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Abstract

We present a realizability tripos construction in which the usual partial

combinatory algebra is replaced with a Turing category, and the category of

partial functions on sets is replaced with a discrete cartesian closed restriction

category. As an intermediate step we construct in this setting a restriction

category of assemblies. Our constructions generalize existing constructions in

the field.
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1 Introduction

In recent years, the field of category theory has found wide application in computer

science, particularly in modelling the semantics of programming languages. The three

way correspondence between computable functions, proofs in a logical system, and

arrows in some category plays a central role. While the relationship of category theory

to logic and of logic to the computable functions is fairly well understood, the relation-

ship between category theory and computability theory has not been so thoroughly

investigated. A recent development is that of Turing categories [8], which present

the general machinery of computability theory (in the form of partial combinatory

algebras) in categorical terms. Computability theory has classically taken place in

the category of sets and partial functions, and this new, more general presentation

leads to questions about how constructions involving classical computability work in

the new setting.

A specific source of motivation for avoiding the category of sets and partial func-

tions when studying models of computation comes from complexity theory. It is

possible to construct a Turing category whose total maps are precisely the PTIME

maps, but this Turing category has no faithful embedding into sets and partial func-

tions [20]. In order to carry out computability-theoretic constructions with this Turing

category, we must work more generally.

One such computability-theoretic construcion is the realizability topos of a partial

combinatory algebra. The idea of realizability originated with Kleene [24], who con-

structed a model of the logic of intuitionistic first-order arithmetic out of the partial

recursive functions. In the realizability model, such functions play the role of math-

ematical proof, and a proposition is provable (“realizable”) in case there is a partial

recursive function which witnesses this provability in a constructive sense. Some time

later, realizability toposes – categorical models of higher-order intuitionistic logic –

were constructed [17] [19], with the intermediate notion of a tripos [31] playing a
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central role. Every tripos defines a topos, and the realizability topos is the topos

associated with a specific tripos (the “realizability tripos”). The work on realizability

toposes also generalized the role of the partial recursive functions, with the elements

of an arbitrary partial combinatory algebra acting as constructive evidence instead.

The study of these realizability toposes led to the development of the category of

assemblies [1]. Originally used to construct models of polymorphism using the realiz-

ability machinery, assemblies have been used to study the semantics of programming

languages [29]. In this approach, partial combinatory algebras are treated as comput-

ing machines. Assemblies are then sets equipped with an “implementation”, relating

each element of the set to one or more elements of the partial combinatory algebra.

A map between assemblies is now “implementable” in case there is some element of

the partial combinatory algebra that mimics the action of the map between sets when

applied.

In this thesis, we introduce the category of assemblies for a restriction functor

with a cartesian restriction category as its codomain. If the domain is a Turing

category, the codomain is a discrete cartesian closed restriction category, and the

functor preserves partial products, then the resulting category of assemblies is also

a discrete cartesian closed restriction category. Relating this to the classical case,

the computable maps of every set-based partial combinatory algebra are a Turing

category, and this Turing category embeds into sets and partial functions, which is

a discrete cartesian closed restriction category. The total maps of the category of

assemblies for this embedding is the classical category of assemblies for the partial

combinatory algebra in question. Our construction results in a restriction category

of assemblies whose total maps correspond to the classical category of assemblies.

In addition to capturing the classical category of assemblies and its natural ex-

tension to a category of partial maps, our construction allows us to talk about a

restriction category of assemblies in the presence of very little structure. Any re-
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striction functor into a cartesian restriction category will do. We consider a variety

of (partial) categorical structures, showing what the domain and codomain of the

functor must satisfy in order for a given structure to be present in the category of

assemblies. For example, if the domain is weakly cartesian closed and the codomain

is a cartesian closed restriction category, then the category of assemblies is also a

cartesian closed restriction category. The ability to vary the domain, and especially

the codomain, of this functor makes it possible to construct categories of assemblies

far more generally than the classical construction, which limits the codomain to the

category of sets and partial functions.

The category of assemblies for a restriction functor defines a forgetful restriction

functor into its codomain, and it is from this functor that we construct the realizability

tripos. A tripos is a fibration, but our forgetful functor is not fibration. Instead, it

is a latent fibration, the restriction categorical analogue of a fibration. We develop

some elementary theory of latent fibrations, and use it to construct a fibration (in the

usual sense) from the forgetful functor. When the functor we used to construct the

category of assemblies has a Turing category as its domain and a discrete cartesian

closed restriction category as its codomain, this fibration is a tripos. As with the

category of assemblies, this construction generalizes the classical construction of the

realizability tripos.

Having obtained a tripos in our more general setting, we define the realizability

topos of a cartesian restriction functor with suitable domain and codomain to be the

topos obtained from this tripos via the tripos-to-topos construction. We also show

that the tripos-to-topos construction can be modified to give a partial topos in the

sense of [13], the total maps of which are the associated topos.

3



1.1 Overview

In chapter 2 we review the existing theory of restriction categories that we will need

going forward. We begin with the definition of a restriction category, and introduce

restriction functors and the extension ordering, as well as relating restriction cate-

gories to the category of partial maps given by a stable system of monics in a category.

We then deal with the restriction categorical version of products and terminal objects,

introduce meets in a restriction category, and introduce the related concept of discrete

cartesian restriction categories as cartesian restriction categories with meets. Next,

we introduce latent pullbacks, joins, and interleaving in a restriction category. We

end the chapter by introducing existential and universal quantification in a restriction

category, and finally covering cartesian closed restriction categories: the restriction

categorical analogue of cartesian closed categories.

Chapter 3 is all about discrete cartesian closed restriction categories. That is,

discrete cartesian restriction categories that are also cartesian closed restriction cate-

gories. We show that they posess universal and existential quantification as defined in

chapter 2, and that for every object X of such a restriction category the collection of

restriction idempotents on X forms a Heyting algebra under the extension ordering.

We also show that the total maps of our category give Heyting algebra morphisms

between these preorders of restriction idempotents.

In chapter 4, we introduce Turing categories, and compare them to partial com-

binatory algebras in a cartesian restriction category. We also mention that every

Turing category is weakly cartesian closed, and has weak coproducts, which we will

need later.

This allows us to move on to chapter 5, in which we introduce the category of

assemblies on a restriction functor whose codomain is a cartesian restriction category.

We assume progressively more structure in the domain and codomain, showing the

effect of this on the resulting category of assemblies. Specifically, If both the domain
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and codomain of the restriction functor are cartesian restriction categories and the

functor itself preserves these products, then the category of assemblies is also a carte-

sian restriction category. If in addition the codomain is discrete, then the category

of assemblies is discrete. If the domain is weakly cartesian closed and the codomain

is a cartesian closed restriction category, then the category of assemblies is a carte-

sian closed restriction category, meaning in particular that if the domain is a Turing

category and the codomain is a discrete cartesian closed restriction category then

the resulting category of assemblies is a cartesian closed restriction category. Finally,

if the domain has finite interleaving, the codomain has finite joins, and the functor

preserves joins, then the category of assemblies has finite joins.

In chapter 6 we begin by introducing latent fibrations and investigating their

elementary properties. This done, we give two examples of latent fibrations. The first,

defined on any restriction category, is the domain latent fibration. The second arises

from the category of assemblies we constructed above, and we call it the realizability

latent fibration. We also show that pulling these latent fibrations back (as restriction

functors) along the inclusion of the total map category into the base gives a fibration

in the traditional sense.

We begin chapter 7 with the definition of a tripos, and immediately observe that

the domain fibration obtained in chapter 6 is a tripos when the associated restriction

category is a discrete cartesian closed restriction category. Next, we show how the

well known construction of a topos from a tripos can be modified to yield a partial

topos instead.

In chapter 8 we show that the fibration corresponding to the realizability latent

fibration is a tripos when the components have enough structure. Specifically, given a

cartesian restriction functor whose domain is a Turing category and whose codomain

is a discrete cartesian closed restriction category, the fibration corresponding to the

realizability latent fibration is a tripos.
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1.2 Contributions

The main novelty of this thesis is our definition of the category of assemblies for a

restriction functor. By presenting assemblies as restriction idempotents and giving

an equational characterization of tracking maps, we are able to construct categories

of assemblies in the presence of very little categorical structure, and capture existing

categories of assemblies as special cases of our more general construction. Specifically,

Definition 5.1, Proposition 5.2, 5.3, 5.7, 5.8, 5.10, Lemma 5.4, 5.5, and

Theorem 5.9 are novel. We would like to draw special attention to Proposition

5.10, which shows how the presence of interleaving in the category of realizers is

related to the presence of joins in the category of assemblies. This had not been

noticed before, as this sort of join is much more easily expressed in a restriction

category, and previous constructions of the category of assemblies have resulted only

in categories of total maps.

The chapter on latent fibrations is the first published exposition of this material,

although the existence of latent fibrations is alluded to in [10]. Specifically, Defini-

tion 6.1, 6.4, 6.5, 6.6, 6.7, Lemma 6.2, 6.3, and Proposition 6.8, 6.10, 6.11,

6.12, 6.13, 6.14, which encompass the definition and elementary properties of latent

fibrations, are novel. Proposition 6.13 is a more explicit version of a remark in [10],

in which the definition of a latent fibration was not available. Proposition 6.14,

which deals with the realizability latent fibration, is of course novel.

The chapter on discrete cartesian closed restriction categories, in which we show

that they posess significant logical structure, is essentially a recapitulation of the ma-

terial in [6]. The related observation that the domain fibration of a discrete cartesian

closed restriction category is a tripos (Proposition 7.2) follows immediately from

this material, and so while the observation is technically a new one, it is not terribly

original. This is, however, the first published exposition of the structure of discrete

cartesian closed restriction categories from the perspective of fibered categorical logic,
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which may be of interest.

The contents of the final chapter, in which we show that the realizability fibration

of a cartesian restriction functor with a Turing category as its domain and a discrete

catesian closed restriction category as its codomain is a tripos, is adapted from [4].

In fact, the idea to define assemblies for a restriction functor is appropriated from

the cited work as well. Our take on the concept is novel in two ways. First, the

constructions we present are different from those in the cited work. We first construct

the category of assemblies for a suitable restriction functor, and from this category of

assemblies construct a tripos. In the cited work, realizability triposes are constructed

first, and used to define the category of assemblies. Second, our constructions are

more generally applicable. The setting of the cited work is roughly equivalent to

fixing the codomain of our restriction functor as the category of sets and partial

functions. Specifically, Proposistion 8.1, 8.2, 8.4, 8.5, 8.8, 8.9, Lemma 8.6,

8.10, and Theorem 8.6, 8.7 are novel.

Finally, the definition of the partial topos of a tripos (Definition 7.6), as well

as Proposition 7.7 and the chain of reasoning following it that culminates in the

observation that the total maps of the partial topos of a tripos are exactly the topos

of that tripos, is novel. It is not, however, terribly original, since the modification to

the tripos-to-topos construction one makes to obtain a partial topos is trivial, and

the proof that the result is in fact a partial topos is straightforward.

One way to understand the contribution of this thesis is in terms of the functor F :

A→ X from which we construct the category of assemblies. The original realizability

topos construction [19] can be recovered by insisting that F is the embedding of a

set-based partial combinatory algebra into partial functions on sets, later work on

generalized realizability [3] allows the domain of the functor to vary, and the present

work allows the codomain to vary as well. Additionally, our approach leads to a

restriction category of assemblies (as opposed to one consisting of only total maps),
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which allows us to define the associated realizability fibration with relatively little

effort.
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2 Restriction Categories

Restriction categories [10] [11] [12] are categories whose maps can be thought of as

partial, where this partiality is captured by an idempotent on the domain of the map.

Formally:

Definition 2.1. A restriction category is a category X such that for every map

f : A→ B in X there is a map f : A→ A in X satisfying

[R.1] ff = f

[R.2] fg = gf

[R.3] fg = fg

[R.4] fg = fgf

We sometimes call f the domain of definition of f , the idea being that every map

in a restriction category is a partial map, with f defined precisely where f is defined.

We also call maps e = f for some f restriction idempotents, and denote the collection

of all restriction idempotents e : A→ A on A by O(A) for each A in X.

We establish some elementary properties of the restriction structure:

Lemma 2.2. In a restriction category:

(i) f f = f (justifying the term “restriction idempotent”)

(ii) fg f = fg

(iii) fg = fg

(iv) f = f

Proof. (i) f f = ff = f

(ii) fg f = f fg = ffg = fg
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(iii) fg = fgf = fg f = fg

(iv) f = 1f = 1f = f

We also introduce restriction functors, which are functors between restriction cat-

egories that preserve the restriction structure.

Definition 2.3. If C and X are restriction categories, we say that a functor F : C→ X

is a restriction functor in case it preserves the domain of definition in the following

sense

F (f) = F (f)

When working with partial maps, we may wish to say of two parallel maps f, g :

A→ B that g is an extension of the f in the sense that where both maps are defined

they agree, and that the domain of definition of f is subsumed by the domain of

definition of g. Formally, in any restriction category we define the extension ordering

on parallel maps by

Definition 2.4. Given f, g : A→ B in a restriction category C, we say that g extends

f , written f ≤ g, in case fg = f . That is,

f ≤ g

fg = f

Proposition 2.5. The extension ordering on maps in a restriction category gives a

partial order. That is, ≤ is reflexive, transitive, and antisymmetric.

Proof. For reflexivity, immediately we have ff = f , so f ≤ f . For transitivity,

suppose we have f ≤ g and g ≤ h. Then fh = fgh = f gh = fg = f as required.

