,Q) ∼= V with |Q(v)| = 1.

Definition 45.3.7 (Spin group). Let Cl(V,Q) be a Clifford algebra. Its spin group
Spin(V,Q) is the group Spin(V,Q) = Pin(V,Q) ∩ Cl+(V,Q).

Definition 45.3.8 (Orthogonal pin group). Let Cl(V,Q) be a Clifford algebra. Its orthog-
onal pin group

∨
Pin(V,Q) is the group containing those elements v ∈ Pin(V,Q) which satisfy

vv̌ = 1.

Definition 45.3.9 (Unitary pin group). Let Cl(V,Q) be a Clifford algebra. Its unitary pin
group

∧
Pin(V,Q) is the group containing those elements v ∈ Pin(V,Q) which satisfy vv̂ = 1.

Definition 45.3.10 (Reduced spin group). Let Cl(V,Q) be a Clifford algebra. Its reduced
spin group Spin0(V,Q) is the group Spin0(V,Q) =

∨
Pin(V,Q) ∩

∧
Pin(V,Q).

Theorem 45.3.4. The reduced spin group is alternatively given by

Spin0(V,Q) = Spin(V,Q) ∩
∨

Pin(V,Q) = Spin(V,Q) ∩
∧

Pin(V,Q) . (45.3.9)

Proof. ▶. . .◀ ■

Theorem 45.3.5. If V is a real vector space of dimension n and Q a quadratic form with
definite signature, then the corresponding pin and spin groups satisfy

∨
Pinn,0(R) = Pinn,0(R) ,

∧
Pinn,0(R) = Spin0n,0(R) = Spinn,0(R) , (45.3.10)

as well as
∧

Pin0,n(R) = Pin0,n(R) ,
∨

Pin0,n(R) = Spin00,n(R) = Spin0,n(R) . (45.3.11)

Proof. ▶. . .◀ ■

509



45.4 Spin structures

45.5 Spin bundles

45.6 Spinor bundles
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Chapter 46

Non-commutative geometry
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Chapter 47

Supermanifolds
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Part III

Physical applications
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Chapter 48

Differential equations

48.1 First-order ordinary differential equations of multiple
variables

48.2 Second-order ordinary differential equations of multi-
ple variables

48.3 Higher-order ordinary differential equations of multi-
ple variables

514



Chapter 49

Lagrange theory on finite jet
bundles

49.1 Lagrangians and action functionals

We now come to a physical application of the formalism introduced in the previous section.
The physical system we consider here is called a Lagrangian system. It is modeled by a fiber
bundle π : E →M , where physical solutions of the system are a subset of the space of sections
Γ(E). This set of solutions is obtained from an action principle. In order to clarify these terms,
we start with a few definitions.

Definition 49.1.1 (Lagrangian). Let π : E → M be a fiber bundle with dimM = n. A
Lagrangian of order r ∈ N on E is a horizontal n-form L on the r-th jet bundle Jr(E).

Recall that the elements of Jr(E) are equivalence classes of sections σ ∈ Γ(E) obtained by
choosing a point p ∈ M and evaluating the section to σ(p) and its partial derivatives of order
up to r. A Lagrangian thus depends on p, σ(p) and its derivatives at p, i.e., on the local behavior
of the section σ. We know that we can obtain a global property if we integrate a differential
form. This will be done in the next definition.

Definition 49.1.2 (Action functional). Let π : E → M be a fiber bundle and L ∈
Ωn,0(Jr(E)) a Lagrangian of order r on E. The action functional of L over an open
domain U ⊂M is the function

S : Γ|U (E) → R

σ 7→
∫
U

(jrσ)∗(L)
. (49.1.1)

Here the jet prolongation jrσ : U → Jr(E) is used to pull back the n-form L ∈ Ωn(Jr(E)) to
an n-form (jrσ)∗(L) ∈ Ωn(U). Since we have dimM = dimU = n, this can be integrated over
the domain U . To illustrate this further, we give an example from classical mechanics.
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Example 49.1.1 (First order Lagrangian of a point mass on a metric manifold with potential).
Let M = R and Q a manifold of dimension n. Let E = R×Q be the trivial fiber bundle with
projection π : R×Q→ R onto the first factor. Sections of this bundle are uniquely expressed
by maps γ ∈ C∞(R, Q), i.e., by curves on Q. We use the one-dimensional Euclidean
coordinate t on R and arbitrary coordinates (qa) on Q, so that we have coordinates (t, qa)
on R×Q. From these coordinates we derive the coordinates (t, qa(0), q

a
(1)) on J1(E) ∼= R×TQ.

To construct a particular Lagrangian, let further g ∈ Γ(T 0
2Q) be a non-degenerate, positive

definite, symmetric tensor field of type (0, 2) (the metric) and V ∈ C∞(Q,R) (the potential).
To illustrate this, we do this in five steps, each of which we explain in our geometric language:

• We take an element of J1(E) ∼= R × TQ and project it onto the second factor. This
yields a tangent vector q(1) = qa(1)∂a ∈ Tq(0)Q, where q(0) ∈ Q is the result of using the
bundle map of TQ on q(1). For convenience, we write q = q(0), q̇ = q(1) and also the
coordinates qa = qa(0), q̇

a = qa(1).

• We take the metric g, which is a section of the tensor bundle T 0
2Q, and maps q to

g(q) ∈ T 0
2 qQ. This is a covariant tensor, so we can contract it with two copies of the

vector q̇ ∈ TqQ and obtain a real number. In coordinates we thus get gab(q)q̇aq̇b ∈ R.
Doing this for all elements of J1(E) gives us a real function on J1(E).

• We take the potential V , which is a real function on Q, and evaluate it at q, so we
obtain another real number V (q). Doing this for all elements of J1(E) gives us another
real function on J1(E).

• We take the canonical one-form ω = dt ∈ Ω1(R) on R and pull it back via the
projection π1 : J1(E) → R. This yields us a horizontal one-form π∗1(ω) = dt ∈
Ω1(J1(E)).

• We combine the two real functions and the one-form constructed above to the first
order Lagrangian

L(t, q, q̇) =

(
1

2
gab(q)q̇

aq̇b − V (q)

)
dt ∈ Ω1(J1(E)) . (49.1.2)

Finally, we construct the action functional. For this purpose we consider a section, described
by a curve γ : R→ Q, which in our chosen coordinates is described by functions γa(t). The
pullback along this section then simply amounts to replacing the coordinates qa and q̇a in
the Lagrangian by γa(t) and ∂γa(t)/∂t. This yields a one-form on M = R, which can be
integrated to the action

S[q] =

∫
R

(
1

2
gab(γ(t))

∂γa(t)

∂t

∂γb(t)

∂t
− V (γ(t))

)
dt (49.1.3)

One now easily recognizes the action of a point mass, with all function arguments explicitly
written out in order to clarify that this is now truly an object on M . Of course one may ask
why we use this particular Lagrangian - for now the answer is simply: “Because it yields us
the correct physics in the end.” But we still need to arrive at the reason for this.

We discuss another example from field theory.

Example 49.1.2 (First order Lagrangian of a massive scalar field on a metric manifold). Let
M be a manifold of dimension n and E = M × R the trivial line bundle with projection
π : M × R → M onto the first factor. Sections of this bundle are uniquely expressed by
maps φ ∈ C∞(M,R), i.e., by real functions on M . We use arbitrary coordinates (xa) on M

516



and the one-dimensional Euclidean coordinate ϕ on R, so that we have coordinates (xa, ϕ)
on M × R. From these coordinates we derive the coordinates

(xa, ϕ, ϕ,a) = (xa, ϕ(0,...,0), ϕ(1,0,...,0), . . . , ϕ(0,...,0,1)) (49.1.4)

on J1(E) ∼= T ∗M × R.

To construct a particular Lagrangian, let further g ∈ Γ(T 0
2M) be a non-degenerate, symmet-

ric tensor field of type (0, 2) (the metric) and V ∈ C∞(R,R) (the potential). To illustrate
this, we do this in five steps, each of which we explain in our geometric language:

• From an element (xa, ϕ, ϕ,a) we obtain elements ϕ ∈ R, ϕ,adxa ∈ T ∗xM and x ∈M by
applying suitable projections as in the previous example.

• Since the metric is non-degenerate, it possesses an inverse g−1 ∈ Γ(T 2
0M), which is

also non-degenerate and symmetric. If we evaluate it at x ∈ M , we get an element
g−1(x) ∈ T 2

0 xM . Contracting this element with two copies of ϕ,adxa yields a real
number gab(x)ϕ,aϕ,b.

• The potential V ∈ C∞(R,R) can be applied to ϕ ∈ R, which yields another real
number V (ϕ) ∈ R.

• The metric induces a volume form
√
|det g(x)|dnx on M . The pullback of this volume

form along π1 : J1(E)→M is a horizontal n-form on J1(E).

• From the objects constructed above we compose the Lagrangian(
1

2
gab(x)ϕ,aϕ,b − V (ϕ)

)√
|det g(x)|dnx . (49.1.5)

To obtain the action, one finally considers a section, which is described in coordinates by
a function φ(x), and replaces the coordinates φ and φ,a by φ(x) and ∂φ(x)/∂xa. The
resulting one-form on M then yields the action

S[φ] =

∫
M

(
1

2
gab(x)

∂φ(x)

∂xa
∂φ(x)

∂xb
− V (φ(x))

)√
|det g(x)|dnx . (49.1.6)

Also here we have explicitly written out every dependence on the point x to illustrate that
we are indeed integrating over a n-form on M . Note that in this example we have treated
only ϕ as a dynamical field and assumed a fixed background metric g. Both of these objects
are sections of vector bundles, and normally one would consider the sum of these vector
bundles as the starting point of the construction to make both fields dynamical.

We see that we can formulate these two classical examples in terms of differential geometric
objects (sections of bundles) without using coordinates. The coordinates are used here only to
illustrate the process and to provide explicit formulas. However, the Lagrangian formulation
presented here is independent of the choice of coordinates.

49.2 Action principle and variation

We finally come to the question how to derive equations of motion, and thus the space of
solutions of the Lagrangian system introduced in the last section. The principle of least action
states that solutions of a Lagrangian system are those local sections σ ∈ Γ|(E) for which the
action assumes a local minimum in the space of sections. However, here we will restrict ourselves
to considering extremals of the action. This will now be clarified.
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Definition 49.2.1 (Extremal of the action). Let π : E →M be a fiber bundle with action
functional S on an open domain U ⊂M . A local section σ ∈ Γ|U (E) is called an extremal
of the action if for all smooth families σ̃• : R → Γ|U (E) of local sections with σ̃0 = σ the
function

S[σ̃•] : R → R
ϵ 7→ S[σ̃ϵ]

(49.2.1)

has vanishing derivative at ϵ = 0.

Here we call the family σ̃• : R → Γ|U (E) of sections smooth if and only if the map σ̃•(•) :
R × U → E is smooth. The definition 49.2.1 means that the action is stationary, which is
expressed by the equation

dS[σ̃ϵ]

dϵ

∣∣∣∣
ϵ=0

= 0 (49.2.2)

for all smooth families of sections with σ̃0 = σ. This allows us to consider the function compo-
sition

R σ̃•−→ Γ|U (E)
S−→ R (49.2.3)

and to apply some kind of “chain rule”. This will be done in several steps in the following
sections.

49.3 Variation of sections and their jet prolongations

Recall that in the previous sections we considered families ϵ 7→ σ̃ϵ ∈ Γ|U (E) of local sections
of a fiber bundle π : E → M with a fixed domain U ⊂ M , and we denoted σ = σ̃0. For every
p ∈ U , this yields a curve

γp : R → E
ϵ 7→ σ̃ϵ(p)

, (49.3.1)

where we simply evaluate the section σ̃ϵ at the point p. Every such curve clearly has

γp(0) = σ̃0(p) = σ(p) . (49.3.2)

Further, one has π(γp(ϵ)) = p for all ϵ, so that the tangent vectors γ̇p(0) ∈ Tσ(p)E satisfy

π∗(γ̇p(0)) = 0 . (49.3.3)

Hence, they are in fact vertical tangent vectors, γ̇p(0) ∈ Vσ(p)E. Denoting the vertical tangent
bundle of E by ν : V E → E, we see that there exists a map

ξ : M → V E
p 7→ γ̇p(0)

, (49.3.4)

which satisfies ν ◦ ξ = σ (and which is thus equivalent to a section of the pullback bundle
σ∗ν : σ∗V E → M , following theorem 2.9.1). Also one now easily checks that for every p ∈ M
the action of ξ(p) on a function f ∈ C∞(E,R) is given by

ξ(p)(f) = γ̇p(0)(f) = (f ◦ γp)′(0) =
d

dϵ
f(σ̃ϵ(p))

∣∣∣∣
ϵ=0

, (49.3.5)

which directly follows from its definition.

For the jet prolongation jrσ : U → Jr(E), which appears in the action functional, we could
now proceed on full analogy. By fixing a point p ∈ U we obtain a curve ϵ 7→ jrp σ̃e ∈ Jr(E),
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whose tangent vector at ϵ = 0, which we denote ξr(p), is vertical with respect to πr, and hence
satisfies (πr)∗(ξr(p)) = 0. The corresponding map ξr :M → V Jr(E) then satisfies

ξr(p)(f) =
d

dϵ
f(jrp σ̃ϵ)

∣∣∣∣
ϵ=0

, (49.3.6)

for every p ∈ U and f ∈ C∞(Jr(E),R). Denoting the vertical tangent bundle of Jr(π) by
νr : V J

r(π)→ Jr(π), we obviously have νr ◦ ξr = jrσ.

Since the jet prolongation jrσ is uniquely defined by σ, and the same holds for jrσ̃ϵ and σ̃ϵ, one
may already expect that also ξr is completely determined by ξ. To see that this is indeed the
case, consider first the fiber bundle ν̃ = π ◦ ν : V E →M . Note that this bundle is not a vector
bundle, since the vector space structure on V E is defined only on the fibers over E - the fibers
over M are not vector spaces, but unions of vector spaces, and one cannot add elements which
lie in different vector spaces within this union. Clearly ξ is a local section of this bundle with
domain U . As with any fiber bundle, we may now construct the jet bundle ν̃r : Jr(ν̃) → M ,
and prolong ξ to a local section jrξ : U → Jr(ν̃) of this bundle. Now the following fact turns
out to be useful.

Theorem 49.3.1. There exists a canonical fiber bundle isomorphism φ covering the identity
such that the diagram

Jr(ν̃)
φ //

ν̃r ""

V Jr(π)

πr◦νr
{{

M

(49.3.7)

commutes.

Instead of a full proof, we will only sketch the construction of φ. Let ξ :M → V E be a section
of ν̃ : V E → M with σ = ν ◦ ξ : M → E. Given p ∈ M , we thus have a jet jrpξ ∈ Jr(ν̃). Our
aim is to construct an element φ(jrpξ) ∈ V Jr(π). Since the latter is a (vertical) vector on Jr(π),
and thus a derivation, it can be applied to arbitrary (smooth) functions f ∈ C∞(Jr(π),R). We
now consider a particular class of such functions, which we construct as follows. Let 0 ≤ k ≤ r,
γ ∈ C∞(R,M) with γ(0) = p and u ∈ C∞(E,R), and define

F kγ,u : Γp(π) → R
τ 7→ (u ◦ τ ◦ γ)(k)(0) . (49.3.8)

By definition 21.6.1 of the r-jet jrpτ , this function yields the same value for all local sections
that have the same r-jet. Hence, it defines a function F̃ kγ,u ∈ C∞(Jr(E),R). We then define
the action of φ(jrpξ) as

φ(jrpξ)(F̃
k
γ,u) =

d

dt
⟨ξ(γ(t)),du(σ(γ(t)))⟩

∣∣∣∣
t=0

. (49.3.9)

Note that ξ(γ(t)) ∈ Vσ(γ(t))E ⊂ Tσ(γ(t))E and du(σ(γ(t))) ∈ T ∗σ(γ(t))E, so that this is indeed
well-defined.

We illustrate the construction using the following commutative diagram:

Jr(ν̃)
φ //

ν̃r,0

��

V Jr(π)

νr

��
V E

ν

""
ν̃

��

Jr(π)
πr,0

{{
πr

��

E

π

��
M

(49.3.10)
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Using appropriate charts, we have coordinates (xa) on M and adapted coordinates (xa, yµ) on
E. These can then be used to construct coordinates (xa, yµ, vµ) on the vertical tangent bundle
V E, by writing a vertical tangent vector in the coordinate basis as

vµ
∂

∂yµ
. (49.3.11)

On Jr(π), one constructs coordinates (xa, yµΛ) with 0 ≤ |Λ| ≤ r. Writing a vertical tangent
vector to Jr(π) as

vµΛ
∂

∂yµΛ
, (49.3.12)

one obtains coordinates (xa, yµΛ, v
µ
Λ) on V Jr(π). Finally, from the coordinates (xa, yµ, vµ) on

the vertical tangent bundle V E one also obtains coordinates (xa, yµΛ, v
µ
Λ) on Jr(ν̃). In these

coordinates the isomorphism φ : Jr(ν̃)→ V Jr(π) maps each tuple of coordinates to itself.

Using this bundle isomorphism, one can finally write ξr : M → V Jr(π) as ξr = φ ◦ jrξ using
the jet prolongation jrξ :M → Jr(ν̃).

49.4 Variation of forms on jet bundles

In order to calculate the variation of the action we need to know how (jrσ̃ϵ)
∗(L) varies with ϵ.

This is given by the following theorem.

Theorem 49.4.1. Let σ̃ϵ :M → E be a smooth family of sections of the fiber bundle π : E →M
and ω ∈ Ωk,0(Jr)(E)) a horizontal k-form on the r-jet bundle Jr(E). Then the pullback of ω
along jrσ̃ϵ satisfies

d

dϵ
(jrσ̃ϵ)

∗(ω)

∣∣∣∣
ϵ=0

= (jrσ)∗ (ιξr (dω)) , (49.4.1)

where ξr is constructed from the r-jet prolongation of ξ and σ = σ̃0.

We will not prove this here, but a few clarifications are in order. First, recall that ξr : M →
V Jr(E) ⊂ TJr(E) takes an element p ∈ M and assigns to it a (vertical) tangent vector ξr(p)
at jrpσ ∈ Jr(E). Equivalently, it can be seen as a particular section of the pullback bundle of
TJr(E)→ Jr(E) to M along jrσ, following theorem 2.9.1. A section of Λk+1T ∗Jr(E)→ Jr(E)
can be pulled back along jrσ to a section of the corresponding pullback bundle over M . Hence,
one obtains sections of bundles TJr(E)→M and Λk+1T ∗Jr(E)→M . Since the latter can be
seen as the bundle of alternating multilinear functions on TJr(E), there exists a well-defined
notion of an interior product of these two sections, which yields a section of ΛkT ∗Jr(E)→M .
This can finally be pulled back to a section of ΛkT ∗M →M , which is a k-form on M . This is
the object constructed on the right hand side of (49.4.1).

We also illustrate it using the coordinates we introduced in the previous section. Recall that
any horizontal k-form can be written in the form

ω(x, yΛ) = ωa1···ak(x, yΛ)dx
a1 ∧ . . . ∧ dxak . (49.4.2)

Its pullback to M along the r-jet of a section σ̃ϵ is obtained by replacing the coordinate argu-
ments yµΛ by the partial derivatives ∂Λyµϵ (x) of σ̃ϵ, so that one obtains

(jrσ̃ϵ)
∗(ω)(x) = ωa1···ak(x, ∂Λyϵ(x))dx

a1 ∧ . . . ∧ dxak . (49.4.3)

Taking the derivative with respect to ϵ and using the chain rule yields the left hand side

d

dϵ
(jrσ̃ϵ)

∗(ω)

∣∣∣∣
ϵ=0

=

[
d

dϵ
∂Λy

µ
ϵ (x)

∣∣∣∣
ϵ=0

∂̄Λµωa1···ak(x, ∂Λy(x))

]
dxa1 ∧ . . . ∧ dxak

=
[
vµΛ(x)∂̄

Λ
µωa1···ak(x, ∂Λy(x))

]
dxa1 ∧ . . . ∧ dxak ,

(49.4.4)
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where we used the coordinate expression vµΛ(x)∂̄
Λ
µ for the r-jet jrξ of ξ. To compare with the

right hand side, we calculate the exterior derivative

dω(x, yΛ) = ∂bωa1···ak(x, yΛ)dx
b ∧ dxa1 ∧ . . . ∧ dxak

+ ∂̄Λµωa1···ak(x, yΛ)dy
µ
Λ ∧ dxa1 ∧ . . . ∧ dxak . (49.4.5)

After inserting the vertical vector field ξr, which satisfies dyµΛ(ξr) = vµΛ(x) and dxa(ξr) = 0, and
taking the pullback via jrσ we finally arrive at the same coordinate expression as for the left
hand side.

