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1 INTRODUCTION

Mathematicians interested in, say, the theory of monoids or the theory of groups work in an
axiomatic setting, asserting the presence of a collection of n-ary operations on an ambient set A —
i.e. (total) functions A" — A for some n : N — that satisfy a number of axioms. This data can be
packaged up into an equational theory: a pair (3, E) where ¥ is the signature, consisting of operation
symbols, each with a specified arity, and E is a collection of equations — i.e. pairs of terms built up
from the signature ¥ and auxiliary variables — that provide the axioms. An ambient equational
theory is thus the bread and butter of an algebraist, that together with the principles of equational
reasoning provides the basic calculus of mathematical investigation into the structure of interest.

Birkhoff [Birkhoff 1935] discovered that a substantial amount of mathematics can be done at
the level of generality of an equational theory. Given an equational theory (2, E), a model is a set
together with an interpretation of the function symbols X that satisfies the equations E. A monoid
is nothing but a model of the equational theory of monoids, a group is a model of the equational
theory of groups, and so on. The semantics of an equational theory, i.e. its class of models, is called
a variety. Birkhoff showed that certain results (e.g. the so-called isomorphism theorems, existence
of free models) can be derived uniformly for generic varieties, independent of the equational theory
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Fig. 1. Elements of classical functorial semantics on the left, and our contribution on the right.

at hand. Most spectacularly, a class of sets-with-structure can be determined to be a variety through
purely structural means; this is often referred to as Birkhoff’s Variety Theorem or the HSP Theorem.

The resulting field is known as universal algebra. Its mathematical objects of study are equational
theories and varieties. Given its goal of uncovering methodological and technical similarities of a
large swathe of contemporary algebra, universal algebra is in the intersection of mathematics and
mathematical logic. It has influenced computer science, especially programming language theory,
as a formal and generic treatment of syntax, terms, equational reasoning, etc.

Lawvere [Lawvere 1963], and the subsequent development of categorical universal algebra,
addressed some of the perceived shortcomings of the classical account. It is well known that a
single variety can have many different axiomatic presentations, and in this sense the choice of
a particular presentation may seem ad hoc. The requirement that models be sets-with-structure
is also restrictive, since algebraic structures appear in other mathematical contexts as well. A
Lawvere theory is a category .L that serves as a presentation-independent way of capturing the
specification of a variety. A central conceptual role is played by cartesian categories, i.e. categories
with finite products. The free cartesian category on one object often appears in the very definition
of a Lawvere theory — the “one object” here capturing single-sortedness. Finite products track
arities and ensure that operations are total functions. Functorial semantics gives us the correct
generalisation of varieties: a model is cartesian functor £ — Set. This point of view is flexible (e.g.
Set can be replaced with another cartesian category) and leads to a rich theory [Adamek et al. 2003;
Hyland and Power 2007; Lawvere 1963], where the study of varieties and their specifications can
take place at a high level of generality.

The beautiful abstract picture painted by Lawvere can be used to give a post-hoc explanation of
the elements of classical equational theories. Every equational theory yields a Lawvere theory. Free
equational theories, i.e. those where E = @, are Lawvere theories whose arrows can be concretely
described as (tuples of) terms. Indeed, it is well-known that terms are closely connected to the
universal property of products. The abstract mathematics, therefore, explains the structure of terms
and justifies the use of ordinary equational reasoning. The elements of Lawvere’s approach to
universal algebra are illustrated in the left side of Fig. 1.

In this paper we are concerned with partial algebraic structures, i.e. those where the operations
are not, in general, defined on their whole domain. Partiality is important in mathematics: the very
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notion of category itself is a partial algebraic structure, since only compatible pairs of arrows can be
composed. Even more so, partiality is an essential property of computation, and partial functions
play a role in many different parts of computer science, starting with initial forays into recursion
theory at the birth of the subject, and being ever present in more recent developments, for example
arising as an essential ingredient in the study of fixpoints [Bloom and Esik 1993]. From the start it
was clear that additional care is necessary for partial operations, the terms built up from them, and
the associated principles of (partial) equational reasoning. An example is the principle of Kleene
equality: using s = t to assert that whenever one side is defined, so is the other, and they are equal,
or the use of notation —|x to restrict the domain of definition of a function. In general, reasoning
about partially defined terms can be quite subtle.

Our contribution is summarised on the right hand side of Fig. 1 and follows Lawvere’s approach
closely. A key question that we address is what replaces the central notion of cartesian category.
This turns out to be the notion of discrete cartesian restriction (DCR) category, which arose from
research on the structure of partiality [Cockett et al. 2012]. Just as the free cartesian category
on one object plays a central role in the definition of Lawvere theory, the free DCR category on
one object plays a central role in the definition of partial Lawvere theory that we propose. In our
development, the category of sets and partial functions Par replaces Set as the universe of models.
Much of the richness of the classical picture is unchanged: e.g. we obtain free models just as in
the classical setting. Moreover, we prove a variety theorem that characterises partial varieties as
locally finitely presentable (LFP) categories.

Props [Lack 2004; Mac Lane 1965] and their associated string diagrams, play a crucial technical
role. Props are a convenient categorical structure that capture generic monoidal theories. Monoidal
theories differ from equational theories in that, roughly speaking, in that we are able to consider
more general monoidal structures other than the cartesian one. String diagrams are the syntax
of props, and they are a bona fide syntax not far removed from traditional terms. For example,
they can be recursively defined and enjoy similar properties as free objects, e.g. the principle of
structural induction. The connective tissue between the classical story and string diagrams is Fox’s
Theorem [Fox 1976], which states that the structure of cartesian categories can be captured by the
presence of local algebraic structure: a coherent and natural commutative comonoid structure on
each object. This implies several things: (i) that classical terms can be seen as particular kinds of
string diagrams, (ii) that classical equational reasoning can be seen as diagrammatic reasoning on
these string diagrams and (iii) that the prop induced from the monoidal theory of commutative
comonoids — well-known to coincide with F°P, the opposite of the prop of finite sets and functions
— is the free cartesian category on one object. The correspondence goes further: as shown in [Bonchi
et al. 2018], Lawvere theories are particular kinds of monoidal theories.

We are able to identify the nature of the free DCR category on one object by proving a result
similar to Fox’s Theorem, but for DCR categories instead of cartesian categories. Instead of com-
mutative comonoids, we identify the algebraic structure of interest as partial Frobenius algebras.
The free DCR category on one object is the prop induced from this monoidal theory, and it can be
characterised as Par([F°P): the prop of partial functions in F°P. This informs our definition of partial
Lawvere theory. Crucially, just as the mathematics of ordinary Lawvere theories serves as a post
hoc justification for equational theories, we identify the precise class of string diagrams that serve
as partial terms, which lets us define a partial equational theory in a familiar way as pair of signature
and equations. We give several examples, from partial commutative monoids, to several examples
important in computer science, notably the theory of partial combinatory algebras [Bethke 1988],
the theory of pairing functions, and the theory of cartesian closed categories.

To summarise, the original contributions of this paper are:
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e A “Fox theorem” for DCR categories, which uses the notion of partial Frobenius algebra and
leads to the characterisation of the free DCR category on one object as Par(F°P);

e The definitions of partial Lawvere theory and partial equational theory, which use string
diagrammatic syntax informed by the aforementioned Fox theorem;

e The coupling of these notions into a comprehensive framework for partial algebraic theories,
analogous to the work of Lawvere on classical algebraic theories, as illustrated in Fig. 1;

e The existence of free models, and—more generally-a variety theorem, building on known
results about DCR categories, and the Gabriel-Ulmer duality.

Related work. There are a number of formalisms in the literature that aim at providing a rigorous
way of specifying partial algebraic structure. Freyd’s essentially algebraic theories [Freyd 1972] were
introduced informally, but were subsequently formalised and generalised in various ways [Adamek
and Rosicky 1994; Adamek et al. 2011; Palmgren and Vickers 2007]. A different, but equally ex-
pressive approach is via finite limit sketches [Adamek and Rosicky 1994]. Nevertheless, none of
these approaches can claim to have the foundational status of classical equational theories - e.g.
they do not, per se, provide a canonical notion of syntax to replace classical terms, nor a calculus
for (partial) equational reasoning about the categories of models they define. Tout court, none
of them can claim to be equational. Interestingly, the semantic landscape (i.e. the corresponding
notion of partial variety) is better understood than the syntax. The class of models of essentially
algebraic theories and finite limit sketches are closely related to Gabriel-Ulmer duality [Centazzo
2004], which asserts a contravariant (bi)equivalence between the category of categories with finite
limits and the category of locally finitely presentable (LFP) categories.