Finally, if f ≤ g and g ≤ f then f = fg = f gf = g ff = gf = g, which is

antisymmetry.
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This ordering is preserved by restriction functors. If f ≤ g in the domain then we

have

F (f)F (g) = F (f)F (g) = F (fg) = F (f)

and so F (f) ≤ F (g) in the codomain.

We make heavy use of the extension ordering in what follows. Note also that as

an immediate consequence we obtain:

Proposition 2.6. For any object A of a restriction category C, the collection O(A)

of restriction idempotents on A is a meet semilattice with respect to the extension

ordering.

Proof. The top element is 1A, as for any e ∈ O(A) we have e1A = e and thus e ≤ 1A.

The meet of two idempotents e, h ∈ O(A) is the composite eh. Immediately ehe = eh

and ehh = eh, so eh ≤ e and eh ≤ h. If for k ∈ O(A) we have k ≤ e and k ≤ h,

then keh = kh = kh = k, so k ≤ eh, and eh is indeed the meet with respect to the

extension ordering.

We also observe that if f ≤ f ′ and g ≤ g′ then

fgf ′g′ = f f ′g g′ f ′g′ = f f ′g g′ f f ′g′ = fg g′ fg′

= fg fg′ fg fg′ = fg fg′ = fg g′ = fg

which gives fg ≤ f ′g′, meaning that every restriction category is preorder enriched.

We say that a map f : A → B is total in case f = 1A. Thus, total maps are

defined on the entire domain. Note that if f : A→ B and g : B → C are total, then

fg = fg = f = 1A
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so their composite is also total. Identity maps are necessarily total as

1A = 1A1A = 1A

Thus, the total maps of a restriction category C form a subcategory, which we

write total(C).

There are other ways to get at the idea of a category of partial maps. Here we

introduce a common one – indeed this is what many authors mean by a “category of

partial maps” – and relate it to restriction categories. This will be useful when we

talk about partial toposes, which are defined in these terms in [13].

Definition 2.7. A stable system of monics in a category X is a collectionM of maps

in X that is closed to composition, contains all isomorphisms, and has the property

that if m : A→ B is a map in M and f : C → B is any map of X, the pullback

D

m′

��

f ′ // A

m
��

C
f
// B

exists in X, and further m′ is in M.

For example, the collection of all isomorphisms in any category is a stable system

of monics, and if the category has pullbacks then so is the collection of monics.

Given a category with a stable system M of monics, we can define a category of

partial maps, where the domain of each map is captured by one of the maps in M.

Definition 2.8. If X is a restriction category andM is a stable system of monics in

X, we define a restriction category Par(X,M) by

objects are objects of X.

maps (m, f) : A→ B are given by equivalence classes of spans

12



A′

m

~~

f

  
A B

where m is in M, and where two maps (m, f) : A → B and (m′, f ′) : A → B are

equivalent in case there exists an isomorphism α making

A′
α //

m

~~ f
((

A′′

m′
vv

f ′

  
A B

commute.

composition is by pullback. That is, the composite of (m, f) : A→ B and (m′, f ′) :

B → C is given by (m′′m, f ′′f ′) : A→ C, as in

A′′

m′′

~~

f ′′

!!
A′

m

~~

f

!!

B′

m′

}}

f ′

  
A B C

where

A′′
f ′′ //

m′′

��

B′

m′

��
A′

f
// B

is the pullback of m′ along f .

identities The identity on an object A is (1A, 1A) : A→ A.

restriction The domain of definition is given by (m, f) = (m,m).

For the proof that this is a well-defined restriction category, we refer the reader

to [10] or [5].

Having shown that a stable system of monics gives rise to a restriction category,

a natural question is whether or not every restriction category arises this way, and if
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not which ones do. The answer to this question is given in terms of split restriction

categories, which we introduce now:

Definition 2.9. An idempotent e : X → X in a category is called split in case there

are maps s : X ′ → X and r : X → X ′ for some object X ′ such that sr = 1X′ and

rs = e. Notice that if e splits as e = rs, then s is necessarily a section, and r is

correspondingly a retraction. We often refer to the components of a split idempotent

as “the section” or “the retraction” accordingly.

Definition 2.10. A split restriction category is a restriction category in which all

restriction idempotents split.

We give the sections of split restriction idempotents a name:

Definition 2.11. A restriction monic in a restriction category X is a map m : X → Y

that is the section in the splitting of some restriction idempotent e ∈ O(Y ).

We then observe that the restriction monics of a split restriction category give a

stable system of monics in its total map category. In fact, the partial map category

formed by these maps is isomorphic to the original restriction category.

Proposition 2.12. If X is a split restriction category then the collection of all re-

striction monics in X, which we will write MX, forms a stable system of monics in

total(X). Further, there is an isomorphism

X ' Par(total(X),MX)

We omit the proof, which can be found in [5] and [10].

Thus, every split restriction category is isomorphic to a partial map category.

Next, we consider the relationship between split restriction categories and restric-

tion categories in general. This relationship is captured by the idempotent splitting

construction.
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Definition 2.13. If X is a category, and E is a collection of idempotent maps in X,

define the category splitE(X) as follows:

objects idempotents in E.

maps between objects e : X → X and e′ : X ′ → X ′ of splitE(X) are maps f : X →

X ′ of X such that efe′ = f .

composition is as in X. That is, if f : e → e′ and g : e′ → e′′, then in X we have

efge′′ = efe′e′ge′′ = fg, so fg : e→ e′′ in splitE(X).

The identity map on e is given by e itself. This is well-defined as clearly eee = e,

and if f = efe′, then eefe′ = efe′ = f and efe′e′ = efe′ = f , making e the identity.

This construction allows us to formally split a collection of idempotents in the

following sense:

Proposition 2.14. If X is a restriction category and E includes the identity maps

of X, then splitE(X) is a restriction category, and there is an embedding

KE : X→ splitE(X)

Further, KE is a restriction functor, and for every e in E, KE(e) is split.

Proof. We begin by showing that splitE(X) is a restriction category. Define the domain

of defintion f : e → e of a map f : e → e′ to be the map given by ef in X. This

is well-defined, since eefe = efe = efee = efe = ef . We show that the restriction

category axioms hold:

[R.1] eff = ef = eefe′ = f

[R.2] efeg = ef ege = eg efe = egef

[R.3] eefg = eefge = efege = ef ege = efeg

15



[R.4] fe′g = efe′g = efg = efgf

as required. The embedding KE : X → splitE(X) is the functor mapping f : X → Y

in X to f : 1X → 1Y in splitE(X), and if e : X → X is a member of E, then

KE(e) : 1X → 1X splits into e : e→ 1X and e : 1X → e.

This means that in the case where E is precisely the collection of restriction

idempotents in X, splitE(X) is a split restriction category, into which X embeds. We

also have immediately that if E is the collection of restriction idempotents then there

is an embedding

X −→ Par(total(splitE(X)),MsplitE(X))

The relationship between restriction categories and categories Par(X,M) is now

clear. The latter are restriction categories, and every restriction category embeds into

one of them via the category obtained by splitting the restriction idempotents.

2.1 Products in Restriction Categories

We motivate the definition of products in a restriction category by considering the

usual situation in which a category C has finite products.

Recall that a product of two objects A and B of C is a diagram

A A×Bπ0
oo

π1
// B

in C with the property that for any pair of maps f : C → A, g : C → B there is

a unique map 〈f, g〉 : C → A×B for which

C
f

{{

g

##
〈f,g〉
��

A A×Bπ0
oo

π1
// B

commutes. This definition still makes sense if C is a restriction category, since

every restriction category is a category in the usual sense. Supposing C is a restric-
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tion category with this sort of binary products, consider the following commutative

diagram

C
f

{{
〈f,1〉
��

A A× Cπ0
oo

π1
// C

We want our partial product to correspond to a product diagram in total(C), and

for this to be the case the projections π0 and π1 must be total maps. If, however, we

assume π0 and π1 are total, we have

f = 〈f, 1〉π0 = 〈f, 1〉π0 = 〈f, 1〉π1 = 1 = 1

meaning that every map in C is total! In this way, the usual definition of products

collapses the restriction structure in a restriction category. However, we would very

much like to have a notion of products in our restriction categories, and to keep our

restriction structure intact. This is possible, and we will use the following definition

of products in restriction categories in the sequel:

Definition 2.15. A restriction product of two objects A,B in a restriction category

C is an object A × B of C, with total projection maps π0 : A × B → A and π1 :

A × B → B such that for any maps f : C → A, g : C → B there is a unique map

〈f, g〉 : C → A×B such that

C
f

{{

g

##
〈f,g〉
��

A
≥

A×Bπ0
oo

π1
// B

≤

commutes, with 〈f, g〉π0 = gf and 〈f, g〉π1 = fg.

An immediate consequence of this definition is

〈f, g〉 = 〈f, g〉π0 = gf = gf
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which means that our earlier problem with 〈f, 1〉 does not occur! For more details

on limits in restriction categories, and why this definition of products in a restriction

category is the correct one, the interested reader is encouraged to consult [10] [12].

Similarly, we require a special notion of terminal object to go along with our

special notion of products for a restriction category. Intuitively, this makes sense, as

while there is certainly only one total map into the terminal object from any other

in say, Ptl, there may be many partial maps. The definition is

Definition 2.16. A restriction terminal object in a restriction category C is an object

1 with the property that for any object A of C, there is a unique total map !A : A→ 1

such that for any map f : A→ B of C

A

f
��

!A

��
B
≤

!B
// 1

Important to note is that the above diagram expresses an inequality. That is, it

does not commute in the usual sense, expressing that f !B ≤!A, not that the two maps

are equal. The sequel will contain many such diagrams, which can be identified by

the presence of ≤.

Finally, we arrive at the definition of products in a restriction category [10] that

we will be using:

Definition 2.17. A restriction category C has finite restriction products in case there

is a distinguished restriction terminal object 1 and for every two objects A,B of C

there is a distinguished restriction product A
π0←− A × B π1−→ of A and B in C. In

this case we call C a cartesian restriction category

Note that we insist on distinguished, or “chosen” products in our cartesian re-

striction categories. This simplifies things significantly in many of our calculations.

Lemma 2.18. In a cartesian restriction category:
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(i) 〈f, g〉 = f g

(ii) If e = e then e〈f, g〉 = 〈ef, g〉 = 〈f, eg〉

Proof. (i) 〈f, g〉 = 〈f, g〉π0 = gf = f g

(ii) First,

e〈f, g〉〈ef, g〉 = 〈e〈f, g〉f, e〈f, g〉g〉 = e〈f, g〉〈f, g〉 = e〈f, g〉

gives e〈f, g〉 ≤ 〈ef, g〉, and similarly e〈f, g〉 ≤ 〈f, eg〉. Next,

〈ef, g〉e〈f, g〉 = 〈ef gef, ef geg〉 = ef g〈ef, g〉 = 〈ef, g〉

gives 〈ef, g〉 ≤ e〈f, g〉. Similarly, 〈f, eg〉 ≤ e〈f, g〉.

For example, Ptl – the category of sets and partial functions – has finite restriction

products. The restriction terminal object is given by any one element set {∗}, where

the unique total map from a set A to {∗} is the partial function that sends each a ∈ A

to ∗. If A and B are sets, the restriction product is the cartesian product

A×B := {(a, b) | a ∈ A, b ∈ B}

with total projection maps defined by

π0 : A×B → A π0((a, b)) := a

π1 : A×B → B π1((a, b)) := b

If f : C → A and g : C → B are arrows in Ptl, then the mediating map is

〈f, g〉 : C → A×B 〈f, g〉(c) = (f(c), g(c))
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That the required identities hold is straightforward to verify, once one realizes that

(f(x), g(x)) is defined only when both f(x) and g(x) are defined.

Restriction products lie over products in the usual sense in the total map category:

Proposition 2.19. If C is a cartesian restriction category then total(C) has finite

products.

Proof. The restriction terminal object becomes a terminal object in total(C) since for

any total map f : A → 1, we have f ≤!A, meaning !A = f !A = f , and so there is

exactly one map, !A from A into 1 in total(C).

For restriction products, if

A A×Bπ0oo π1 // B

is a restriction product in C, then since π0 and π1 are total it is also a diagram in

total(C). In fact, it is a product diagram as follows: If f : C → A, g : C → B are maps

in total(C) then since they are also maps of C and the diagram is a restriction product

in C we have a mediating map 〈f, g〉, which is also in total(C) since 〈f, g〉 = f g,

making

C
g

{{

f

##
〈f,g〉
��

A A×Bπ0
oo

π1
// B

commute in total(C). The uniqueness condition for the restriction product gives the

uniqueness condition here, and we are done: total(C) has finite products.

This pattern of partial structure lying over more familiar structure in the total

map category will be a major theme in the latter part of the sequel.

Often we ask that some functor preserves certain limit diagrams, and of course

there is a version of this for restriction functors, and in particular for restriction

products:

Definition 2.20. If C and X are cartesian restriction categories, we define a cartesian

restriction functor between them to be a restriction functor F : C→ X that preserves
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the distinguished products. That is, F (A×B) = F (A)×F (B), F (π0) = π0, F (π1) =

π1, and the diagram

F (A) F (A)× F (B)π0
oo

π1
// F (B)

is the distinguished restriction product in X.

Notice that we then have F (∆X) = ∆F (X), which will be useful.