If ω = L is a Lagrangian, we thus find that the action is stationary at the section σ : M → E
if and only if

0 = δS =
dS[σ̃ϵ]

dϵ

∣∣∣∣
ϵ=0

=

∫
M

(jrσ)∗ (ιξr (dL)) (49.4.6)

for every ξ :M → V E with ν ◦ ξ = ω, i.e., if and only if

(jrσ)∗ (ιξr (dL)) (49.4.7)

is exact for every ξ : M → V E with ν ◦ ξ = ω. This already brings us closer to our goal.
However, this expression is still rather cumbersome, as it requires calculating ξr and hence the
r-jet jrξ for every possible ξ, and checking whether the result is an exact form. To get rid of
this calculation, we need another step.

49.5 Integration by parts

We will now further simplify the condition for a stationary action. In this section we discuss
the question under which circumstances the pullback (jrσ)∗(ω) of a horizontal k-form ω ∈
Ωk,0(Jr(E)) is exact. The answer to this question is given by the following statement.

Theorem 49.5.1. The pullback (jrσ)∗(ω) of a dH-exact horizontal k-form ω ∈ Ωk,0(Jr(E)) is
exact.

We will not prove this here, but illustrate it using coordinates. Let ω be the k-form given by

ω(x, yΛ) = ωα1···αk(x, yΛ)dx
α1 ∧ . . . ∧ dxαk . (49.5.1)

For its pullback along the r-jet of a section σ we write

(jrσ)∗(ω)(x) = ωα1···αk(x, ∂Λy(x))dx
α1 ∧ . . . ∧ dxαk . (49.5.2)

In the case that ω = dHη is dH -exact, we have

dHη(x, yΛ) =

[
∂ηα1···αk−1

∂xβ
+
∑
Λ

ya(λ1,...,λβ+1,...,λn)

∂ηα1···αk−1

∂yaΛ

]
dxβ ∧ dxα1 ∧ . . . ∧ dxαk−1 ,

(49.5.3)
whose pullback along jrσ is just the total derivative

(jrσ)∗(dHη)(x) = d(jr−1σ)∗(η)(x) . (49.5.4)

This yields the statement above for our chosen coordinates - of course we would have to show
it in an coordinate independent fashion if we wanted a proof.

Returning to our original problem, we may thus add an arbitrary dH -exact form dHη ∈
Ωn,0(Jr(E)) to ιξr (dL) without changing the exactness of (jrσ)∗ (ιξr (dL)). Here also the fol-
lowing statement will help.

521



Theorem 49.5.2. For any horizontal k-form η and section ξ :M → V E holds

dH(ιξr−1
η) = −ιξr (dHη) . (49.5.5)

The proof is straightforward. This in particular means that if η is dH -exact, then also ιξr−1
η

is dH -exact. For our problem thus follows that we may add an arbitrary dH -exact form dHη ∈
Ωn,1(Jr(E)) to dL. We define the following operator, which will yield us this form.

Definition 49.5.1 (Internal Euler operator). Let π : E → M be a fiber bundle with
dimM = n and Ωn,s(Jr(E)) with s ≥ 1 the space of forms of type (n, s) on the r-jet bundle
Jr(E). The internal Euler operator is the unique function ϱ : Ωn,s(Jr(E))→ Ωn,s(J2r(E))
such that:

• ϱ is a projector (up to lifts to higher jet bundles): ϱ2 = π∗4r,2r ◦ ϱ.

• For ω ∈ Ωn,s(Jr(E)), the difference π∗2r,rω − ϱ(ω) is dH -exact, i.e., there exists η ∈
Ωn−1,s(J2r−1(E)) such that dHη = π∗2r,rω − ϱ(ω).

• ϱ vanishes on dH -exact forms: ϱ ◦ dH = 0.

• ιX ◦ ϱ = 0 for all vector fields X on J2r(E) with π2r,0∗ ◦X = 0.

We will not prove the existence and uniqueness of the internal Euler operator here, and we will
not construct it explicitly. Instead, we will only provide the coordinate expression, which is
given by

ϱ : Ωn,s(Jr(E)) → Ωn,s(J2r(E))

ω 7→ 1

s

∑
Λ

(−1)|Λ|θa(0,...,0) ∧DΛ

(
ι∂̄Λ
a
ω
)
. (49.5.6)

Here we used the total derivative operator

DΛ = (D1)
λ1 · · · (Dn)λn , (49.5.7)

which acts on functions f ∈ Ω0(Jr(E)) as

Dαf = ∂αf +
∑
Λ

ya(λ1,...,λα+1,...,λn)
∂̄Λa f . (49.5.8)

To construct its action on higher degree forms, one uses the rules

Dα(ω ∧ η) = Dα(ω) ∧ η + ω ∧Dα(η) , Dα(dω) = d(Dαω) . (49.5.9)

From these follows in particular the action on the coordinate one-forms as

Dαdx
β = 0 , Dαdy

a
Λ = dya(λ1,...,λα+1,...,λn)

. (49.5.10)

Note that the total derivative is not an exterior derivative - it does not change the degree of a
form, does not square to zero and is not an antiderivation.

Since ϱ is a projector, ϱ(Ωn,s(Jr(E))) is an invariant subspace which we denote Fs(J2r(E)),
which we can describe in coordinates as follows. Since a vector field X on J2r(E) with π2r,0∗ ◦
X = 0 has the coordinate expression

X =
∑
|Λ|≥1

XΛ
a ∂̄

a
Λ , (49.5.11)
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it follows from the last condition in the definition of the internal Euler operator that the elements
of Fs(J2r(E)) are of the form

ω = ωa1···asθ
a1
(0,...,0) ∧ . . . ∧ θ

as
(0,...,0) ∧ dx1 ∧ . . . ∧ dxn . (49.5.12)

For a section ξ : M → V E, which we expressed by the coordinate functions ya(x) and va(x),
we thus find that ιξ2rω does not depend on the derivatives of the coordinate functions va(x).
We can thus simplify the task of finding sections σ :M → E for which the action is stationary
by replacing dL with ϱ(dL).

49.6 Euler operator and Euler-Lagrange equations

We now finally use the results we derived so far and put them together. For this purpose we
first introduce another helpful shorthand notation.

Definition 49.6.1 (Euler operator). The Euler operator is the function E = ϱ ◦ d :
Ωn,0(Jr(E))→ F1(J2r(E)).

Writing a Lagrangian L ∈ Ωn,0(Jr(E)) in coordinates as L = Ldx1 ∧ . . . ∧ dxn, we can write
the Euler operator as

EL = EµL θµ(0,...,0) ∧ dx1 ∧ . . . ∧ dxn , (49.6.1)

where
EµL =

∑
Λ

(−1)|Λ|DΛ

(
∂̄ΛµL

)
. (49.6.2)

To proceed with our problem of stationary actions, we come to another very helpful statement.

Theorem 49.6.1. Let ξ : M → V E be a section and σ = ν ◦ ξ : M → E. The pullback
(jrσ)∗ (ιξr (EL)) is exact if and only if it vanishes.

This greatly simplifies our task. Instead of determining whether a differential form is exact, we
need to check whether it vanishes. But we can simplify our task even more by the help of the
following statement.

Theorem 49.6.2. Let σ :M → E be a section. The pullback (jrσ)∗ (ιξr (EL)) vanishes for all
ξ :M → V E with σ = ν ◦ ξ if and only if (EL) ◦ σ = 0.

We have now found an amazingly simple condition. Given a Lagrangian L ∈ Ωn,0(Jr(E)) we
can now determine the sections σ :M → E as the solutions of the following equation which in
coordinates turns into a differential equation for σ:

Definition 49.6.2 (Euler-Lagrange equation). Let L ∈ Ωn,0(Jr(E)) be a Lagrangian and
σ ∈ Γ|(E) a local section. The Euler-Lagrange equation of L applied to σ is the equation

(EL) ◦ j∞σ = 0 . (49.6.3)

We apply this definition to the following example.
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Example 49.6.1. Recall that in example 49.1.2 we considered the Lagrangian

L = Ldx1 ∧ . . . ∧ dxn (49.6.4)

with
L =

(
1

2
gab(x)ϕ,aϕ,b − V (ϕ)

)√
|det g(x)| . (49.6.5)

In this case the fiber of the bundle π : E →M is one-dimensional, and so there is only one
value for the index µ in the Euler-Lagrange equations (49.6.1) and (49.6.2). The vertical
coordinate derivatives are given by

∂̄(0,...,0)L = −V ′(ϕ)
√
|det g(x)| (49.6.6)

and
∂̄(0,...,λa=1,...,0)L = gab(x)ϕ,b

√
|det g(x)| . (49.6.7)

Taking the total derivative of the latter yields

Da

[
gab(x)ϕ,b

√
|det g(x)|

]
= □ϕ

√
|det g(x)| . (49.6.8)

In total, we therefore find

EL = − [□ϕ+ V ′(ϕ)]
√
|det g(x)| . (49.6.9)

In particular for the case V (ϕ) = 1
2m

2ϕ2, and hence V ′(ϕ) = m2ϕ, where m ∈ R denotes
the mass, we obtain the field equation for the Klein-Gordon field.

49.7 Lepage forms

We now introduce another class of differential forms on jet bundles, which are useful for the
description of Lagrangian systems and in particular their symmetries, which we will study in
section 51. We define this class as follows.

Definition 49.7.1 (Lepage form). A n-form ρ ∈ Ωn(Jr(E)) on the r-jet bundle Jr(E) of
a fiber bundle π : E →M over a n-dimensional manifold M is called a Lepage form if and
only if the 1-contact component p1dρ ∈ Ωn,1(Jr+1(E)) is πr+1,0-horizontal.

Recall that a form ω ∈ Ωk+1(Jr+1(E)) is πr+1,0-horizontal if and only if ιXω = 0 for all πr+1,0-
vertical vector fields X ∈ Vect(Jr+1(E)), i.e., vector fields satisfying πr+1,0∗ ◦ X = 0. In jet
bundle coordinates (xa, yµΛ), such a form ω is thus a linear combination of exterior products of
the basis one-forms dxa and dyµ only, with no occurrence of the derivative basis elements dyµΛ
with |Λ| ≥ 1. Alternatively, one may replace the basis one-forms dyµ with the contact basis θµ.
For a Lepage form, the 1-contact component p1dρ thus has the form

p1dρ = Eµa1···anθ
µ ∧ dxa1 ∧ . . . ∧ dxan . (49.7.1)

There exists a close relationship between Lepage forms and Lagrangians. To investigate this
relationship, we start with the following definition.
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Definition 49.7.2 (Lepage equivalent). Let π : E → M be a fiber bundle and L ∈
Ωn,0(Jr(E)) a Lagrangian of order r on E. A Lepage equivalent of L is a Lepage form
ρ ∈ Ωn(Js(E)) such that p0ρ = π∗s+1,rL.

One may ask whether every Lagrangian admits (at least) one Lepage equivalent. This is indeed
the case, and we can even restrict its properties, in particular its jet bundle and contact order.
This we can formulate as follows.

Theorem 49.7.1. Let π : E → M be a fiber bundle and L ∈ Ωn,0(Jr(E)) a Lagrangian of
order r on E. Then there exists an integer s ≤ 2r − 1 and a Lepage equivalent ρ ∈ Ωn(Js(E))
of L of contact order smaller or equal than one, i.e., piρ = 0 for i ≥ 2.

Proof. Recall that the Euler operator has the property

EL− π∗2r,rdL = ϱ(dL)− π∗2r,rdL = dHη , (49.7.2)

for some η ∈ Ωn−1,1(J2r−1(E)), since ϱ acts by adding a dH -exact form. Then we define

ρ = η + π2r−1,rL , (49.7.3)

and find that it satisfies
π∗2r,2r−1dρ = dHη + dV η + π2r,rdL . (49.7.4)

Note that, by construction, dHη ∈ Ωn,1(J2r(E)) and dV η ∈ Ωn−1,2(J2r(E)), while π2r,rdL ∈
Ωn,1(J2r(E)). Projecting to the first contact order thus gives

p1dρ = dHη + π2r,rdL = EL . (49.7.5)

By definition of the Euler-Lagrange operator, ▶. . .◀ ■

Once a Lepage equivalent of a Lagrangian is known, it can be used to simplify various tasks. So
far our main goal was to find extremals of an action, by deriving the Euler-Lagrange equations.
Now we see how this is achieved by using a Lepage equivalent.

Theorem 49.7.2. Let π : E → M be a fiber bundle, L ∈ Ωn,0(Jr(E)) a Lagrangian of order
r on E and ρ ∈ Ωn(Js(E)) a Lepage equivalent of L. Then the Euler-Lagrange form of L is
given by

EL = π∗2r,s+1p1dρ . (49.7.6)

Proof. ▶. . .◀ ■
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Chapter 50

Variational bicomplex

50.1 Infinite jet space

We have seen in section 21.6 that for every fiber bundle π : E → M the jet spaces Jr(E) for
r ∈ N form an inverse sequence

M
π←− E π1,0←−− J1(E)

π2,1←−− J2(E)
π3,2←−− . . . , (50.1.1)

where the maps πr,k : Jr(E)→ Jk(E) are the projections of fiber bundles. For the purpose of
this section, where we essentially follow [Sau89, ch. 7], we need to discuss what happens in the
limit r →∞. We define this limit as follows.

Definition 50.1.1 (Infinite jet space). Let π : E → M be a fiber bundle. Its infinite jet
space is the projective limit

J∞(E) = lim←− J
r(E) =

{
(z0, z1, . . .) ∈

∞×
r=0

Jr(E)

∣∣∣∣∣ ∀k ≤ r : πr,k(zr) = zk

}
. (50.1.2)

An element of J∞(E) is thus an infinite sequence of elements zr ∈ Jr(E) such that for all k ≤ r
the condition πr,k(zr) = zk is satisfied. To understand the meaning of this, recall that a jet
zr ∈ Jr(E) is an equivalence class of local sections of E such that their “partial derivatives up
to order r” agree. The condition πr,k(zr) = zk here simply means that if zr = jrpσ for some
point p ∈ M and some local section σ ∈ Γp(E), then zk = jkpσ. In other words, any lower
element zk of this sequence is uniquely defined by any higher element zr by throwing away any
derivatives of order higher than k. Naively, we could thus just forget about almost all elements
of the sequence and only look at the last one, which contains all derivatives - but of course,
there is no such last element in an infinite sequence. So the only way to describe a section and
“all of its infinitely many derivatives” is by an infinite sequence like the one above, and these
sequences form the infinite jet space J∞(E).

Given coordinates (xa) on a trivializing neighborhood U ∈ M and (yµ) on the fiber F of the
bundle π : E →M , so that we have coordinates (xa, yµ) on π−1(U) ∼= U×F we have previously
introduced coordinates (xa, yµΛ) with 0 ≤ |Λ| ≤ r on π−1r (U) ⊂ Jr(E). We get (infinitely many)
coordinates on J∞(E) by dropping the upper bound and allowing all multiindices Λ with
|Λ| ∈ N.

Note that J∞(E) is not a manifold in the sense we defined manifolds - it is not locally diffeo-
morphic to any finite-dimensional Euclidean space Rn. It has some properties of a manifold, so

526



that some operations on manifolds can be generalized to J∞(E), but not all of them, so we have
to be careful when working with this object. The following notions can nicely be generalized.

Definition 50.1.2 (∞-jet projection). Let π : E → M be a fiber bundle. For r ∈ N we
define the ∞-jet projection

π∞,r : J∞(E) → Jr(E)
(z0, z1, . . .) 7→ zr

. (50.1.3)

The function π∞,0 : J∞(E) → E is called the target projection, while π∞ = π ◦ π∞,0 :
J∞(E)→M is called the source projection.

As it is also the case for finite jet bundles, these projections throw away all derivatives of higher
order than a fixed r ∈ N.

Definition 50.1.3 (∞-jet of a section). Let π : E → M be a fiber bundle, p ∈ M and
σ ∈ Γp(E) a local section whose domain contains p. We define the ∞-jet j∞p σ of σ at p as
the infinite sequence

(j0pσ, j
1
pσ, . . .) ∈ J∞(E) . (50.1.4)

The∞-jet is the object which captures “all derivatives” of a local section σ at some point p ∈M .
Also one easily checks that this is an element of the infinite jet space, since

πr,k(j
r
pσ) = jkpσ (50.1.5)

for all k ≤ r, by definition of a jet. If we let p run over all points of the domain of σ, we obtain
the following notion.

Definition 50.1.4 (∞-jet prolongation). Let π : E →M be a fiber bundle and σ ∈ Γ|U (E)
a local section with domain U ⊂M . Its ∞-jet prolongation is the function

j∞σ : U → J∞(E)
p 7→ j∞p σ

. (50.1.6)

As in the finite-dimensional case, taking the ∞-jet at each point p in the domain of σ yields its
prolongation into J∞(E).

50.2 Variational bicomplex

Another concept that can nicely be generalized to J∞(E) is that of differential forms. Note
that the pullbacks along the projection maps define a sequence

Ωk(M)
π∗
−→ Ωk(E)

π∗
1,0−−→ Ωk(J1(E))

π∗
2,1−−→ Ωk(J2(E))

π∗
3,2−−→ . . . (50.2.1)

for all k ∈ N. Here it makes sense to consider k-forms with arbitrarily high k, since the dimension
of the manifolds Jr(E) is growing with r, so there will be non-trivial k-forms for any k. We
can use this sequence to define the following object.
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Definition 50.2.1 (Pullback to J∞(E)). Let π : E →M be a fiber bundle and J∞(E) its
infinite jet space. For k ∈ N we define the space Ωk(J∞(E)) as the direct limit

Ωk(J∞(E)) = lim−→Ωk(Jr(E)) =

∞⊎
r=0

Ωk(Jr(E))

/
∼ , (50.2.2)

where two k-forms ω ∈ Ωk(Jr(E)) and χ ∈ Ωk(Jr
′
(E)) are considered equivalent, ω ∼ χ,

if and only if there exists r′′ ≥ max(r, r′) such that π∗r′′,r(ω) = π∗r′′,r′(χ). The equivalence
class of ω ∈ Ωk(Jr(E)) is denoted π∗∞,r(ω) ∈ Ωk(J∞(E)) and called the pullback of ω to
J∞(E).

Note that despite the notation, the elements of Ωk(J∞(E)) are not differential forms, and
J∞(E) is not a manifold, so we cannot immediately use any operations which we defined on
differential forms. Instead, they are equivalence classes of differential forms on finite jet spaces.
Note that since for r′ ≥ r the pullbacks π∗r′,r : Ω

k(Jr(E))→ Ωk(Jr
′
(E)) are injective functions

(which is a consequence of the fact that the maps πr′,r : Jr
′
(E) → Jr(E) are surjective), two

k-forms ω ∈ Ωk(Jr(E)) and χ ∈ Ωk(Jr
′
(E)) are equivalent if and only if π∗r′,rω = χ. In other

words, we identify all elements of Ωk(Jr(E)) with their images in Ωk(Jr
′
(E)). We thus obtain

a sequence of inclusions

Ωk(J0(E))⊂̃Ωk(J1(E))⊂̃ . . . ⊂̃Ωk(J∞(E)) , (50.2.3)

where ⊂̃ should be read as “the set formed by equivalence classes of elements contained in the
set on the left is a subset of the set formed by equivalence classes of elements contained in the
set on the right”.