Partial Frobenius algebras, which arise in our characterisation of DCR categories, are spe-
cial/separable Frobenius algebras without units. The version with units was originally studied
in [Carboni and Walters 1987], is deeply connected to the relational algebra [Freyd and Scedrov
1990], characterises 2-dimensional TQFTs [Kock 2003], and has been used extensively in categor-
ical approaches to the study of quantum information and quantum computing, such as the ZX
calculus [Coecke and Duncan 2008]. In a similar way to the use of partial Frobenius algebras in
this paper, they are used in the recently proposed Frobenius theories [Bonchi et al. 2017], which are
algebraic theories that take their models in the category of relations Rel, and are guided by the
structure of cartesian bicategories of relations [Carboni and Walters 1987].

Restriction categories were introduced in [Cockett and Lack 2002] as a general framework for
reasoning about categories of partial maps. Cartesian restriction (CR) categories are those with a
certain sort of formal finite product structure — restriction products — introduced in [Cockett and
Lack 2007]. Notably, the p-categories of [Robinson and Rosolini 1988] arise as restriction categories
with restriction products. Discrete cartesian restriction (DCR) categories — named for a similarity to
categories of discrete topological spaces — arise in [Cockett et al. 2012] as the restriction categories
with finite latent limits — again a sort of formal limit. DCR categories are closely connected to the
discrete inverse categories considered in [Giles 2014] which are presentable in terms of semi-Frobenius
algebras, being those special/separable commutative Frobenius algebras with neither a unit nor a
counit.

Structure of the paper. In S2 we lay the foundations by recalling the basic concepts of universal
algebra, props and string diagrams, Fox’s theorem, and functorial semantics. In S3, after recalling
the basics of restriction category theory, we prove Theorem 3.6, which is to DCR categories what
Fox’s theorem is to cartesian categories. In S4 we propose our original definitions: partial Lawvere
theories and their varieties. Next, S5 is devoted to the associated notion of partial equational theory,
and several examples, continued in S6 with multi-sorted examples. Our variety theorem is in S7
where we also treat other semantic aspects, e.g. the existence of free models.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 57. Publication date: January 2021.



Functorial Semantics for Partial Theories 57:5

2 BACKGROUND MATERIAL
2.1 Overview of Classical Universal Algebra

Universal algebra is the study of equational theories and of their semantics, varieties. In this section
we recall the basic concepts and definitions.

Definition 2.1. A signature is a pair (2, @) where ¥ is a set and « a function ¥ — N that assigns
to every element ¢ : ¥ a natural number a(n) : N called the arity of the function symbol t.

Notation 2.2. The arity “slices” the set T of function symbols. The slice 3,, C 3 contains operations
of arity n, and ¢ : 3, is a synonym for “t is a n-ary operation”. We will sometimes write ¢, for a
generic element of 3,,. We shall refer to the signature as just ¥ if the arity function is understood
from the context. For example the signature 3y of monoids is {m, e}, with a(m) = 2 and a(e) = 0.

Definition 2.3. An 3-algebra is a pair (A, [-]a) where A is a set and [-]4 is

a function sending function symbols ¢ : 3, to functions [t]4: A" — A. The an " g

function [[t] 4 is called the n-ary operation on A associated to the function symbol

t : 3. We refer to A as the carrier of the X-algebra. A X-algebra homomorphism ﬂ’"”Al [’"]]Bj

from (A, [-]4) to (B, [-]s) is a function f: A — B that respects the ¥ structure: A— =g

i.e. for every n € N and ¢, : ,, the diagram on the right commutes: 4

Remark 2.4. 3-algebras and their homomorphisms define a category V.

Of course, an algebraic structure isn’t just about operations, but also about properties enjoyed by
those operations. To express this we first need the notion of term. Fixing a signature ¥, we recall
the usual recursive construction of the set of terms TZV , for some set of variables V:

Ty s=V |ty | 6() | @, T3) | oo | Ty, T |
In the above, each t; ranges over the function symbols in X;. For any V, TZV carries a canonical

S-algebra structure: [t](t1, ta, . . ., tn,) def t(t1, ta, . .., Iy, ). We call this the term X-algebra over V.

Observation 2.5. The term X-algebra TZV enjoys a universal property: given a Y-algebra (A, [-]4)
and function 0: V — A, there is a unique extension to a homomorphism of algebras 7: Ty — A.
This is just the induction principle associated to the recursive definition of terms.

Definition 2.6 (X-equation). Fixing V, a 3-equation is a pair (s, t) € TZV X TEV; we usually write
‘s =t’. A Z-equation s = ¢ holds in Z-algebra (A, [-]4) if forallo: V — A we have 4(s) = 9(¢) in A.

Given the signature of monoids, we can express properties such as associativity: m(x, m(y, z)) =
m(m(x,y), z); or commutativity: m(x,y) = m(y,x); etc. The idea is that a set of X-equations
constrains the choice of algebras (A, [-]4) to those where every equation holds.

Definition 2.7 (Equational Theory and Variety). A pair (2, E) where X is a signature and E a set of
>-equations is called an equational theory. A model of (3, E) is a X-algebra where every e : E holds.
The class of models for an equational theory is called a variety.

Example 2.8. The equational theory of commutative monoids is

({m, e}, {m(m(x,y),2) = m(x,m(y, 2)), m(x,y) = m(y,x), m(e,x) =x}).
The corresponding variety is the class of commutative monoids.
Some of the most famous results of universal algebra characterise varieties. For example:
Theorem 2.9 (Birkhoff [Birkhoff 1935]). A class of X-algebras is a variety if and only if it is closed

under homomorphic images, subalgebras and products.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 57. Publication date: January 2021.



57:6 Ivan Di Liberti, Fosco Loregian, Chad Nester, and Pawet Sobociriski

2.2 Props and Monoidal Theories

Our development is informed by the differences between the algebraic structure of total functions
and partial functions. Given the focus on algebra, the notion of prop is useful as a categorical gadget
on which to hang an algebraic structure. Moreover, the associated notion of string diagram will
lead us to a syntax with which to express partial equational theories by appropriately generalising
classical terms. Here we recall the basic definitions of props [Lack 2004], string diagrams and some
of the algebraic structures that are prominent in subsequent sections.

Definition 2.10 (Prop [Mac Lane 1965, Ch. 5]). A prop is a symmetric strict monoidal category
with set of objects the natural numbers N, where the monoidal product on objects is addition:
m® n = m+ n. A homomorphism of props is an identity-on-objects symmetric strict monoidal
functor.

Example 2.11. An important example is the prop F of finite ordinal numbers. In the following,

def . e .
[m] = {1,2,...,m}. The F-arrows m — n are all functions [m] — [n]: composition is function

composition, and the monoidal product is “disjoint union”; i.e. for fi: m; — n; and f5: my — ny,

def {ﬁ(i) ifi<m

® i)rmi+my > ny+ny, =
(i®f)(i): m 2 1 2 fo(i—my) +n;  otherwise.

Free props generated from some signature of operations are of particular importance.

Definition 2.12 (Monoidal signature). A monoidal signature I is a collection of generatorsy : T,
each with an arity ar(y) : N and coarity coar(y) : N.

Concrete terms can be given a BNF description, as follows:
cu=yel | | — |>C |ese | cje ()

Arities and coarities are not handled in the BNF but with an associated sorting discipline, shown
below. We only consider terms that have a sort, which is unique if it exists.

c:(nz) d:(z,m) c:(nym) d:(r,z)

y: (ar(y),coar(y)) +(0,0) — (LY ><: (22 csd:(n,m) c®d: (n+r, m+z)

The idea is that the sort ¢ : (m, n) counts the number of “dangling wires” of each term. Every
sortable term generated from (1) has a diagrammatic representation. The convention for y : I is to
draw it as a box with ar(y) “dangling wires” on the left and coar(y) on the right:

ar(y){ }coar(y)

. e
and ¢ ® ¢’ is drawn

|

The conventions for the (1) operations are: ¢ § ¢’ is drawn ;;

The sorting discipline ensures that the convention for § makes sense.

