
A Foundation for Ledger Structures

Chad Nester ?

Tallinn University of Technology

Abstract. This paper introduces an approach to constructing ledger
structures for cryptocurrency systems with basic category theory. Com-
positional theories of resource convertibility allow us to express the ma-
terial history of virtual goods, and ownership is modelled by a free con-
struction. Our notion of ownership admits an intuitive graphical repre-
sentation through string diagrams for monoidal functors.

1 Introduction

Modern cryptocurrency systems consist of two largely orthogonal parts: A con-
sensus protocol, and the ledger structure it is used to maintain. While consensus
protocols have received a lot of attention (see e.g. [10, 7]), the design space of
the accompanying ledger structures is barely explored. The recent interest in
smart contracts has led to the development of sophisticated ledger structures
with complex behaviour (see e.g. [1, 13]). These efforts have been largely ad hoc,
and the resulting ledger structures are difficult to reason about. This difficulty
also manifests in the larger system, which has contributed to several unfortunate
incidents involving blockchain technology [2].

A strong mathematical foundation for ledger structures would enable more
rigorous development of sophisticated blockchain systems. Further, the ability
to reason about the ledger at a high level of abstraction would facilitate analysis
of system behaviour. This is important: users of the system must understand it
in order to use it with confidence. The formalism we propose has an intuitive
graphical representation, which would make this kind of rigorous operational
understanding possible on a far wider scale that it would otherwise be.

Blockchain systems are largely concerned with recording the material history
of virtual objects, with a particular focus on changes in ownership. The resource
theoretic interpretation of string diagrams for symmetric monoidal categories
gives a precise mathematical meaning to this sort of material history. Building
on this, we consider string diagrams augmented with extra information concern-
ing the ownership of resources. We give these diagrams a precise mathematical
meaning in terms strong monoidal functors, drawing heavily on the work of [9],
where our augmented diagrams originated. We show that an augmented resource
theory has the same categorical structure as the original, in the sense that the
two corresponding categories are equivalent. Finally, we give a simple example
of a ledger structure using our machinery.

? This research was supported by the ESF funded Estonian IT Academy research
measure (project 2014-2020.4.05.19-0001).



2 Monoidal Categories as Resource Theories

We assume familiarity with some basic category theory, in particular with sym-
metric monoidal categories. A good reference is [8]. Throughout, we will write
composition in diagrammatic order. That is, the composite of f : X → Y and
g : Y → Z is written fg : X → Z. We may also write g ◦ f : X → Z, but
we will never write gf : X → Z. We will make heavy use of string diagrams
for monoidal categories (see e.g. [11]), which we read from top to bottom (for
composition) and left to right (for the monoidal tensor). Our string diagrams for
ownership are in fact the string diagrams for monoidal functors of [9].

2.1 Resource Theories

We begin by observing (after [4]) that a symmetric strict monoidal category can
be interpreted as a theory of resource convertibility: Each object corresponds to
collection of resources with A ⊗ B denoting the collection composed of both A
and B and the unit I denoting the empty collection. Morphisms f : A→ B are
then understood as a way to convert the resources of A to those of B.

For example, consider the free symmetric strict monoidal category on the set

{bread, dough, water, flour, oven}

of atomic objects, subject to the following additional axioms:

mix : water⊗ flour→ dough knead : dough→ dough

bake : dough⊗ oven→ bread⊗ oven

This category can be understood as a theory of resource convertibility for
baking bread. The morphism mix represents the process of combining water and
flour to form a bread dough, knead the process of kneading the dough, and
bake the process of baking the dough in an oven to yield bread (and an oven).
While this model has many failings as a theory of bread, it suffices to illustrate
the idea. The axioms of a symmetric strict monoidal category provide a natural
scaffolding for this theory to live in. For example, consider the morphism

(bake⊗ 1dough)(1bread ⊗ σoven,doughbake)

where σA,B : A⊗B ∼−→ B ⊗A is the braiding. This morphism has type

dough⊗ oven⊗ dough→ bread⊗ bread⊗ oven

and describes the transformation of two pieces of dough into two loaves of bread
by baking them one after the other in an oven. We obtain a string diagram for
this morphism by drawing our objects as wires, and our morphisms as boxes with
inputs and outputs. Composition is represented by connecting output wires to
input wires, and we represent the tensor product of two morphisms by placing



them beside one another. Finally, the braiding is represented by crossing the
involved wires. For the morphism in question, we obtain:

We will think of our ledger systems in terms of such string diagrams: The
state of the system is a string diagram describing the material history of the
resources involved, the available resources correspond to the output wires, and
changes are effected by appending resource conversions to the bottom of the
diagram. From now on we understand a resource theory to be a symmetric strict
monoidal category with an implicit resource-theoretic interpretation.