2.2 Meets and Discrete Cartesian Restriction Categories

We know that for any restriction category X, each homset is a partial order with

respect to the extension ordering. Assuming the existence of a meet in each homset

is very powerful, and we explore this now:

Definition 2.21. A meet restriction category is a restriction category X such that

for every pair of parallel maps f, g : A → B in X, there is a map f ∩ g in X, called

the meet of f and g, satisfying:

(i) f ∩ f = f

(ii) f ∩ g ≤ f and f ∩ g ≤ g

(iii) h(f ∩ g) ≤ (hf ∩ hg)

The definition implies various useful properties of the meet:

Lemma 2.22. In a meet restriction category:

(i) if h ≤ f and h ≤ g then h ≤ (f ∩ g) (justifying the term “meet”)

(ii) f ∩ g = g ∩ f

(iii) if f ≤ f ′ then (f ∩ g) ≤ (f ′ ∩ g)

(iv) h(f ∩ g) = (hf ∩ g) = (f ∩ hg)
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(v) (f ∩ g)h = (fh ∩ gh)

(vi) f ∩ gf = f ∩ gg

(vii) (f ∩ gh) = (fh ∩ g)

Proof. (i) f(f ∩ g) = hf ∩ hg = h ∩ h = h, and so h ≤ f ∩ g.

(ii) Immediate from (i), f∩g ≤ g and f∩g ≤ g give (f∩g) ≤ (g∩f) and vice-versa.

(iii) f ∩ g ≤ f ≤ f ′ and f ∩ g ≤ g gives f ∩ g ≤ f ′ ∩ g.

(iv) (hf ∩ g) ≤ g and (hf ∩ g) ≤ hf give

(hf ∩ g)hg = (hf ∩ g)hf hg = (hf ∩ g)hhf g

= (hf ∩ g)hf g = (hf ∩ g)g = hf ∩ g

so (hf ∩ g) ≤ hg, meaning (hf ∩ g) ≤ (hf ∩ hg) = h(f ∩ g). hg ≤ g, so we

also have h(f ∩ g) = (hf ∩ hg) ≤ (hf ∩ g). Thus, (hf ∩ h) = h(f ∩ g). The

symmetric case is similar.

(v) (fh ∩ gh) ≤ (f ∩ g) ≤ (f ∩ g)h, and

(f ∩ g)h = (f ∩ g)h(f ∩ g) = (f ∩ g)hf ∩ (f ∩ g)hg

≤ fhf ∩ ghg = fh ∩ gh

(vi) f ∩ g ≤ f and f ∩ g ≤ g give f ∩ gf = f ∩ g = f ∩ gg.

(vii)

(f ∩ gh) = (f ∩ ghg) = gh(f ∩ g) = (f ∩ g) gh(f ∩ g)

= (f ∩ g)gh(f ∩ g) = (f ∩ g)fh(f ∩ g) = fh(f ∩ g)
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= (fh ∩ g)

There is another way to state that a cartesian restriction category has meets, in

terms of partial inverses.

Definition 2.23. A map f : A → B of a restriction category X is said to have

a partial inverse if there is a map f (−1) : B → A of X such that ff (−1) = f and

f (−1)f = f (−1).

We note that the partial inverse of a map f is unique when it exists. If some other

map g has fg = f and gf = g, then

gf (−1) = gff (−1) = gf = gfg = gg = g

which means g ≤ f (−1). Similarly f (−1) ≤ g, and so f (−1) = g.

A map with a partial inverse is called a partial isomorphism. We are particularly

interested in the case where the diagonal map is a partial isomorphism:

Definition 2.24. A discrete cartesian restriction category is a cartesian restriction

category in which ∆ : A → A × A (defined by ∆ = 〈1A, 1A〉) has a partial inverse

for every object A of X. That is, there exists a map ∆(−1) : A × A → A such that

∆∆(−1) = 1, and ∆(−1)∆ = ∆(−1).

This captures precisely when a cartesian restriction category has meets!

Proposition 2.25. A cartesian restriction category X has meets if and only if it is

discrete.

Proof. Let X be a cartesian restriction category. If X has meets, we define ∆(−1) :

X ×X → X by
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∆(−1) := π0 ∩ π1

We show that this is partial inverse to ∆ as follows:

∆∆(−1) = 〈1, 1〉(π0 ∩ π1) = (〈1, 1〉π0 ∩ 〈1, 1〉π1)

= 1 ∩ 1 = 1 = ∆

and

∆(−1)∆ = (π0 ∩ π1)〈1, 1〉 = 〈(π0 ∩ π1), (π0 ∩ π1)〉

= 〈(π0 ∩ π1)π0 ∩ (π0 ∩ π1)π1〉 = (π0 ∩ π1)〈π0, π1〉

= (π0 ∩ π1) = ∆(−1)

as required, meaning that X is discrete.

For the converse, suppose that X is discrete, and defined f ∩ g by

f ∩ g := 〈f, g〉∆(−1)

We show that this is the meet. For f ∩ f = f , we have

f ∩ f = 〈f, f〉∆(−1) = f∆∆(−1) = f

Next, for f ∩ g ≤ f :

(f ∩ g) f = 〈f, g〉∆(−1) f = 〈f, g〉∆(−1) f
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= 〈f, g〉∆(−1)〈f, g〉 f = 〈f, g〉∆(−1) 〈f, g〉π0 f

= 〈f, g〉∆(−1) gf = 〈f, g, 〉∆(−1) 〈f, g〉π0

= 〈f, g〉∆(−1)π0 = 〈f, g〉∆(−1)∆π0

= 〈f, g〉∆(−1) = f ∩ g

and similarly we have f ∩ g ≤ g. Finally, h(f ∩ g) = hf ∩ hg since

h(f ∩ g) = h〈f, g〉∆(−1) = 〈hf, hg〉∆(−1) = hf ∩ hg

so X has meets.

2.3 Latent Pullbacks

A restriction category is said to have latent limits of a diagram in case the idempotent

splitting of that category has limits of that diagram [23]. In this thesis we will need

to use latent pullbacks, which we introduce now:

Definition 2.26. A latent pullback in a restriction category C is a commuting square

D
h //

k
��

A

f
��

B g
// C

with h = hf = kg = k such that for any two maps v : X → A,w : X → B such

that vf = wg, there is a unique map α : X → D satisfying

(i) αh ≤ v, αk ≤ w

(ii) α = vf = wg

(iii) α = αk

This definition may seem contrived, but is justified by the more general existence

of latent limits [23]. Note that latent limits are unique up to partial isomorphism
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(and so, up to isomorphism in the splitting). Now, we have

Lemma 2.27. Every discrete cartesian restriction category has canonical latent pull-

backs of arbitrary maps.

Proof. We show that for any f, g the square

A×B
π0f∩π1gπ1

��

π0f∩π1gπ0 // A

f
��

B g
// C

is a latent pullback. Obviously the square commutes, and we have

π0f ∩ π1gπ0f = π0f ∩ π1gπ1g = π0f ∩ π1g

= π0f ∩ π1gπ0 = π0f ∩ π1gπ1

so the square also commutes in the splitting, as required. Now, suppose v : X → A

and w : X → B are maps with vf = wg. Define the mediating map to be

α := vf ∩ wg〈v, w〉 = 〈v, w〉π0f ∩ π1g

we then have

(i)

απ0f ∩ π1gπ0 = 〈v, w〉π0f ∩ π1g π0f ∩ π1gπ0 = 〈v, w〉π0f ∩ π1gπ0

= vf ∩ wg〈v, w〉π0 = wvf ∩ wg v = vf ∩ wg v ≤ v

and

απ0f ∩ π1gπ1 = 〈v, w〉π0f ∩ π1g π0f ∩ π1gπ1 = 〈v, w〉π0f ∩ π1gπ1

= vf ∩ wg〈v, w〉π1 = vvf ∩ wg w = vf ∩ wg w ≤ w
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(ii) vf = vf ∩ vfvf ∩ wg = wg ∩ wg = wg gives

α = vf ∩ wg〈v, w〉 = v w vf ∩ wg = vvf ∩ wwg = vf ∩ wg

(iii)

απ0f ∩ π1gπ1 = 〈v, w〉π0f ∩ π1gπ0f ∩ π1g = α

as required. For uniqueness, suppose β : X → A × B is another map satisfying the

definition. Then

α = vf ∩ wg〈v, w〉 = vf〈v, w〉 = β〈v, w〉 = 〈βv, βw〉

= 〈βπ0f ∩ π1gπ1 v, βπ0f ∩ π1gπ1w〉 = 〈βπ0f ∩ π1gπ0 v, βπ0f ∩ π1gπ1w〉

= 〈βπ0f ∩ π1gπ0, βπ0f ∩ π1gπ1〉 = βπ0f ∩ π1g〈π0, π1〉

= βπ0f ∩ π1g = β

as required.

This is analogous to the way that any category with products and equalizers must

also have pullbacks. Restriction products play the role of products, meets the role of

equalizers, and latent pullbacks the role of pullbacks.

2.4 Joins and Interleaving

In addition to meets, restriction categories are capable of having joins of certain

parallel maps, or more generally, of having an interleaving of any two parallel maps.

Definition 2.28. We say that two parallel maps f, g : A→ B in a restriction category

X are compatible, written f ^ g, in case fg = gf .
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Definition 2.29. A restriction category X is said to have finite joins in case

(a) For each pair A,B of objects of X there is a zero map 0AB : A → B such that

for any f : A → B, 0AB ≤ f , and for g : C → D, f0BCg = 0AD. We omit the

subscripts when they are clear from the context.

(b) For each pair f, g : A → B of maps of X such that f ^ g, there is a map

f ∨ g : A→ B such that f ∨ g is the join of f and g (that is, f ≤ f ∨ g, g ≤ f ∨ g,

and if f ≤ h and g ≤ h, f ∨ g ≤ h), and h(f ∨ g) = hf ∨ hg.

Restriction categories with (finite) joins are called (finite) join restriction cate-

gories.

We collect some elementary properties of finite joins:

Lemma 2.30. In a restriction category with finite joins:

(i) 0AB = 0AA

(ii) f ∨ g = f ∨ g

(iii) (f ∨ g)h = fh ∨ gh

Proof. (i) 0AB0AA = 0AB 0AA = 0AB0AA0AB = 0AB gives 0AB ≤ 0AA, and we

already have 0AA ≤ 0AB, so 0AB = 0AA.

(ii) Immediately f ∨ g ≤ f ∨ g. This also tells us f ∨ g is a restriction idempotent.

We then have

f ∨ g(f ∨ g) = f ∨ g(f ∨ g)

= (f ∨ g)f ∨ g = (f ∨ g)(f ∨ g)

= (f ∨ g)f ∨ (f ∨ g)g = (f ∨ g)ff ∨ (f ∨ g)gg

= (ff ∨ gg) = f ∨ g

so f ∨ g ≤ f ∨ g, and therefore f ∨ g = f ∨ g.
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(iii) Immediately fh ∨ gh ≤ (f ∨ g)h, and we have

(f ∨ g)h = (f ∨ g)h(f ∨ g) = (f ∨ g)h f ∨ (f ∨ g)h g

= (f ∨ g)h ff ∨ (f ∨ g)h gg = f(f ∨ g)f f ∨ g(f ∨ g)h g

= (f ∨ fg)h f ∨ (gf ∨ g)h g = (f ∨ gf)h f ∨ (fg ∨ g)h g

= fh f ∨ gh g = fh ∨ gh

which gives

fh ∨ gh = fh ∨ gh = (f ∨ g)h = (f ∨ g)h

and so

(fh ∨ gh) = fh ∨ gh (f ∨ g)h = (f ∨ g)h (f ∨ g)h = (f ∨ g)h

If a restriction category with joins also has meets, then the meet distributes over

the join:

Lemma 2.31. In a restriction category with meets and joins

h ∩ (f ∨ g) = (h ∩ f) ∨ (h ∩ g)

Proof.

h ∩ (f ∨ g) = (f ∨ g)(h ∩ (f ∨ g))

= (f ∨ g)(h ∩ (f ∨ g)) = f(h ∩ (f ∨ g)) ∨ g(h ∩ (f ∨ g))

= (h ∩ f(f ∨ g)) ∨ (h ∩ g(f ∨ g)) = (h ∩ f) ∨ (h ∩ g)
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In a cartesian restriction category with joins, the join interacts with the product

functor in an interesting way:

Lemma 2.32. In a cartesian restriction category X with finite joins, if f, g : A→ B

and h, k : C → D are pairs of parallel maps with f ^ g and h ^ k, then (f × h) ^

(g × k) and

(f ∨ g)× (h ∨ k) = (f × h) ∨ (g × k)

Proof. For (f × h) ^ (g × k) we have (f × h)(g × k) = fg × hk = gf × kh =

(g × k)(f × h) as required.

We show the main result by establishing both inequalities. For (f × h) ∨ (g ×

k) ≤ (f ∨ g) × (h ∨ k) it suffices to show both (f × h) ≤ (f ∨ g) × (h ∨ k) and

(g × k) ≤ (f ∨ g)× (h ∨ k), but this is immediate.

For (f ∨ g)× (h ∨ k) ≤ (f × h) ∨ (g × k) we have

(f ∨ g)× (h ∨ k)(f × h) ∨ (g × k)

= ((f ∨ g)× (h ∨ k))(f × h) ∨ ((f ∨ g)× (h ∨ k))(g × k)

= ((f ∨ g)f × (h ∨ k)h) ∨ ((f ∨ g)g × (h ∨ k)k)

= ((f ∨ gf)× (h ∨ kh)) ∨ ((fg ∨ g)× (hk ∨ k))

= (f × h) ∨ (g × k)

and we are done.