Example 2.13. Consider the following signature, where the (co)arities are apparent from the
def
rd {3_ e } (CMG)
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glyphs. The term (3— Q@(— @ o)) 3((3— ® — ) § >X) has sort (3, 2) and diagram:

where the “dotted line” boxes serve the role of parentheses.

Terms of (1) are quotiented by the laws of symmetric strict monoidal categories. We do not go
into the details here, but these are closely connected with the diagrammatic conventions. Indeed,
they allow us to discard the “dotted line” boxes and focus only on the connectivity between the
generators. For example the following two diagrams are in the same equivalence class of terms:

Q%

We refer to equivalence classes [c]: m — n as string diagrams.
Definition 2.14. The free prop Xr on I has as arrows m — n string diagrams [c] : (m, n).
String diagrams can be used to specify additional equations that specify algebraic structure.

Definition 2.15 (Monoidal theory [Lack 2004]). For a monoidal signature I', a I'-equation is a pair
([c], [d]) of equally-sorted string diagrams; we usually write ‘[c] = [d]’. A monoidal theory is a
pair (T, F) where F is a set of I'-equations.

Given a monoidal theory (T, F), the induced prop X(r r) can be obtained by taking a coequaliser
in Cat. It can alternatively be given an explicit description as follows: as arrows [m] — [n] it has
arrows of Xr quotiented by the smallest congruence containing F.

Example 2.16. Consider the signature (CMG) and the following set of equations:

e T e

The resulting prop CM is the prop of commutative monoids. The equations, from left to right,
express associativity, commutativity and unitality.

Remark 2.17. String diagrams in X1 r) are amenable to equational reasoning, often referred
to as diagrammatic reasoning in this context: if ([c], [d]) € F then substituting ¢ for d inside any
context is sound. For example in CM the set of equations contains only one of the unit laws. The
other may be derived:

PSS S G S P e

We typically omit the “dotted line” boxes in such chains of reasoning.

Interestingly, CM can be seen as the algebraic characterisation of [F.
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Observation 2.18 ([Lack 2004]). As props, F = CM.

Remark 2.19. In fact, arrows of CM can be intuitively understood as “pictures of functions”. For

example, the function f: 2 — 2 where (1) = f(2) = 1is drawn 3_

*——

Example 2.20. The theory of commutative comonoids plays an important role for us. The data is:
— (CCMG)
+ -t -0 - eem

Let CC be the prop induced from the monoidal theory ((CCMG),(CCM)).
Given that (CCMG) and (CCM) are mirrored (CMG) and (CM), Observation 2.18 gives:
Observation 2.21. As props, F°P = CC.

While we have specialised our discussion of string diagrams as the syntax of props, it is well-
known that they can be used as a sound calculus in any symmetric (strict) monoidal category.
Roughly speaking, objects are represented by wires, and morphisms by boxes.

2.3 Fox’s Theorem

Equational and monoidal theories are linked by Fox’s theorem ([Fox 1976]), recalled here - this will
be explained in S2.6. Cartesian categories are categories with finite products, and cartesian functors
preserve them. Fox showed that cartesian categories are exactly those that have a certain algebraic
structure.

A commutative comonoid on an object X of a symmetric monoidal category X is a triple

(X,0x,ex) st.0x : X = X ® X and ex : X — I, depicted as —C and —e respectively, and these
satisfy (CCM). If all objects are so equipped, then the structures are coherent if for all objects X, Y:

Y

Y
XoY b% Yy —e
XoY —C = XY —e = (coherent)
XoY Y X —e
X
X

Further, we say that the § and ¢ are natural if for any arrow f : X — Y of X, we have:

Y Y
= _{ : = natural
X , X . X — o ( )

Theorem 2.22 ([Fox 1976]). A cartesian category is the same thing as a symmetric monoidal
category where every object is equipped with a (coherent) and (natural) commutative comonoid
structure.

In light of Observation 2.21, we know that a commutative comonoid structure on X is equivalently
a cartesian functor X : F°? — X where X[1] = X. The action of X on objects is determined by its

action on 1, and the generators give arrows X (—§ ) =8x: X > X®Xand X(x—) =ex: X — I
of X which satisfy (CCM). Thus we may specialize Theorem 2.22, to props as follows:
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Corollary 2.23. A prop X is cartesian (with categorical product the monoidal product) if and only
if there is a homomorphism of props F°® — X and the picked out comonoid structure is (natural).

It is easy to show that a coherent and natural commutative comonoid structure, if it exists, is
unique. An easy consequence of Theorem 2.22 is that a cartesian functor is precisely a symmetric
monoidal functor that preserves the comonoid structure. This, combined with Corollary 2.23, gives:

Proposition 2.24. The prop F°P is the free cartesian category on a single object.

2.4 Lawvere Theories

We recall Lawvere’s approach [Lawvere 1963] of functorial semantics of algebraic theories in the
rest of the section. Lawvere’s approach is centered on the theory of cartesian categories.

Definition 2.25 (Lawvere theory). A Lawvere theory is a cartesian prop. A morphism of Lawvere
theories is a cartesian prop homomorphism. Lawvere theories and homomorphisms define the
category Law.

Finite products do two jobs: they keep track of arities of operations, and—less obviously—they
ensure the totality and single-valuedness of the interpretation of function symbols in any model.

Free categories with products play a leading role. Recall from Proposition 2.24 that F°P is the
free category with products on one object. Spelled out, a Lawvere theory is a cartesian category
L and an identity-on-objects cartesian functor F°? — L. A morphism of Lawvere theories is a
functor h : £ — M s.t. the following triangle commutes:

FoP
I4 q9
\
L /—>h M.

Remark 2.26. Every equational theory gives rise to a Lawvere theory. For the case of no equations
(3, @), this Lawvere theory Ly is the free category with products on 3. It also has a simple, concrete
description that uses 2-terms. An arrow m — n is an n-tuple

(t1, to, ..., tn) whereeach t;: Tzlm] (2)
i.e. where each term in the tuple may use formal variables from the set {1, ..., m}. Composition of
(s1,...,8¢): m — k with (t1,...,t,): kK — n is via substitution:

(tl[sl/l,...Sk/k],...,tn[sl/l,...,sk/k]): m — n.

Given a set of equations E, ordering the variables in each s = ¢ : E induces pairs of arrows
s,t : m — 1 (where m is the number of variables appearing in s and t). Then L5 f) is obtained by
“equating” s and t —this can be computed via a coequaliser, or directly as in (2) where terms are
taken modulo the smallest congruence containing the required equations. We omit the details.

The Lawvere theory induced from the empty equational theory (@, @) is F°P.
2.5 Semantics For Algebraic Theories
Here we recall some of the basic elements of functorial semantics.

Definition 2.27 (Model of a Lawvere theory). A model for a Lawvere theory £ is a cartesian functor
L: L — Set. A model homomorphism L — L’ is a natural transformation a: L = L’. This defines
the category of models Mod ; of a Lawvere theory L.

Remark 2.28. There are forgetful functors U : Mod y — Set, given by evaluating on the terminal
object F — F(1). Intuitively, U forgets the algebraic structure, returning the underlying carrier set.
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Definition 2.27 is compatible with its classical counterpart: the data required to give a model
of (£, E), in the sense of Definition 2.7, is precisely that required to give a functor L5, gy — Set.
The functorial approach lends itself to generalisations: e.g. replacing Set with another cartesian
category. Moreover, it allows for further structural analysis.

Observation 2.29. Mod y is closed under limits computed in the category of all functors [ L, Set],
because limits commute with limits. For a similar reason it is closed under sifted colimits. Thus the
inclusion Mod ; < [.L, Set] creates limits and sifted colimits!.