To illustrate this definition, we discuss how to write the elements of Ωk(J∞(E)) using the coor-
dinates (xa, yµΛ) we introduced on (finite and infinite) jet bundles. Any k-form ω ∈ Ωk(Jr(E))
on a finite jet bundle Jr(E) can be written as a finite linear combination of k-fold wedge prod-
ucts of the coordinate one-forms dxa,dyµΛ, where |Λ| ≤ r. The pullback π∗r′,r(ω) ∈ Ωk(Jr

′
(E))

of ω is a k-form on Jr
′
(E) which has the same coordinate representation. Hence, the equiv-

alence relation we introduced above simply identifies k-forms if and only if their coordinate
representations in the coordinates (xa, yµΛ) agree. We can thus formally write an element of
Ωk(J∞(E)) as a finite linear combination of k-fold wedge products of the coordinate one-forms
dxa,dyµΛ, where |Λ| ∈ N. Note, however, that so far this is only a notation - we have not defined
a wedge product of such equivalence classes yet. But actually we can do so.

Definition 50.2.2 (Exterior product). Let π : E → M be a fiber bundle and ω ∈
Ωk(J∞(E)), χ ∈ Ωl(J∞(E)). By definition, we can find r ∈ N, ω̄ ∈ Ωk(Jr(E)) and
χ̄ ∈ Ωl(Jr(E)) such that ω = π∗∞,r(ω̄) and χ = π∗∞,r(χ̄). We define the exterior product
(or wedge product)

ω ∧ χ = π∗∞,r(ω̄ ∧ χ̄) ∈ Ωk+l(J∞(E)) . (50.2.4)

We need a few remarks on this definition. First, note that we can always pick representatives
ω̄, χ̄ of the equivalence classes ω, χ which are differential forms on the same jet space Jr(E).
If we had picked one of them to be on a different jet space Jr

′
(E) with r′ < r, we could just

obtain another representative on Jr(E) by applying the pullback π∗r,r′ . Further, the wedge
product above is well-defined, i.e., independent of the choice of the jet space Jr(E) from which
we take the representatives, since the pullback distributes over wedge products. Note that in
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coordinates the wedge product just looks as it always looks like for ordinary differential forms,
so we can just calculate it as usual. The same applies to the exterior derivative, which we define
as follows.

Definition 50.2.3 (Exterior derivative). Let π : E → M be a fiber bundle and ω ∈
Ωk(J∞(E)). By definition, we can find r ∈ N and ω̄ ∈ Ωk(Jr(E)) such that ω = π∗∞,r(ω̄).
We define the exterior derivative

dω = π∗∞,r(dω̄) ∈ Ωk+1(J∞(E)) . (50.2.5)

Also this is well-defined, since pullbacks and the exterior derivative commute. Also the exterior
derivative looks in coordinates just as in the finite case. Finally, it is also easy to prove that the
exterior derivative and exterior product satisfy all their nice properties which they also have for
ordinary differential forms on finite-dimensional manifolds. We can therefore just use them as
we would naturally do. In particular, the exterior derivative satisfies d2 = 0, so that we have
an infinite sequence

Ω0(J∞(E))
d−→ Ω1(J∞(E))

d−→ . . . , (50.2.6)

where the image of each function lies inside the kernel of the next one. This structure is called a
complex. We will further refine this structure, and for this purpose need to decompose it further,
generalizing what we have done in section 21.9. This leads us to the following definition.

Definition 50.2.4 (Horizontal form). Let π : E → M be a fiber bundle. An element
ω ∈ Ωk(J∞(E)) is called horizontal if it is the pullback ω = π∗∞,r(ω̄) of a horizontal k-form
ω̄ ∈ Ωk(Jr(E)), i.e., such that ω̄ vanishes on the kernel kerπr∗ of πr∗ : TJr(E) → TM .
The subspace of horizontal elements of Ωk(J∞(E)) is denoted Ωk,0(J∞(E)).

Here ω̄ is horizontal in the sense of definition 21.9.1. Recall that the kernel of πr∗ is defined as
the set of tangent vectors v ∈ TJr(E) for which πr∗(v) = 0. These tangent vectors are tangent
to the fibers π−1r (p) ∼= Jrp (E) for p ∈M . In coordinates (xa, yµΛ) on Jr(E) the space of vertical
vectors is spanned by the vector fields ∂̄Λµ = ∂/∂yµΛ. A k-form ω̄ ∈ Ωk(Jr(E)) vanishes on these
vectors if its coordinate representation contains only wedge products of dxa, but no dyµΛ. The
same holds for the coordinate representation of ω ∈ Ωk(J∞(E)).

We also define a suitable counterpart, by generalizing definition 21.9.2.

Definition 50.2.5 (Contact form). Let π : E → M be a fiber bundle. An element
ω ∈ Ωk(J∞(E)) is called a contact form if its pullback (j∞σ)∗(ω) ∈ Ωk(M) vanishes
for every local section σ of π : E → M . The subspace of contact forms of Ωk(J∞(E)) is
denoted Ω0,k(J∞(E)).

The meaning of the pullback (j∞σ)∗(ω) for ω ∈ Ωk(J∞(E)) should be almost clear. We can
pick a representative ω̄ ∈ Ωk(Jr(E)), and take its pullback (jrσ)∗(ω̄) ∈ Ωk(M) along the map
jrσ : M → Jr(E). This pullback is independent of the choice of the representative, and so
defines a unique pullback (j∞σ)∗ : Ωk(J∞(E))→ Ωk(M).

Using coordinates (xa, yµΛ) on J∞(E) it is easy to write down a basis for the space Ω0,1(J∞(E))
of contact one-forms, analog to definition 21.9.3. We define the basic contact forms θµΛ as
follows.
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Definition 50.2.6 (Basic contact one-form). Let π : E → M be a fiber bundle, U ⊂ M
and (xa), (xa, yµ) and (xa, yµΛ) with |Λ| ∈ N local coordinates on U , π−1(U) and π−1∞ (U),
respectively. The basic contact one-forms with respect to these coordinates are the one-
forms

θµΛ = dyµΛ − yµ(λ1+1,λ2,...,λn)
dx1 − yµ(λ1,λ2+1,...,λn)

dx2 − . . .− yµ(λ1,λ2,...,λn+1)dx
n . (50.2.7)

As in the finite-dimensional case, any contact one-form θ can be written as a finite sum in the
form θ = fΛa θ

a
Λ. Note, however, that this basis has infinitely many elements, and that there is

no upper bound on |Λ|. This means that for any dyµΛ one can define a suitable contact one-form
θµΛ, in contrast to the finite-dimensional case, where this is possible only for |Λ| < r. Hence,
one can define a basis on the space Ω1(J∞(E)) as follows.

Definition 50.2.7 (Contact basis). Let π : E → M be a fiber bundle, U ⊂ M and (xa),
(xa, yµ) and (xa, yµΛ) with |Λ| ∈ N local coordinates on U , π−1(U) and π−1∞ (U), respectively.
The contact basis with respect to these coordinates is the basis of Ω1(J∞(E)) given by

(dxa, θµΛ) . (50.2.8)

One can see from the structure of the contact basis that every one-form on the infinite jet bundle
uniquely decomposes into horizontal and contact parts. Hence, Ω1(J∞(E)) = Ω1,0(J∞(E)) ⊕
Ω0,1(J∞(E)). We now aim to generalize this to higher k-forms. This is indeed possible, due to
the following property, as we will see below. Note first that the following properties are adapted
directly from the finite-dimensional statements 21.9.1 and 21.9.2.

Theorem 50.2.1. The exterior product of two horizontal forms on the infinite jet space is
again horizontal.

Theorem 50.2.2. The contact forms on the infinite jet space form an ideal (the contact ideal)
of the exterior algebra, i.e., the exterior product of an arbitrary form and a contact form is
again a contact form.

This is not difficult to prove - it follows immediately from the corresponding finite-dimensional
cases and the fact that the pullback distributes over wedge products. Again like in the finite-
dimensional case, we can define the following.

Definition 50.2.8 (l-contact form). Let π : E → M be a fiber bundle. A (k + l)-form
ω ∈ Ωk+l(J∞(E)) on the infinite jet space is called l-contact if it is a linear combination of
exterior products of k horizontal one-forms and l contact one-forms. The space of all such
forms is denoted Ωk,l(J∞(E)).

We now come to an important difference compared to the finite-dimensional case. It turns out
that using horizontal and contact forms, we can generate all of Ωk(J∞(E)) as a consequence of
the following property.

Theorem 50.2.3. For each k ∈ N, the space Ωk(J∞(E)) splits into a direct sum

Ωk(J∞(E)) =

k⊕
i=0

Ωk−i,i(J∞(E)) , (50.2.9)
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so that every ω ∈ Ωk(J∞(E)) decomposes uniquely as

ω =

k∑
i=0

piω , (50.2.10)

where piω ∈ Ωk−i,i(J∞(E)).

Recall from theorem 21.9.3 that in the finite-dimensional case, one does not decompose ω itself,
but its lift to the next higher jet bundle, so that also the operators pi were defined to include
this lift. Here the situation becomes simpler, and the operators pi become projectors onto
vector subspaces. In coordinates, every such space Ωk,l(J∞(E)) is spanned by wedge products
of the form

dxα1 ∧ . . . ∧ dxαk ∧ θa1Λ1
∧ . . . ∧ θalΛl . (50.2.11)

It is now easy to see how the exterior product and exterior derivative behave under this splitting.

Theorem 50.2.4. Let ω ∈ Ωk,l(J∞(E)) and χ ∈ Ωk
′,l′(J∞(E)). Then the following hold:

1. ω ∧ χ ∈ Ωk+k
′,l+l′(J∞(E)),

2. dω ∈ Ωk+1,l(J∞(E))⊕ Ωk,l+1(J∞(E)).

This property of the exterior product is immediately clear. For the exterior derivative it
means that dω can be uniquely written as the sum of two terms, one of them belonging to
Ωk+1,l(J∞(E)), the other one to Ωk,l+1(J∞(E)). Note again the difference with theorem 21.9.4,
where we did not decompose dω, but again its lift to the next higher jet bundle, which is not
necessary here. This now allows us to decompose the exterior derivative in the following way.

Definition 50.2.9 (Horizontal and vertical differentials). Let π : E →M be a fiber bundle.
For k, l ∈ N the horizontal (or total) differential

dH : Ωk,l(J∞(E)) → Ωk+1,l(J∞(E))
ω 7→ pldω

(50.2.12)

and vertical differential

dV : Ωk,l(J∞(E)) → Ωk,l+1(J∞(E))
ω 7→ pl+1dω

(50.2.13)

are the unique functions such that dHω + dV ω = dω for all ω ∈ Ωk,l(J∞(E)).

Note that in contrast to definition 21.9.6, we could omit the pullback in the last line. This is
also the case for the following properties, which generalize theorem 21.9.5.

Theorem 50.2.5. For each ω ∈ Ωk,l(Jr(E)) and χ ∈ Ωk
′,l′(Jr(E)) the horizontal and vertical

differentials dH and dV satisfy:

1. dH and dV are antiderivations:

dH(ω ∧ χ) = dHω ∧ χ+ (−1)k+lω ∧ dHχ , (50.2.14a)

dV (ω ∧ χ) = dV ω ∧ χ+ (−1)k+lω ∧ dV χ . (50.2.14b)

2. d2H = 0, d2V = 0 and dHdV = −dV dH .
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With these properties we can now construct the coordinate expressions for dH and dV , in
analogy to the finite-dimensional case studied in section 21.9. For f ∈ Ω0,0(J∞(E)) we have
the vertical differential given by

dV f =
∂f

∂yµΛ
θµΛ ∈ Ω0,1(J∞(E)) , (50.2.15)

where, in contrast to (21.9.19), the summation over Λ now goes over the infinite set |Λ| ∈ N,
although only finitely many terms are non-vanishing. For the horizontal differential then follows

dHf = df − dV f = Daf dx
a ∈ Ω1,0(J∞(E)) , (50.2.16)

where the total derivative

Daf =
∂f

∂xa
+

∞∑
|Λ|=0

yµ(λ1,...,λα+1,...,λn)

∂f

∂yµΛ
=

∂f

∂xa
+

∞∑
|Λ|=0

yµΛa
∂f

∂yµΛ
(50.2.17)

now also turns into an infinite sum, with finitely many non-vanishing terms. For the horizontal
and vertical coordinate differentials we have

dH(dxa) = 0 , dV (dx
a) = 0 , dH(dyµΛ) = 0 , dV (dy

µ
Λ) = 0 , (50.2.18)

which again follows from the fact that they are closed, i.e., their exterior derivatives vanish.
Finally, the basic contact forms satisfy

dHθ
µ
Λ = dx1 ∧ θµ(λ1+1,λ2,...,λn)

+ dx2 ∧ θµ(λ1,λ2+1,...,λn)
+ . . .+ dxn ∧ θµ(λ1,λ2,...,λn+1) (50.2.19)

as well as
dV θ

µ
Λ = 0 . (50.2.20)

Since any differential form on J∞(E) can be constructed as a linear combination of wedge
products of the forms above, as in the finite-dimensional case, we can thus explicitly calculate
the vertical and horizontal differentials for all differential forms. In this case, however, we can
even go one step further. We thus return to the sequence induced by the exterior derivative d :
Ωk(J∞(E)) → Ωk+1(J∞(E)). Using the horizontal and vertical differentials we can construct
a similar structure, which is not a complex, but a bicomplex, which we define as follows.

Definition 50.2.10 (Variational bicomplex). Let π : E → M be a fiber bundle with
dimM = n. The variational bicomplex is the structure

...
...

...
...

Ω0,1(J∞(E))
dH //

OO

Ω1,1(J∞(E)) //

OO

Ωn−1,1(J∞(E))
dH //

OO

Ωn,1(J∞(E))

OO

Ω0,0(J∞(E))
dH //

dV

OO

Ω1,0(J∞(E)) //

dV

OO

Ωn−1,0(J∞(E))
dH //

dV

OO

Ωn,0(J∞(E))

dV

OO

(50.2.21)

The variational bicomplex offers another description of physical systems in the Lagrangian
formulation, as we will see next.
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50.3 Vector fields on the infinite jet space

Another concept we must generalize is that of vector fields on jet spaces. Recall from section 49.3
that we described the variation of a local section σ of the bundle π : E →M by vertical vector
fields, and their prolongation to jet spaces. Since we are dealing with an infinite jet space now,
we must clarify how to describe (vertical) tangent vectors to this structure. We use the following
definition.

Definition 50.3.1 (Tangent bundle of J∞(E)). Let π : E → M be a fiber bundle and
J∞(E) its infinite jet space. The tangent bundle of J∞(E) is the projective limit

TJ∞(E) = lim←−TJ
r(E) =

{
(v0, v1, . . .) ∈

∞×
r=0

TJr(E)

∣∣∣∣∣∀k ≤ r : πr,k∗(vr) = vk

}
. (50.3.1)

Analogously, we define:

Definition 50.3.2 (Vertical tangent bundle of J∞(E)). Let π : E →M be a fiber bundle
and J∞(E) its infinite jet space. The vertical tangent bundle of J∞(E) is the projective
limit

V J∞(E) = lim←−V J
r(E) =

{
(v0, v1, . . .) ∈

∞×
r=0

V Jr(E)

∣∣∣∣∣∀k ≤ r : πr,k∗(vr) = vk

}
.

(50.3.2)

In other words, an element of V J∞(E) is an infinite sequence of elements vr ∈ V r(E) such that
for all k ≤ r the condition πr,k∗(vr) = vk is satisfied.

We also introduce suitable coordinate bases on TJ∞(E) and V J∞(E). Recall that on J∞(E)
we used coordinates (xa, yµΛ) derived from the coordinates (xa) on M and (xa, yµ) on E. An
element of a tangent space TqJ∞(E) with q ∈ J∞(E) can be written in the form

ua
∂

∂xa
+ vµΛ

∂

∂yµΛ
= ua∂a + vµΛ∂̄

Λ
µ . (50.3.3)

This yields us coordinates (ua, vµΛ) on TqJ∞(E), and thus coordinates (xa, yµΛ, u
a, vµΛ) on TJ∞(E),

where the first half specifies the point q and the second half the tangent vector at q. On the
vertical tangent bundle V J∞(E) one thus has coordinates (xa, yµΛ, v

µ
Λ). These coordinates have

the same form as in the finite-dimensional case in section 49.3, but in this case the order |Λ|
may be arbitrary.

Note that there exist well-defined functions

τ∞ : TJ∞(E) → J∞(E)
(v0, v1, . . .) 7→ (τ0(v0), τ1(v1), . . .)

(50.3.4)

and
ν∞ : V J∞(E) → J∞(E)

(v0, v1, . . .) 7→ (ν0(v0), ν1(v1), . . .)
, (50.3.5)

where τr : TJr(E) → Jr(E) and νr : V Jr(E) → Jr(E) are the projections of the (vertical)
tangent bundle to the finite-dimensional jet spaces. One may thus naively regard the (vertical)
tangent bundle as an ordinary fiber bundle over the infinite jet space, and consider its section.
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However, this naive construction leads to technical difficulties, and so we use a more formal,
abstract definition, which is adapted from [GMS09, sec. 1.7].

Definition 50.3.3 (Vector field on J∞(E)). Let π : E →M be a fiber bundle. The space
Vect(J∞(E)) of vector fields on J∞(E) is the dual Ω0(J∞(E)) module of Ω1(J∞(E)).

This needs a few clarifications, which are most easily expressed by considering the coordinate
expressions of the mentioned spaces. First note that Ω0(J∞(E)) consists of those functions
f ∈ Ω0(J∞(E)), which depend on only finitely many coordinates, since every such function
must have a representative f̄ ∈ C∞(Jr(E),R) on a finite-dimensional jet space. Similarly, also
a one-form ω ∈ Ω1(J∞(E)) has a representative ω̄ ∈ Ω1(Jr(E)), and hence is of the form

ω = ωadx
a + ω̄Λ

µdy
µ
Λ , (50.3.6)

with an arbitrary, but finite number of non-vanishing terms, and coefficients depending on
an arbitrary, but finite number of coordinates. These one-forms form a Ω0(J∞(E)) module,
since fω ∈ Ω1(J∞(E)) for f ∈ Ω0(J∞(E)) and ω ∈ Ω1(J∞(E)). Following definition 50.3.3,
a vector field on J∞(E) is an element of the dual module, hence a module homomorphism
ξ : Ω1(J∞(E)) → Ω0(J∞(E)). In other words, there exists a pairing, which we suggestively
write as an interior product ιξω ∈ Ω0(J∞(E)). Using coordinates allows us to identify ξ as the
formal sum

ξ = ξa∂a + ξ̄µΛ∂̄
Λ
µ , (50.3.7)

with (∂a, ∂̄
Λ
µ ) identified as the dual basis of (dxa,dyµΛ), so that the interior product reads

ιξω = ξaωa + ξ̄µΛω̄
Λ
µ ∈ Ω0(J∞(E)) . (50.3.8)

Note that ω has only finitely many non-vanishing components, and so ξ may have infinitely many
components, while still yielding a finite sum ιξω. However, every component of ξ) may depend
only on finitely many coordinates, in order for ιξω to depend on finitely many coordinates as
well.

For later use, we follow [GMS09, sec. 2.2] to define a particular class of vector fields on the infi-
nite jet space, which is closely related to the variational bicomplex introduced in the preceding
section.

Definition 50.3.4 (Contact vector field). A vector field ξ ∈ Vect(J∞(E)) is called a
contact vector field if it preserves the contact ideal, i.e., if

Lξθ = ιξdθ + dιξθ (50.3.9)

is a contact form for every contact form θ.

There exist a number of important constructions which yield vector fields on the infinite jet
space. To define these, it is helpful to first generalize the concept of a vector field on the
manifolds M and E.