We say that a restriction functor F : X→ Y between join restriction categories X

and Y preserves joins if F (0) = 0 and F (f ∨ g) = F (f) ∨ F (g)

In classical computability theory, the interleaving of two partial computable func-

tions is an important construction. By alternating which of two functions is being
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computed until one of them terminates, we can construct a partial computable func-

tion that is defined on some input when at least one of the two original functions is.

It is possible to express this essential property of the interleaving in any restriction

category with meets and joins:

Definition 2.33. In a restriction category X with meets and joins, an interleaving

of a pair of parallel maps f, g : A → B is a map h : A → B with f ≤ h, g ≤ h, and

h = (h ∩ f) ∨ (h ∩ g).

If all pairs of parallel maps have an interleaving, then X is said to have finite

interleaving.

While two maps need not be compatible for an interleaving of them to exist, an

interleaving of two compatible maps is the join of those two maps.

Lemma 2.34. In a restriction category with meets and joins, any interleaving of two

compatible maps is the join of those maps.

Proof. Suppose f ^ g and that h is an interleaving of f and g. Right away we have

(h∩f) ≤ f ≤ f ∨ g and (h∩ g) ≤ g ≤ f ∨ g, which gives h = (h∩f)∨ (h∩ g) ≤ f ∨ g.

For the reverse inequality, we have

fh = f((h ∩ f) ∨ (h ∩ g))

= f(h ∩ (f ∨ g)) = h ∩ (f ∨ fg)

= h ∩ (f ∨ gf) = h ∩ f ≤ f

and then f = ff = f hf = fh f = fh, so f ≤ h. Similarly, we have g ≤ h, which

gives f ∨ g ≤ h as required.
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2.5 Existential Quantification

In categorical logic we are often concerned with existential quantification in a fibra-

tion, where it takes the form of a series of adjunctions between the fibers [18] [27]. In

this section, we introduce existential quantification in a restriction category. These

two notions are related, but not identical. Specifically, existential quantification in a

restriction category is intended to correspond to the presence of existential quantifi-

cation in O, the domain latent fibration (see chapter 6). If a restriction category has

existential quantification, then the domain fibration total(O) has existential quantifi-

cation in the usual fibrational sense, but the converse does not hold. The presense of

existential quantification in the fibration total(O) only deals with the total maps of

the base category, where our notion of existential quantification in a restriction cate-

gory encompasses all the maps of the base category. While there is almost certainly a

definition of existential quantification for a latent fibration that ties this all together

nicely, the details have not been worked out, and so we content ourselves with what

follows.

Definition 2.35. A restriction category X has existential quantification in case for

each map f : X → Y of X, the pullback functor f ∗ : O(Y ) → O(X)/f defined by

f ∗(e) = fe has a left Frobenius adjoint ∃f : O(X)/f → O(Y ), and the Beck-Chevalley

condition holds. That is, there is a preorder morphism ∃f : O(X)/f → O(Y ) for

which, for every e ≤ f , the two way inference

∃f (e) ≤ e′

e ≤ fe′

holds, the Frobenius condition

∃f (e) ∧ e′ ≤ ∃f (e ∧ fe′)

holds, and for any latent pullback square
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A

k
��

h // B

f
��

C g
// D

the Beck-Chevalley condition holds in the sense that

g∃f (e) = ∃k(he)

We also make explicit an alternate formulation of adjoint functors. This will

simplify some future calculations.

Lemma 2.36. Suppose that for f : X → Y a map of a restriction category X,

∃f : O(X)/f → O(Y ) is right adjoint to f ∗ : O(Y )→ O(X)/f . Then

(i) e ≤ f∃f (e) for e ∈ O(X)/f

(ii) ∃f (fe′) ≤ e′ for e′ ∈ O(Y )

(iii) ∃f is a preorder morphism

Proof. (i) If e ∈ O(X)/f , then ∃f (e) ≤ ∃f (e), and so e ≤ f∃f (e).

(ii) If e′ ∈ O(Y ), then fe′ ≤ fe′ and so ∃f (fe′) ≤ e′.

(iii) Suppose e1, e2 ∈ O(X)/f such that e1 ≤ e2. Then e1 ≤ e2 ≤ f∃f (e2), which

gives ∃f (e1) ≤ ∃f (e2) as required.

Lemma 2.37. If f : X → Y is a map in a restriction category X and ∃f : O(X)/f →

O(Y ) is a preorder morphism satisfying

(i) f∃f (e) ≤ e for e ∈ O(X)/f

(ii) e′ ≤ ∃f (fe′) for e′ ∈ O(Y )

then ∃f is left adjoint to f ∗ : O(Y )→ O(X)/f .
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Proof. Let e ∈ O(X), e′ ∈ O(Y ). Suppose ∃f (e) ≤ e′. Then since f ∗ is a preorder

morphism, we have f∃f (e) ≤ fe′, which gives

e ≤ f∃f (e) ≤ fe′

For the converse, suppose e ≤ fe′. Then since ∃f is a preorder morphism, we have

∃f (e) ≤ ∃f (fe′), which gives

∃f (e) ≤ ∃f (fe′) ≤ e′

as required.

While the above definition of existential quantification in a restriction category

is motivated by existential quantification in a fibration, another way to understand

existential quantification in a restriction category is in terms of ranges [22] [23]. In

the same way that the domain of definition of a map in a restriction category tells us

which part of the domain it is defined on, the range of a map tells us which part of

the codomain is the image.

Definition 2.38. A range category is a restriction category X such that for every

map f : X → Y of X there is a map f̂ : Y → Y in X, called the range of f , satisfying:

[RR.1] f̂ = f̂

[RR.2] ff̂ = f

[RR.3] f̂ g = f̂ g

[RR.4]
̂̂
fg = f̂ g

In order to relate this to existential quantification, we say that a map f : X → Y

in a restriction category X is open in case the pullback functor f ∗ : O(Y )→ O(X)/f
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has a left Frobenius adjoint ∃f : O(X)/f → O(Y ). It turns out that a map is open

precisely when it has a range.

Lemma 2.39. A map f : X → Y in a restriction category X is open if and only if it

has a range.

Proof. If f : X → Y has a range f̂ , define ∃f : O(X)/f → O(Y ) by ∃f (e) := êf . We

show that this gives a left Frobenius adjoint to f ∗. Suppose that for e ≤ f , e′ ∈ O(Y ),

we have ∃f (e) ≤ e′. Then we have:

efe′ = efe′ = ef êfe′ = ef∃f (e)e′

= ef∃f (e) = ef êf = ef = ef = e

which means e ≤ fe′. For the other inequality, suppose that e ≤ fe′. Then we have:

∃f (e)e′ = êf e′ = êfe′ = êfe′f

= êf = ∃f (e)

meaning ∃f (e) ≤ e′. Having shown that ∃f is left adjoint to f ∗, only the Frobenius

identity remains. Immediately:

(∃f (e) ∧ e′) = êfe′ = êfe′ = êfe′f = ∃f (e ∧ fe′)

Thus f is open.

For the converse, if f ∗ : O(Y ) → O(X)/f has a left Frobenius adjoint ∃f :

O(X)/f → O(Y ), define f̂ := ∃f (f). We show that f̂ satisfies the range axioms:

[RR.1] ∃f (f) is a restriction idempotent, so f̂ = ∃f (f) = ∃f (f) = f̂ .
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[RR.2] We have f ≤ f∃f (f), so

ff̂ = f∃f (f) = f∃f (f) = f∃f (f) f = f f∃f (f) f = ff = f

[RR.3] Again we know f ≤ f∃f (f), which means f∃f (f) = f f∃f (f) = f , but then:

f̂ g ≤ f̂ g

∃fg(fg) ≤ ∃f (f)g

fg ≤ fg∃f (f)g

and then since

fg∃f (f)g = fg f∃f (f) fg

= fg f∃f (f) = fg f = fg

we know f̂ g ≤ f̂ g.

For the other inequality, the Frobenius identity gives

∃f (f)g = ∃f (f) ∧ g = ∃f (f ∧ fg) = ∃f (fg)

which means

f̂ g ≤ f̂ g

∃f (f)g ≤ ∃fg(fg)

∃f (fg) ≤ ∃fg(fg))

fg ≤ f∃fg(fg)

but fg ≤ fg∃fg(fg), so

fg f∃fg(fg) = fg fg f∃fg(fg)
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= fg fg f∃fg(fg) = fg fg∃fg(fg)

= fg

which means, fg ≤ f∃fg(fg), and then we have f̂ g ≤ f̂ g.

Having established both inequalities, we now know that f̂ g = f̂ g, as required.

[RR.4] We know that

̂̂
fg ≤ f̂ g

∃f̂g(f̂ g) ≤ ∃fg(fg)

f̂ g ≤ f̂ g∃fg(fg)

f̂ g ≤ f̂ g∃fg(fg)

∃fg(fg) ≤ f̂ g∃fg(fg)

fg ≤ fg∃f (f)g∃fg(fg)

Now, we observe that

ff∃f (f)g∃fg(fg) = f∃f (f)gg∃fg(fg)

= f∃f (f) fg∃fg(fg) = f∃f (f) fg∃fg(fg)

and further that since f ≤ f∃f (f) and fg ≤ fg∃fg(fg) we have

fg f∃f (f) fg∃fg(fg) = f f∃f (f) fg fg∃fg(fg) = f fg = fg

which together give
̂̂
fg ≤ f̂ g.

For the other inequality, we have
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f̂ g ≤ ̂̂
fg

∃fg(fg) ≤ ∃f̂g(f̂ g)

fg ≤ fg∃f̂g(f̂ g)

and also

fg = ff̂g = ff̂g ≤ ff̂g∃f̂ g(f̂ g) = fg∃f̂g(f̂ g)

which together give f̂ g ≤ ̂̂
fg.

The two inequalities then give
̂̂
fg = f̂ g as required.

Therefore X is a range restriction category.

Thus, the only difference between a range category and a restriction category

with existential quantification is that in the latter the Beck-Chevalley condition must

be satisfied by the ∃f adjoints. If the range category is also a cartesian restriction

category, then it was shown in [23] (Lemma 3.8) that the ∃f adjoints satisfy the Beck-

Chevalley condition if and only if f̂ × g = f̂× ĝ for all maps f, g. Ranges will not play

a major role in the sequel, but it may be helpful to think of existential quantification

in a restriction category in these terms.

2.6 Universal Quantification

As with existential quantification, universal quantification in a restriction category is

intended to correspond to some notion of universal quantification in a latent fibra-

tion, applied to the domain latent fibration. The difference is again that while the

presence of universal quantification in a restriction category implies the presence of

the fibrational kind of universal quantification in total(O), the converse does not hold

because the latter universal quantification does not account for the partial maps of
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the base category. Again, there ought to be a notion of universal quantification in a

latent fibration tying all this together, but we use the more specific notion here.

Definition 2.40. A restriction category X is said to have universal quantification in

case for every map f : X → Y of X the pullback functor f ∗ : O(Y ) → O(X) has a

right adjoint ∀f : O(X) → O(Y ), and the Beck-Chevalley condition holds. That is,

there is a preorder morphism ∀f : O(X)→ O(Y ) for which the two way inference

fe ≤ e′

e ≤ ∀f (e′)

holds, and for any latent pullback square

A

k
��

h // B

f
��

C g
// D

the Beck-Chevalley condition holds in the sense that for e ≤ f ,

g∀f (e) = g∀k(he)

Again, we state explicitly an alternate formulation of this adjunction.

Lemma 2.41. If f : X → Y is a map in a restriction category X and ∀f : O(X)→

O(Y ) is right adjoint to f ∗ : O(Y )→ O(X), then

(i) f∀f (e) ≤ e for e ∈ O(X)

(ii) e′ ≤ ∀f (fe′) for e′ ∈ O(Y )

(iii) ∀f is a preorder morphism

Proof. (i) ∀f (e) ≤ ∀f (e) gives f∀f (e) ≤ e.

(ii) fe′ ≤ fe′ gives e′ ≤ ∀f (fe′).
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(iii) Suppose e1, e2 ∈ O(X) such that e1 ≤ e2. Then f∀f (e1) ≤ e1 ≤ e2, which gives

∀f (e1) ≤ ∀f (e2).

Lemma 2.42. If f : X → Y is a map in a restriction category X and ∀f : O(X)→

O(Y ) is a preorder morphism satisfying

(i) f∀f (e) ≤ e for e ∈ O(X)

(ii) e′ ≤ ∀f (fe′) for e′ ∈ O(Y )

then ∀f is left adjoint to f ∗ : O(Y )→ O(X).

Proof. Let e ∈ O(X) and e′ ∈ O(Y ). Suppose fe′ ≤ e. Then since ∀f is a preorder

morphism ∀f (fe′) ≤ ∀f (e), and we have

e′ ≤ ∀f (fe′) ≤ ∀f (e)

For the converse, suppose e′ ≤ ∀f (e). Then since f ∗ is a preorder morphism fe′ ≤

f∀f (e), and we have

fe′ ≤ f∀f (e) ≤ e

as required.