Remark 2.30 (Multi-sorted, unsorted). The codomain of U: Mod ; — Set betrays that our pre-
sentation is single sorted. Indeed when L is S-sorted we obtain a functor U: Mody — [S, Set].
Historically, syntactic aspects are single sorted, while categorical variety theorems are most crisp
in the unsorted case. It is thus worthwhile to focus on these concepts in more detail.

An S-sorted Lawvere theory is a cartesian S-coloured prop. Spelled out, it is an identity-on-objects
cartesian functor F(S) — L, where [ (S) is the free cartesian category on S.

An unsorted Lawvere theory is simply a (small) category with products.

In the remainder of this section we focus on the unsorted version, because the treatment is
notationally and technically simplified. Nevertheless, much of the following is sort-agnostic.

Observation 2.31. A theory morphism h: £ — L’ induces a (contravariant) functor
Mody, : Mod s — Mod ¢

taking F: £’ — Setto F - h: L — Set. The functor Mod;, always admits a left adjoint: Mod
preserves limits and sifted colimits because they are computed in the underlying functor category.
The special adjoint functor theorem can now be used to obtain a left adjoint Lj, : Mod s — Mod z/.

Example 2.32. For intuition, we consider a concrete example. Consider the inclusion i of the
theory of monoids in commutative monoids. Then Mod; is the functor that “forgets” commutativity.
Its left adjoint takes a monoid and “forces” commutativity by quotienting the underlying carrier set.

Observation 2.33. Lawvere theories have free models. Let p : F°? — L be a Lawvere theory.
Observation 2.31 gives an adjunction
F : Modfper < Mod g : Mod,,.
Then Mod,, coincides with the forgetful functor of Remark 2.28. The left adjoint F gives free objects.

Because of Observation 2.31, it is natural to take adjunctions as the notion of variety morphism.
Below, by unsorted-variety we mean a category equivalent to Mod s for £ with finite products.

Definition 2.34. Let V,"W be two (unsorted) varieties; a morphism of varieties is a functor
R:V — W satisfying the following:
Mv1) R admits a left adjoint L : W — V;
Mv2) R commutes with sifted colimits.
Given that adjunctions compose, this data yields a category Var.
Let Prod be the 2-category whose objects are small cartesian categories, morphisms are cartesian

functors and 2-cells are natural transformations. Then Observation 2.31 boils down to defining a
2-functor Mod: Prod®® — Var. The following captures the relationship between Law and Var.

ISifted J-indexed colimits satisfy the following property: given a functor E : I x J — Set, s.t. the category I is discrete
(namely, it is just a set), the following isomorphism holds:

colim g limy E(I, J) = limg colimg E(1, J).

In other words, sifted colimits are those that commute with finite products in Set.
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Theorem 2.35 ([Adamek et al. 2003, Theorem 4.1]). There exists a 2-adjunction whose unit is an
equivalence:

Th : Var & Prod®? : Mod

Remark 2.36. One obtains the S-sorted version of Theorem 2.35 by slicing on both sides over the
free category with products on S. This is given in more detail for partial Lawvere theories in S7.2.

2.6 Equational Theories as Monoidal Theories

Given that Lawvere theories are cartesian props, Theorem 2.22 suggests how to consider them
as monoidal theories. We recall the recipe from [Bonchi et al. 2018]: the idea is to characterise
>-terms as certain string diagrams, and then—through this lens—turn any equational theory into a
monoidal theory.

Recipe 2.37. Fix a signature . A 3-term ¢ : TZ["] is the same thing as a string diagram n — 1in
the prop induced by the monoidal theory with

e generators I’ sy (CCMG)
e (CCM) together with equations that ensure naturality with respect to the comonoid structure.
The latter can be easily added as two additional equations for each o : X:

m—@—{=m—{ : m-cl—e = m-—e (SNo)

The Lawvere theory induced by equational theory (2, E) can now be seen as the prop induced
by the monoidal theory (T, F) where F is the set of equations obtained by translating the equations
in E to string diagrams, together with (CCM), and (SNo) for each o : 2.

It is important to build an intuition behind this translation. An obvious difference between terms
and string diagrams is that the latter do not have named variables. The translation ensures that
wires play the role of variables, and the comonoid structure plays the role of “variable management”.
We illustrate this with an example below.

Example 2.38. The prop corresponding to the Lawvere theory induced by the equational theory
of commutative monoids (Example 2.8) is the same as the prop of commutative bialgebra. For
example, the term m(m(x, x),y) in the theory of commutative monoids can be depicted as

In the term we have considered, the variable x appears twice. In the corresponding diagram, the
wire corresponding to x starts with a comultiplication that witnesses the “copying of x”.

3 ALGEBRA OF PARTIAL MAPS

We have seen that finite products are central in classical universal algebra. It is therefore natural to
begin our development of its partial analogue by identifying the corresponding universal property
in the partial setting. We will see that this amounts to replacing the class of cartesian categories
with the class of discrete cartesian restriction categories (DCR categories) [Cockett et al. 2012]. Next,
we characterise DCR categories in terms of algebraic structure, analogous to Theorem 2.22 for
cartesian categories.
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3.1 Partial Functions

The starting point of our journey is the (2-)category Par of sets and partial functions. Just as Set
was the semantic universe for ordinary equational theories, Par is the semantic universe for partial
equational theories. We first recall an elementary, set theoretic presentation:

Definition 3.1. Par has sets as objects and partial functions f: X — Y as arrows, where a
partial function f is a pair (domf, deff) where domf C X is the domain of definition of f and
deff: domf — Y is a (total) function. Given a partial function f: X — Y, and some X’ C X we
write f|x- for the partial function (domf NX’, f’) where f’: domf N X’ — Y is def f restricted to
the (potentially smaller) domain of definition domf N X’. Similarly, given Y’ C Y, write f~1(Y’) =
{x € domf | deff(x) € Y'}. Given f: X — Y and g: Y — Z, their composite is defined by
f3g=(f"'(domg), (deff |-1(domg) § defg). The identity on X is (X, idx).

There is a natural partial order between partial functions X — Y:

f<g def domfgdomg/\9|domf:f-

It is straightforward to verify that this data makes Par a category, and with <, a 2-category.

Categorifying partiality has long history (see e.g., [Cockett and Lack 2002; Robinson and Rosolini
1988]). We recall a classical approach:
Definition 3.2. Suppose that C has finite limits. Its 2-category of partial maps, Par(C) has:
1) objects are objects of C.

2) arrows are equivalence classes [m, f] : X — Y of spans X Piay L Y where m is monic. We
equate (m, f) ~ (m’, f’) iff there is an isomorphism « s.t. the following diagram commutes:

A—> A

m/ f
X Y.

3) 2-cells: [m, f] < [m’, f’] when there exists any a that makes the diagram commute.
4) composition is defined by pullback. Explicitly, the composite of (m,f) : A — B and
(m’,g) : B— C is the outer span of the diagram on the left

XAX'
ifV \ﬂl
X f X’ .
m m
A B C
where the square with top X A X’ is a pullback in C. Note that it doesn’t matter which

pullback, since any two choices will give isomorphic spans, and therefore equal morphisms.
5) Identities are diagonal spans (14,14) : A — A.

Given a morphism (m, f) : A — B in Par(C), we think of the monic m : X — A as a subobject,
specifying which part of A the morphism is defined on, and then f : X — B tells us what it does.
The following is a straightforward sanity check:

Observation 3.3. There is an isomorphism of (2-)categories Par = Par(Set).

Just as a model of a total operation of arity n is a function A — A (an arrow in Set), a model of
a partial operation ought to be a partial function A" — A (an arrow in Par). For this reason, it is
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important to understand the mathematical status of the cartesian product in Par. Interestingly, Par
has categorical products, but these do not correspond to the cartesian product of sets.