2.2 How to Read Equality

Suppose we have a resource theory X, and two resource transformations f, g :
A → B. Each of f and g expresses a different way to transform an instance of
resource A into an instance of resource B, but these may not have the same effect.
For example, consider knead : dough→ dough and 1dough : dough→ dough from
our resource theory of bread. Clearly these should not have the same effect on the
input dough. The is reflected in our resource theory in the sense that they are not
made equal by its axioms. For contrast, we can imagine a (somewhat) reasonable
model of baking bread in which there is no difference between kneading the dough
once and kneading it many times. We could capture this in our resource theory
of baking bread by imposing the equation

knead = knead ◦ knead

In this new resource theory, our equation tells us that kneading dough once
has the same effect as kneading it twice, or three times, and so on, since the
corresponding morphisms of the resource theory are made equal by its axioms.
Of course, the material history described by knead◦knead is not identical to that
described by knead. In the former case, the kneading process has been carried
out twice in sequence, while in the latter case it has only been carried out once.
That these morphisms are equal merely means that the effect of each sequence
of events on the dough involved is the same.

We adopt the following general principle in our design and understanding of
resource theories: Two transformations should be equal precisely when they have
the same effect on the resources involved.



We further illustrate this by observing that, by the axioms of a symmet-
ric monoidal category (specifically, by naturality of braiding), the following two
transformations in the resource theory of baking (expressed as string diagrams)
are equal. The transformation on the left describes baking two loaves of bread by
first mixing and kneading two batches of dough before baking them in sequence,
while the transformation on the right describes baking two loaves of bread by
mixing, kneading, and baking the first batch of dough, and then mixing, knead-
ing, and baking the second batch. Thus, according to our resource theory the two
procedures will yield the same result – not an entirely unreasonable conclusion!

3 String Diagrams for Ownership

Ledgers used by blockchain systems are largely concerned with ownership. For
example, in the Bitcoin system, each coin is associated with a computable func-
tion called the validator, which is used to control access to it. Anyone who wishes
to use the coin must supply input data, called a redeemer, and the system only
allows them to use the coin in question in case running the validator on the
redeemer terminates in a fixed amount of time. If the validator is defined only
on the data that results from Alice digitally signing a nonce generated by the
system, then that coin can only be used by Alice, who then effectively owns it.



Different use cases call for different authentication schemes. For example, a
proposed application of blockchain technology is to improve supply chain ac-
countability by requiring participants to log any transfers and transformations
of material on a public ledger (see e.g. [5, 12]). Here ownership implies respon-
sibility, and so for Alice to log the transfer of, say, a ton of steel to Bob, both
Alice and Bob must ratify the transfer via digital signature.

What different use cases have in common is that the resources of the ledger
system are associated with ownership data. We leave the interpretation of this
ownership data, including the specific details of the authentication scheme un-
specified, instead giving a structural account of resource ownership. We develop
our account of resource ownership intuitively, and somewhat informally, by in-
troducing addtional features to string diagrams. This is made fully formal in the
next section.

3.1 Ownership and Collection Management

Begin by assuming a theory of resources X, and a collection C of potential re-
source owners, each of which we associate with a colour for use in our diagrams.
Suppose for the remainder that Alice, Bob, and Carol range over C, and are
associated with colours as follows:

Our goal will be to construct a new theory of resources in which resources
and transformations are associated with (owned and carried out by) elements of
C. The objects of our new resource theory will be collections of owned objects
of X. That is, for each object X of X and each Alice ∈ C we have an object
XAlice, which we interpret as an instance of resource X owned by Alice, along
with the empty collection I and composite collections XAlice ⊗ Y Bob, in which
Alice’s instance of X exists alongside an instance of Y owned by Bob.