2.7 Cartesian Closed Restriction Categories

It will come as no surprise that there is a notion of cartesian closedness for restriction

categories [7]. The main difference from the total case is that in order to ensure that

the partial cartesian closed structure survives the idempotent splitting construction,

we require the existence of an exponential transpose for each restriction idempotent

satisfying a condition:
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Definition 2.43. A cartesian closed restriction category is a cartesian restriction

category X such that for every pair A,B of objects in X there is an object BA and

a map evA,B : A × BA → B in X such that for every map f : A × C → B and

every restriction idempotent e ∈ O(C) satisfying (1× e)f = f , there is a unique map

λe(f) : C → BA with λe(f) = e which makes

A×BA
evA,B // B

A× C

1×λe(f)

OO

f

;;

commute.

We call λe(f) the transpose of f relative to e, or simply the transpose of f . We

often make special use of λ1(f) because it is total, and denote it λ(f). It is equivalent

to ask there is a unique total map λ(f) : C → BA making the diagram commute,

and that for each f ′ such that (1 × f ′)ev = f we have f ′ ≤ λ(f). This alternate

presentation looks more like the other structure in restriction categories, but makes

the connection to the idempotent splitting less obvious.

Lemma 2.44. In a cartesian closed restriction category X, if f : A × B → C and

g : D → B, then gλ(f) = gλ((1× g)f).

Proof. λ((1× g)f) is total, so gλ(f) ≤ λ((1× g)f), which gives

gλ(f) = gλ(f)λ((1× g)f) = gλ((1× g)f)

as required.

We can also manipulate the transpose as follows: Observe that

λ(π0h)λ((g × 1)evf) = λ(π0ghf)

since
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(1× λ(π0h)λ((g × 1)evf))ev = (1× λ(π0h))(g × 1)evf

= (g × 1)(1× λ(π0h))evf = (g × 1)π0hf = π0ghf

and λ(π0ghf) is unique with that property. π0 is an isomorphism, so we can suppress

it to obtain a total map [g, h] with λ(f)[g, h] = λ(fgh). We make use of this briefly

in the sequel.

Another common piece of notation in a cartesian closed restriction category is

as follows: For a map f : X → Y , we define the total map pfq : 1 → Y X by

pfq := λ(π0f), as in

X × Y X ev // Y

X × 1

1×λ(π0f)

OO

π0f

::

We think of pfq as the “element” of Y X corresponding to f : X → Y , and recover

f from pfq as follows:

〈1, !pfq〉ev = 〈1, !〉(1× λ(π0f))ev = f

In the sequel, we will want to compare the domain of definition of maps in a

restriction category internally. The following structure makes this possible:

Definition 2.45. A subobject classifier in a cartesian restriction category X is an

object Ω together with a map ev : Ω → 1 such that for each map f : X → 1 of X

there is a unique total map χf : A→ Ω making

A
χf //

f ��

Ω

ev
��
1

commute, and further, for any h : A→ Ω, if hev = f then h ≤ χf .

If e ∈ O(X) is a restriction idempotent, we use the following notation
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χe := χe!

We mention these subobject classifiers in conjunction with cartesian closed re-

striction categories because every cartesian closed restriction category has one.

Proposition 2.46. If X is a cartesian closed restriction category, then X has a

subobject classifier. Further, for any f : X → Y of X, e ∈ O(Y ), the equation

fχe = fχfe holds

Proof. We define Ω := 11 and ev := 〈!, 1〉ev : 11 → 1. For a map f : A → 1 of X,

define χf := λ(π1f), as in

1× 11 ev // 1

1× A

1×λ(π1f)

OO

π1f

<<

Clearly χf is total, and

χfev = λ(π1f)〈!, 1〉ev = 〈!, χf〉ev

= 〈!, 1〉(1× λ(π1f))ev = 〈!, 1〉π1f = f

Now, suppose h : A→ 11 is such that hev = f . Then

hχf = hλ(π1f) = hλ(π1hev) = hλ((1× h)π1ev)

= hλ(π1ev) = hχev = h

and so h ≤ χf , as required.

We show fχe = fχfe as follows

fχe = fλ(π1e!) = fλ((1× f)π1e!)

= fλ(π1fe!) = fχfe
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3 Discrete Cartesian Closed Restriction Categories

We have already seen that every discrete cartesian closed restriction category has

a subobject classifier. We proceed by showing that they have both universal and

existential quantification, and that each O(X) for X an object in a discrete cartesian

closed restriciton category is a Heyting algebra. We also consider the action of the

pullback functor f ∗ : O(Y )→ O(X) for some map f : X → Y of a discrete cartesian

closed restriction category. While this is not in general a Heyting algebra morphism,

we will see that it is when the map f is total.

3.1 Universal Quantification

Proposition 3.1. If X is a discrete cartesian closed restriction category, then X has

universal quantification.

Proof. It suffices to define a mapping ∀f : O(X) → O(Y ) for each f : X → Y of X

satisfying, for e ∈ O(X), e′ ∈ O(Y )

fe′ ≤ e

e′ ≤ ∀f (e)
and also satisfying the Beck-Chevalley condition. To that end, let f : X → Y be a

map of X, and define ∀f (e) ∈ O(Y ) for e ∈ O(X) by

∀f (e) := λ(π0f ∩ π1) ∩ λ(π0ef ∩ π1)

with the types as in (π0f ∩ π1) : X × Y → Y .

Now, let e : O(X), e′ : O(Y ), f : X → Y , and supose fe′ ≤ e. Then efe′ =

efe′f = fe′f = fe′, and we have

e′λ(π0f ∩ π1) = e′λ((1× e′)(π0f ∩ π1)) = e′λ(π0f ∩ (1× e′)π1)
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= e′λ(π0f ∩ π1e
′) = e′λ(π0fe

′ ∩ π1) = e′λ(π0efe
′ ∩ π1)

= e′λ(π0ef ∩ π1e
′) = e′λ((1× e′)(π0ef ∩ π1)) = e′λ(π0ef ∩ π1)

and so

e′∀f (e) = e′λ(π0f ∩ π1) ∩ λ(π0ef ∩ π1)

= e′λ(π0f ∩ π1) ∩ e′λ(π0ef ∩ π1) = e′λ(π0f ∩ π1) ∩ e′λ(π0f ∩ π1)

= e′λ(π0f ∩ π1) ∩ λ(π0f ∩ π1) = e′λ(π0f ∩ π1) = e′

which means e′ ≤ ∀f (e), as required.

Conversely, suppose e′ ≤ ∀f (e). We then have f∀f (e) ≤ e by

f∀f (e) = f∀f (e) ∩ f∀f (e) = f∀f (e)f ∩ f∀f (e)

= 〈1, f∀f (e)〉π0f ∩ 〈1, f∀f (e)〉π1 = 〈1, f∀f (e)〉(π0f ∩ π1)

= 〈1, f〉(1× ∀f (e))(1× λ(π0f ∩ π1))ev = 〈1, f〉(1× ∀f (e)λ(π0f ∩ π1))ev

= 〈1, f〉(1× λ(π0f ∩ π1) ∩ λ(π0ef ∩ π1)λ(π0f ∩ π1))ev

= 〈1, f〉(1× λ(π0f ∩ π1) ∩ λ(π0ef ∩ π1)λ(π0ef ∩ π1))ev

= 〈1, f〉(1× ∀f (e))(π0ef ∩ π1)

≤ 〈1, f〉(π0ef ∩ π1) = fef ∩ f = e(f ∩ f)

= ef = ef ≤ e

and we use this to obtain

fe′ ≤ f∀f (e) ≤ e
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as required.

For the Beck-Chevalley condition, we must show that for any latent pullback in X

W
h //

k
��

X

f
��

Z g
// Y

we have, for e ≤ f ,

g∀f (e) = g∀k(he)

We proceed by showing each inequality to establish the promised equality. For

any commuting square

W
h //

k
��

X

f
��

Z g
// Y

in a discrete cartesian closed restriction category, we have, for e ≤ f ,

g∀f (e) ≤ ∀k(he)

as follows. From f∀f (e) ≤ e we obtain

kg∀f (e) = kg∀f (e) = hf∀f (e) = hf∀f (e) ≤ he

and then since ∀f the right adjoint we have

g∀f (e) ≤ ∀k(he)

For the reverse inequality, we require the square
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W
h //

k
��

X

f
��

Z g
// Y

to be a latent pullback. In this case, we first show that the inequality holds for the

canonical latent pullback in a discrete cartesian closed restriction category.

X × Z π0f∩π1g π0 //

π0f∩π1g π1
��

X

f
��

Z g
// Y

From there, it is easy to show that it holds for any latent pullback. We begin by

observing that

π0f ∩ π1g π0e = π0e π0f ∩ π1g

= π0e(π0f ∩ π1g) = π0eπ0f ∩ π1g

= π0ef ∩ π1g

and so

〈1, π1〉(π0π0f ∩ π1g π0e π1 ∩ π1)g = 〈1, π1〉(π0π0ef ∩ π1g π1 ∩ π1)g

= (π0ef ∩ π1g π1 ∩ π1)g = π0ef ∩ π1g(π1 ∩ π1)g = π0ef ∩ π1g π1g

= π0ef ∩ π1g

and, similarly

〈1, π1〉(π0π0f ∩ π1g π1 ∩ π1)g = π0f ∩ π1g(π1 ∩ π1)g = π0f ∩ π1g π1g

= π0f ∩ π1g
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Now, we use that [〈1, π1〉, g] is total to obtain

g∀π0f∩π1g π1(π0f ∩ π1g π0e)

= g λ(π0π0f ∩ π1g π0e π0f ∩ π1g π1 ∩ π1) ∩ λ(π0π0f ∩ π1g π1 ∩ π1)

= g λ(π0π0f ∩ π1g π0e π1 ∩ π1) ∩ λ(π0π0f ∩ π1g π1 ∩ π1)

= g (λ(π0π0f ∩ π1g π0e π1 ∩ π1) ∩ λ(π0π0f ∩ π1g π1 ∩ π1))[〈1, π1〉, g]

≤ g λ(π0π0f ∩ π1g π0e π1 ∩ π1)[〈1, π1〉] ∩ λ(π0π0f ∩ π1g π1 ∩ π1)[〈1, π1〉, g]

= g λ(π0ef ∩ π1g) ∩ λ(π0f ∩ π1g) = gλ(π0ef ∩ π1g) ∩ gλ(π0f ∩ π1g)

= gλ((1× g)(π0ef ∩ π1)) ∩ gλ((1× g)(π0f ∩ π1))

= gλ(π0ef ∩ π1) ∩ gλ(π0f ∩ π1) = g(λ(π0ef ∩ π1) ∩ λ(π0f ∩ π1))

= g∀f (e)

which is the desired inequality for the canonical latent pullback. Now, let α : W →

X × Z be the induced partial isomorphism between the two latent pullbacks, as in

W

≥

α

##

k

%%

h

""
≤

X × Z

��

// X

f
��

Z g
// Y

X × Z

≥

≤α(−1)

##

%%

  
W

h //

k
��

X

f
��

Z g
// Y

Observe that together these inequalities ensure the two diagrams commute on the

nose. Then we have

∀π0f∩π1g π1(π0f ∩ π1g π0e) = ∀α(−1)k(α
(−1)he)

= ∀α(−1)k(α
(−1)he) = ∀k(∀α(−1)(α(−1)he))
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≥ ∀k(he)

and so finally, we have

g∀k(he) ≤ g∀π0f∩π1g π1(π0f ∩ π1g π0e) ≤ g∀f (e)

and the Beck-Chevalley condition is satisfied.

3.2 O(X) is a Heyting Algebra

We have already seen that for any object X of a restriction category X, the restriction

idempotents O(X) form a bounded meet semilattice with ≤ the extension ordering,

> the identity on X, and e ∧ e′ given by composition. In this section, we show that

if X is a discrete cartesian closed restriction category, then each O(X) is a Heyting

algebra. We also consider the action of the pullback functor f ∗ : O(Y ) → O(X) for

an arbitrary map f : X → Y of X.

Proposition 3.2. If X is a discrete cartesian closed restriction category, then the

partial order O(X) has a Heyting implication for every object X of X. Further, for

every map f : X → Y of X the pullback functor f ∗ : O(Y ) → O(X) has f ∗(e1 ⇒

e2) = f(f ∗(e1)⇒ f ∗(e2)).

Proof. The meet and top element are defined as above, and if e1 ≤ e2 ∈ O(Y ) then

certainly fe1 ≤ fe2, so f ∗ preserves the meet. For >, we have fe ≤ f = f>, and f ∗

preserves the top element.

Heyting implication is defined using the meet and subobject classifier. If e1 and

e2 are elements of O(X), we define (e1 ⇒ e2) : O(X) by

(e1 ⇒ e2) := χe1 ∩ χe1e2
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The idea being that e1 ≤ e2 precisely when e1 = e1e2, so we express that with

the structure of X. To show that this is indeed the Heyting implication, we must

establish

(e ∧ e1) ≤ e2

e ≤ (e1 ⇒ e2)

To that end, suppose ee1 = e ∧ e1 ≤ e2, meaning that ee1e2 = ee1. Then we have

e(e1 ⇒ e2) = eχe1 ∩ χe1e2 = eχe1 ∩ eχe1e2

= eχee1 ∩ eχee1e2 = eχee1 ∩ χee1 = eχee1

= e

so e ≤ (e1 ⇒ e2).