Definition 50.3.5 (Generalized vector field). Let π : E → M be a fiber bundle. A
generalized vector field . . .
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1. . . . on M is an equivalence class of sections X ∈ Γ(π∗rTM) of the pullback bundle
π∗rTM ,

2. . . . on E is an equivalence class of sections X ∈ Γ(π∗r,0TE) of the pullback bundle
π∗r,0TE,

where two sections X,Y of jet order r ≤ r′ are regarded equivalent if and only if Y =
X ◦ πr′,r.

Written in coordinates, a generalized vector field has the usual form Xa∂a for a generalized
vector field on M , and Xa∂a + X̄µ∂̄µ for a vector field on E, but with component functions
which depend on an arbitrary, but finite number of jet bundle coordinates (xa, yµ). By a slight
abuse of notation, we denote the corresponding spaces of generalized vector fields by Γ(π∗∞TM)
and Γ(π∗∞,0TE), respectively.

We may now define a number of useful operations on generalized vector fields.

Definition 50.3.6 (Prolongation). Let π : E →M be a fiber bundle and X ∈ Γ(π∗∞,0TE)
be a generalized vector field on E. Its prolongation is the unique map prX : J∞(E) →
TJ∞(E) which satisfies:

1. it projects to X on E: X = π∞,0∗ ◦ prX,

2. prX is a contact vector field.

It is instructive to derive a coordinate expression for the prolongation. Let

X(x, yΛ) = Xa(x, yΛ)∂a + X̄µ(x, yΛ)∂̄µ (50.3.10)

be a generalized vector field on E and Y = prX with

Y (x, yΛ) = Y a(x, yΛ)∂a + Ȳ µΛ (x, yΛ)∂̄
Λ
µ . (50.3.11)

From the first condition we find

X = π∞,0∗ ◦ Y = Y a∂a + Ȳ µ∂̄µ , (50.3.12)

and hence Y a = Xa and Ȳ µ = X̄µ. Applying the second condition to a basic contact one-form
θµΛ we find

LY θµΛ = ιY dθ
µ
Λ + dιY θ

µ
Λ

= Y adyµΛa − Ȳ µΛadxa + d(Ȳ µΛ − yµΛaY a)
= dȲ µΛ − yµΛadY a − Ȳ µΛadxa

= (∂̄Ων Ȳ
µ
Λ − yµΛa∂̄Ων Y a)θνΩ + (DaȲ

µ
Λ − yµΛbDaY b − Ȳ

µ
Λa)dx

a ,

(50.3.13)

where in the last step we used the split d = dV + dH of the exterior derivative, together with
the explicit coordinate expressions of the vertical and horizontal derivatives. We see that the
result is a contact form if and only if the horizontal part vanishes, hence

Ȳ µΛa = DaȲ
µ
Λ − yµΛbDaY b . (50.3.14)

We have thus obtained a recursive formula for the components of Y = prX, from which one
may guess the explicit formula [Olv86, sec. 5.1]

Ȳ µΛ = DΛ(X̄
µ −Xayµa ) +XayµΛa . (50.3.15)
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This formula can be proven by induction. First, for |Λ| = 1 we have

Ȳ µa = DaX̄
µ − yµΛbDaXb = Da(X̄

µ −Xbyµb ) +Xbyµab , (50.3.16)

which proves the first step. Then, by induction, we show that

Ȳ µΛa = Da
[
DΛ(X̄

µ −Xbyµb ) +XbyµΛb
]
− yµΛbDaXb = DΛa(X̄

µ −Xbyµb ) +XbyµΛab , (50.3.17)

which proves all higher orders. Noting that also the case |Λ| = 0 can be written in the same
form

Ȳ µ = (X̄µ −Xayµa ) +Xayµa = X̄µ , (50.3.18)

we may write the prolongation as

prX = Xa∂a +

∞∑
|Λ|=0

[
DΛ(X̄

µ −Xayµa ) +XayµΛa
]
∂̄Λµ , (50.3.19)

where we explicitly wrote the sum over Λ to clarify its range.

Another important construction is the following.

Definition 50.3.7 (Total vector field). Let π : E → M be a fiber bundle and X ∈
Γ(π∗∞TM) be a generalized vector field on M . Its total vector field is the unique map
totX : J∞(E)→ TJ∞(E) which satisfies:

1. it projects to X on M : X = π∞∗ ◦ totX,

2. it annihilates the contact one-forms, i.e., ιtotXθ = 0 for every contact one-form θ ∈
Ω0,1(J∞(E)).

We can easily derive a coordinate expression for totX. Let X(x, yΛ) = Xa(x, yΛ)∂a be a
generalized vector field on M and Y = totX with

Y (x, yΛ) = Y a(x, yΛ)∂a + Y µΛ (x, yΛ)∂̄
Λ
µ . (50.3.20)

From the first condition we find

X = π∞∗ ◦ Y = Y a∂a , (50.3.21)

and hence Y a = Xa. Further, consider a basic contact one-form θµΛ and calculate

0 = ιY θ
µ
Λ = Y µΛ − yµΛaXa , (50.3.22)

so that Y µΛ = yµΛaX
a. In summary, we thus have

totX = Xa
(
∂a + yµΛa∂̄

Λ
µ

)
= XaDa . (50.3.23)

Hence, the total vector field formalizes the total derivative in the direction of X. Observe that
the coefficient XayµΛa of the |Λ|’th order basis element ∂̄Λµ contains the coordinate yµΛa of order
|Λ|+ 1. The total vector field therefore cannot be defined on any finite jet bundle.

50.4 Euler-Lagrange complex

With the preliminaries discussed in the previous sections, we can now formulate the Lagrange
theory, which we discussed on finite jet bundles in chapter 49, in terms of the variational
bicomplex. For this purpose, we need to adapt some of the notions which we have previously
introduced on finite jet bundles, and generalize them to the infinite jet bundle. We start with
some basic objects we introduced earlier, and which we now define as follows.
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Definition 50.4.1 (Lagrangian). Let π : E → M be a fiber bundle with dimM = n. A
Lagrangian on E is a horizontal n-form L on the infinite jet bundle J∞(E).

Note that in contrast to the original definition 49.1.1, we omitted to specify the order r of
the Lagrangian, as it will turn out to be less important if one is working with the variational
bicomplex. Nevertheless, also in this formulation a Lagrangian does have a finite order. To
see this, recall from definition 50.2.1 that we defined differential forms on the infinite jet space
J∞(E) as equivalence classes of differential forms on finite jet spaces, which are identified via
pullback along jet bundle projections. Hence, there exist representatives L̄ ∈ Ωn(Jr(E)) on
finite jet spaces. The lowest r for which such a representative exists may thus be regarded as
the order of the Lagrangian.

Also the following definition is now straightforward, in analogy to definition 49.1.2.

Definition 50.4.2 (Action functional). Let π : E → M be a fiber bundle and L ∈
Ωn,0(J∞(E)) a Lagrangian on E. The action functional of L over an open domain U ⊂M
is the function

S : Γ|U (E) → R

σ 7→
∫
U

(j∞σ)∗(L)
. (50.4.1)

It is clear why we define a Lagrangian as a horizontal n-form: by pullback along j∞σ, we want
to obtain a n-form on M , which we can integrate on U . Further, by virtue of the decomposition
shown in theorem 50.2.3, an arbitrary n-form on the infinite jet space uniquely decomposes
into horizontal and contact parts, and the latter does not contribute to the action functional,
since its pullback along j∞σ vanishes. Hence, only the horizontal part is relevant for the action
functional. Also note that we recover the original definition 49.1.2 if we replace the Lagrangian
by a representative L̄ on a finite-dimensional jet bundle.

We then come to study extremals of the action. Since the action functional given in defini-
tion 50.4.2 assigns a real number to every local section σ, as in the finite-dimensional case,
there is no need to alter the definition 49.2.1, since it does not depend on how this assignment
Γ|U (E) → R is defined. However, we will need to make some adaptations when we break the
variation of the action into variations of sections and their jet prolongations, as well as vari-
ations of the Lagrangian, since these are now considered as objects on an infinite jet space,
and so we must check how to generalize the corresponding concepts from the finite-dimensional
case. Starting from a family σ̃• : R → Γ|U (E), ϵ 7→ σ̃ϵ with σ̃0 = σ ∈ Γ|U (E) of local sections
and p ∈ U we may construct the infinite sequence

ξ∞(p) =
d

dϵ
j∞σ̃ϵ(p)

∣∣∣∣
ϵ=0

=

(
d

dϵ
j0σ̃ϵ(p)

∣∣∣∣
ϵ=0

,
d

dϵ
j1σ̃ϵ(p)

∣∣∣∣
ϵ=0

, . . .

)
∈ Vj∞p σJ∞(E) . (50.4.2)

One easily checks that the members of this sequence are indeed vertical tangent vectors and
satisfy the condition πr,k∗(vr) = vk for all k ≤ r. The assignment ξ∞ : U → V J∞(E), p 7→
ξ∞(p), which can be regarded as an infinite jet prolongation of the object ξ introduced in
section 49.3, will be used to describe variations of the section σ given by the family σ̃•.

We can now use the prolongation ξ∞ constructed above to calculate the variation of a differential
form on the infinite jet bundle. For this purpose, we must adapt theorem 49.4.1 as follows.

Theorem 50.4.1. Let σ̃ϵ :M → E be a smooth family of sections of the fiber bundle π : E →M
and ω ∈ Ωk,0(J∞)(E)) a horizontal k-form on the infinite jet bundle J∞(E). Then the pullback
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of ω along j∞σ̃ϵ satisfies

d

dϵ
(j∞σ̃ϵ)

∗(ω)

∣∣∣∣
ϵ=0

= (j∞σ)∗ (ιξ∞(dV ω)) , (50.4.3)

where ξ∞ is constructed from the infinite jet prolongation of ξ and σ = σ̃0 via the formula (50.4.2).

Note that in contrast to the finite-dimensional case 49.4.1, we used the vertical derivative on
the right hand side of equation (50.4.3). This is justified since we may write dω = dV ω + dHω
and ξ∞, by construction, is vertical, so that ιξ∞(dHω) = 0. We have not done this in the finite-
dimensional case, since there the vertical derivative dV also involves a pullback to a different
jet bundle. Here it is rather a matter of convenience, as we will illustrate using coordinates.

▶. . .◀

Definition 50.4.3 (Internal Euler operator). Let π : E → M be a fiber bundle with
dim(M) = n and Ωn,s(J∞(E)) with s ≥ 1 the space of forms of type (n, s) on the infinite
jet bundle J∞(E). The internal Euler operator is the unique function ϱ : Ωn,s(J∞(E))→
Ωn,s(J∞(E)) such that:

• ϱ is a projector: ϱ2 = ϱ.

• For ω ∈ Ωn,s(J∞(E)), the difference ω − ϱ(ω) is dH -exact, i.e., there exists η ∈
Ωn−1,s(J∞(E)) such that dHη = ω − ϱ(ω).

• ϱ vanishes on dH -exact forms: ϱ ◦ dH = 0.

• ιX ◦ ϱ = 0 for all vector fields X on J∞(E) with π∞,0∗ ◦X = 0.

Definition 50.4.4 (Euler operator). The Euler operator is the function E = ϱ ◦ dV :
Ωn,0(J∞(E))→ F1(J∞(E)).

Definition 50.4.5 (Augmented vertical derivative). For s ≥ 1, the augmented vertical
derivative is the function δV = ϱ ◦ dV : Fs(J∞(E))→ Fs+1(J∞(E)).

With this definition we can now extend the variational bicomplex introduced in section 50.2 as
follows.

Definition 50.4.6 (Augmented variational bicomplex). Let π : E →M be a fiber bundle
with dimM = n. The augmented variational bicomplex is the structure

...
...

...
...

...

Ω0,2 dH //

OO

Ω1,2 //

OO

Ωn−1,2
dH //

OO

Ωn,2
ϱ //

OO

F2

OO

Ω0,1 dH //

dV

OO

Ω1,1 //

dV

OO

Ωn−1,1
dH //

dV

OO

Ωn,1
ϱ //

dV

OO

F1

δV

OO

Ω0,0 dH //

dV

OO

Ω1,0 //

dV

OO

Ωn−1,0
dH //

dV

OO

Ωn,0

dV

OO
E

<<

(50.4.4)
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where we omitted the part J∞(E) in the notation.

Definition 50.4.7 (Euler-Lagrange complex). Let π : E → M be a fiber bundle with
dimM = n. The Euler-Lagrange complex is the edge

Ω0,0 dH−−→ · · · dH−−→ Ωn,0
E−→ F1 δV−−→ · · · (50.4.5)

of the augmented variational bicomplex.
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Chapter 51

Noether’s theorems

51.1 Symmetries of Lagrangian systems

We have previously discussed Lagrangian systems in the language of the variational bicomplex,
which is defined on the infinite jet space of a fiber bundle. We will now discuss a particular notion
of symmetry of a Lagrangian in this formalism. Since Lagrangians are defined as differential
forms on the infinite jet space Jr(E) of a fiber bundle π : E →M , we will describe symmetries
in terms of (complete) vector fields on Jr(E), whose flow leaves the Euler-Lagrange equations
invariant.

However, we cannot consider arbitrary vector fields on Jr(E). To see this, note that the flow
of a vector field on Jr(E) is a one-parameter group of diffeomorphisms of Jr(E). Recall that
the elements of Jr(E) are jets of sections of π : E → M . We are in particular interested in
those diffeomorphisms of Jr(E) which are generated by diffeomorphisms of the space Γ(E) of
sections. In other words, we are looking for diffeomorphisms ϕ whose action on a jet jrxσ of a
section σ ∈ Γ(E) at a point x ∈ M is given by ϕ(jrxσ) = jrxφ(σ) for some diffeomorphism φ of
Γ(E). This in particular means that ϕ should preserve the subspace π−1r (x) = Jrx(E) ⊂ Jr(E)
for every x ∈M , from which follows that the generating vector field must be vertical. We will
now construct these vector fields, starting with the following definition.

Definition 51.1.1 (Evolutionary vector field). Let π : E → M be a fiber bundle and
ν : V E → E the vertical tangent bundle of E. An evolutionary vector field is a map
X ∈ C∞(Jr(E), V E) such that ν ◦X = πr,0.

First of all, note that an evolutionary vector field, despite its name, is not a vector field. In the
literature one often finds the term generalized vector field for a map taking jets of sections to
tangent vectors on E. Formally, it can be written as a “vector field on E with coefficients in
Jr(E).

To further understand the meaning of the definition, consider a section σ ∈ Γ(E). At a point
x ∈ M this gives us the image σ(x) ∈ E and the r-jet jrxσ, where πr,0(j

r
xσ) = σ(x). An

evolutionary vector field X assigns to the jet jrxσ a vertical tangent vector X(jrxσ) ∈ Vσ(x)E.
This tangent vector will describe how much the value σ(x) of the section σ changes under a
certain type of flow.

An evolutionary vector field thus describes how much a section will change at each point. This
tells us also how a section as a whole will change under this flow, and thus also how its jets
will change. In other words, we can obtain a vertical vector field on Jr(E), which we define as
follows.
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Definition 51.1.2 (Prolongation). Let π : E → M be a fiber bundle and X ∈
C∞(Jr(E), V E) an evolutionary vector field. Its prolongation is the unique vertical vector
field prX on Jr(E) such that X = πr,0∗ ◦ prX and LprXθ is a contact form for every
contact form θ.

To clarify this definition, recall that a contact forms is defined as a differential form on Jr(E)
whose pullback along the r-jet jrσ of any section σ ∈ Γ(E) vanishes. Since we wish that the
flow of prX maps the r-jets of sections again to r-jets of sections, it also maps contact forms
to contact forms. However, it is easier to work with contact forms, which is why we used them
in the definition above.

As a further illustration, we write the prolongation in terms of coordinates. Let (xα) be coor-
dinates on M and (xα, ya) coordinates on E corresponding to a local trivialization. In these
coordinates an evolutionary vector field X can be written in the form X = Xa∂̄a, where the
coefficients Xa depend on the jet coordinates (xα, yaΛ). One can show that the prolongation of
X is then given by

prX =
∑
Λ

DΛX
a∂̄Λa . (51.1.1)

Here DΛ denotes the total derivative (49.5.7). The reason for this formula is intuitively clear:
if the flow of X describes the transformation of a section σ, then we need to take all derivatives
of X to see how the flow of prX transforms the jet of a section.

The prolongations of evolutionary vector fields have a few nice properties, which we summarize
here.

Theorem 51.1.1. The prolongation prX of an evolutionary vector field X satisfies:

LprX = ιprXdV + dV ιprX , (51.1.2a)
0 = ιprXdH + dHιprX , (51.1.2b)
0 = LprXdH − dHLprX , (51.1.2c)
0 = LprXdV − dV LprX . (51.1.2d)

We will not prove the first property here. Note that the second statement follows from the first
one, since

0 = LprX − (ιprXdV + dV ιprX)

= ιprXd + dιprX − ιprXdV − dV ιprX

= ιprXdH + dHιprX .

(51.1.3)

Now the third statement follows from the second one and the commutation relations of the
horizontal and vertical derivative, since

LprXdH = (dV ιprX + ιprXdV )dH

= −dV dHιprX − ιprXdHdV

= dH(dV ιprX + ιprXdV )

= dHLprX .

(51.1.4)

The last statement finally follows from the third one and the fact that Lie derivative and exterior
derivative commute.

Now we have found the class of vector fields on Jr(E) which correspond to transformations of
the space Γ(E) of sections. We can now restrict ourselves to those vector fields from this class
which leave the dynamics of the Lagrangian system, given by the Euler-Lagrange equations,
invariant. We define them as follows.
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Definition 51.1.3 (Symmetry). Let π : E → M be a fiber bundle with dimM = n and
L ∈ Ωn,0(Jr(E)) a Lagrangian. A symmetry of L is an evolutionary vector field X such
that LprXL ∈ Ωn,0(Jr(E)) is dH -exact.

The definition above states that the flow of prX changes the Lagrangian L only by a dH -exact
form. This means that the pullback (jrσ)∗(L) of L to M along the r-jet of a section changes
only by an exact form on M . This in turn means that the action functional

S[σ] =

∫
M

(jrσ)∗(L) (51.1.5)

is invariant. It also follows that LprXEL = 0, i.e., the Euler-Lagrange equations are invariant.
Also it is helpful to note that since prX is vertical by construction, while L is horizontal by
definition, we have

LprXL = dV ιprXL︸ ︷︷ ︸
=0

+ιprXdV L = ιprXdV L . (51.1.6)

51.2 Conserved currents

The task of finding the solutions to the Euler-Lagrange equations can often be simplified if
the Lagrangian system contains something known as a conserved current in field theory, or a
constant of motion in mechanics. Here we will use the term conserved current and the following
definition.

Definition 51.2.1 (Conserved current). Let π : E → M be a fiber bundle with
dimM = n and L ∈ Ωn,0(Jr(E)) a Lagrangian. A conserved current of L is an element
ψ ∈ Ωn−1,0(Jr(E)) such that dHψ = 0 on the subspace of Jr(E) where EL = 0.

In order to understand the meaning of this, let σ ∈ Γ(E) be a solution of the Euler-Lagrange
equations, i.e., EL ◦ jrσ = 0. Then (jrσ)∗(ψ) is a n− 1-form on M , where n = dimM , with

d(jrσ)∗(ψ) = (jrσ)∗(dHψ) = 0 . (51.2.1)

In other words, for each solution σ, the pullback (jrσ)∗(ψ) is closed. This resembles the standard
notion of a conserved current.

51.3 Noether’s first theorem

With the preliminary definitions made in the previous sections we can now come to the central
topic of this lecture, which is Noether’s theorem. In the formalism we use here, it is formulated
as follows.