Similarly, for each transformation f : X → Y in X, we ask for transformations
fAlice : XAlice → Y Alice and fBob : XBob → Y Bob for all Alice, Bob ∈ C, whose
presence we interpret as the ability of each owner to effect all possible trans-
formations of resources they own. We draw these annotated transformations as,
respectively:

Since we are building a theory of resources we must end up with a symmetric
monoidal category, so we also assume the presence of the associated morphisms,
such as fAlice ⊗ gBob and σXAlice,Y Bob .



Next, we account for the formal difference between XAlice⊗Y Alice and (X⊗
Y )Alice. In both situations Alice owns an X and a Y , but in the former they
are formally grouped together, while in the latter they are formally separated.
We understand this formal grouping of Alice’s assets by analogy with physical
currency. The situation in which Alice’s assets are separated is like Alice having
two coins worth one euro, while the situation in which they are grouped together
is like Alice having one coin worth two euros. In both cases, Alice posesses two
euros, but the difference is important: Alice cannot give Bob half of the two euro
coin, but can easily give Bob one of the two one euro coins. This distinction is
also present in cryptocurrency systems, where there is an operational difference
between having funds spread across many addresses and having them collected
at one address. Reflecting both the reality of such systems and the principle
that one ought to be able to freely reconfigure the formal grouping of things
that they own, we ask that for each X,Y objects of X and each Alice ∈ C our
new resource theory has morphisms φX,Y : XAlice ⊗ Y Alice → (X ⊗ Y )Alice and
ψX,Y : (X ⊗Y )Alice → XAlice⊗Y Alice. We draw these morphisms, respectively,
as follows:

These changes of formal grouping should not interact with the resource trans-
formations of our original theory X, since it ought not matter whether Alice

combines (splits) her resources before or after transforming them. That is, we
we require:

[G.1] φAliceX,Y (f ⊗ g)Alice = (fAlice ⊗ gAlice)φAliceX′,Y ′

[G.2] (f ⊗ g)AliceψAlice
X′,Y ′ = ψAlice

X,Y (fAlice ⊗ gAlice)

As it stands, there are many non-equal ways for Alice to reconfigure the
formal grouping of their assets. Since these should all have the same effect, we
need them all to be equal as morphisms in our resource theory. It suffices to
ask that the φAlice and ψAlice maps give, respectively, associative and coassocia-
tive operations, and that they are mutually inverse. That is (associativity and
coassociativity):

[G.3] (φAliceX,Y ⊗ 1AliceZ )φAliceX⊗Y,Z = (1AliceX ⊗ φAliceY,Z )φAliceX,Y⊗Z
[G.4] ψAlice

X⊗Y,Z(ψAlice
X,Y ⊗ 1AliceZ ) = ψAlice

X,Y⊗Z(1AliceX ⊗ ψAlice
Y,Z )



and (mutually inverse):

[G.5] ψAlice
X,Y φAliceX,Y = 1AliceX⊗Y

[G.6] φAliceX,Y ψAlice
X,Y = 1AliceX ⊗ 1AliceY

To complete our treatment of these formal resource groupings, we must deal
with the empty case IAlice. We insist that Alice may freely create and destroy
such empty collections via morphisms φAliceI : I → IAlice and ψAlice

I : IAlice → I:

subject to the following axioms, which state that adding or removing nothing
from a group or resources has the same effect as doing nothing, and that φI and
ψI are mutually inverse, which together ensure that even with φI and ψI in the
mix, any two formal regroupings with the same domain and codomain are equal.

[G.7] (φAliceI ⊗ 1AliceX )φAliceI,X = 1AliceX = (1AliceX ⊗ φAliceI )φAliceX,I

[G.8] ψAlice
I,X (ψAlice

I ⊗ 1AliceX ) = 1AliceX = ψAlice
X,I (1AliceX ⊗ ψAlice

I )

[G.9] φAliceI ψAlice
I = 1I

[G.10] ψAlice
I φAliceI = 1AliceI

Finally, we ask that φ and ψ behave coherently with respect to the symmetry
maps. It suffices to require that



[G.11] φAliceX,Y σAliceX,Y = σXAlice,Y AliceφAliceY,X

3.2 Change of Ownership

Of course, ownership is not static over time. We require the ability the change
the owner of a given collection of resources. To this end we add morphisms
γAlice,BobX : XAlice → XBob to our new resource theory for each object X of X,
each Alice, Bob ∈ C. We depict these new morphisms in our string diagrams as
follows:

As with regrouping, change of ownership should not interact with resource
transformations, in the sense that:

[O.1] fAliceγAlice,BobY = γAlice,BobX fBob

Further, change of ownership must behave coherently with respect to the
regrouping morphisms in the sense that:

[O.2] φAliceX,Y γAlice,BobX⊗Y = (γAlice,BobX ⊗ γAlice,BobY )φBobX,Y
[O.3] γAlice,BobX⊗Y ψBob

X,Y = ψAlice
X,Y (γAlice,BobX ⊗ γAlice,BobY )

For completeness, we axiomatize the interaction of change of ownership with
empty collections by requiring that:

[O.4] φAliceI γAlice,BobI = φBobI



[O.5] γAlice,BobI ψBob
I = ψAlice

I

Finally, we insist that if Alice gives something to Bob, and Bob then gives it
to Carol, this has the same effect as Alice giving the thing directly to Carol.
Similarly, if Alice gives something to Alice, we insist that this has no effect.

[O.6] γAlice,BobX γBob,CarolX = γAlice,CarolX

[O.7] γAlice,AliceX = 1AliceX

We end up with a rather expressive diagrammatic language. For example,
if we begin with the resource theory of bread, then our new resource theory is
powerful enough to show:

which captures the fact that the sequence of events on the left in which Carol

gives Alice and Bob each a portion of dough to bake in their ovens, after which



they give the resulting bread to Carol has the same effect as the sequence of
events on the right in which Alice and Bob give their ovens to Carol, who bakes
the portions of dough herself before returning the ovens to their original owners.
Notice that our diagrammatic representation of this is much easier to understand
than the corresponding terms in linear syntax!

4 Categorical Semantics

In this section we show how our augmented string diagrams can be given precise
mathematical meaning. Specifically, from a resource theory and a set whose
elements we think of as entities capable of owning resources, we construct a new
resource theory in which all resources are owned by some entity. We finish by
showing how to model a simple cyrptocurrency ledger with our machinery.

4.1 Interpreting String Diagrams with Ownership

If X is a theory of resources and C is our set, we treat C as the corresponding
discrete category, writing A : A→ A for the identity maps, and form the product
category X×C. Write objects and maps of this product category as XA = (X,A)
and fA = (f,A) respectively. Now, define C(X) to be the free strict symmetric
monoidal category on X× C subject to the following additional axioms:

A ∈ C X,Y objects of X
φAX,Y : XA ⊗ Y A → (X ⊗ Y )A in C(X)

A ∈ C
φAI : I → IA in C(X)

A ∈ C X,Y objects of X
ψAX,Y : (X ⊗ Y )A → XA ⊗ Y A in C(X)

A ∈ C
ψAI : IA → I in C(X)

A,B ∈ C X an object of X
γA,BX : XA → XB in C(X)

and subject to equations [G.1–11] and [O.1–7] for Alice, Bob, Carol ∈ C,
X,Y, Z objects of X, and f, g morphisms of X.

Clearly, C(X) is the new resource theory our coloured string diagrams live
in. We think of objects XA and morphisms fA as being owned and carried
out, respectively, by A ∈ C. The free monoidal structue gives us the ability to
compose such transformations sequentially and in parallel, and the additional
axioms ensure our ownership interpretation of C(X) is reasonable.

We can characterize the category-theoretic effect of axioms [G.1–11] and
[O.1–5] as follows:

Proposition 1. For any symmetric monoidal category X and any set C, there
is a strong symmetric monoidal functor

A : X→ C(X)



for each A ∈ C. Further, there is a monoidal and comonoidal natural transfor-
mation

γA,B : A→ B

between the functors corresponding to any two A,B ∈ C.

Proof. Define A : X→ C(X) by A(X) = (X,A) on objects, and A(f) = (f,A) on
maps. For identity maps, A(1X) = (1X , A) = 1(X,A) = 1A(X) since (1X , A) is the
identity on (X,A) in X× C. For composition, A(fg) = (fg,A) = (f,A)(g,A) =
A(f)A(g).Thus A defines a functor. A is strong symmetric monoidal via the φA

and ψA maps together with [G.1] through [G.11]. Consider A,B : X → C(X)

corresponding to A,B ∈ C. Define γA,B : A → B to have components γA,BX .
Then γA,B is a monoidal and comonoidal via [O.1] through [O.5]. ut

Notice that we did not use [O.6–7] above. These axioms are motivated by
our desire to model resource ownership, but they have an important, if subtle,
effect on the theory: they allow us to show that X and C(X) are equivalent as
categories. This means that any suitably categorical structure is present in X if
and only if it is present in C(X) as well. For example, products in X manifest
as products in C(X), morphisms that are monic in X remain monic in C(X), and
so on. We may be confident that our addition of ownership information has not
broken any of the structure of X, or added anything superfluous!