3.2 Cartesian Restriction Categories

It is by focusing on the universal property of the cartesian product in Par that we are able to identify
a generalisation of Lawvere’s approach to partial operations. This is the goal of this section.
Restriction categories were devised to study partial phenomena in an axiomatic setting. Here we
give a whirlwind tour, more details can be found in [Cockett et al. 2012; Cockett and Lack 2002,
2007]. In a restriction category, every arrow f : A — B has an associated idempotent j_r A —> A
thought of as the identity function restricted to the domain of definition of f. We call them domain
idempotents. Arrows where ]_‘ = 14 are called total, and form a subcategory. Further, we have:

Remark 3.4. Any restriction category is poset-enriched, with the ordering defined by
fsgefig=f

Functors F that preserve domain idempotents (F_? = E”) are called restriction functors. Restriction
categories and restriction functors form a category. This extends to a 2-category in which the 2-cells
are lax transformations. A lax transformation « : F — G of restriction functors F,G : X — Y
consists of a family of total maps a4 : FA — GA in Y indexed by the objects A of X s.t. for every
f : A — Bof X the usual naturality square commutes up to inequality:

ap
FA —> GA

erlo< 0 or

FBTB>GB

where < is the ordering introduced above. Call this 2-category RCat=. Just as categories with finite
products enjoy a universal property in the 2-category Cat, those with finite restriction products have
auniversal property in RCat=. In general, formal limits in RCat = are called restriction limits [Cockett
and Lack 2007]. A cartesian restriction (CR) category is a restriction category with finite restriction
products.

Observation 3.5 ([Cockett and Lack 2002]). Par is a CR category, with the cartesian product as
restriction product.

CR categories have appeared in the literature under a variety of different names, including
p-category with a one-element object [Robinson and Rosolini 1988] and partially cartesian cate-
gory [Curien and Obtutowicz 1989]. For our development, it is crucial that the data of CR categories
can be equivalently captured as follows:

Theorem 3.6 ([Cockett and Lack 2007]). A CR category is the same thing as a symmetric monoidal
category where every object is equipped with a commutative comonoid structure that is (coherent)
and the comultiplication is natural. That is, for any f : A — B we have f 05 =04 3(f ® f).

From this perspective a CR category is very close to a cartesian category viewed as a monoidal
category through Theorem 2.22. The difference is that we do not ask for the counit of the comonoid
to be natural. This has profound consequences: for instance, the same symmetric monoidal category
may have more than one such chosen comonoid structure, thus definining different CR categories.

2The categorical product of A and B in Par is (A + {%}) X (B + {*}) — {(, %) }. This can be seen via the equivalence
1/Set =~ Par. Limits in the coslice category 1/Set are calculated pointwise, and the functor 1/Set — Par removes the point
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Given the algebraic data, the domain idempotent ]_‘ :A— Aofanarrow f: A — BinaCR

category is recovered as:
g
f =

and so in particular the subcategory of X for which the counit is natural is precisely the subcategory
of total maps. Notice that this means the subcategory of total maps of a CR category is cartesian.

Definition 3.7. A CR functor between two CR categories F : X — Y is a functor that preserves
the algebraic structure. That is, F(A® B) = FAQ FB, F1 =1, F§4 = 0pa and Feq = €pa.

Remark 3.8. A lax transformation of CR functors may be equivalently specified as a family of maps
aa : FA — GA indexed by the objects A of X s.t. for every f : A — B we have Ff §ag < a4 {Gf.
We do not need to ask that each ay4 is total, since if F and G preserve the cartesian restriction
structure, then they are automatically total. In particular the diagram on the left gives the inequality
on the right, which gives that a4 is total:

2A
FA —> GA

FA FA GA
P O = P

FITI>GI

3.3 Discrete Cartesian Restriction Categories
Restriction products do not quite capture all the properties of Par needed for partial universal
algebra. In particular, we require CR categories with the following extra structure:

Definition 3.9. A CR category is said to be discrete (DCR category [Cockett et al. 2012]) if for each
object A there is an arrow pu : A ® A — A that is partial inverse to §4. That is, 54 § s = 54 = 14
and p14 §04 = fia.

We give a novel presentation of DCR categories, inspired by the work of [Giles 2014]. Central to
our presentation is the notion of a commutative special Frobenius algebra in which the monoid
does not have a unit, which we call a partial Frobenius algebra. More precisely:

Definition 3.10. A partial Frobenius algebra (A, 84, pia, €4) in a symmetric monoidal category
consists of a commutative comonoid (A, d4, £4) and a commutative semigroup (A, p14) s.t. (A, da, ta)
is a semi-Frobenius algebra. Diagramatically, this is the comonoid structure we have already seen

together 4, which we depict as__$— in our string diagrams, subject to the following equations:

_ ?* X = (MCA)
_ E - — (SFROB)

Note that there is some redundancy in the equational presentation above, as discussed in [Carboni
1991]. We now extend the characterisation of CR categories given in Theorem 3.6 to DCR categories:

Theorem 3.11. A DCR category is the same thing as a symmetric monoidal category where every
object A is equipped with a coherent partial Frobenius algebra structure (A, 84, €4, 14) s.t. the
comultiplication is natural. That is, for any f : A — B we have f§d5 = da 5(f ® f).
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DCR categories are intimately connected to categories with finite limits [Cockett et al. 2012]. In
particular:

Proposition 3.12. If C is a category with finite limits, Par(C) is a DCR category.
Definition 3.13 (the 2-category DCRC=). It follows that for any CR functor F : X — Y between
DCR categories, we have Fua = pipa. CR functors therefore give the notion of morphism between

DCR categories. We consider the strict 2-category of DCR categories, restriction functors, and lax
transformations, which we call DCRC=.

4 PARTIAL LAWVERE THEORIES

In this section we develop a Lawvere-style approach to partial algebraic theories, where operations
may be partial. Ordinary Lawvere theories are determined by the free cartesian category on a single
object [F°P; we are thus interested in the analogue of F°P in the world of DCR categories.

4.1 The Free DCR Category on One Object

Given Theorem 3.11, we have an explicit description for the DCR category on one object: it is the
prop PF induced from the monoidal theory of partial Frobenius algebras. That is, it has generators

{3— , —C , — } and equations (MCA), (CCM) and (SFROB).

It turns out that one can gain a precise intuition on what PF looks like by mimicking the way in
which the props F and its opposite F°P describe familiar algebraic structures. In fact, the prop CM
of commutative monoids is isomorphic to the prop [ (see Observation 2.18), and similarly, the prop
CC of commutative comonoids is isomorphic to F°P (Observation 2.21).

The prop PF of partial Frobenius algebras that we want to describe here can be given a sim-
ilar “combinatorial” characterisation relying on the insights of Lack [Lack 2004]. First, we note

that the prop CAM induced by the monoidal theory of commutative semigroups ({ _$— } and
equations (MCA)) is isomorphic to sub-prop [ C [F of finite sets and surjective functions.
Observation 4.1. As props, CAM = F;.

This is intuitive: as observed in Remark 2.19, string diagrams of CM allow one to “draw” all
functions [m] — [n]. Doing without the unit means that we can express exactly the surjective
ones.

Next, we know from [Lack 2004] that the prop FROB induced by the monoidal theory of special

Frobenius algebras with generators {3— , — —C , —» } and equations (CM), (CCM) and

(SFROB) is isomorphic to the prop of cospans of finite sets Cospan(F). An arrow m — n here is (an
isomorphism class of) a cospan of functions [m] L [k] & [n], and composition is by pushout.
Proposition 4.2 ([Lack 2004]). As props, FROB = Cospan([F).

Given that surjective functions are closed under composition and pushouts in [, we can consider
the subprop Cospan,(F) of Cospan([F) with arrows those cospans where the left leg is surjective.
Now, combining Observation 4.1 and Proposition 4.2 yields:

Proposition 4.3. As props, PF = Cospan([F).

This gives us a combinatorial characterisation of PF. But there is a more familiar and satisfactory
way of describing Cospan([F). Given that cospans in C are spans in C°P, and epimorphisms in C
are monomorphisms in C°P, we see that Cospan(F) = Par([F°P), since a cospan in F with left leg
surjective is the same thing as a span in F°P with left leg a monomorphism. Therefore, we obtain:
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Proposition 4.4. As props, PF = Par(F°P).

4.2 Partial Lawvere Theories

We have seen that F°P is central to the definition of Lawvere theories, being the free cartesian cate-
gory on one object. The prop Par(F°P), being the free DCR on one object, plays the corresponding
role in the definition of partial Lawvere theories.