Theorem 51.3.1 (Noether’s first theorem). Let X be a symmetry of a Lagrangian L ∈ Ωn,0(Jr(E))
on a fiber bundle π : E →M with dimM = n. Then

ψ = ιprXη − ω ∈ Ωn−1,0(Jr(E)) , (51.3.1)

where dHω = ιprXdV L and dHη = EL− dV L, is a conserved current.
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Proof. By definition of a symmetry, ιprXdV L is dH -exact, i.e., there exists ω ∈ Ωn−1,0(Jr(E))
such that dHω = ιprXdV L. Further, by the definition of the internal Euler operator ϱ, the
difference EL−dV L = ϱ(dV L)−dV L is also dH -exact, i.e., there exists η ∈ Ωn−1,1(Jr(E)) such
that dHη = EL− dV L.

Using the fact that prX is the prolongation of an evolutionary vector field, we can now evaluate
dHψ and find

dHψ = dHιprXη − dHω

= −ιprXdHη − ιprXdV L

= −ιprXEL ,
(51.3.2)

using theorem 51.1.1. This obviously vanishes where EL = 0, so that ψ is a conserved current.
■

The theorem is as elegant and as simple as a theorem could be. We can make the current even
more explicit if we have a Lepage equivalent of the Lagrangian. Then we have the following
property.

Theorem 51.3.2 (Noether’s first theorem). Let X be a symmetry of a Lagrangian L ∈ Ωn,0(Jr(E))
on a fiber bundle π : E → M with dimM = n and ρ ∈ Ωn(Js(E)) a Lepage equivalent of L.
Then

ψ = p0ιprXρ− ω ∈ Ωn−1,0(Js+1(E)) , (51.3.3)

where dHω = ιprXdV L, is a conserved current (up to pullback along jet bundle projections).

Proof. By definition of a symmetry of the Lagrangian, ιprXdV L is dH -exact, and so the desired
form ω exists. Then, by direct calculation, we find

dHψ = dHp0ιprXρ− dHω

= p0dιprXρ− ιprXdV L

= p0(LprXρ− ιprXdρ)− ιprXdV L

= ιprXdV p0ρ− ιprXdV L− p0ιprXdρ

= ιprXdV L− ιprXdV L− ιprXp1dρ

= −ιprXEL ,

(51.3.4)

where we used the following relations:

• The horizontal component of dιprXρ is given by

p0dιprXρ = dHp0ιprXρ , (51.3.5)

since the only possibility to obtain a horizontal component is by taking the horizontal
derivative of an already horizontal part, without obtaining contact components.

• The Lie derivative can be split by Cartan’s magic formula:

LprXρ = dιprXρ+ ιprXdρ . (51.3.6)

• The Lagrangian is the horizontal part of the Lepage form: L = p0ρ.

• The Euler-Lagrange equations are given by EL = p1dρ.

• The horizontal projector p0 and Lie derivative LprX with respect to a vertical vector field
of ρ yield

p0LprXρ = p0dV ιprXρ︸ ︷︷ ︸
=0

+p0ιprXdV ρ = ιprXp1dV ρ = ιprXdV p0ρ = ιprXdV L . (51.3.7)
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The result vanishes when the Euler-Lagrange equations are imposed. ■

We will now apply the theorem to a few examples.

Example 51.3.1 (Momentum conservation). Let M = R and E = R×Q with a manifold Q,
so that the bundle π : E → M is a trivial bundle with π = prR being the projection onto
the first factor. Using the coordinate t on R and coordinates (qa) on Q, we have coordinates
(t, qa) on E and (t, qa = qa0 , q̇

a = qa1 , q̈
a = qa2 , . . .) on Jr(E). This systems can be used to

model, for example, the motion of a point mass on a manifold Q, with t measuring time
and qa the position of the point mass.

We now consider a Lagrangian of the form L = L(q̇)dt ∈ Ω1,0(Jr(E)), where L depends
only on the velocity q̇a, but not on the position qa. Taking the vertical derivative we obtain

dV L =
∂L
∂q̇a

θ̇a ∧ dt . (51.3.8)

Further applying the internal Euler operator ϱ we obtain

EL = ϱdV L = −Dt
∂L
∂q̇a

θa ∧ dt = − ∂2L
∂q̇a∂q̇b

q̈bθa ∧ dt , (51.3.9)

where Dt is the total time derivative. The second derivative of L appearing here is also
called the Lagrange metric, and is usually assumed to be non-degenerate, so that the Euler-
Lagrange equations imply q̈a = 0. From the expressions above it is easy to see that

EL− dV L = −
(
Dt

∂L
∂q̇a

θa +
∂L
∂q̇a

θ̇a
)
∧ dt = dH

(
∂L
∂q̇a

θa
)

= dHη (51.3.10)

is indeed dH -exact, by the definition of the internal Euler operator ϱ.

We now consider the evolutionary vector field X = ξa∂̄a on Jr(E) with constant ξa. Its
prolongation is simply the vector field itself, prX = X. One easily checks that it is a
symmetry of the Lagrangian, since

ιprXdV L = ιξa∂̄a

(
∂L
∂q̇a

θ̇a ∧ dt

)
= 0 . (51.3.11)

This ultimately follows from the fact that L does not depend on the position qa, so that
dV L does not contain the contact form θa, which would give a non-vanishing contribution
with ∂̄a. We thus simply have ω = 0. This yields us the conserved current

ψ = ιprXη − ω = ξa
∂L
∂q̇a

= ξapa . (51.3.12)

The components pa defined above are called canonical momenta. One can see that this is
indeed a conserved current, since

dHψ = ξaDtpadt = ξa
∂2L
∂q̇a∂q̇b

q̈bdt (51.3.13)

vanishes on solutions of the Euler-Lagrange equations.

Example 51.3.2 (Total energy conservation). We consider the same fiber bundle as in the
previous example, but allow the Lagrangian L = L(q, q̇)dt ∈ Ω1,0(Jr(E)) to depend also on
the position qa. The vertical derivative is then given by

dV L =

(
∂L
∂qa

θa +
∂L
∂q̇a

θ̇a
)
∧ dt . (51.3.14)
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Application of the internal Euler operator then yields

EL = ϱdV L =

(
∂L
∂qa
−Dt

∂L
∂q̇a

)
θa ∧ dt =

(
∂L
∂qa
− ∂2L
∂q̇a∂qb

q̇b − ∂2L
∂q̇a∂q̇b

q̈b
)
θa ∧ dt .

(51.3.15)
From this we read off that

EL− dV L = −
(
Dt

∂L
∂q̇a

θa +
∂L
∂q̇a

θ̇a
)
∧ dt = dH

(
∂L
∂q̇a

θa
)

= dHη , (51.3.16)

which actually yields the same expression for η as in the previous example.

We now consider the evolutionary vector field X = q̇a∂̄a, whose prolongation is given by

prX =

∞∑
λ=0

qaλ+1∂̄
λ
a . (51.3.17)

This is a symmetry of the Lagrangian, since

ιprXdV L =

(
∂L
∂qa

q̇a +
∂L
∂q̇a

q̈a
)
dt = DtLdt = dHL = dHω (51.3.18)

is dH -exact with ω = L. This gives us the conserved current

ψ = ιprXη − ω =
∂L
∂q̇a

q̇a − L = paq̇
a − L = H , (51.3.19)

which is called the Hamiltonian and describes the total energy of the system. This is a
conserved current, since

dHψ = DtHdt =
(

∂2L
∂q̇a∂qb

q̇b +
∂2L
∂q̇a∂q̇b

q̈b
)
q̇adt+

∂L
∂q̇a

q̈adt− ∂L
∂qa

q̇adt− ∂L
∂q̇a

q̈adt

=

(
∂2L
∂q̇a∂qb

q̇b +
∂2L
∂q̇a∂q̇b

q̈b − ∂L
∂qa

)
q̇adt ,

(51.3.20)

which vanishes when the Euler-Lagrange equations are imposed.

51.4 Noether’s second theorem
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Chapter 52

Gauge theory

52.1 Finite gauge transformations

In physics we often encounter theories which are invariant under “local symmetries”, i.e., “local
actions” of a group. This is the basic idea of gauge theory: one considers a Lagrangian system
which is invariant under the action of a group, where the group element which acts on a fiber
of a bundle depends on the base point of the fiber, hence the action is “local”. Many examples
come from field theory, such as electromagnetism, which is locally invariant under U(1), or the
strong interaction between quarks, which is locally invariant under SU(3). We will now discuss
how these theories can be described using the geometrical notions we introduced in the previous
lectures. In particular, we make use of principal bundles, which are the most suitable setting
for gauge theories. In this section we start by introducing a few important notions in the way
they are used in the context of gauge theories. We start by providing a formal definition of such
“point dependent” or “local” group action.

Definition 52.1.1 (Finite gauge transformation). Let π : P → M be a principal G-
bundle with Lie group G. A (finite) gauge transformation is a vertical principal bundle
automorphism of P , i.e., a diffeomorphism φ : P → P such that π◦φ = π and Rg◦φ = φ◦Rg
for all g ∈ G. The gauge transformations form a group with respect to function composition
◦, which is called the gauge group and denoted G.

A few remarks are in order. First, note that φ must preserve the fibers - it maps each fiber
to itself. Further, it must commute with the right translation Rg by an element g ∈ G of the
structure group G. Note that if we would choose φ = Rh for h ∈ G, we in general do not obtain
an element of the gauge group, φ /∈ G, since only the first property π ◦ φ = π is satisfied, but
in general

Rg ◦ φ = Rg ◦Rh = Rhg ̸= Rgh = Rh ◦Rg = φ ◦Rg , (52.1.1)

unless the structure group G is abelian.

Note also that while the structure group G acts from the right on P , the gauge group acts from
the left by defining φ · p = φ(p) for (φ, p) ∈ G × P . This is obviously a left action, since

(φ ◦ φ′) · p = φ(φ′(p)) = φ · (φ′ · p) . (52.1.2)

Also it is clear that the left action by G and the right action by G commute, (φ ·p) ·g = φ ·(p ·g) .

Since the action of the gauge group commutes with the action of the structure group, one may
expect that it preserves also other structures defined by the latter. This is indeed the case, as
the following statement shows.
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Theorem 52.1.1. The fundamental vector fields X̃ for X ∈ g are invariant under gauge
transformations, X̃ ◦ φ = φ∗ ◦ X̃.

Proof. First, from the fact that φ commutes with the right translation that

Rφ(p)(g) = Rg(φ(p)) = φ(Rg(p)) = φ(Rp(g)) = (φ ◦Rp)(g) (52.1.3)

for all p ∈ P and g ∈ G. This implies Rφ(p) = φ ◦Rp, so that we further find

(X̃ ◦ φ)(p) = (Rφ(p))∗(X(e)) = [φ∗ ◦ (Rp)∗](X(e)) = (φ∗ ◦ X̃)(p) , (52.1.4)

so that indeed X̃ ◦ φ = φ∗ ◦ X̃. ■

Defining the gauge group as a group of functions makes it rather cumbersome to list all elements
of the group and to understand its geometric structure, and so we aim for a more practical and
geometric description. A first step towards this description is the following.

Theorem 52.1.2. There is a one-to-one correspondence between elements φ ∈ G of the gauge
group and equivariant maps φ̂ ∈ C∞G (P,G), where G acts on itself from the right by conjugation,
and the correspondence is established by the relation

φ(p) = Rφ̂(p)(p) = p · φ̂(p) . (52.1.5)

Proof. We start with an element φ ∈ G. By definition, φ preserves the fibers, and so for every
p ∈ P we have π(φ(p)) = π(p). Since the structure group G acts freely and transitively on the
fibers of P , there exists a unique group element φ̂(p) ∈ G such that φ(p) = p · φ̂(p). Hence, we
obtain a map φ̂ : P → G. To see that this map is equivariant, we calculate

(p · g) · φ̂(p · g) = φ(p · g) = φ(p) · g = p · (φ̂(p)g) = (p · g) · (g−1φ̂(p)g) , (52.1.6)

from which follows φ̂(p · g) = g−1φ̂(p)g. Since the right hand side of this equation is simply the
action of G on itself from the right by conjugation, it follows that φ̂ is indeed an equivariant
map.

Conversely, we start with an equivariant map φ̂ ∈ C∞G (P,G) and use the relation (52.1.5) now
in the opposite direction in order to define a map φ : P → P . Since right translation by an
element φ̂(p) ∈ G preserves the fibers, the same holds also for φ. To show that φ commutes
with the right translation on P , one now calculates

φ(p) · g = p · (φ̂(p)g) = (p · g) · (g−1φ̂(p)g) = (p · g) · φ̂(p · g) = φ(p · g) , (52.1.7)

this time using the equivariance of φ̂ for proving the opposite direction. This shows that φ ∈ G.
Finally, it is easy to check that these two constructions are inverses of each other. We omit this
part of the proof here. ■

The correspondence G ∼= C∞G (P,G) also yields us a group structure on C∞G (P,G) as follows.
Consider φ,φ′ ∈ G and apply their composition

(φ ◦ φ′)(p) = φ(φ′(p))

= φ(p · φ̂′(p))
= φ(p) · φ̂′(p)
= (p · φ̂(p)) · φ̂′(p)
= p · (φ̂(p)φ̂′(p)) ,

(52.1.8)

so that φ̂ ◦ φ′(p) = φ̂(p)φ̂′(p). Hence, the induced group multiplication on C∞G (P,G) is given
by pointwise multiplication, and the unit element is given by the map p 7→ e ∈ G for all p ∈ P .
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The construction detailed already gives us more insight into the structure of the gauge group,
and allows us to express its elements in an easier way. However, it is still rather cumbersome to
work with functions on P and have an equivariance condition. To further simplify this notion,
and arrive at the structure we aim for, we continue with the following definition.

Definition 52.1.2 (Group bundle). Let π : P → M be a principal G-bundle with Lie
group G and denote by α : G × G → G the left action α(g, h) = ghg−1 of G on itself by
conjugation. The associated bundle πα : PG = P ×α G→M is called the group bundle of
P .

Note that although the fibers of both the principal bundle P and the group bundle PG are
diffeomorphic to G and both carry actions of G, there are a few crucial differences between
these two bundles. First, note that the action of G on PG is in general not transitive nor free,
and so PG is not a principal bundle. (In the case of an abelian group G, the action is even
trivial.) Also the fibers of PG are equipped with a group structure, which is not the case for a
principal bundle P . This group structure can be seen as follows. For p ∈ P and g, g′ ∈ G, so
that [p, g], [p, g′] ∈ PG lie in the same fiber, define

[p, g][p, g′] = [p, gg′] . (52.1.9)

To see that this is well-defined, consider a representative belonging to a different p′ = p · h. By
the definition of an associated bundle we then have

[p′, g][p′, g′] = [p · h, g][p · h, g′]
= [p, α(h, g)][p, α(h, g′)]

= [p, hgh−1][p, hg′h−1]

= [p, hgg′h−1]

= [p, α(h, gg′)]

= [p · h, gg′]
= [p′, gg′] ,

(52.1.10)

which shows that the definition is independent of the choice of the representative. Further, we
see that for each p ∈ P the map [p, •] : G → PG, g 7→ [p, g] is even a Lie group isomorphism;
the unit element in each fiber is given by [p, e]. This finally brings us to the description of the
gauge group we want to use. This is established by the following theorem.

Theorem 52.1.3. There is a one-to-one correspondence between equivariant maps φ̂ ∈ C∞G (P,G),
where G acts on itself from the right by conjugation, and sections φ̃ ∈ Γ(PG) of the group bundle
πα : PG →M .

Proof. This is essentially a consequence of theorem 20.3.3. The only technicality we have to
take into account is that PG is, as usual, defined via a left action, while for the equivariant
maps we considered a right action. However, this is simply solved by writing this right action
as ᾱ(g, h) = h−1gh = α(h−1, g). Now a map φ̂ : P → G is equivariant with respect to α if and
only if it is equivariant with respect to ᾱ, since

ᾱ(φ̂(p), g) = α(g−1, φ̂(p)) , (52.1.11)

and hence φ̂(p ◦ g) = ᾱ(φ̂(p), g) if and only if φ̂(p ◦ g) = α(g−1, φ̂(p)), taking into account that
we have the to take the inverse group element if we consider equivariance between right and
left actions, following definition 15.5.1. Thus, we can apply theorem 20.3.3, which completes
the proof and establishes the desired correspondence. ■
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The description of the gauge group G ∼= Γ(PG) in terms of sections of the bundle πα : PG →M
is the one we will be using in this chapter. Using the fact that each fiber of PG carries a
group structure, it is easy to see that the group structure of the gauge group is simply given
by pointwise multiplication (φ̃φ̃′)(x) = φ̃(x)φ̃′(x), and that the unit element is given by the
section of PG which assigns to each x ∈M the unit element in the fiber PGx = π−1α (x).

A section of PG is now essentially what we described in the beginning of this section: it assigns
to every x ∈ M an element of a group PGx isomorphic to the structure group G. However,
note that this isomorphism G→ PGx is not canonical, but depends on the choice of an element
p ∈ Px = π−1(x). If we wanted to express a gauge transformation by a map M → G, we would
have to pick such an element p in each fiber - and hence specify a section of P . We cannot
always do so globally, unless P is trivial, but we can do so locally by means of the following
definition.

Definition 52.1.3 (Gauge). Let π : P → M be a principal G-bundle with Lie group G.
A gauge on an open subset U ⊂M is a local section ϵ : U → P .

By choosing a gauge ϵ : U → P on U ⊂M we can locally express a gauge transformation φ by
a map φϵ : U → G, which is defined such that

φ̃(x) = [ϵ(x), φϵ(x)] ∈ PG (52.1.12)

for all x ∈ U , using the group bundle section φ̃ : M → PG formulation of the gauge transfor-
mation.

Recall that for a principal bundle a local section is equivalent to a local trivialization of the
bundle, and so we can also use it to construct induced bundle coordinates. It is instructive
to derive the corresponding coordinate expressions for a simple example, such as the structure
group G being a matrix group.

Example 52.1.1 (Gauge transformations on principal matrix group bundles). Let G ⊂Mn,n

be a matrix group and π : P →M a principal G-bundle. We will use the matrix components
(gab) as coordinates on G (imposing suitable restrictions on them, in order to represent
only those matrices that lie in G). In order to construct coordinates on P , we pick a gauge
ϵ : U → P on an open subset U ⊂M . This induces a local trivialization ϕ : π−1(U)→ U×G
such that ϕ(ϵ(x) · g) = (x, g) for all (x, g) ∈ U × G. Introducing coordinates (xµ) on U ,
we can write the coordinates on π−1(U) which are induced by the trivialization ϕ and the
coordinates (gab) on G in the form (xµ, pab). These are the coordinates we will use. Note
that in these coordinates the images ϵ(x) of the section ϵ are represented by (xµ, δab ).

The gauge ϵ also induces a local trivialization ϕα : π−1α (U) → U × G of the group bundle
PG, which is defined such that ϕα([ϵ(x), g]) = (x, g) for all (x, g) ∈ U ×G. We denote the
coordinates induced by ϕα on π−1α (U) by (xµ, qab). Note that the group structure on the
fibers of PG is represented by (qq̃)ab = qacq̃

c
b, i.e., by the matrix multiplication inherited

from G. This also implies that the unit elements in each fiber are represented by the
coordinates (xµ, δab ).

Now consider a (global) section φ̃ : M → PG of the group bundle. Our aim is to derive
the coordinate expression for the gauge transformation φ : P → P from the coordinate
expression for φ̃, relative to the gauge ϵ. This will be done in several steps. First note that
φ̃ can be expressed in our chosen coordinates such that it assigns to (xµ) ∈ U an element
with coordinates (xµ, φ̃ab(x)) ∈ PG. These coordinates are easily understood by applying
the trivialization ϕα, which yields

ϕα(φ̃(x)) = ϕα([ϵ(x), φ
ϵ(x)]) = (x, φϵ(x)) , (52.1.13)
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which shows that φ̃ab(x) are simply the coordinates of φϵ(x) in G.