For the converse, suppose e ≤ (e1 ⇒ e2), meaning e(e1 ⇒ e2) = e. Then

(e ∧ e1)e2 = ee1e2 = e(e1 ⇒ e2)e1e2 = eχe1 ∩ χe1e2 e1e2

= eχe1 ∩ χe1e2 χe1e2ev = eχe1 ∩ χe1e2 χe1ev

= e(e1 ⇒ e2)e1 = ee1 = (e ∧ e1)

so (e ∧ e1) ≤ e2, and our implication is in fact a Heyting implication. We show that

f(ϕ⇒ ψ) = f(ϕ⇒ ψ) as follows:

f(e1 ⇒ e2) = fχe1 ∩ fχe1e2

= fχfe1 ∩ fχfe1e2 = f χfe1 ∩ χfe1 fe2

= f(fe1 ⇒ fe2)
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Proposition 3.3. If X is a discrete cartesian closed restriction category, then the

partial order O(X) has joins and a bottom element for every object X of X. Further,

for each f : X → Y of X the reindexing functor f ∗ : O(Y ) → O(X) preserves the

join and bottom element.

Proof. The bottom element of O(X) is defined to be

⊥X := ∀π0(ev)

with the typing as in ev : X × 1X → 1. If e ∈ O(X), then

⊥X = ∀π0(ev) = ∀π0(ev) = ∀π0(ev)〈1, peq〉

= 〈1, peq〉(∀π0(ev)× 1) = 〈1, peq〉π0∀π0(ev)

≤ 〈1, peq〉ev = 〈1, peq〉ev = e

= e

which means ⊥X is indeed the bottom element of our lattice. Also, if f : X → Y

then ⊥Y ≤ ∀f (⊥X) gives by way of the adjunction that f⊥Y ≤ ⊥X . We know that

⊥X ≤ f⊥Y , so ⊥X = f⊥Y , and the pullback functor f ∗ preserves the bottom element.

The join of e1 and e2 in O(X) is defined to be

(e1 ∨ e2) := ∀π0((π0e1 ⇒ ev)(π0e2 ⇒ ev)⇒ ev)

We verify that this is in fact the join. For e1 ≤ (e1 ∨ e2), we have

π0e1 ∧ (π0e1 ⇒ ev)(π0e2 ⇒ ev) = π0e1(π0e1 ⇒ ev)(π0e2 ⇒ ev)
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≤ π0e1(π0e1 ⇒ ev) = π0e1 ∧ (π0e1 ⇒ ev) ≤ ev

which, via properties of Heyting implication, gives

π0e1 ≤ ((π0e1 ⇒ ev)(π0e2 ⇒ ev)⇒ ev)

and the adjunction then gives

e1 ≤ ∀π0((π0e1 ⇒ ev)(π0e2 ⇒ ev)⇒ ev) = (e1 ∨ e2)

and we have e2 ≤ (e1 ∨ e2) similarly. Next, suppose e1 ≤ e and e2 ≤ e for some

e ∈ O(X). Then we have

(e1 ∨ e2) = 〈(e1 ∨ e2), 1〉π0peq

= 〈1, peq〉((e1 ∨ e2)× 1) = 〈1, peq〉π0(e1 ∨ e2)

= 〈1, peq〉π0∀π0((π0e1 ⇒ ev)(π0e2 ⇒ ev)⇒ ev)

≤ 〈1, peq〉((π0e1 ⇒ ev)(π0e2 ⇒ ev)⇒ ev)

= ((〈1, peq〉π0e1 ⇒ 〈1, peq〉ev)(〈1, peq〉π0e2 ⇒ 〈1, peq〉ev)⇒ 〈1, peq〉ev)

= (e1 ⇒ e)(e2 ⇒ e)⇒ e

= ((e1 ⇒ e) ∧ (e2 ⇒ e))⇒ e

but since e1 ≤ e and e2 ≤ e by assumption, ((e1 ⇒ e) ∧ (e2 ⇒ e)) is >, so we have

(e1 ∨ e2) ≤ (> ⇒ e) = e

Thus, our (e1 ∨ e2) is indeed the join. We show that f ∗ preserves the join as

follows: Suppose f : Z → X. Then we have fe1 ≤ f(e1 ∨ e2) by
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fe1 f(e1 ∨ e2) = fe1 f(e1 ∨ e2)

= fe1(e1 ∨ e2) = fe1

and similarly we have fe2 ≤ f(e1 ∨ e2), so we know fe1 ∨ fe2 ≤ f(e1 ∨ e2). Now,

suppose that for some e, we know fe1 ≤ e and fe2 ≤ e. The adjunction gives

e1 ≤ ∀f (e) and e2 ≤ ∀f (e), so we have f(e1 ∨ e2) ≤ e. Certainly fe1 ∨ fe2 has this

property, and therefore we have shown f(e1 ∨ e2) ≤ fe1∨fe2. By asymmetry we now

have f(e1 ∨ e2) = fe1 ∨ fe2. Thus, the join is preserved by reindexing over f ∗.

We have now established that O(X) for X an object of a discrete cartesian closed

restriction category X is a Heyting algebra. Notice also that if the map f : X → Y

in X is total, then we have shown that f ∗ is a Heyting algebra morphism. This will

be used in the sequel.

3.3 Existential Quantification

Proposition 3.4. Every discrete cartesian closed restriction category has existential

quantification.

Proof. For f : X → Y and e ≤ f , we define ∃f (e) ∈ O(Y ) by

∃f (e) := ∀π0(∀f×1((e× 1)⇒ (f × 1)ev)⇒ ev)

We begin by showing that this is a preorder morphism. First, we observe that

Heyting implication has the following property:

a ≤ b

(b⇒ c) ≤ (a⇒ c)
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which we use in conjunction with the fact that ∀f is a preorder morphism to obtain

that, if e ≤ e′ for e, e′ ≤ f , then

e ≤ e′

(e× 1) ≤ (e′ × 1)

((e′ × 1)⇒ (f × 1)ev) ≤ ((e× 1)⇒ (f × 1)ev)

∀f×1((e′ × 1)⇒ (f × 1)ev) ≤ ∀f×1((e× 1)⇒ (f × 1)ev))

(∀f×1((e× 1)⇒ (f × 1)ev)⇒ ev) ≤ (∀f×1((e′ × 1)⇒ (f × 1)ev)⇒ ev)

∃f (e) ≤ ∃f (e′)

as required.

Now, to show that ∃f is left adjoint to the reindexing functor f ∗, it suffices to

show that for any e ≤ f , e′ ∈ O(Y ), we have ∃f (fe′) ≤ e′ and e ≤ f∃f (e).

To show ∃f (fe′) ≤ e′, we first observe that the ∀ adjunction gives

((e′ × 1)⇒ ev) ≤ ∀f×1(((f × 1)((e′ × 1)⇒ ev))

but then we have

∀f×1((f × 1)((e′ × 1)⇒ ev)) ≤ ∀f×1((f × 1)((e′ × 1)⇒ ev))((e′ × 1)⇒ ev)

= ((e′ × 1)⇒ ev)∀f×1((f × 1)((e′ × 1)⇒ ev)) = ((e′ × 1)⇒ ev)

and so by antisymmetry

∀f×1((f × 1)((e′ × 1)⇒ ev)) = ((e′ × 1)⇒ ev)

This allows us to obtain the required inequality as follows

∃f (fe′) = 〈1, pe′q〉(∃f (fe′)× 1) = 〈1, pe′q〉π0∃f (fe′)

= 〈1, pe′q〉π0∀π0(∀f×1((fe′ × 1)⇒ (f × 1)ev)⇒ ev)
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≤ 〈1, pe′q〉(∀f×1((fe′ × 1)⇒ (f × 1)ev)⇒ ev)

= 〈1, pe′q〉(∀f×1((f × 1)(e′ × 1)⇒ (f × 1)ev)⇒ ev)

= 〈1, pe′q〉(∀f×1((f × 1)((e′ × 1)⇒ ev))⇒ ev)

= 〈1, pe′q〉((e′ × 1)⇒ ev)⇒ ev

= ((〈1, pe′q〉(e′ × 1)⇒ 〈1, pe′q〉ev)⇒ 〈1, pe′q〉ev)

= ((〈1, pe′q〉π0e′ ⇒ e′)⇒ e′) = ((e′ ⇒ e′)⇒ e′)

= (> ⇒ e′) = e′

For e ≤ f∃f (e′), we have

e ≤ ∀π0(π0e) = ∀π0(e× 1)

and clearly

(e× 1) ∧ ((e× 1)⇒ (f × 1)ev) ≤ (f × 1)ev

so by property of Heyting implication we have

(e× 1) ≤ ((e× 1)⇒ (f × 1)ev)⇒ (f × 1)ev

and then the definition of universal quantification gives

(f × 1)∀f×1((e× 1)⇒ (f × 1)ev) ≤ ((e× 1)⇒ (f × 1)ev

and so
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(((e× 1)⇒ (f × 1)ev)⇒ (f × 1)ev) ∧ (f × 1)∀f×1((e× 1)⇒ (f × 1)ev)

≤ (((e× 1)⇒ (f × 1)ev)⇒ (f × 1)ev) ∧ ((e× 1)⇒ (f × 1)ev)

= ((e× 1)⇒ (f × 1)ev) ∧ (e× 1)⇒ (f × 1)ev)⇒ (f × 1)ev)

≤ (f × 1)ev

and the definition of Heyting implication now gives

(((e× 1)⇒ (f × 1)ev)⇒ (f × 1)ev)

≤ (f × 1)∀f×1((e× 1)⇒ (f × 1)ev))⇒ (f × 1)ev

putting these things together, we have that

(e× 1) = (e× 1)(e× 1) ≤ (f × 1)(e× 1)

≤ (f × 1)(((e× 1)⇒ (f × 1)ev)⇒ (f × 1)ev)

≤ (f × 1)((f × 1)∀f×1((e× 1)⇒ (f × 1)ev)⇒ (f × 1)ev)

= (f × 1)(∀f×1((e× 1)⇒ (f × 1)ev)⇒ ev)

Now, since ∀π0 is a preorder morphism, we can use this inequality to show

e = ee ≤ f ∀π0(e× 1)

≤ f ∀π0((f × 1)(∀f×1((e× 1)⇒ (1× f)ev)⇒ ev))
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Next, we observe that since

X × 1Y

π0
��

f×1 // Y × 1Y

π0
��

X
f

// Y

is a latent pullback, the Beck-Chevalley condition gives

f∀π0(a) = f∀π0((f × 1)a)

for any a ∈ O(Y × 1Y ).

Applying this to our situation yields

e ≤ f ∀π0((f × 1)(∀f×1((e× 1)⇒ (f × 1)ev)⇒ ev))

= f∀π0(∀f×1((e× 1)⇒ (f × 1)ev)⇒ ev)

= f∃f (e)

For the Frobenius identity

∃f (e) ∧ e′ ≤ ∃f (e ∧ fe′)

we use that f(ϕ⇒ ψ) = (fϕ⇒ fψ), noting that

∃f (e) ∧ ψ ≤ ∃f (ϕ ∧ fψ)

∃f (e) ≤ ψ ⇒ ∃f (ϕ ∧ fψ)

ϕ ≤ f(ψ ⇒ ∃f (ϕ ∧ fψ)

ϕ ≤ f(fψ ⇒ f∃f (ϕ ∧ fψ))

Since e ≤ f , it suffices to show ϕ ≤ fψ ⇒ f∃f (ϕ ∧ fψ), and we have

ϕ ≤ fψ ⇒ f∃f (ϕ ∧ fψ)

ϕ ∧ fψ ≤ f∃f (ϕ ∧ fψ)
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but this is immediate since ∃f is left adjoint to f ∗.

For the Beck-Chevalley condition, we show that if

D
h //

k
��

A

f
��

B g
// C

is a latent pullback in X, then for e ≤ f we have

g∃f (e) = ∃k(he)

We begin by showing that for any commutative square and restriction idempotent

e as above, we have ∃k(he) ≤ g∃f (e). For this, it suffices to show

∃k(he) ≤ g∃f (e)

which is the case precisely when

he ≤ kg∃f (e)

and we have

kg∃f (e) = kg∃f (e) = hf∃f (e) = hf∃f (e) ≥ he

as required. We procced by showing that when the square in question is a latent

pullback, we have g∃f (e) ≤ ∃k(he) as follows: We know he ≤ k∃k(he), which gives

e ≤ ∀h(k∃k(he))

which in turn gives
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e ≤ f∀h(k∃k(he))

and we can now use the Beck-Chevalley condition for universal quantification to

obtain

e ≤ f∀h(k∃k(he)) = f∀g(∃k(he))

which gives

∃f (e) ≤ ∀g(∃k(he))

which, finally, gives

g∃f (e) ≤ ∃k(he)

as required. Thus, the Beck-Chevalley condition is satisfied, and we are done.
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4 Turing Categories

Classically [14], a partial combinatory algebra consists of a set A together with a

partial binary operation • : A× A → A which is combinatory complete. That is, for

any term t over the relevant signature in variables x1, . . . , xn there is an element a ∈ A

such that for all elements b1, . . . , bn of A, if both t[b1/x1] . . . [bn/xn] and (a• b1)• . . . bn

are defined, then they are equal. This allows us to use a convenient syntax to denote

elements of a partial combinatory algebra, with 〈x〉t denoting the element of A for

which (〈x〉t) • b1 is equal to t[b1]/x when both are defined. It is now a small step

to connect this syntax with abstraction in the λ-calculus, and thus to computability

theory. Indeed, the prototypical example of a partial combinatory algebra is given

by the partial recursive functions. The set is N, and we define • : N × N → N by

•(x, y) := {y}(x), the result of applying the yth partial recursive function to x ∈ N.