Definition 4.5. A partial Lawvere theory £ is a DCR prop.

Spelled out, a partial Lawvere theory is a DCR category L for which there is an identity-on-
objects CR functor Par(F°P) — L. A morphism of partial Lawvere theories is a functor h : £ — M
s.t. the following triangle commutes:

Par([F°P)

S

L—————5——> M.

This defines the category pLaw of partial Lawvere theories.
Mimicking also the definition of model of a Lawvere theory, we obtain at once the notion of
model of a partial Lawvere theory:

Definition 4.6 (Model of a partial Lawvere theory). A model for a partial Lawvere theory L is a
CR functor L: £ — Par. A homomorphism L — L’ is a lax natural transformation a: L = L’.

Definition 4.7. The category of models and homomorphisms of a partial Lawvere theory L is
denoted pMod ;. As explained in Remark 3.8, the homomorphisms are total functions.

5 PARTIAL EQUATIONAL THEORIES

In order to consider interesting examples of partial Lawvere theories, we need to introduce the
notion of partial equational theory. For partial structures, these are the syntactic analogue of
equational theories, and yield partial Lawvere theories in a similar way to how equational theories
yield Lawvere theories.

Monoidal signatures (Definition 2.12) I" have unrestricted arities and coarities. Instead, a signature
¥ of an equational theory (Definition 2.1) has function symbols of arbitrary arities, but—considered
as a monoidal signature—all coarities are 1. Partial signatures are an intermediate concept: as for
equational theories, coarities > 1 are redundant, but we need to admit symbols of coarity 0.

. . f . . .
Definition 5.1. A partial signature A e Ao + Ay, where A is the set of operations of coarity 0,
and A is the set of operations of coarity 1. Each § : A; comes with an arity ar () : N.

Differently from ordinary equational theories, we cannot use classical terms, which—as discussed
in Remark 2.26—are tied to an underlying cartesian structure. Instead, we adapt Recipe 2.37 to DCR
categories, obtaining partial terms as particular string diagrams. Before we launch into formal
definitions, and illustrate them with a variety of examples, let us establish some intuitions for how
to read the string diagrams.

e string diagrams represent partial terms, obtained through composing partial operations,
e equalities and inequalities between them are understood in the sense of Kleene,

e the comonoid structure {—§ _, —e } plays a similar role to that described in S2.6.

Recipe 5.2. Given a partial signature A, the free DCR prop L on A is the prop induced from the
monoidal theory with
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e generators (A + {3— —C —})
e equations (MCA), (CCM) and (SFROB), together with "5 { _m { : for each
(4]

6 : Ay, where ar(6) = m.

Definition 5.3 (Partial Equational Theory). A partial equation is a pair (s, t) where s,t : La(m, n)
for some m, n : N; we usually write ‘s = t’. A partial equational theory is a pair (A, G) where A is a
partial signature and G is a set of partial equations.

We first return to a familiar example.

Example 5.4 ((Partial) Commutative Monoids). We start with the monoidal theory of commutative
monoids (Example 2.16), where the multiplication and unit generators are re-coloured to red to
avoid a clash. In models, the multiplication operation may be partially defined and the unit may be
undefined. To define the partial theory of total commutative monoids, we’d need to add equations:

3)—0 = - o—e = (3)

Example 5.5 (Equational Theories). Any equational theory (3, E) is an example. One follows
Recipe 5.2, adding equations analogous to (3) to specify that every generator in X is total. The
category of models of this partial theory then agrees with that of the Lawvere theory L5 ).

The following elementary examples illustrate the novel features of partial Lawvere theories,
highlighting the way in which they differ from classical (i.e., total) Lawvere theories.

Example 5.6 (Equivalence Relations). Consider the partial Lawvere theory consisting of a single
binary operation R with coarity 0, together with equations expressing symmetry and reflexivity:

[ > - - -~

Note that inequations of terms, as in Remark 3.4, do not add expressivity. As such, we may use
them freely when specifying partial Lawvere theories. Transitivity is intuitively captured by the
inequation on the left, which, unfolding the definition of <, is precisely the equation on the right:

il iy SV
Aers S = =

A model A of this theory consists of a set A together with an equivalence relation =4C A X A
corresponding to the domain of definition of A(R). A morphism F : A — BisafunctionF : A — B
with a =4 b = Fa =g Fb, which arises from the requirement that F is a lax transformation:

e =
<
A A
Thus, the variety corresponding to this theory is the category of Bishop sets (setoids) [Palmgren
2009].
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Example 5.7 (Partial Combinatory Algebras). A partial combinatory algebra (PCA) is a set A with
a binary partial operation _e _: AX A — A, and elements s,k € A s.t. for any x,y,z € A:

(i) (kex)ey=x

(i) ((sex)ey)ez=(xez)e(yez)
(iii) (s @ x) ® y is defined

where “=” is Kleene equality. The partial Lawvere theory of PCAs has three generators:

3

and equations that ensure the totality of k, s, i.e. they define elements of the carrier, and (iii):

B—e = R

as well as equations for (i) and (ii):

s Zn.

The variety here is the category of PCAs and homomorphisms preserving the applicative structure.

Example 5.8 (Pairing Functions). Consider the partial Lawvere theory with two operations which
we think of as pairing and unpairing respectively, subject to the equation on the right:

= St =

Models are sets equipped with a pairing function, and model morphisms map pairs to pairs. For
example, N and Cantor’s pairing function, or A - the set of untyped A-terms — with the usual
pairing and projection functions. Note that our equation makes pairing a section, and so it is total.

6 MULTI-SORTED EQUATIONAL THEORIES

In this section we present a progression of multi-sorted partial Lawvere theories for categories
with different kinds of structure. While our development of partial Lawvere theories has thus far
focused on the single-sorted case, the move to multi-sorted theories contains no surprises, so we
omit the details. The short version is that props are replaced with coloured props, and the sorting
discipline changes accordingly. The examples that follow are developed incrementally: Each step
adds more categorical structure to the models by adding the appropriate operations and equations
to the theory, culminating in the partial Lawvere theory of cartesian closed categories.

Example 6.1 (Directed Graphs). We begin with the partial Lawvere theory of directed graphs,
which has a sort O of vertices and a sort A of edges, together with source and target operations:

A—F—o A —f—o Af—e =a—e A =a—e
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The associated variety is the category of directed graphs, as model morphisms F must satisfy:
= =

Example 6.2 (Reflexive Graphs). Extending Example 6.1, we ask that each vertex has a self-loop:

o —Jid— a o id] = 0 —e o HidFs+o = o— o0 = o {idH o

then morphisms of models are required to preserve the self-loop, so the associated variety is the
category of reflexive graphs. Notice that along with Example 6.1, this could also be presented as a
(total) 2-sorted Lawvere theory, since all the operations are total.

Example 6.3 (Categories). To capture categories we extend Example 6.2 with a composition
operator, which is defined when the target of the first arrow matches the source of the second:

e o

and equations insisting composition is associative and unital, with identities given by the self-loops:

A 4 A [id]
A A=
A A

Model morphisms are precisely functors. It is worth noting that this involves an inequality:

s

This states that if f and g are composable then so are Ff and Fg, and in particular F(f $g) = Ff § Fg.
If this were an equality, it would insist also that if Ff and Fg are composable, then so are f and g,
which is not always the case. Of course, the associated variety is the category of small categories.

Example 6.4 (Strict Monoidal Categories). Next, we extend Example 6.3 by asking for a functorial
binary operation ® on O and A together with a unit constant T of O:

o o
o e = o

o o

3 O —e
O —e
A A —e A A
}—‘ = O = & O
A A —e A A

A A
A A -t} A A
o = ®— O A = A
A A -t} A A
A A

Additionally, we require equations to the effect that ® is associative and unital:

o o A A

o o A A
o o = A A =
o o A A
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A o
®— A ®- A ®-0 = 0—o0 = ®- 0
A o

Now the associated variety is the category of strict monoidal categories and strict monoidal functors.

Example 6.5 (Symmetric Strict Monoidal Categories). To capture symmetric monoidal categories,
we extend Example 6.4 with a binary operation o : O ® O — A for the braiding maps, subject to:

o . 0 —e o o
A" = o %—o
o 0 —e o o

This gives the variety of strict monoidal categories and symmetric strict monoidal functors.