In the next step we derive a coordinate expression for the equivariant map φ̂ ∈ C∞G (P,G).
This can be done by first evaluating φ̂ along the section ϵ, which yields

[ϵ(x), φ̂(ϵ(x))] = φ̃(x) = [ϵ(x), φϵ(x)] , (52.1.14)

so that φ̂(ϵ(x)) = φϵ(x) for all x ∈ U . To evaluate φ̂ at any point p = ϵ(x) · g, we use the
equivariance of φ̂ and find

φ̂(ϵ(x) · g) = g−1φϵ(x)g . (52.1.15)

Now recall that the coordinates (xµ, pab) of the element p = ϵ(x) · g are defined such that
(pab) are the coordinates of g in G, i.e., its matrix components in case of a matrix group.
Defining ((p−1)ab) to be the components of the inverse matrix, we thus find that φ̂ can be
expressed in coordinates as

φ̂ab(x, p) = (p−1)acφ̃
c
d(x)p

d
b . (52.1.16)

Keep in mind that ((p−1)ab) only denotes the inverse of the coordinate expression of p in
terms of an invertible matrix. The element p ∈ P itself does not have any notion of an
inverse, since the fibers of P have no group structure.

Finally, we will come to the coordinate expression of the gauge transformation φ : P → P ,
which is defined by φ(p) = p · φ̂(p). Writing the coordinates of φ(p) as (xµ, φab(x, p)), it is
easy to see that

φab(x, p) = pacφ̂
c
b(x, p) = φ̃ac(x)p

c
b , (52.1.17)

since the matrices pab and (p−1)ab on the left just cancel each other.

Hence, in the coordinates induced by choosing a gauge ϵ, the action of the gauge trans-
formation is simply expressed by left multiplication with the matrix representation of φϵ.
This nicely reflects the fact that the gauge group G acts on P from the left. Also one
sees immediately that gauge transformations commute with the right translation, since
(φ̃ac(x)p

c
d)g

d
b = φ̃ac(x)(p

c
dg
d
b). However, note that expressing gauge transformations

by matrix multiplication with elements of G from the left is only a coordinate description
induced by choosing a gauge - the structure group G itself does not act from the left on P .

We finally remark that given a gauge ϵ : U → P and a gauge transformation φ : P → P , one
can construct a new gauge as ϵ′ = φ ◦ ϵ. Hence, a gauge transformation transforms a gauge -
which justifies the name. We will see later what is the practical use of this notion.

52.2 Infinitesimal gauge transformations

Symmetries of Lagrangian systems are usually described in terms of evolutionary vector fields,
which are the infinitesimal generators of the symmetry. Hence, we are also interested in an
infinitesimal description of gauge transformations. As in the case of Lie group actions, we may
obtain this description by considering one-parameter subgroups ψ : R → G, t 7→ ψt. Here
ψt : P → P is a gauge transformation, and we further have the composition law

ψt ◦ ψs = ψt+s (52.2.1)

for t, s ∈ R. For every p ∈ P this fixes a curve γp : R→ P given by γp(t) = ψt(p). This curve is
vertical, which means that π(γp(t)) = π(p). Taking its tangent vector at t = 0 we thus obtain a
vertical tangent vector. This defines a map ξ : P → V P, p 7→ γ̇p(0), and thus a vertical vector
field on P . To understand how the tangent vectors ξ(p) and ξ(p ◦ g) for some g ∈ G are related
to each other, recall that each ψt commutes with the right action of g on P , so that

γRg(p)(t) = ψt(Rg(p)) = Rg(ψt(p)) = Rg(γp(t)) . (52.2.2)
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Hence, their tangent vectors are related by

ξ(Rg(p)) = γ̇Rg(p)(0) = Rg∗(γ̇p(0)) = Rg∗(ξ(p)) , (52.2.3)

and so ξ ◦Rg = Rg∗ ◦ ξ for all g ∈ G. This means that ξ is an equivariant map, where the right
action of G on V P is given by (v, g) 7→ Rg∗(v). This leads us to the following definition.

Definition 52.2.1 (Infinitesimal gauge transformation). Let π : P →M be a principal G-
bundle with Lie group G. An infinitesimal gauge transformation is a G-equivariant vertical
vector field on P , i.e., a vector field ξ : P → V P such that ξ ◦Rg = Rg∗ ◦ ξ for all g ∈ G.

Since finite gauge transformations form a group, one may already expect that infinitely gauge
transformations form a Lie algebra. This is established by the following theorem.

Theorem 52.2.1. The infinitesimal gauge transformations form a Lie algebra with respect to
the Lie bracket of vector fields, which is called the gauge algebra and denoted G.

Proof. The Lie bracket between any two vertical vector fields is again vertical, since the vertical
distribution V P is integrable. Further, let ξ, ξ′ ∈ G. Using the fact that the commutator of
vector fields is identical to the Lie derivative, we can write

[ξ, ξ′](Rg(p)) = (Lξξ′)(Rg(p))

= lim
t→0

ψ−t∗(ξ′(ψt(Rg(p))))− ξ′(Rg(p))
t

= lim
t→0

ψ−t∗(ξ′(Rg(ψt(p))))− ξ′(Rg(p))
t

= lim
t→0

ψ−t∗(Rg∗(ξ′(ψt(p))))−Rg∗(ξ′(p))
t

= lim
t→0

Rg∗(ψ−t∗(ξ′(ψt(p))))−Rg∗(ξ′(p))
t

= lim
t→0

Rg∗(ψ−t∗(ξ′(ψt(p)))− ξ′(p))
t

= Rg∗

(
lim
t→0

ψ−t∗(ξ′(ψt(p)))− ξ′(p)
t

)
= Rg∗((Lξξ′)(p))
= Rg∗([ξ, ξ

′](p)) ,

(52.2.4)

so that also [ξ, ξ′] is equivariant. ■

Another useful relation involving the Lie bracket is the following.

Theorem 52.2.2. The Lie bracket between any infinitesimal gauge transformation ξ and fun-
damental vector field X̃ for X ∈ g vanishes, [ξ, X̃] = 0.

Proof. We make use that the fundamental vector fields commute with finite gauge transforma-
tions, as shown in theorem 52.1.1, so that we find

[ξ, X̃](p) = (LξX̃)(p)

= lim
t→0

ψ−t∗(X̃(ψt(p)))− X̃(p)

t

= lim
t→0

ψ−t∗(ψt∗(X̃(p)))− X̃(p)

t

= lim
t→0

X̃(p)− X̃(p)

t

= 0 ,

(52.2.5)
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so that the Lie bracket vanishes everywhere. ■

Also in the case of the gauge algebra G we aim for a more practical description, which will
finally provide us with a simple coordinate expression. We can proceed in a similar way as for
the gauge group G and explicitly construct a number of one-to-one correspondences. Here we
start with the following.

Theorem 52.2.3. There is a one-to-one correspondence between infinitesimal gauge trans-
formations ξ ∈ G and equivariant maps ξ̂ ∈ C∞G (P, g), where G acts on g by the adjoint
representation, and the correspondence is established by the fundamental vector fields on P .

Proof. Recall that following theorem 20.1.3 for each p ∈ P the fundamental vector fields define
a vector space isomorphism between the Lie algebra g and the vertical tangent space VpP , which
assigns to X ∈ g the element X̃(p) ∈ VpP . This allows us to define ξ̂(p) ∈ g as the unique
element such that

ξ(p) =
˜̂
ξ(p)(p) . (52.2.6)

To see that ξ̂ is equivariant, we calculate

ˆ̃ξ(p · g)(p · g) = ξ(p · g)
= Rg∗(ξ(p))

= Rg∗

(˜̂
ξ(p)(p)

)
= Rg∗

(
Rg−1∗

(
˜Adg−1(ξ̂(p))(p · g)

))
= ˜Adg−1(ξ̂(p))(p · g) ,

(52.2.7)

using theorem 20.1.4. Comparing the left and right hand side, we see that

ξ̂(p · g) = Adg−1(ξ̂(p)) , (52.2.8)

which shows that ξ̂ is indeed equivariant. Conversely, given an equivariant map ξ̂ ∈ C∞G (P, g)
one defines ξ through the relation (52.2.6) and shows that this is an equivariant vector field by
essentially reversing the steps above. ■

Now the next steps are clear. We continue with a straightforward definition.

Definition 52.2.2 (Algebra bundle). Let π : P → M be a principal G-bundle with Lie
group G and denote by Ad : G × g → g the left action of G on its Lie algebra g by the
adjoint representation. The associated bundle πAd : P g = P ×Ad g → M is called the
algebra bundle of P .

Also the final step is straightforward.

Theorem 52.2.4. There is a one-to-one correspondence between equivariant maps ξ̂ ∈ C∞G (P, g),
where G acts on g by the adjoint representation Ad, and sections ξ̃ ∈ Γ(P g) of the algebra bundle
πAd : P g →M .

Proof. This follows immediately from theorem 20.3.3, as it is simply a particular example. ■
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This is the description we want to use. As one might expect from the fact that finite gauge
transformations can be described by assigning to each x ∈M an element of a group isomorphic
to the structure group G, in the infinitesimal case one has a Lie algebra (the fibers of P g)
isomorphic to g instead. Also in this case this isomorphism is not canonical, but determined
only if one chooses a gauge, i.e., a local section ϵ : U → P of P . This then allows expressing an
infinitesimal gauge transformation ξ locally by a map ξϵ : U → g as

ξ̃(x) = [ϵ(x), ξϵ(x)] ∈ P g . (52.2.9)

We illustrate the contents of this section by an explicit example.

Example 52.2.1 (Infinitesimal gauge transformations on principal matrix group bundles).
We consider the same principal bundle and the same coordinates as introduced in exam-
ple 52.1.1. In addition, we use the fact that the Lie algebra g can be represented by the
tangent space TeG to introduce coordinates by using the coordinate basis induced from the
coordinates (gab) on G. We denote these coordinates by (hab). For the matrix Lie groups
listed in example 15.1.3, coordinates induced by their matrix components on their matrix
Lie algebras simply agree with the matrix components listed in example 15.6.2. In these
coordinates the adjoint representation Ad takes the form (Adg(X))ab = gach

c
d(g
−1)db.

We now proceed as in example 52.1.1. First, note that the gauge ϵ induces a local trivializa-
tion ϕAd : π−1Ad(U)→ U × g of the algebra bundle P g, such that ϕAd([ϵ(x), X]) = (x,X) for
all (x,X) ∈ U × g. We write the coordinates induced by ϕAd as (xµ, uab). A global section
ξ̃ : M → P g, restricted to U , can be expressed in these coordinates as an assignment of
(xµ, ξ̃ab(x)) to every (xµ) in U . Using the trivialization

ϕAd(ξ̃(x)) = ϕAd([ϵ(x), ξ
ϵ(x)]) = (x, ξϵ(x)) (52.2.10)

one sees that ξ̃ab(x) are simply the coordinates of ξϵ(x) in g.

We continue by deriving a coordinate expression for the equivariant map ξ̂ ∈ C∞G (P, g). For
this purpose we first evaluate ξ̂ along the section ϵ, which yields

[ϵ(x), ξ̂(ϵ(x))] = ξ̃(x) = [ϵ(x), ξϵ(x)] , (52.2.11)

so that ξ̂(ϵ(x)) = ξϵ(x) for all x ∈ U . To evaluate ξ̂ at any point p = ϵ(x) · g, we use the
equivariance of ξ̂ and find

ξ̂(ϵ(x) · g) = Adg−1(ξϵ(x)) . (52.2.12)

Now we once again make use of the fact that the coordinates (xµ, pab) of the element
p = ϵ(x) · g are defined such that (pab) are the coordinates of g in G, i.e., its matrix
components in case of a matrix group. Recall that we defined ((p−1)ab) to be the components
of the inverse matrix. Together with a matrix expression of the adjoint representation, this
allows us to express ξ̂ in coordinates as

ξ̂ab(x, p) = (p−1)acξ̃
c
d(x)p

d
b . (52.2.13)

This expression looks very similar to the corresponding coordinate expression in the finite
case shown in example 52.1.1. Note, however, that the objects defined by these expressions
lie in different spaces, and that different restrictions apply to the matrix components of Lie
group and Lie algebra elements.

We finally come to the coordinate expression of the infinitesimal gauge transformation ξ :

P → V P , which is defined by ξ(p) =
˜̂
ξ(p)(p). Since in our chosen coordinates the right

action of G on P is given by matrix multiplication (p·g)ab = pacg
c
b, we can apply essentially

the same construction as in example 20.1.1 to write the fundamental vector field X̃ of X ∈ g
as

X̃ = pacX
c
b
∂

∂pab
. (52.2.14)
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Writing the coordinates of ξ(p) as (xµ, ξab(x, p)) with respect to the vertical tangent space
basis induced by the coordinates (pab) on P , we thus find that

ξ(x, p) = ξab(x, p)
∂

∂pab
= pacξ̂

c
b(x, p)

∂

∂pab
= ξ̃ac(x)p

c
b
∂

∂pab
, (52.2.15)

since the matrices pab and (p−1)ab on the left just cancel each other. Again we find that
the result formally looks identical to the case of finite gauge transformations. This simply
reflects the fact that here we are considering the infinitesimal version of the construction
from the former section.

Having this expression at hand, it is now easy to calculate

[ξ, X̃] =

[
ξ̃ae(x)p

e
b
∂

∂pab
, pcfX

f
d
∂

∂pcd

]
= ξ̃ae(x)p

e
b
∂

∂pab

(
pcfX

f
d

) ∂

∂pcd
− pcfXf

d
∂

∂pcd

(
ξ̃ae(x)p

e
b

) ∂

∂pab

= ξ̃ae(x)p
e
bδ
c
aX

b
d
∂

∂pcd
− pcfXf

dξ̃
a
c(x)δ

d
b

∂

∂pab

=
[
ξ̃ae(x)p

e
bX

b
d − pcfXf

dξ̃
a
c(x)

] ∂

∂pad

= 0 ,

(52.2.16)

in agreement with theorem 52.2.2.

52.3 Matter fields

Since we are interested in gauge symmetries of Lagrangian systems, we now need a fiber bundle
on whose jet bundle the Lagrangian will be defined, and whose sections will be subject to the
Euler-Lagrange equations. For a gauge theory this bundle will carry an action of the structure
group G. More specifically, it will be an associated bundle to a principal G-bundle π : P →M .
We introduce the following terminology, which is used in the context of gauge theories.

Definition 52.3.1 (Matter field). A matter field is a section Φ : M → P ×ρ F of a fiber
bundle πρ : P ×ρ F →M with fiber F associated to a principal G-bundle π : P →M with
Lie group G.

Recall that the total space P ×ρ F is constituted by equivalence classes [p, f ], where p ∈ P ,
f ∈ F and equivalence is defined by (p, f) ∼ (p · g, ρ(g−1, f)) for some g ∈ G. We now pose the
question how matter fields change if we perform an operation on the principal bundle which
preserves its fibers and the right action of the structure group G. We define this operation as
follows.

Definition 52.3.2 (Gauge transformation of matter fields). Let π : P →M be a principal
G-bundle with Lie group G and ρ : G × F → F a left action on the typical fiber G. The
gauge group action of G on the associated bundle πρ : P ×ρ F → M is the left action
φρ : P ×ρ F → P ×ρ F defined by

φρ([p, f ]) = φ · [p, f ] = [φ(p), f ] (52.3.1)
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for φ ∈ G and [p, f ] ∈ P ×ρ F .

This action is well defined, since

φρ([p · g, ρ(g−1, f)]) = [φ(p · g), ρ(g−1, f)]
= [φ(p) · g, ρ(g−1, f)]
= [φ(p), f ]

= φρ([p, f ]) .

(52.3.2)

Hence, the result does not depend on the choice of the representative, due to the fact that φ
commutes with the right action of the structure group G on P .

Since working with gauge transformations as maps φ : P → P might not be the most convenient
description, it is useful to also discuss how we can understand gauge transformations using the
other descriptions we provided. If we describe a gauge transformation as an equivariant map
φ̂ ∈ C∞G (P,G), then we find the expression

φρ([p, f ]) = [φ(p), f ] = [p · φ̂(p), f ] = [p, ρ(φ̂(p), f)] . (52.3.3)

In order to relate this expression to the description in terms of sections φ̃ : M → PG of the
group bundle, recall that φ̃ is defined such that

φ̃(x) = [p, φ̂(p)] ∈ PG (52.3.4)

for any representative p ∈ π−1(x), and that the result is independent of the choice of the
representative. Defining

φρ([p, f ]) = [p, ρ(φ̂(p), f)] = [p, φ̂(p)] · [p, f ] = φ̃(π(p)) · [p, f ] , (52.3.5)

we therefore see that this is also independent of the choice of the representative.

The action of G on P ×ρF is fiber preserving and thus induces an action on the space Γ(P ×ρF )
of sections, where

φρ(Φ) = φρ ◦ Φ (52.3.6)

for Φ ∈ Γ(P ×ρ F ). Further, we obtain an action on the jet bundles Jr(P ×ρ F ), which is
defined such that

φρ(j
r
xΦ) = jrxφρ(Φ) . (52.3.7)

To see that this is well-defined, we have to check that φρ(jrxΦ) is independent of the choice of the
representative Φ, i.e., that jrxφρ(Φ1) = jrxφρ(Φ2) for two sections Φ1,Φ2 satisfying jrxΦ1 = jrxΦ2.
This is indeed the case, which can easily be proven using the fact that φρ : P ×ρ F → P ×ρ F
is a bundle isomorphism.

Working with bundles whose elements are equivalence classes of sections or orbits of a group
action, as it is the case for associated bundles, can sometimes become rather cumbersome. In
order to construct local coordinates on these spaces it is more convenient to construct particular
local trivializations. Here we can make use of the fact that a local trivialization of an associated
bundle can be obtained from a local section of the underlying principal fiber bundle - which is
simply a gauge.

With the choice of a gauge on U ⊂ M we can express matter fields in a simpler form, which
is of course valid only locally, i.e., only on U , and depends on the choice of the gauge. For a
matter field Φ : M → P ×ρ F we define the local expression Φϵ : U → F relative to the gauge
ϵ : U → P such that

Φ(x) = [ϵ(x),Φϵ(x)] . (52.3.8)
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We can also make use of the fiber diffeomorphism introduced in definition 20.3.2 to explicitly
write

Φϵ : U → F
x 7→ [ϵ(x)]−1(Φ(x))

. (52.3.9)

Given coordinates on U and F , we thus obtain a coordinate description for Φ.

We also pose the question how the gauge fixed description Φϵ changes if we replace ϵ by a
different gauge ϵ′ = φ ◦ ϵ obtained by a gauge transformation φ. To see this, we calculate

[ϵ′(x), (φρ ◦ Φ)ϵ
′
(x)] = (φρ ◦ Φ)(x)

= φρ([ϵ(x),Φ
ϵ(x)])

= [φ(ϵ(x)),Φϵ(x)]

= [ϵ′(x),Φϵ(x)] .

(52.3.10)

From this we find the relation
(φρ ◦ Φ)ϵ

′
= Φϵ , (52.3.11)

so that a gauge transformation of Φ is compensated by expressing the result in a transformed
gauge.

We illustrate the constructions shown above with an example.

Example 52.3.1 (Associated gauge transformation for a matrix Lie group). Let π : P →M
be the same principal bundle as in the examples 52.1.1 and 52.2.1, where we have chosen
G ⊂ Mn,n to be a matrix Lie group. We further choose ρ to be the natural action of G
on the space F = Rn by left multiplication. A gauge ϵ : U → P on U ⊂ M allows us to
construct a local trivialization ϕρ : π−1ρ (U)→ U × F such that ϕρ([ϵ(x), f ]) = (x, f) for all
(x, f) ∈ U × F . Using coordinates (xµ) on U and the canonical coordinates (fa) on Rn we
thus obtain coordinates (xµ, fa) on π−1ρ (U) ⊂ P ×ρ F .

For the transformed point φρ(p, f) after applying a gauge transformation φ we write the
coordinates as (xµ, f ′a), and we aim to construct an expression for f ′a in terms of fa and
the coordinate expressions for φ derived in example 52.1.1. Here it is most convenient to
consider the equivariant map φ̂ ∈ C∞G (P,G). Evaluating it at p = ϵ(x) for the chosen gauge,
we find

φρ([ϵ(x), f ]) = [ϵ(x), ρ(φ̂(ϵ(x)), f)] = [ϵ(x), ρ(φϵ(x), f)] . (52.3.12)

This implies for the coordinate expressions the relation

f ′a = φ̃ab(x)f
b , (52.3.13)

so that the fiber coordinates are simply multiplied by the coordinate expression of the gauge
transformation.