Computability theory contains many other examples [28], to the point that it is

reasonable to characterize computability theory as the study of partial combinatory

algebras.

Turing categories [8] are a general, categorical characterization of partial combi-

natory algebras. In the same sense that restriction categories are a generalization of

the structure present in the category of partial functions on sets, Turing categories

generalize the structure present in the computable maps of a partial combinatory

algebra.

4.1 Partial Combinatory Algebras in Context

We begin by giving more abstract characterizations of the important ideas in the

study of partial combinatory algebras.

Definition 4.1. A partial applicative system (A, •) in a cartesian restriction category

X consists of an object A and a map • : A× A→ A.
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For example, let Ptl be the category of sets and partial functions. There is a partial

applicative system (N, •) in Ptl, where • : N×N→ N is defined by •(m,n) = {n}(m),

the result of applying the n-th partial recursive function to m. This partial applicative

system is rather famous, and is called Kleene’s first model, written K1 [28].

In any partial applicative system there is also an “n-fold application” function,

allowing us to consider something like functions of more than one argument:

Definition 4.2. If (A, •) is a partial applicative system in X, we construct a family

of iterated application morphisms •(n) : An × A→ A inductively. •(1) = •, and using

•(n), we define •(n+1) to be the composite

An × A× A (1×•)// An × A •(n)
// A

For completeness, we define •(0) : 1× A ' A→ A by •(0) := ∆•.

Next, given a partial applicative system (A, •) in partial functions on sets, we can

consider the maps represented by the elements A, which we call computable. More

generally, the computable maps are those represented by a global section, that is, by

a total map 1→ A in the ambient category.

Definition 4.3. If (A, •) is a partial applicative system in X

(i) A map f : An → A of X for some n ∈ N is A-computable when there exists a

total map p : 1→ A of X such that

An × A • // A

An × 1 ' An
f

88

1×p

OO

commutes, and when n ≥ 1, the composite

An−1 × 1
(1×p) // An−1 × A •(n−1)

// A
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is total.

(ii) A map An → Am for m ≥ 1 is A-computable when all of its components are

A-computable as maps An → A.

(iii) A map An → 1 is A-computable when its domain of definition is A-computable

as a map An → An.

when the partial applicative system is clear from the context, we refer to the A-

computable maps simply as the computable maps.

For example, in K1, the computable maps are precisely the partial recursive func-

tions.

Definition 4.4. A partial applicative system (A, •) in a cartesian restriction category

X is combinatory complete in case the category comp(A) whose objects are formal

powers 1, A,A×A,A3, . . . of A, and whose maps are the A-computable maps in X is

well-defined, and is a cartesian restriction subcategory of X.

To connect this to the classical definition of combinatory completeness, recall the

representation of terms with free variables in categorical logic. A term with, say,

three free variables x1, x2, x3 of type X1, X2, X3 respectively is interpreted as a map

with domain X1 × X2 × X3 in the categorical model. If we interpret a collection

of A-computable maps similarly as functions between terms with “holes”, then the

category of A-computable maps being a cartesian restriction category is equivalent

to any rearrangement of these holes being computable. As in the classical case, we

have:

Definition 4.5. A partial combinatory algebra is a combinatory complete partial

applicative system.

For example, K1 is combinatory complete, and therefore a partial combinatory

algebra.
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4.2 Turing Categories

Partial combinatory algebras are defined in relation to an ambient cartesian restric-

tion category. Turing categories are a presentation of very similar structure that,

in contrast, are not defined in terms of some other category. This independence of

setting allows us to study notions of computation independently from an underlying

logic (e.g. ZFC). We proceed to define Turing categories, and show how they relate

to partial combinatory algebras.

Definition 4.6. Let A be a cartesian restriction category.

(i) Let τX,Y : X × A→ Y be a map in A. A map f : X × Z → Y is said to admit

a τX,Y -index in case there exists a total map h : Z → A such that

X × A
τX,Y // Y

X × Z
1×h

OO

f

;;

commutes. In this case we call h a τX,Y -index for f .

(ii) A map τX,Y : X × A → Y is called a universal application in case for every

object Z, every map f : X × Z → Y admits a τX,Y -index.

(iii) A Turing object in A is an object A of A such that for each X, Y of A there is

a universal application map τX,Y : X × A→ Y .

Definition 4.7. A Turing category is a cartesian restriction category with a Turing

object.

Our next aim will be to make the relationship between partial combinatory alge-

bras in some category and Turing categories precise. In the process, we introduce an

alternate characterization of Turing categories, allowing us to define them in terms

of a universal object with a “Turing morphism”. This presentation is often more

convenient.
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Definition 4.8. Given objects X, Y of a category X, we say X is a retract of Y in

case there are maps s : X → Y , r : Y → X such that sr = 1X . We call s the section,

and t the retraction, and write (s, r) : X / Y .

Definition 4.9. An object A of a category X is called a universal object in case every

object X of X is a retract of A.

Lemma 4.10. If A is the Turing object of a Turing category A, then A is a universal

object.

Proof. Let X be an object of A and let h : X → A be a τ1,X-index for π1 : 1×X → X.

Observe that

1× A
τ1,X // X

1×X
1×h

OO

π1

;;

commutes. Now, we use 〈!X , 1〉(1×h)π1 : X → A as the section and 〈!A, 1〉τ1,X : A→

X as the retraction, and it is easy to see that

〈!X , 1〉(1× h)π1〈!A, 1〉τ1,X = 〈!X , 1〉π1h〈!A, 1〉τ1,X = h〈!A, 1〉τ1,X

= 〈!A, h〉τ1,X = 〈!X , 1〉(1× h)τ1,X = 〈!X , 1〉π1 = 1

as required.

Definition 4.11. A Turing morphism for an object A in a cartesian restriction cat-

egory A is a universal application map • : A× A→ A.

If A is a Turing object, clearly τA,A is a Turing morphism for A, so the Turing

object of every Turing category posesses a Turing morphism. The converse does not

hold. While an object with a Turing morphism is a Turing object in its computable

map category, it need not be a Turing object in the ambient category. However, if the

object in question is also a universal object, then it is a Turing object in the ambient

category:
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Lemma 4.12. Let A be a cartesian restriction category, A be a universal object in

A, and • : A×A→ A be a Turing morphism for A. Then A is a Turing object in A.

Proof. It suffices define a universal application map τX,Y : X ×A→ Y for every two

objects X, Y of A. To that end, Define τX,Y by

X × A sX×1 // A× A • // A
rY // Y

where (sX , rX) : X /A, (sY , rY ) : Y /A. Now, let f : X ×Z → Y , and let h : Z → A

be a •-index for (rX × 1)fsY : A× Z → A as in

A× A • // A

A× Z
(rX×1)fsY

;;

1×h

OO

Then we have

X × A sX×1 // A× A • // A
rY // Y

X × Z
1×h

OO

sX×1
// A× Z
1×h

OO

rX×1
// X × Z

fsY

OO

f

;;

but τX,Y = (sX × 1) • rY and f = (sX × 1)(rX × 1)f means we then have

X × A
τX,Y // Y

X × Z
1×h

OO

f

;;

and so h : Z → A is a τX,Y -index for f . Since f : X × Z → Y was arbitrary, we

have shown that τX,Y is a universal application map, and then since X and Y were

arbitrary we have that A is a Turing object in A.

We have now shown

66



Theorem 4.13. The following are equivalent for a cartesian restriction category A:

(i) A is a Turing category.

(ii) There is a universal object A of A with a Turing morphism • : A× A→ A.

The relationship to partial combinatory algebras is now clear. The computable

map category of a partial combinatory algebra is a Turing category, and Turing object

and Turing morphism form a partial combinatory algebra in any Turing category.

The appropriate notion of a morphism between Turing categories would appear

to be an applicative morphism in the sense of Longley [29], the details of which have

been worked out for very general settings, including Turing categories, in [9]. While

one could certainly ask about the relationship between these generalized applicative

morphisms and the constructions on Turing categories we present in the sequel, we

leave this for future work.

Note also that the idempotent splitting of every Turing category is also a Turing

category [8].

While Turing categories need not be cartesian closed restriction categories due to

the presence of multiple potential exponential transposes of a given map (like the way

each partial recursive function is indexed by many elements of N), they do have the

rest of the cartesian closed structure. This is captured as follows:

Definition 4.14. A cartesian restriction category X is weakly cartesian closed in case

for each pair A,B of objects of X there is an object TA,B and a map τA,B : A×TA,B →

B such that for every map f : A × C → B of X there is a (not necessarily unique)

total map h : C → TA,B for which

A× TA,B
τA,B // B

A× C

1×h
OO

f

::

commutes. We call such an h a weak exponential transpose of f .
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Lemma 4.15. Every Turing category is weakly cartesian closed.

Proof. Let T be the Turing object. Then TA,B := T for every pair of objects A,B,

and we are done.

Similarly, while Turing categories need not have coproducts, they do admit the

following, weaker structure:

Definition 4.16. A restriction category X is said to have weak binary coproducts in

case for every pair A,B of objects of X, there is an object A#B of X with total maps

κ : A → A#B and κ′ : B → A#B such that if f : A → C and g : B → C are maps

in X, there exists a map ν : A#B → C making

A κ //

f ""

A#B

ν
��

B
κ′oo

g
||

C
commute.

Lemma 4.17. Every Turing category has weak binary coproducts.

Proof. Let T be the Turing object, and let τ : (T × T ) × T → T be a universal

application map. Define total maps p0, p1 : T → T as follows

(T × T )× T τ // T

(T × T )× T

1×p0

OO

π0π0

99 (T × T )× T τ // T

(T × T )× T

1×p1

OO

π0π1

99

And define the weak coproduct of A and B to be

A
κ // A#B B

κ′oo

where A#B := T × T , κ := sA〈1, p0〉, and κ′ := sB〈1, p1〉.

Now, suppose f : A → C and g : B → C. Define total maps cf : 1 → T and

cg : 1→ T as in

68



T × T τ // T

T × 1

1×cf

OO

π0rAfsC

<< T × T τ // T

T × 1

1×cg

OO

π0rBgsC

<<

and define ν : T × T → C by

ν := (1× 〈〈!cf , !cg〉, 1〉τ)τrC

We must show that

A
κ //

f ##

T × T
ν
��

B
κ′oo

g
{{

C
commutes, which we do now:

κν = sA〈1, p0〉(1× 〈〈!cf , !cg〉, 1〉τ)τrC

= sA〈1, p0〈〈!cf , !cg〉, 1〉τ〉τrC

= sA〈1, 〈〈!cf , !cg〉, 1〉(1× p0)τ〉τrC

= sA〈1, 〈〈!cf , !cg〉, 1〉π0π0〉τrC

= sA〈1, !cf〉τrC = 〈sA, !〉(1× cf )τrC

= 〈sA, !〉π0rAfsCrC = f

and

κ′ν = sB〈1, p1〉(1× 〈〈!cf , !cg〉, 1〉τ)τrC

= sB〈1, p1〈〈!cf , !cg〉, 1〉τ〉τrC

= sB〈1, 〈〈!cf , !cg〉, 1〉(1× p1)τ〉τrC
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= sB〈1, 〈〈!cf , !cg〉, 1〉π0π1〉τrC

= sB〈1, !cg〉τrC = 〈sB, !〉(1× cg)τrC

= 〈sB, !〉π0rBgsCrC = g

This weak structure will be useful later. When we construct the category of

assemblies, strong structure in the base category will be present in the category of

assemblies only when the category of realizers, from which tracking maps are drawn,

has the corresponding weak structure.
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5 Assemblies

Given a partial combinatory algebra A = (A, •) in the category of sets and partial

functions, we can construct the category of assemblies on A [36]. This category can

be understood as a “universe of computable functions” generated by A. Its objects

are the “datatypes” that can be represented with A, and its morphisms can be seen

as the “A-computable” maps between these datatypes.

In this chapter, we introduce a generalization of the category of assemblies. We

begin by recalling the classical construction. For a partial combinatory algebra (A, •)

in the category of sets and partial functions, the category of assemblies is defined as

follows:

objects are pairs (X,ϕ) where X is a set and ϕ : X → P∗(A) is a function assigning

a nonempty subset of A to each element of X.

arrows f : (X,ϕ) → (Y, ψ) are (total) maps f : X → Y in the category of (total)

functions on sets that are tracked by some element of A. That is, there exists an

element a ∈ A satisfying

∀x ∈ X.∀b ∈ A.b ∈ ϕ(x)⇒ ((a • b) ↓ ∧(a • b) ∈ ψ(f(x)))

In this case we say f is tracked by a.

composition and identities are given by composition and identites in the category

of functions on sets. 1X is tracked by 〈x〉x , giving 1(X,ϕ) : (X,ϕ) → (X,ϕ), and

if f : (X,ϕ) → (Y, ψ) and g : (Y, ψ) → (Z, χ) are given by functions f : X → Y ,

g : Y → Z and tracked by a, b ∈ A respectively, then the composite fg is tracked

by 〈x〉b(ax), giving the composite fg : (X,ϕ)→ (Z, χ).

For example, for n ∈ N, let n ∈ A be the nth Church numeral in A, and consider

the assembly (N, ω) where ω : N → P∗(A) is defined by ω(n) = {n}. A map
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f : (N, ω) → (N, ω) is then a function f : N → N such that there exists some a ∈ A

with

∀x ∈ N.(a • x) ↓ ∧(a • x) = f(n)

which says that there is an A-computable map that does what f does to elements of

N to the elements of A that represent them.