Example 6.6 (Cartesian Restriction Categories). In light of Theorem 3.6, we can capture CR
categories by extending Example 6.5 with operations § : O — A and ¢ : O — A corresponding to
the comultiplication and counit of the comonoid structure:

— s -y

—e [+

04 — = —f— P

O—_—A°* —AF—e = —o ——F+— = —— —He—1]

along with equations insisting that § and ¢ are coherent with respect to the monoidal structure:
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The associated variety is the category of CR categories and CR functors.

Example 6.7 (Discrete Cartesian Restriction Categories). Theorem 3.11 makes it easy to capture
DCR categories by extending Example 6.6 with y : O — A satisfying the Frobenius and special
equations: thereisa 4 such that

o = 0-s

ofH+o = o—o

The variety is the category of strict DRC categories and strict CR functors (since they preserve p).

Example 6.8 (Cartesian Categories). To capture cartesian categories instead, we can extend Exam-
ple 6.6 with one equation, ensuring that ¢ is natural:

Then by Theorem 2.22, this gives the variety of strict cartesian categories and strict cartesian
functors.

Example 6.9 (Cartesian Closed Categories). Finally, to capture cartesian closed categories we extend
Example 6.8 with an operator exp : O ® O — O, the idea being that exp(A, B) is the internal hom
[A, B], along with an operator ev: O ® O — O that gives the corresponding evaluation map:

o . * o .
exp o exp = ev A - ev
] —e o

) 7

along with an operation A and equations stating, intuitively, that A(X, A, B, f) is defined precisely
in case f : X X A — B, and yields amap A(X,A, B, f) : X — [A B] as in:

1}
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—e
—0 A t = exp
2 = (1]
—e
—e

Now the associated variety is the category of strict cartesian closed categories and strict cartesian
closed functors: these preserve hom-objects and, when A(X, A, B, f) is defined, satisfy FA(X, A, B, f) =
A(FX, FA, FB, Ff). This presentation of cartesian closed categories is essentially due to Freyd: a
version of it is given immediately after the first appearance of the notion of essentially algebraic
theory in [Freyd 1972], albeit somewhat informally, and using very different syntax.

7 THE VARIETY THEOREM FOR PARTIAL THEORIES

Here we classify the categories of models of partial Lawvere theories. These turn out to be exactly
the locally finitely presentable (LFP) categories [Adamek and Rosicky 1994, 1A]. LFP categories
have an important position in categorical algebra, due to deep connections with model theory
[Adamek and Rosicky 1994, Ch. 5] and [Makkai and Paré 1989], homotopy theory [Dugger 2001],
and universal algebra [Adamek and Rosicky 1994, Ch. 3].

7.1 The Unsorted Case

Definition 7.1. In a category C, an object C is finitely presentable if the hom-functor C(C, _)
preserves directed colimits (see [Adamek and Rosicky 1994, 1.1] for the definition).

This notion might appear obscure to the reader unfamiliar with categorical logic; [Adamek and
Rosicky 1994, 1.2] contains lots of examples to help the reader build their intuition: for instance, an
object of the category of sets is finitely presentable if and only if it is finite, and a (commutative)
monoid is finitely presentable if and only if it admits a presentation (G | R) where both G (set of
generators) and R (set of relations) are finite sets: this happens for many other algebraic structures,
and thus motivates the definition.

Definition 7.2 (Locally finitely presentable category). [Adamek and Rosicky 1994, Def. 1.9] A
locally finitely presentable (LFP) category K is a cocomplete category s.t. there is a small full
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subcategory A C K of finitely presentable objects, and such that every object of K is a directed
colimit of objects of A.

As in the classical case (Remark 2.30), the most crisp statement of the variety theorem is for the
unsorted case. Just as an unsorted Lawvere theory is exactly a (small) cartesian category, we define
an unsorted partial Lawvere theory to be a (small) DCR category, and the corresponding notion of
morphism to be a CR functor. Then:

Categories of models of partial theories are exactly LFP categories.
Indeed, we have a similar contravariant adjunction to that of Theorem 2.35, if LFP is a 2-category
having 1-cells R : i — K’ the right adjoint functors R preserving directed colimits, and 2-cells all
natural transformations « : R = R’. A motivation for this apparently peculiar choice of 1-cells can
be found in our Observation 2.31; it is exactly as our Definition 2.34, provided one replaces “sifted”
colimit with “directed”.

Theorem 7.3. There is a 2-adjunction
Th: LFP & (DCRC*) : Mod, (4)

where DCRC*= is the 2-category of DCR categories of our Definition 3.13 and LFP is the 2-category
of LFP categories. Moreover, the unit of this adjunction is an equivalence, namely there is a natural
equivalence of categories between K € LFP and Mod(Th(K)), i.e. each LFP category is equivalent
to the category of models of its induced theory.

The proof of Theorem 7.3 is split into two parts, as illustrated below:

(DCRC=)P =—— 1 ——— (Lex)P
N 4 ©)

1) we show that Lex —the 2-category of categories A with finite limits, functors A — A’
preserving finite limits, and natural transformations- is reflective in the 2-category DCRC=.
This is the original, technical core of Theorem 7.3.

2) we connect Lex°? and LFP with a contravariant biequivalence of 2-categories. This is a
classical result called Gabriel-Ulmer duality.

Composing the two, we obtain Theorem 7.3.
We will start from the first of the two tasks, providing an adjunction of 2-categories as follows.

K; : DCRC* & Lex : Par

We first describe the left adjoint K, then the right adjoint Par, and conclude by showing that
they define an adjunction.

Splitting Domain Idempotents. The functor K; arises via a modified Karoubi envelope, also called
Cauchy completion in [Borceux and Dejean 1986]. Recall that an idempotent a : A — A in a category
splits if there is a commutative diagram

X —> A
r
a
Restriction categories in which all of the domain idempotents split are called split restriction

categories. An example is Par(C): for any arrow (m, f) : A — B, (m, f) = (m,m) : A — A splits
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with s = (1,m) and r = (m, 1). Notice that this means the domain of definition of (m, f) is a
subobject of A. This is a good way to think of split domain idempotents in general: for f to be split
in a restriction category is for the domain of definition of f : A — B to be a subobject of A.

For any restriction category X we can construct a split restriction category K(X) that contains
X as a subcategory. Its subcategory of total maps K; (X) is of particular interest.

Definition 7.4. Let X be a DCRC. Then K;(X) is the category where
1) objects are pairs (A, a) with A an object of X and a : A — A a domain idempotent in X;
2) arrows f : (A, a) — (B, b) are arrows f : A — Bof X such that f =aand f$b = f;
3) composition is given by composition in X;
4) The identity on (A, a) is given by a.
It is routine to verify that this forms a category. Crucially, if X is a DCRC, then the subcategory
K;(X) of total maps of K(X) has finite limits [Cockett et al. 2012]:
Lemma 7.5. For any DCRC X, K;(X) has finite limits.

We now show that this extends to a 2-functor K; : DCRC* — Lex. If X and Y are DCRCs
and F : X — Y is a CR functor, then there is a functor K;(F) : K;(X) — K;(Y) defined by
K:(F)(A, a) = (FA, Fa) on objects and K;(F)(f) = f on arrows. It follows from our characterization
of CR functors in terms of the partial Frobenius algebra structure that K; (F) preserves finite limits,
giving the action of our 2-functor K; on 1-cells. The action of K; on 2-cells is given as follows:

Lemma 7.6. If F,G : X — Y are CR functors between DCR categories and & : F — G is a lax
transformation, define K;(«) : K;(F) — K;(G) by letting K; () at (A, a) in K; (X) be:
Ki(a) (a0 = Fasas : (FA Fa) — (GA,Ga)
Then K;(«) is a natural transformation.

At this point we need only show that K; preserves composition and identities for 1-cells and
2-cells, which in both cases is straightforward.

Lemma 7.7. K; : DCRC* — Lex is a 2-functor.