The expression derived above can also be applied if one considers a section Φ :M → P ×ρF
instead of a single element [p, f ] ∈ P ×ρ F . This section can be written in coordinates as

Φ : (xµ) 7→ (xµ,Φa(x)) . (52.3.14)

One easily checks that Φa(x) are simply the components of Φϵ(x) ∈ F = Rn, due to the
construction of the coordinates on P ×ρ F by making use of the gauge ϵ.

Finally, we also take a look at infinitesimal gauge transformations. It follows from the structure
of finite gauge transformations that they can be defined as follows.
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Definition 52.3.3 (Infinitesimal gauge transformation of matter fields). Let π : P → M
be a principal G-bundle with Lie group G and ρ : G× F → F a left action on the typical
fiber G. The gauge algebra action of G on the associated bundle πρ : P ×ρ F → M is the
vertical vector field ξρ : P ×ρ F → V (P ×ρ F ) defined by

ξρ([p, f ]) = [•, f ]∗(ξ(p)) (52.3.15)

for ξ ∈ G and [p, f ] ∈ P ×ρ F .

This definition requires a few explanations. First we have to check that ξρ is well-defined, i.e.,
that it is independent of the choice of the representative p. For this purpose we calculate

ξρ([p · g, ρ(g−1, f)]) = [•, ρ(g−1, f)]∗(ξ(p · g))
= ([•, ρ(g−1, f)]∗ ◦Rg∗)(ξ(p))
= [• · g, ρ(g−1, f)]∗(ξ(p))
= [•, f ]∗(ξ(p))
= ξρ([p, f ]) .

(52.3.16)

Now we still have to check that ξρ is a vertical vector field. We thus calculate

(πρ∗ ◦ ξρ)([p, f ]) = (πρ∗ ◦ [•, f ]∗ ◦ ξ)(p)
= (π∗ ◦ ξ)(p)
= 0 ,

(52.3.17)

since πρ ◦ [•, f ] = π, using the fact that p 7→ [p, f ] is a bundle morphism covering the identity,
and π∗(ξ(p)) = 0 since ξ is a vertical vector field.

The object ξρ we have just constructed brings us closer to Lagrangian symmetries. Writing the
vertical tangent bundle as νρ : V (P ×ρ F ) → P ×ρ F , one realizes that ξrρ = ξρ ◦ πρ r,0, where
πρ r,0 : Jr(P ×ρ F )→ P ×ρ F is a jet bundle projection, satisfies

νρ ◦ ξrρ = νρ ◦ ξρ ◦ πρ r,0 = πρ r,0 , (52.3.18)

and so it is an evolutionary vector field. This will allow us to study gauge invariant Lagrangians.

Example 52.3.2 (Infinitesimal associated gauge transformation for a matrix Lie group). We
return once more to our example of matrix Lie groups. It follows immediately from the
relation (52.3.13) that an infinitesimal gauge transformation acts on matter fields via the
vertical vector field

ξρ(x, f) = ξ̃ab(x)f
b ∂

∂fa
. (52.3.19)

From this coordinate expression we can now also calculate the prolongation of this vector
field to any jet bundle. Here we restrict ourselves to the first jet bundle J1(P ×ρ F ).
Denoting the induced coordinates on J1(P ×ρ F ) by (xµ, fa, fa,µ) we find

pr ξρ(x, f, ∂f) = ξ̃ab(x)f
b ∂

∂fa
+
(
∂µξ̃

a
b(x)f

b + ξ̃ab(x)f
b
,µ

) ∂

∂fa,µ
. (52.3.20)

Note the appearance of the derivatives ∂µξ̃ab(x) of the components of ξ. These terms will
appear in the infinitesimal transformation of any Lagrangian that depends on the derivative
coordinates fa,µ (which would be necessary for a kinetic term), and will break the gauge
invariance. Hence, we must introduce suitable terms to cancel them.
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52.4 Gauge fields

The next ingredient we will need for a gauge theory, and which will finally allow us to construct a
gauge invariant Lagrangian, is the notion of a gauge field. Essentially, a gauge field is a principal
Ehresmann connection, which is a G-equivariant section A of the jet bundle π1,0 : J1(P ) → P
over a principal bundle π : P →M , following definition 27.1.1. Here we are in a similar situation
as in the case of matter fields. Recall that matter fields, i.e., sections Φ ∈ Γ(P ×ρ F ), can also
be understood as G-equivariant maps Φ ∈ C∞G (P, F ). The situation here is a bit different, since
we do not consider arbitrary G-equivariant maps from P to J1(P ), but only sections. However,
it is indeed possible to consider gauge fields as sections of a bundle over M , which we construct
as follows.

Definition 52.4.1 (Principal connection bundle). Let π : P →M be a principal G-bundle
with Lie group G and J1(P ) the first jet space. The space C = J1(P )/G of G-orbits in
J1(P ) together with the canonical projection χ : C → M defines a fiber bundle called the
principal connection bundle.

To check that this construction is valid, first note that the right actions of G on both P and
J1(P ) are free, i.e., for each p ∈ P the subgroup of G sending p to itself contains only the unit
element of G, and analogously for J1(P ). As a consequence, all group orbits in P and J1(P )
are diffeomorphic to G. The orbits in P are simply the fibers of the bundle π : P →M , so that
the space P/G of orbits is canonically diffeomorphic to M . We denote by C = J1(P )/G the
space of orbits in J1(P ). Note that the projection π1 : J1(P )→M satisfies π1 ◦Rg = π1 for all
g ∈ G, i.e., it sends all elements of an orbit to the same image in M . Thus, there is a unique
projection χ : C → M . One easily checks that this defines a fiber bundle. Its sections should
already be familiar, as the following theorem states.

Theorem 52.4.1. There is a one-to-one correspondence between principal Ehresmann con-
nections in a principal G-bundle π : P → M and sections of its principal connection bundle
χ : C →M .

Proof. Let A : P → J1(P ) be a principal Ehresmann connection. Since A is an equivariant
map, it preserves the orbits, i.e., if p and p′ belong to the same orbit in P , then A(p) and A(p′)
belong to the same orbit in J1(P ). Thus, A defines a map Ω : M → C sending orbits in P to
orbits in J1(P ), such that the diagram

P
A //

π

��

J1(P )

•·G
��

M
Ω // C

(52.4.1)

commutes, where the map on the right is simply the canonical projection onto the space of
orbits. Further, A is a section of the bundle π1,0 : J1(P ) → P , so that π1,0 ◦ A = idP . Thus,
for all p ∈ P we have

χ(Ω(π(p))) = χ(A(p) ·G) = π(π1,0(A(p))) = π(p) , (52.4.2)

which follows from the fact that π1,0 is G-equivariant and thus π1 = π ◦ π1,0 = χ ◦ (• ·G). This
shows that Ω is a section of the principal connection bundle χ : C →M .

Conversely, let Ω : M → C be a section of the principal connection bundle. For p ∈ P , define
A(p) as the unique jet in J1(P ) such that π1,0(A(p)) = p and A(p) · G = χ(x). One easily
checks that the jet A(p) defined this way always exists, that it is unique and that the resulting
map A : P → J1(P ) is a principal Ehresmann connection. ■
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With this statement at hand, we can now come to the following definition.

Definition 52.4.2 (Gauge field). Let π : P → M be principal G-bundle with Lie group
G. A gauge field is a section Ω of the principal connection bundle χ : C →M .

We finally discuss the question how gauge transformations act on sections of the principal con-
nection bundle. The easiest way to construct such an action is to use G-equivariant connection
forms θ : TP → V P . In this case we can simply define φ̄(θ) = φ∗ ◦ θ ◦ φ−1∗ . To see that this is
again a G-equivariant connection form, first note that by construction, φ̄(θ) is a vector bundle
homomorphism covering the identity on P . Further, recall from theorem 52.1.1 that the funda-
mental vector fields are invariant under the action of a gauge transformation, φ∗ ◦ X̃ = X̃ ◦ φ.
From this in particular follows that the vertical tangent bundle V P is invariant under φ, i.e.,
φ∗(v) ∈ V P for all v ∈ V P . We thus have

φ̄(θ)(v) = (φ∗ ◦ θ ◦ φ−1∗ )(v) = (φ∗ ◦ φ−1∗ )(v) = v , (52.4.3)

so that φ̄(θ) restricts to the identity on V P . Finally, for all g ∈ G and w ∈ TP we find

φ̄(θ)(Rg∗(w)) = (φ∗ ◦ θ ◦ φ−1∗ ◦Rg∗)(w) = (Rg∗ ◦ φ∗ ◦ θ ◦ φ−1∗ )(w) = Rg∗(φ̄(θ)(w)) , (52.4.4)

where we used the fact that all maps appearing above are G-equivariant, so that we can permute
Rg∗ to the left. This shows that also φ̄(θ) is G-equivariant.

From the invariance of the fundamental vector fields shown in theorem 52.1.1 we can see that
the corresponding principal G-connection ϑ ∈ Ω1(P, g) transforms in an even simpler way in
form of the pullback φ−1 ∗(ϑ). This can be seen most easily using the following commutative
diagram.

TpP
� � φ−1

∗ // //

φ̄(θ)

����

φ−1 ∗(ϑ)

    