Proposition 2. There is an adjoint equivalence between X and C(X) for each
functor corresponding to some A ∈ C.

Proof. We show that each A : X → C(X) is fully faithful, and essentially sur-
jective, beginning with the latter. To that end, suppose that P is an object of
C(X). We proceed by structural induction: If P is I, then φ0 witnesses I ' A(I).
If P is an atom (X,A), then (X,A) = A(X). If P is Q⊗R for some Q,R, then
by induction we have that Q ' A(X1) and R ' A(X2) for some objects X1, X2

of X. We may now form

Q⊗R ' A(X1)⊗A(X2)
φA
X1,X2// A(X1 ⊗X2)

which witnesses P ' A(X1⊗X2). Thus, A is essentially surjective. To see that A
is fully faithful, let U : C(X)→ X be the obvious forgetful functor. The required
bijection X(X,Y ) ' C(X)(A(X), A(Y )) is given by A in one direction and U
in the other. It sufffices to show that any morphism h : A(X) → A(Y ) with
U(h) = f is such that h = A(f). Notice that since each γA,B is a monoidal and
comonoidal natural transformation, there is a term equal to h in which all γ
morphisms occur before all other morphisms (in the sense that f occurs before
g in fg). Since h : A(X)→ A(Y ) we know that in this equal term the composite
of the γ must have type A(X) → A(X), and must therefore be the identity by
repeated application of [O.6] and [O.7]. This gives a term h′ containing no γ
maps with h′ = h. Similarly, since the various φ and ψ morphisms are natural
transformations, we may construct a term h′′ by collecting all instances of φ and
ψ terms at the beginning of h′. Once collected there, the composite of all the φ



and ψ must have type A(X)→ A(X), and is therefore equal to the identity. At
this point we know that h′′ : A(X) → A(Y ) is such that h′′ = A(f1) · · ·A(fn)
for some f1, . . . , fn in X. By assumption f = U(h) = U(h′′) = f1, . . . , fn, and
therefore h′′ = A(f). ut

4.2 A Simple Example

In this section we attempt to demonstrate the relevance of the above techniques
to the cryptocurrency world by building a resource theory that models a simple
ledger structure along the lines of Bitcoin [10]. Let 1 be the trivial category,
with one object, 1, and one morphism, the identity 11. Define N to be the free
symmetric strict monoidal category on 1, write 0 for the monoidal unit of N,
and n for the n-fold tensor product of 1 with itself for all natural numbers n ≥ 1.
Notice that n+m is n⊗m. We will think of the objects n of N where n ≥ 1 as
coins. Of course, 0 = I represents the situation in which no coin in present.

Define Nν to be the result of formally adding a morphism ν : 0 → 1 to N,
write ν0 = 10 : 0 → 0, and νn : 0 → n for the n-fold tensor product of ν with
itself for n ≥ 1. These morphisms confer the ability to create new coins, so we
imagine their use would be restricted in practice. We will not ask for the ability
to destroy coins, although there would be no theoretical obstacle to doing so.

Now, let C be a collection of colours, which we can think of as standing in
for cryptographic key pairs, or simply entities capable of owning coins. Consider
C(Nν). Objects are lists nc11 ⊗ · · · ⊗ nckk , which we interpret as lists of coins,
where ncii is a coin of value ni belonging to ci ∈ C. The morphisms are either νcn
for some c ∈ C, the structural morphisms of a monoidal category, or the φ, ψ,
and γ morphisms added by our construction. For n,m ∈ N and Alice, Bob ∈ C,
the maps φAlicen,m : nAlice ⊗mAlice → (n + m)Alice and ψAlice

n,m : (n + m)Alice →
nAlice⊗mAlice allow users to combine and split their coins in a value-preserving
manner, and the γAlice,Bobn maps allow them to exchange coins.