Partial Functions Revisited. Here we show that the Par construction (S3.1) also extends to a
2-functor Par : Lex — DCRC=.If C and D are categories with finite limitsand F : C — D is a
finite-limit preserving functor, then we obtain a CR functor Par(F) : Par(C) — Par(D), defined on
objects by Par(F)(A) = F(A), and on arrows by

X FX
y X Far(®) fV \F]i
A B FA FB
Since F preserves finite limits, we have that Par(F)(54) = (Fla, FAs) = (1pa,Apa) = Opa =
Opar(Fy(a) and Par(F)(ea) = (F14,F'4) = (1ra,!Fa) = €par(F)(a), so Par(F) preserves the CR
structure. This defines the action of Par on 1-cells. We present the action of Par on 2-cells as a

lemma:

Lemma 7.8. If F,G : C — D are finite limit preserving functors between categories with finite
limits and « : F — G is a natural transformation, define Par(«) : Par(F) — Par(G) by defining
the component of Par(«) at A in C to be:

FA
l%ar(a)xf
GA

FA
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Then Par(«) : Par(F) — Par(G) is a lax transformation.

It remains only show that Par preserves composition and identities at the level of 1-cells and
2-cells, which is immediate in both cases. We therefore have:

Lemma 7.9. Par : Lex — DCRC= is a 2-functor.

Adjointness. The following result is original, and builds on [Cockett and Lack 2002, Corollary
3.5]; however, there the 2-cells of the categories involved are different.

Theorem 7.10. There is a 2-adjunction K; : DCRC= & Lex : Par.

It is worth describing the unit and counit of our adjunction. The unit 5 : 1 — Par - K; is given by
the canonical inclusion nx : X — Par(K;(X)) defined by

AN
nx

PN N N
(A 14) (B, 1p)

The counit ¢ : K; - Par — 1 is defined in terms of the equivalence of categories K(X) =~ X between
any split restriction category X and the result of formally splitting its domain idempotents. In
particular, since Par(C) is always split, we obtain an equivalence of categories K(Par(C)) =~ Par(C).
Restricting this to the subcategories of total maps gives defines our counit ¢ : K;(Par(C)) ~ C. In
particular, the fact that the counit is a natural equivalence gives:

Lemma 7.11. Lex is a reflective (2-)subcategory of DCRC=.

Gabriel-Ulmer duality. To complete the triangle (5), we recall a theorem first shown by P. Gabriel
and F. Ulmer [Gabriel and Ulmer 1971], establishing a contravariant equivalence between the
2-category LFP of locally finitely presentable categories and the 2-category Lex of categories with
finite limits.

The duality asserts that a locally finitely presentable category K can be reconstructed from its
subcategory K, of finitely presentable objects. A good reference for the proof is [Centazzo and
Vitale 2002, Th. 3.1].

Theorem 7.12 (Gabriel-Ulmer duality). There is a biequivalence of 2-categories
Lex®? & LFP

between Lex, the 2-category of small categories with finite limits, where 1-cells are functors
preserving finite limits and 2-cells are the natural transformations, and LFP, the 2-category of
locally finitely presentable categories, where 1-cells are right adjoints preserving directed colimits.

7.2 Sorted Gabriel-Ulmer Duality

A similar version of the above theorem holds if, instead of considering theories of all possible sorts,
we fix once and for all a single cardinality for the sorts &. Such “relative” version of Gabriel-Ulmer
duality is useful to recover the classical Lawvere-style approach of single- and many-sorted theories.

Definition 7.13. We call LS the free category with finite limits over the discrete set S. When &
is the singleton we will use the shortened notation L1.

Definition 7.14. A S-sorted category with finite limits (A, p) is an object in (Lex)°P? /L& whose
specifying functor p : L& — A is bijective on objects. (S-Lex)°P is the full 2-subcategory of
S-sorted categories with finite limits.
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Definition 7.15. A S-sorted locally finitely presentable category (%, U) is an objectin LFP/[S, Set]
whose specifying functor U : K — [&, Set] is conservative. (S-LFP)°P is the full 2-subcategory of
S-sorted locally finitely presentable categories.

Theorem 7.16 (Sorted Gabriel-Ulmer duality). There is a biequivalence of 2-categories
Modg : (S-Lex)®? & G-LFP : The.
We can use the sorted version of Gabriel-Ulmer duality to infer the sorted version of the syntax-
semantics duality for multi-sorted partial Lawvere theories.
Theorem 7.17. There is an 2-adjunction, whose unit is an equivalence,
S-LFP S (G-pLaw)®P,
where G-pLaw is the 2-category of “S-sorted partial Lawvere theories”, understood as the analogue

of Remark 2.30 for partial theories (see Definition 4.5), and S-LFP is the 2-category of S-sorted
locally finitely presentable categories.

SKETCH OF PROOF. The proof is divided into intermediate steps: each tag on the following two
diagrams indicates the section where the proof of the adjunction, or equivalence, is given.

(S-pLaw)°P x (S-Lex)°P (DCRC=)%P =—— 710 —— (Lex)°P
\Y\\:\\ 7.16 ~ \‘:\\\\\ 7.12 z
\\\\\ {/ SO /‘/
A SO
G-LFP * LFP

The claim in (%) is the only one that needs to be proven. Yet it is also the most trivial one.
We will deduce it directly from Theorem 7.10. Indeed if Lex is reflective in DCRC=, (Lex)°P/L&
is coreflective in (DCRC=)°P/Par(L&), now observe that Par(L&) is precisely the free discrete
cartesian restriction category over &. The desired result follows passing to functors bijective on
objects in the slice. O

Observation 7.18. In analogy with 2.33, we can show that sorted partial Lawvere theories have
free models. For the single-sorted case, let p : Par(F°?) — L be a partial Lawvere theory. Indeed
we can look at it as a morphism in DCRC=, then the previous theorem produces an adjunction
F 4 Mod,

F: MOdpar([Fop) s MOdL : MOdp.

The functor Mod, coincides with the forgetful functor. Its left adjoint F provides free objects.

8 CONCLUSIONS AND FUTURE WORK

We introduced partial Lawvere theories and their associated notion of partial equational theory.
Our definitions are guided by the appropriate universal property, replacing cartesian categories
with discrete cartesian restriction categories. Knowing the right universal property determines our
choice of syntax, isolating the correct class of string diagrams that replace classical terms. This
enables the standard methodology of presenting a theory by means of a signature and equations,
while avoiding ad-hoc notations and eliminating the subtleties of reasoning about partial structures.

The extension is conservative: every equational theory yields a partial equational theory such
that the categories of models coincide, even though our models are in Par rather than in Set. The
recently proposed Frobenius theories [Bonchi et al. 2017] take their models in the category of
relations Rel, and are guided by the structure of cartesian bicategories of relations [Carboni and
Walters 1987]. Every partial equational theory yields a Frobenius theory and again, the categories
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of models coincide. We feel that our notion is a sweet-spot. First, we have shown that our notion
of partial theories is expressive, capturing a number of important examples. Second, we retain
much of the richness of the semantic picture, via a canonical variety theorem and existence of free
models.

There is much future work. The fact that the syntax introduced here is inherently partial makes
it well-suited to applications in computing. In particular there is an evident notion of computable
model for partial Lawvere theories, namely those models valued in the category of sets and partial
recursive functions. The corresponding computable varieties seem to be interesting for programming
language semantics, and therefore worthy of study. A further step would be the lifting of this
situation to a more synthetic category of computable functions, such as a Turing category [Cockett
and Hofstra 2008] or monoidal computer [Pavlovic 2013].

An important part of categorical universal algebra is played by monads, a point of view that we
have not considered here. Indeed, Lawvere theories can be seen as finitary monads [Linton 1966],
with the category of algebras giving the associated variety. This connection has been a fruitful one,
relating areas of research that are, on the surface, very different, see e.g. [Cheng 2020; Loday and
Vallette 2012; Markl et al. 2002]. A natural question is whether there is an analogous approach for
partial algebraic theories. We conjecture that there is, with certain formal monads [Street 1972] in
the 2-category DCRC*= playing the role of finitary monads. We expect that other constructions
of categorical universal algebra (e.g. [Freyd 1966; Power 2006]) will have corresponding partial
accounts.
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