Tφ−1(p)P

θ

����

ϑ

||||
gN n

•̃p

~~~~

� q

•̃φ−1(p)

"" ""
VpP
� �

φ−1
∗

// // Vφ−1(p)P

(52.4.5)

To see that φ−1 ∗(ϑ) is the principal G-connection of the connection form φ̄(θ) and vice versa,
we must show that the left triangle commutes. This is the case if and only if all other building
blocks of this diagram commute. The lower triangle commutes due to the gauge invariance of
the fundamental vector fields shown in theorem 52.1.1. The right triangle commutes by the
relation between the connection form θ and the principal G-connection ϑ. The upper triangle
commutes by definition of the pullback. Finally, the surrounding square commutes by definition
of φ̄(θ).

With this preliminary discussion we can now describe gauge transformations of principal Ehres-
mann connections, and thus of gauge fields. Let A : P → J1(P ) be a principal Ehresmann
connection, which assigns to p ∈ P with π(p) = x a jet A(p) = j1xσp ∈ J1(P ), and θ the
corresponding connection form. We define φ̄(A) as the principal Ehresmann connection corre-
sponding to φ̄(θ). Then we have φ̄(A)(p) = j1x(φ ◦ σφ−1(p)). To check this, we calculate

φ̄(θ)p(w) = w − φ∗(σφ−1(p)∗(π∗(w)))

= φ∗
[
φ−1∗ (w)− σφ−1(p)∗(π∗(φ

−1
∗ (w))))

]
= φ∗(θφ−1(p)(φ

−1
∗ (w))) ,

(52.4.6)
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which shows that our formula is correct. Finally, taking the quotient by the group action of
G yields the action of the gauge group on the space Γ(C) of sections of the connection bundle
χ : C →M .

We also discuss how we can express a gauge field Ω if we have fixed a gauge, i.e., a local section
ϵ : U → P of our principal bundle. The easiest way is to view the gauge field in terms of the
corresponding principal G-connection ϑ on P , and thus in particular as a g-valued one-form
ϑ ∈ Ω1(P, g) on P . Given a gauge ϵ we can thus define

Ωϵ = ϵ∗(ϑ) ∈ Ω1(M, g) . (52.4.7)

Thus, the connection pulls back to a g-valued one-form on M . This is the description most
often encountered in field theory.

Finally, we discuss how this description changes if we use a different gauge ϵ′ = φ ◦ ϵ. Let Ω′

be the gauge field described by the connection form φ∗(ϑ). From the properties of the pullback
follows immediately

Ω′ϵ
′
= (ϵ′∗ ◦ φ−1 ∗)(ϑ) = (φ−1 ◦ ϵ′)∗(ϑ) = ϵ∗(ϑ) = Ωϵ . (52.4.8)

Hence, we find that also for gauge fields the local expressions in different gauges are related via
the corresponding gauge transformations, in full analogy to the case for matter fields.

We will illustrate the constructions shown in this section using the example of a matrix Lie
group G.

Example 52.4.1 (Gauge fields for a matrix Lie group). We consider the same principal bundle
π : P →M with structure group G and coordinates derived from a local section ϵ : U → P
on U ⊂M as introduced in example 52.1.1. We write the corresponding coordinates on the
first jet bundle J1(P ) as (xµ, pab, p

a
b,µ). In order to construct coordinates on the principal

connection bundle C = J1(P )/G, we must determine the orbits of the right translation on
J1(P ). Recall that in coordinates the right translation reads

R : ((xµ, pab, p
a
b,µ), g

a
b) 7→ (xµ, pacg

c
b, p

a
c,µg

c
b) . (52.4.9)

Obviously the coordinates (xµ) are constant on every orbit, since they are not affected by
the right translation. Note that also the expression pac,µ(p−1)cb is invariant under the group
action. Hence, we can parametrize the orbit space C (locally) with coordinates

(xµ, cabµ) = {(xµ, gab, cac,µgcb), (gab) ∈ G} ∈ C . (52.4.10)

Recall that a principal connection ω : P → J1(P ) is expressed in coordinates through the
connection coefficients Γabµ using the formula (27.1.23). By comparison with our coordinates
on C, we see that ω maps the fiber over (xµ) to the orbit with coordinate cabµ = −Γabµ(x).
Hence, the gauge field Ω is expressed in these coordinates as

Ω : (xµ) 7→ (xµ,−Γabµ(x)) . (52.4.11)

In other words, the connection coefficients are simply the coordinates on the principal con-
nection bundle, up to a sign.

If we have chosen a gauge ϵ : U → P on an open set U ⊂ M , we can also derive the
gauge fixed expression Ωϵ for the connection. This derivation becomes most simple in
the case that the trivialization ϕ used in constructing the coordinates is given such that
ϕ(ϵ(x)) = (x, e). In this case we have ϵ : (xµ) 7→ (xµ, δab ) for all x ∈ U , so that we find,
using the formula (27.1.18),

[Ωϵ(x)]ab = [ϵ∗(ϑ)(x)]ab = Γabµ(x)dx
µ . (52.4.12)

This is the most common way to express a gauge field. Again we see that the coordinate
expression is just given by the connection coefficients.
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We finally show what happens if we use a different gauge ϵ′ = φ ◦ ϵ obtained from a
gauge transformation φ. For this purpose we write this new gauge in coordinates as ϵ′ :
(xµ) 7→ (xµ, ϵ′ab(x)). By using once again the formula (27.1.18) in terms of the connection
coefficients we then find

[Ωϵ
′
(x)]ab = (ϵ′−1(x))ac

[
∂ϵ′cb
∂xµ

+ ϵ′db(x)Γ
c
dµ(x)

]
dxµ . (52.4.13)

This shows the transformation behavior of a gauge field under gauge transformations. Note
in particular that it transforms inhomogeneously, as one can see from the term involving
derivatives of ϵ′, which reminds that connections are sections of an affine bundle.

52.5 Gauge invariance of Lagrangian systems

Finally, we pose the question how to treat theories involving gauge and matter fields using the
Lagrangian formalism we introduced in a previous lecture. Here we restrict ourselves to theories
in which there is only one Lie group G and one principal G-bundle π : P →M and summarize
all matter fields within a single associated bundle πρ : P ×ρF →M . Thus, a field configuration
is given by a gauge field Ω : M → C and a matter field Φ : M → P ×ρ F . We can combine
both into a section (Ω,Φ) of the Cartesian product bundle

E = C ×M (P ×ρ F ) =
⋃
x∈M

Cx × (Px ×ρ F ) , (52.5.1)

whose fibers are the Cartesian products of the fibers of C and P ×ρ F , and which canonically
inherits a bundle projection Π : E →M . The gauge group acts on both Ω and Φ, and thus also
on the pair (Ω,Φ). This defines an action of the gauge group on sections of E, and thus also
on the jet bundles Jr(E). This allows us to define the following notion.

Definition 52.5.1 (Gauge invariant Lagrangian). A Lagrangian L ∈ Ωn,0(Jr(E)) is called
gauge invariant if it is invariant under the action of the gauge group on Jr(E).

52.6 Conserved gauge currents

52.7 Spontaneous symmetry breaking
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Chapter 53

Hamiltonian mechanics

53.1 Hamiltonian systems

Hamilton theory appears in physics in various different flavors, using similar geometric struc-
tures, but with certain differences.

53.2 Canonical coordinates

53.3 Canonical transformations

53.4 Action-angle variables

53.5 Legendre transformation

53.6 Constrained systems
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Chapter 54

Canonical Hamiltonian field theory
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Chapter 55

Covariant Hamiltonian field theory
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Chapter 56

Hamilton-Jacobi theory
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Chapter 57

Dynamical systems

57.1 Autonomous continuous dynamical systems

57.2 Autonomous discrete dynamical systems

57.3 Non-autonomous continuous dynamical systems

57.4 Non-autonomous discrete dynamical systems

57.5 Fixed points

57.6 Singularities

57.7 Stability

57.8 Poincaré sections
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Chapter 58

Perturbation theory
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Chapter 59

Geometric quantization

59.1 Prequantization
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BRST quantization
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Berwald, 419
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chain, 279
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simplex, 276

bundle
affine, 69
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associated, 191
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density, 242
exterior power, 60
fiber, 28
group, 548
horizontal cotangent, 179
horizontal tangent, 289
induced, 42
jet, 222
line, 53
normalized frame, 265
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orientation line, 261
oriented frame, 262
principal, 187
pullback, 42
symmetric power, 61
tangent, 82
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vector, 47
vertical tangent, 178

bundle isomorphism, 38
affine bundle, 73
complex vector bundle, 479
holomorphic vector bundle, 486
principal G-bundle, 191
vector bundle, 53

bundle map, 37
bundle morphism, 37

affine bundle, 73
complex vector bundle, 479
covering identity, 38
dual, 57
holomorphic vector bundle, 486
jet bundle, 224
principal G-bundle, 191
principal bundle, 190
vector bundle, 53

Calabi-Yau manifold, 501
canonical flat connection, 308
canonical involution, 365
canonical lift

curve, 84
canonical one-form, 240
canonical pairing, 56
Cartan connection, 472

curvature, 475
Cartan development, 476
Cartan geometry, 472

first-order, 475
higher-order, 475
reductive, 476

Cartan linear connection, 463
Cartan one-form, 455
Cartan tensor, 461
chain, 275

boundary, 279
cubical, 275
simplical, 275

chart, 11
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compatible, 11
induced, 32
with boundary, 122
with corners, 123

Chern-Rund connection, 463
Christoffel symbols, 400
circle, 14, 16
Clifford algebra, 502

adjoint representation, 507
automorphism, 504
canonical automorphism, 504

complex, 503
conjugate, 505
even subspace, 505
invertible element, 507
odd subspace, 505
real, 502
transpose, 505
twisted adjoint representation, 507

Clifford group, 508
closed form, 101
cochain complex, 101
codifferential, 398
coframe bundle, 235
commutator, 85

graded, 159
compatible metric, 495
complete connection, 304
complete lift

covector field, 364
function, 353
vector field, 356

complete vector field, 147
complex Clifford algebra, 503
complex conjugate, 480
complex differential form, 491
complex frame bundle, 481
complex manifold, 483
complex numbers, 14
complex structure, 482

metric, 495
complex vector bundle, 478

isomorphic, 479
complex vector bundle isomorphism, 479
complex vector bundle morphism, 479
complexification, 479
complexified vector bundle, 479
conjugate

Clifford algebra, 505
complex, 480

conjugate exterior derivative, 494
connection

affine, 367
Berwald, 449, 462
canonical flat, 308
Cartan, 463, 472
Chern-Rund, 463
complete, 304
distinguished, 444
dual bundle, 338
dual vector bundle, 338
Ehresmann, 293
fibered product, 308
flat, 308
frame bundle, 335, 367
Hashiguchi, 463
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homogeneous, 424
Koszul, 331
Levi-Civita, 400
linear, 331
N -linear, 445
non-linear, 418
principal, 311
pullback, 308, 340
tensor product bundle, 339
trivial bundle, 308

connection form, 291
conservation

energy, 544
momentum, 544

conserved current, 542
constant map, 20
contact

curve, 202
function, 200, 204
map, 205

contact basis, 228, 530
contact form, 227, 417, 529
contact ideal, 229, 530
contact one-form

basic, 228, 530
contact vector field, 534
contraction

tensor field, 67
coordinate basis, 49, 82
coset, 132
coset space, 132
cotangent bundle, 90

antiholomorphic, 490
holomorphic, 490
horizontal, 179

cotangent space, 87
horizontal, 179
vertical, 291

cotangent structure, 352
covariant derivative, 334

dynamical, 451
exterior, 317, 343
higher-order, 377

covariant exterior derivative, 343
covariant Hessian, 379
covector

horizontal, 179
vertical, 291

covector field, 91
complete lift, 364
horizontal, 180
pullback, 114
vertical lift, 364

cross section, 29
cube, 270

boundary, 276
facet, 276
integral, 271
reparametrization, 271
singular, 270

cubical
integral, 275

cubical chain, 275
current

conserved, 542
curvature

affine connection, 370
Cartan connection, 475
general connection, 306
linear connection, 341
N -linear connection, 448
non-linear connection, 429
principal connection, 318
Ricci, 371
scalar, 401

curvature form, 306
curve, 22

autoparallel, 382, 429
canonical lift, 84
contact, 202
horizontal lift, 303
integral, 146
jet, 203
tangent vector, 83

curve segment, 269
integral, 269
singular, 269

cylinder, 27

d-connection, 444
de Rham cohomology, 101
density

Levi-Civita, 248
Lie derivative, 252, 254
scalar, 242
tensor, 246

density bundle, 242
derivation, 78

algebraic, 161
graded, 157
Lie, 166

derivative
augmented vertical, 538
conjugate exterior, 494
covariant, 334
covariant exterior, 317, 343
dynamical covariant, 451
exterior, 101
exterior covariant, 317, 343
higher-order covariant, 377
linear, 74
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Nijenhuis-Lie, 166
determinant

tensor density, 249
development

Cartan, 476
deviation, 435
diffeomorphism, 21

active, 119
fiber, 193
immersion, 110
lift

frame bundle, 239
passive, 119
submersion, 112

differential, 104
horizontal, 230, 531
identity map, 105
total, 92
vertical, 230, 531

differential form, 99
basic, 316
closed, 101
complex, 491
exact, 101
harmonic, 399
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infinite jet space, 528
jet bundle, 226
Lepage, 524
Lie algebra valued, 140
Lie derivative, 153
pullback, 115
twisted, 255
vector-valued, 103

dilatation, 182
direct product, 26
direct sum

jet bundle, 223
direct sum bundle, 57
distinguished connection, 444
distribution

horizontal, 289
Dolbeault operators, 491
dual bundle, 55

connection, 338
dual Lefschetz operator, 497
dual morphism, 57
dual vector bundle, 55

connection, 338
dual vector bundle morphism, 57
dynamical covariant derivative, 451

Ehresmann connection, 293
linear, 331
principal, 310
principal bundle, 310

vector bundle, 331
Einstein summation convention, 82
embedded submanifold, 121
endomorphism bundle, 64
energy conservation, 544
equivalent

Lepage, 525
equivariant map, 133
Euclidean space, 14
Euler

homogeneous function theorem, 185
Euler operator, 523, 538

internal, 522, 538
Euler-Lagrange complex, 539
Euler-Lagrange equation, 523
evolutionary vector field, 540

prolongation, 541
exact form, 101
exponential map, 138
extension

principal bundle, 198
exterior covariant derivative, 317, 343
exterior derivative, 101

conjugate, 494
covariant, 317, 343
infinite jet space, 529

exterior power bundle, 60
exterior product, 100

infinite jet space, 528
Lie algebra valued, 140
twisted differential forms, 256

extremal, 518

facet
cube, 276
simplex, 276

fiber bundle, 28
associated, 191
dimension, 28
integral, 286
isomorphic, 38
principal, 187
slit tangent, 452
trivial, 29

fiber diffeomorphism, 193
fibered product, 39

connection, 308
jet bundle, 223

Finsler function, 452
reversible, 453

Finsler length, 453
Finsler metric, 454, 461
first-order Cartan geometry, 475
fixed point, 131
fixed point set, 131
flat connection, 308
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canonical, 308
flat isomorphism, 390
flow, 148
frame

admissible, 475
frame bundle, 232

complex, 481
connection, 335
higher order, 236
normalized, 265
oriented, 262
orthonormal, 391
symplectic, 415
tangent bundle, 237
unit, 259

frame bundle lift, 239
Frölicher-Nijenhuis bracket, 169
Frölicher-Nijenhuis theorem, 172
function

complete lift, 353
complex, 23
contact, 200, 204
Finsler, 452
jet, 200, 205
Lie derivative, 152
pullback, 114
real, 23
vertical lift, 353

fundamental vector field, 144

gauge, 549
gauge algebra, 551
gauge field, 559
gauge group, 546
gauge invariance, 561
gauge transformation

finite, 546
infinitesimal, 551
matter field, 554, 557

general linear algebra, 137
general linear group, 124
generalized vector field, 534, 540

prolongation, 535
geodesic spray, 457
geometrical isomorphism, 471
geometry

Cartan, 472
Klein, 465

germ, 24
jet, 206

global section, 29
graded commutator, 159
graded derivation, 157

algebraic, 161
Grifone’s identity, 432
group

Clifford, 508
gauge, 546
general linear, 124
holonomy, 329, 345
Lie, 124
Lorentz, 125
orthogonal, 125
orthogonal pin, 509
pin, 509
reduced Clifford, 508
reduced spin, 509
special linear, 124
special orthogonal, 125
special unitary, 125
spin, 509
structure, 187
symplectic, 125
unitary, 125
unitary pin, 509

group action
jet bundle, 223

group bundle, 548

Hadamard’s lemma, 79, 87
Hamilton vector field, 411
Hamiltonian vector field, 412
harmonic differential form, 399
Hashiguchi connection, 463
Hermitian manifold, 496

Laplace operator, 497
volume form, 496

Hermitian metric, 496
Hessian

covariant, 379
higher order frame bundle, 236
higher-order Cartan geometry, 475
higher-order covariant derivative, 377
Hilbert one-form, 454
holomorphic cotangent bundle, 490
holomorphic map, 485
holomorphic tangent bundle, 487
holomorphic vector bundle, 486

isomorphic, 486
holomorphic vector bundle isomorphism, 486
holomorphic vector bundle morphism, 486
holomorphic vector field, 490
holonomy, 328
holonomy group, 329, 345
homogeneity, 183
homogeneous connection, 424
homogeneous function

Euler’s theorem, 185
homogeneous space, 469
homogeneous tensor, 183
homomorphism

affine bundle, 73
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complex vector bundle, 479
holomorphic vector bundle, 486
Lie algebra, 139
Lie group, 126
principal G-bundle, 191
principal bundle, 190
vector bundle, 53

homomorphism bundle, 63
horizontal cotangent bundle, 179
horizontal cotangent space, 179
horizontal covector, 179
horizontal covector field, 180
horizontal differential, 230, 531
horizontal differential form, 180
horizontal distribution, 289
horizontal form, 529

jet bundle, 227
horizontal lift, 296, 423

curve, 303
vector field, 302

horizontal projector, 418
horizontal tangent bundle, 289
horizontal tangent space, 289

ideal
contact, 229, 530

identity map, 21
imaginary part, 480
immersion, 109

diffeomorphism, 110
section, 110

induced bundle, 42
induced coordinates

tangent bundle, 347
induced non-linear connection, 459
infinite jet space, 526

differential form, 528
exterior derivative, 529
exterior product, 528
pullback, 528
tangent bundle, 533
vector field, 534
vertical tangent bundle, 533

inner automorphism, 127
insertion operator, 161, 164
integral

box, 270
chain, 275
cube, 271
curve segment, 269
Euclidean space, 270, 272
fibers, 286
manifold, 283
real line, 268
simplex, 272, 273

integral curve, 146

integral section, 306
integration

by parts, 284
interior product, 102

pseudovector field, 257
twisted differential form, 257

internal Euler operator, 522, 538
invariant subset, 128
invariant vector field, 134
inverse metric, 389
isometry, 402
isomorphism

affine bundle, 73
complex vector bundle, 479
fiber bundle, 38
flat, 390
holomorphic vector bundle, 486
Lie algebra, 139
Lie group, 126
musical

flat, 390
sharp, 390

principal G-bundle, 191
sharp, 390
vector bundle, 53

Jacobi’s theorem, 408
jet

curve, 203
function, 200, 205
germ, 206
infinite, 527
local section, 220
map, 206

jet bundle, 222
affine bundle, 221, 222
bundle morphism, 224
contact form, 227, 529
differential form, 226
direct sum, 223
fibered product, 223
group action, 223
horizontal form, 227, 529
vector bundle, 222

jet manifold, 207
jet projection, 221

infinite, 527
jet prolongation

infinite, 527
morphism, 224
section, 226

jet space
infinite, 526

Killing vector field, 402
Klein geometry, 465
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associated effective, 469
associated geometrically oriented, 467
effective, 468
geometrical isomorphism, 471
geometrically oriented, 466
kernel, 467
locally effective, 468
mutation, 471
principal group, 465
space, 465

Koszul connection, 331
pullback, 340

Koszul formula, 400
Kähler manifold, 498
Kähler potential, 500

l-contact form, 229, 530
Lagrangian, 515, 537

gauge invariant, 561
symmetry, 542

Landsberg tensor, 462
Laplace operator, 497

almost Hermitian manifold, 497
Hermitian manifold, 497

Laplace-de Rham operator, 399
Lefschetz operator, 497

dual, 497
length

Finsler, 453
Lepage equivalent, 525
Lepage form, 524
Levi-Civita connection, 400
Levi-Civita density, 248
Lie algebra, 86, 136

general linear, 137
orthogonal, 137
special linear, 137
special unitary, 137
symplectic, 137
unitary, 137

Lie algebra automorphism, 139
Lie algebra homomorphism, 139
Lie algebra isomorphism, 139
Lie bracket, 85
Lie derivation, 166
Lie derivative, 149, 384

affine connection, 384
differential form, 153
function, 152
tensor density, 252, 254
tensor field, 149
vector field, 152

Lie group, 124
Clifford, 508
orthogonal pin, 509
pin, 509

reduced Clifford, 508
reduced spin, 509
spin, 509
unitary pin, 509

Lie group action, 127
effective, 128
faithful, 128
free, 128
transitive, 128

Lie group automorphism, 126
Lie group homomorphism, 126
Lie group isomorphism, 126
lift

complete, 353, 356, 364
frame bundle, 239
horizontal, 423
vertical, 353, 355, 364

line bundle, 53
orientation, 261
trivial, 243

linear connection
pullback, 340

linear derivative, 74
Liouville vector field, 182
local map, 23
local section, 30

existence, 31
locally Hamilton vector field, 412
Lorentz group, 125
Lorentzian metric, 388

manifold, 13
almost Hermitian, 496
almost Kähler, 498
Calabi-Yau, 501
complex, 483
Hermitian, 496
integral, 283
jet, 207
Kähler, 498
orientable, 255
parallelizable, 238

map, 19
biholomorphic, 486
constant, 20
contact, 205
equivariant, 133
germ, 24
holomorphic, 485
identity, 21

differential, 105
jet, 206
local, 23
rank, 106
translation, 128

matter field, 554
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gauge transformation, 554, 557
Maurer-Cartan form, 142
metric

compatible, 495
Finsler, 454, 461
Hermitian, 496
inverse, 389
Lorentzian, 388
pseudo-Riemannian, 388
Riemannian, 388
Sasaki, 462
semi-Riemannian, 388

momentum conservation, 544
musical isomorphism

flat, 390
sharp, 390

Möbius strip, 29, 49

N -linear connection, 445
curvature, 448
horizontal part, 446
symmetric, 447
torsion, 446
vertical part, 446

Newlander-Nirenberg theorem, 483
Nijenhuis tensor, 172
Nijenhuis-Lie derivative, 166
Nijenhuis-Richardson bracket, 163
Noether’s theorems

first, 542, 543
non-linear connection, 418

curvature, 429
Finsler geometry, 459
symmetric, 428
tension, 425
torsion

strong, 428
weak, 427

nonmetricity, 404
normalized frame bundle, 265

one-form, 91
canonical, 240
Cartan, 455
Hilbert, 454
tautological, 409

one-parameter subgroup, 138
operator

dual Lefschetz, 497
insertion, 161, 164
Laplace, 497
Lefschetz, 497
substitution, 164

orbit, 128
orbit-stabilizer theorem, 133
orientable manifold, 255

orientable vector bundle, 261
orientation, 261
orientation bundle, 262
orientation line bundle, 261
oriented frame bundle, 262
orthogonal algebra, 137
orthogonal group, 125
orthogonal pin group, 509
orthonormal frame bundle, 391

pairing
canonical, 56

parallel transport, 305
parallelizable manifold, 238
parallelization, 238
partition of unity, 25
pin group, 509
Poincaré group, 125
Poisson structure, 413
principal G-bundle isomorphism, 191
principal G-bundle morphism, 191
principal bundle, 187

extension, 198
reduction, 196
section, 187
trivial, 188
trivialization, 187

principal bundle morphism, 190
principal connection, 311

curvature, 318
extension, 326
reduction, 328

principal connection bundle, 558
principal fiber bundle, 187

trivial, 188
principal group

Klein geometry, 465
product

exterior, 100
interior, 102
tensor field, 66
wedge, 100

product manifold, 26
dimension, 26

projection, 26
submersion, 112

projector
horizontal, 418
vertical, 418

prolongation
evolutionary vector field, 541
generalized vector field, 535

pseudo-Riemannian metric, 388
bilinear form, 394, 396
inverse, 389
volume form, 393
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pseudoscalar, 261
total differential, 257

pseudovector field, 257
interior product, 257

pullback
connection, 308, 340
covariant tensor field, 116
covector field, 114
differential form, 115
frame field, 239
function, 114
infinite jet space, 528
Koszul connection, 340
linear connection, 340
scalar density, 251
section, 45
tensor density, 254
tensor field, 117
vector field, 117

pullback bundle, 42
punctured space, 14
pushforward, 104

quaternions, 14
quotient, 132
quotient space, 132

rank
map, 106
tensor bundle, 98
vector bundle, 47
vector bundle morphism, 53

real Clifford algebra, 502
real part, 480
reduced Clifford group, 508
reduced spin group, 509
reduction

principal bundle, 196
reductive Cartan geometry, 476
reparametrization

unit cube, 271
unit interval, 269
unit simplex, 273

representation
adjoint, 139

reversible Finsler function, 453
Ricci curvature, 371
Ricci scalar, 401
Riemann sphere, 484
Riemannian metric, 388

Sasaki metric, 462
scalar

Ricci, 401
scalar curvature, 401
scalar density, 242

pullback, 251
weight -1, 243
weight 0, 243
weight 1, 244

scalar field, 98
second-order vector field, 431
section, 29

global, 29
immersion, 110
integral, 306
local, 30

existence, 31
pullback, 45
trivial bundle, 31
unit, 68
zero, 51

semi-Riemannian metric, 388
semispray, 431

deviation, 435
sharp isomorphism, 390
simplex, 272, 273

boundary, 276
facet, 276
integral, 273
reparametrization, 273
singular, 273
unit, 272

simplical chain, 275
singular cube, 270
singular curve segment, 269
singular simplex, 273
slit tangent bundle, 452
space

coset, 132
Euclidean, 14
homogeneous, 469
Klein geometry, 465
punctured, 14

special linear algebra, 137
special linear group, 124
special orthogonal group, 125
special unitary algebra, 137
special unitary group, 125
sphere, 18

Riemann, 484
spin group, 509
spray, 435

geodesic, 457
stabilizer, 130
Stokes’ theorem, 284
strong torsion, 428
structure group, 187
subbundle, 54
submanifold

embedded, 121
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submersion, 111
diffeomorphism, 112
projection, 112

subset
invariant, 128

substitution operator, 164
symmetric affine connection, 373
symmetric N -linear connection, 447
symmetric non-linear connection, 428
symmetric power bundle, 61
symmetry

Lagrangian, 542
symplectic algebra, 137
symplectic form, 409
symplectic frame bundle, 415
symplectic group, 125
symplectic potential, 409

tangent bundle, 82
antiholomorphic, 487
canonical involution, 365
holomorphic, 487
horizontal, 289
induced coordinates, 347
infinite jet space, 533
slit, 452
tensor bundle, 97
vertical, 178

tangent frame bundle, 237
tangent space, 79

horizontal, 289
vertical, 177

tangent structure, 348
tangent vector, 80

curve, 83
vertical, 177

tautological one-form, 409
tension

non-linear connection, 425
tensor

Cartan, 461
homogeneous, 183
Landsberg, 462
Nijenhuis, 172

tensor bundle, 60
rank, 98
tangent bundle, 97

tensor density, 246
determinant, 249
Levi-Civita, 248
Lie derivative, 252, 254
pullback, 254

tensor field, 65
contraction, 67
Lie derivative, 149
product, 66

pullback, 117
tensor power bundle, 59
tensor product bundle, 59

connection, 339
theorem

Frölicher-Nijenhuis, 172
torsion

affine connection, 372
N -linear connection, 446
non-linear connection, 427, 428
strong, 428
weak, 427

torsion form, 372
torus, 27
total differential, 92

pseudoscalar, 257
total vector field, 536
transition function, 12
translation map, 128
transport

parallel, 305
transpose

Clifford algebra, 505
trivial bundle

connection, 308
section, 31

trivialization, 28
principal bundle, 187

twisted adjoint representation
Clifford algebra, 507

twisted differential form, 255
interior product, 257

twisted differential forms
exterior product, 256

twisted volume form, 264

unit frame bundle, 259
unit section, 68
unit simplex, 272
unitary algebra, 137
unitary group, 125
unitary pin group, 509
unity

partition, 25

variational bicomplex, 532
augmented, 538

vector bundle, 47
antiholomorphic cotangent, 490
antiholomorphic tangent, 487
canonical pairing, 56
complex, 478
complexified, 479
coordinate basis, 49
direct sum, 57
dual, 55
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endomorphism, 64
exterior power, 60
holomorphic, 486
holomorphic cotangent, 490
holomorphic tangent, 487
homomorphism, 63
isomorphic, 53
jet bundle, 222
line, 53
orientable, 261
subbundle, 54
symmetric power, 61
tensor, 60
tensor power, 59
tensor product, 59

vector bundle isomorphism, 53
complex, 479
holomorphic, 486

vector bundle morphism, 53
complex, 479
dual, 57
holomorphic, 486
rank, 53

vector field, 84
action, 84
associated, 473
commutator, 85
complete, 147
complete lift, 356
contact, 534
evolutionary, 540
fundamental, 144
generalized, 534, 540
Hamiltonian, 411, 412
holomorphic, 490
horizontal lift, 302, 423
infinite jet space, 534
invariant, 134
Killing, 402
Lie bracket, 85
Lie derivative, 152
Liouville, 182
locally Hamiltonian, 412
pullback, 117
second-order, 431
total, 536
vertical, 178
vertical lift, 355

vector-valued differential form, 103
vertical cotangent space, 291
vertical covector, 291
vertical derivative

augmented, 538
vertical differential, 230, 531
vertical lift

covector field, 364
function, 353
vector field, 355

vertical projector, 418
vertical tangent bundle, 178

infinite jet space, 533
vertical tangent space, 177
vertical tangent vector, 177
vertical vector field, 178
volume form, 258

almost Hermitian manifold, 496
Hermitian manifold, 496
pseudo-Riemannian, 393
twisted, 264

weak torsion, 427
wedge product, 100
Whitney sum, 57

zero section, 51
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