Now, a ledger is a (syntactic) morphism a : I → A of C(Nν). A transaction
to be included in a consists of a transformation f : X → Y of C(Nν) along with
information about which outputs of a are to be the inputs of the transformation,
which we package as t = πt(1⊗f⊗1) : A→ B. The result of including transaction
t in ledger a is then the composite ledger t◦a : I → B. Put another way, a ledger
is given by a list of transformations in C(Nν):

I
t1−→ A1

t2−→ · · · tk−→ Ak

For the purpose of illustration, we differentiate between m+ n and m⊗ n in
our string diagrams for Nν . We do so by means of the string diagrams for (not
necessarily strict) monoidal categories (see e.g. [3]), as in:



Now, suppose we have a ledger a : I → νCarol7 ⊗ νAlice5 :

and resource transformations f1, f2, f3 defined, respectively, by:

Now, form transaction t1 = (1Carol7 ⊗ f1) and append it to a to obtain t1 ◦ a

Next, form transaction t2 = (1Carol7 ⊗ f2) and append it to obtain t2 ◦ t1 ◦ a



Finally, form transaction t3 = (f3 ⊗ 1Bob3 ) and append it to obtain t3 ◦ t2 ◦ t1 ◦ a

In this manner, we capture the evolution of the ledger over time. Of course, we
can also reason about whether two sequences of transactions result in the same
ledger state by comparing the corresponding morphisms for equality, although
in the case of C(Nν) there isn’t much point, since all morphisms A → B are
necessarily equal.

5 Conclusions and Future Work

We have seen how the resource theoretic interpretation of monoidal categories,
and in particular their string diagrams, captures the sort of material history that
concerns ledger structures for blockchain systems. Additionally, we have shown
how to freely add a notion of ownership to such a resource theory, and that the
resulting category is equivalent to the original one. We have also shown that
these resource theories with ownership admit an intuitive graphical calculus,
which is more or less that of monoidal functors and natural transformations.
Finally, we have used our machinery to construct a simple ledger structure and
show how it might be used in practice.

While we do not claim to have solved the problem of providing a rigorous
foundation for the development of ledger structures in its entirety, we feel that
our approach shows promise. There are a few differnt directions for future re-
search. One is the development of categorical models for more sophisticated
ledger structures, with the eventual goal being to give a rigorous formal account
of smart contracts. Another is to explore the connections of the current work
with formal treatments of accounting, such as [6].



References

1. N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, and R. Zunino. Unravelling bitcoin
smart contracts. In POST 2018, volume 10804 of LNCS, pages 217–242, 2018.

2. N. Atzei, M. Bartolietti, and T. Cimoli. A survey of attacks on ethereum smart
contracts. In POST 2017, volume 10204 of LNCS, pages 164–186, 2017.

3. J.R.B. Cockett and R.A.G. Seely. Proof theory of the cut rule. In E. Landry,
editor, Categories for the Working Philosopher, pages 223–261. Oxford University
Press, 2017.

4. B. Coecke, T. Fritz, and R.W. Spekkens. A mathematical theory of resources.
Information and Computation, 250:59–86, 2016.

5. K. Jabbar and P. Bjorn. Infrastructural grind: Introducing blockchain technology
in the shipping domain. In GROUP 2018, 2018.

6. P. Katis, N. Sabadini, and R.F.C. Walters. On partita doppia. 1998.
7. A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure

proof-of-stake blockchain protocol. CRYPTO 2017, Part I, volume 10401 of LNCS,
2017.

8. S. Mac Lane. Categories for the Working Mathematician. Springer, 1971.
9. M.B. McCurdy. Graphical methods for tannaka duality of weak bialgebras and

weak hopf algebras. Theory and Applications of Categories, 26:233–280, 2011.
10. S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.
11. Peter Selinger. A survey of graphical languages for monoidal categories. In New

Structures for Physics, pages 289–355. Springer, 2010.
12. M. Staples, S. Chen, S. Falamaki, A. Ponomarev, P. Rimba, A.B. Tran, I. Weber,

X. Xu, and J. Zhu. Risks and Opportunities for Systems Using Blockchain and
Smart Contracts. Data61 (CSIRO), Sydney, 2017.

13. Gavin Wood. Ethereum: A secure decentralized generalised transaction ledger.
2014.