This category of assemblies is regular, cartesian closed, and has finite colimits.

[29] [36].

Birkedal [4] gave a more general construction of the category of assemblies, in

which the partial combinatory algebra is replaced by a weakly cartesian closed re-

striction category. He used a cartesian restriction functor from this category to partial

functions on sets to construct a realizability tripos and category of assemblies that

capture the traditional category of assemblies and realizability tripos as special cases.

We take this approach further, replacing both the weakly cartesian closed re-

striction category and category of partial functions on sets by arbitrary cartesian

restriction categories, and consider a cartesian restriction functor between them.

5.1 Assemblies for a Restriction Functor

Definition 5.1. Let A be a restriction category, X be a cartesian restriction category,

and F : A→ X be a restriction functor. The restriction category of assemblies on F ,

written asm(F ), is given by

objects are restriction idempotents ϕ ∈ O(F (A)×X), ψ ∈ O(F (B)× Y ), and

so on for A,B objects of A, X, Y objects of X. We refer to objects of asm(F ) as

assemblies.

arrows ϕ
f−→ ψ between assemblies ϕ ∈ O(F (A)×X) and ψ ∈ O(F (B)× Y ) are

maps f : X → Y of X for which there exists a tracking map γ : A→ B in A. That
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is, a map γ : A→ B satisfying

[Tk.1] ϕ(F (γ)× f) = ϕ(F (γ)× f)ψ

[Tk.2] ϕ(1× f) = ϕ(F (γ)× f)

composition of arrows is given by composition of the corresponding arrows in X.

identities The identity map for ϕ ∈ O(F (A)×X) is given by 1X in X.

restriction is as in X. That is, the domain of definition of ϕ
f−→ ψ, corresponding

to f : X → Y in X, is ϕ
f−→ ϕ, corresponding to f : X → X in X.

When talking about asm(F ) for a restriction functor F : A→ X, we will refer to

X as the base category and A as the category of realizers. To understand the tracking

identities, we can think of [Tk.1] as insisting that for the part of F (A)×X on which

ϕ is defined, the image of F (γ)× f is in the part of F (B)× Y on which ψ is defined,

and we can think of [Tk.2] as insisting that for the part of F (A)×X on which ϕ is

defined, if f is defined, then so is F (γ).

Proposition 5.2. asm(F ) is a restriction category.

Proof. To establish this, we must show that the composition, identities, and restric-

tion above are well-defined in the following sense. For composition, if f, g are com-

posable maps of asm(F ) corresponding to (necessarily composable) maps f, g of X,

then the composite fg in X must give a map in asm(F ). That is, it must be tracked

by some map γ of A. Similarly, for identities and restriction we must show that 1X

gives a map ϕ→ ϕ for any assembly ϕ ∈ O(F (A)×X), and that if ϕ
f−→ ψ is a map

of asm(F ) corresponding to f : X → Y in X, then f : X → X gives a map ϕ
f−→ ϕ

of asm(F ). Once we have shown this, we are done. That composition is associative,

identities are left and right identites, and that the restriction operator satisfies the

restriction axioms follows from the fact that this is the case in X.
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We begin with composition. If ϕ ∈ O(F (A)×X), ψ ∈ O(F (B)× Y ), χ ∈

O(F (C)× Z) are assemblies, with ϕ
f−→ ψ and ψ

g−→ χ arrows of asm(F ), then

there exist tracking maps γ : A→ B, δ : B → C for f and g respectively. Using the

fact that the tracking identities are satisfied for these pairs of maps, we show that γδ

tracks fg, giving an arrow of assemblies ϕ
fg−→ χ by checking the tracking identities

[Tk.1]

ϕ(F (γδ)× fg) = ϕ(F (γ)× f)(F (δ)× g) = ϕ(F (γ)× f)ψ(F (δ)× g)

= ϕ(F (γ)× f)ψ(F (δ)× g)χ = ϕ(F (γ)× f)(F (δ)× g)χ

= ϕ(F (γδ)× fg)χ

[Tk.2]

ϕ(F (γδ)× fg) = ϕ(F (γ)× f)ψ(F (δ)× g) = ϕ(F (γ)× f)ψ(F (δ × g))

= ϕ(F (γ)× f)ψ(1× g) = ϕ(F (γ)× fg) = ϕ(1× fg)(F (γ)× 1)

= ϕ(1× f)(1× fg)(F (γ)× 1) = ϕ(F (γ)× f)(1× fg) = ϕ (F (γ)× f)(1× fg)

= ϕ(F (γ)× f)ϕ(1× fg) = ϕ(1× f)ϕ(1× f)(1× g) = ϕ(1× fg)

and so fg is again an arrow in asm(F ). Composition is associative because composi-

tion in X is associative.

For identity maps, ϕ
1ϕ−→ ϕ is given by 1X in X, tracked by 1A in A since

[Tk.1]

ϕ(F (1)× 1) = ϕ = ϕϕ = ϕ(F (1)× 1)ϕ

[Tk.2]

ϕ(F (1)× 1) = ϕ(1× 1)
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The left and right identity axioms hold because they do in X.

For the restriction structure, if fϕ → ψ is a map in asm(F ) corresponding to

f : X → Y in X, f : X → X is tracked by the identity map as

[Tk.1]

ϕ(F (1A)× f)ϕ = ϕ(1× f)ϕ = ϕ(1× f)ϕϕ

= ϕ(1× f)ϕ = ϕ(1× f) = ϕ(F (1A)× f)

[Tk.2]

ϕ(F (1A)× f) = ϕ(1× F )

and thus gives a map ϕ
f−→ ϕ of asm(F ). The four restriction category axioms are

satisfied because they are satisfied in X.

Notice that when A is the computable map category of a partial combinatory

algebra (A, •) in partial functions on sets, and X is the category of partial functions

on sets itself, with I : A→ X the inclusion functor, the category of assemblies asm(I)

is as follows

objects are restriction idempotents ϕ ∈ O(A×X) in the category of partial func-

tions on sets for any set X. Such an idempotent determines a relation between A

and X, which in turn determines a function X → P∗(A). Therefore, an equivalent

characterization of the objects of asm(I) is as pairs (X,ϕ) where X is a set and

ϕ : X → P∗(A) is a function mapping each element of X to a nonempty subset of

A.

arrows (X,ϕ) → (Y, ψ) are partial functions f : X → Y for which there exists a

tracking map γ satisfying
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[Tk.1]

∀x ∈ X.∀b ∈ A.(b ∈ ϕ(x) ∧ f(x) ↓ ∧ γ(b) ↓)⇒ γ(b) ∈ ψ(f(x))

[Tk.2]

∀x ∈ X.∀b ∈ A.(b ∈ ϕ(x) ∧ f(x) ↓)⇒ γ(b) ↓

which is the case precisely when

∀x ∈ X.∀b ∈ A.(b ∈ ϕ(x) ∧ f(x) ↓)⇒ (γ(b) ↓ ∧γ(b) ∈ ψ(f(x)))

holds. Since γ is an A-computable map, we can restate this in terms of a tracking

element a ∈ A such that

∀x ∈ X.∀b ∈ A.(b ∈ ϕ(x) ∧ f(x) ↓)⇒ ((a • b) ↓ ∧(a • b) ∈ ψ(f(x)))

The only difference between asm(I) and the traditional category of assemblies is that

maps in asm(I) are given by partial maps between sets, while traditionally these maps

must be total. When we consider only the total maps, the tracking identities can be

further simplified to

∀x ∈ X.∀b ∈ A.x ∈ ϕ(x)⇒ ((a • b) ↓ ∧(a • b) ∈ ψ(f(x)))

since f(x) ↓ always. Thus, total(asm(I)) is the traditional category of assemblies of

the partial combinatory algebra (A, •).

Having related it to the traditional one [36], we proceed to investigate the cate-

gorical structure of our construction. Partial product structure is straightforward to

establish:

Proposition 5.3. If A and X are cartesian restriction categories and F : A→ X is
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a cartesian restriction functor, then asm(F ) is a cartesian restriction category

Proof. We must show that asm(F ) has both a restriction terminal object, and re-

striction products. As in the proof that asm(F ) is a restriction category, this involves

showing that certain maps in the base category X have tracking maps in A, and so

give maps in asm(F ). That these maps satisfy the required identities is then, as

before, a consequence of the corresponding maps in X satisfying those identities.

The restriction terminal object in asm(F ) is the assembly given by the identity

map 1 ∈ O(F (1)× 1) in X. The unique total map into the terminal object ϕ
!ϕ−→ 1

is given by the map !X : X → 1 in X, which is tracked by !A : A→ 1 in A since

[Tk.1]

ϕ(F (!)×!)1 = ϕ(F (!)×!)

[Tk.2]

ϕ(F (!)×!) = ϕ(F (!)× !) = ϕ(1× !) = ϕ(1×!)

and thus gives a map in asm(F ). This map satisfies the requirements in the definition

of restriction terminal object because !X satisfies those requirements in X, and so

asm(F ) has a restriction terminal object.

The restriction product of two assemblies ϕ ∈ O(F (A)×X) and ψ ∈ O(F (B)× Y )

is defined by

(ϕ ∗ ψ) ∈ O(F (A×B)×X × Y )

(ϕ ∗ ψ) := ex(ϕ× ψ)ex

where ex denotes the interchange map, the total map which swaps the position of

the two middle components of a four-component product. We note that, since F

preserves products, F (A×B)×X × Y = F (A)×F (B)×X × Y , allowing the use of

the interchange map. For this to be an object of asm(F ), (ϕ∗ψ) must be a restriction
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idempotent. Using that exex = 1, we have

(ϕ ∗ ψ) = ex(ϕ× ψ)ex = ex(ϕ× ψ) = ex(ϕ× ψ)exex

= ex(ϕ× ψ)ex = ex(ϕ× ψ)ex = ex(ϕ× ψ)ex = (ϕ ∗ ψ)

as required. The projection maps (ϕ ∗ ψ)
π0−→ ϕ and (ϕ ∗ ψ)

π1−→ ψ are the corre-

sponding projections π0 : X × Y → X, π1 : X × Y → Y in X. The tracking maps are

π0 : A×B → A and π1 : A×B → B respectively. For π0:

[Tk.1]

(ϕ ∗ ψ)(F (π0)× π0)ϕ = ex(ϕ× ψ)ex(π0 × π0)ϕ = ex(ϕ× ψ)π0ϕ

= ex〈π0ϕ, π1ψ〉π0ϕ = exπ1ψπ0ϕϕ = exπ1ψπ0ϕ = ex〈π0ϕ, π1ψ〉π0

= ex(ϕ× ψ)π0 = ex(ϕ× ψ)ex(F (π0)× π0) = (ϕ ∗ ψ)(F (π0)× π0)

[Tk.2]

(ϕ ∗ ψ)(F (π0)× π0) = (ϕ ∗ ψ)(F (π0)× π0) = (ϕ ∗ ψ)(1× π0)

with the tracking identities for π1 following from a similar argument. We proceed to

show that the diagram

ϕ (ϕ ∗ ψ)
π0oo π1 // ψ

is a restriction product in asm(F ). To that end, suppose that χ ∈ O(F (C)× Z) is

an assembly, and that χ
f−→ ϕ and χ

g−→ ψ are arrows of asm(F ) corresponding to

arrows f : Z → X tracked by γ : C → A and g : Z → Y tracked by δ : C → B

respectively. We define the mediating map χ
〈f,g〉−→ (ϕ ∗ ψ) to be the mediating map

〈f, g〉 : Z → X × Y in X, which is tracked by 〈γ, δ〉 : C → A×B as follows
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[Tk.1]

χ(F (〈γ, δ〉)× 〈f, g〉)(ϕ ∗ ψ) = χ(F (∆)×∆)(F (γ × δ)× f × g)(ϕ ∗ ψ)

= χ(F (∆)×∆)(F (γ)× F (δ)× f × g)ex(ϕ× ψ)ex

= χ(∆×∆)ex(F (γ)× f × F (δ)× g)(ϕ× ψ)ex

= χ∆((F (γ)× f)ϕ× (F (δ)× g)ψ)ex

= ∆(χ(F (γ)× f)ϕ× χ(F (δ)× g)ψ)ex

= ∆(χ(F (γ)× f)× χ(F (δ)× g))ex

= χ(∆×∆)ex(F (γ)× f × F (δ)× g)ex

= χ(F (∆)×∆)(F (γ × δ)× f × g)exex

= χ(F (〈γ, δ〉)× 〈f, g〉)

[Tk.2]

χ(F (〈γ, δ〉)× 〈f, g〉) = χ(F (∆)×∆)(F (γ × δ)× f × g)

= χ(∆×∆)(F (γ)× F (δ)× f × g)ex = χ∆(F (γ)× f × F (δ)× g)

= ∆(χ(F (γ)× f)× χ(F (δ)× g)) = ∆(χ(F (γ)× f)× χ(F (δ)× g))

= ∆(χ(1× f)× χ(1× g)) = ∆(χ(1× f)× χ(1× g))

= χ(∆×∆)ex(1× f × 1× g) = χ(F (∆)×∆)(1× 1× f × g)

= χ(1× 〈f, g〉)

and so 〈f, g〉 is well defined. That it is the unique map for which

χ
f

{{

g

##
〈f,g〉
��

ϕ (ϕ ∗ ψ)π0
oo

π1
// ψ

commutes with 〈f, g〉π0 = gf and 〈f, g〉π1 = fg follows from this being the case in
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X. In some sense the entire restriction product structure has been inherited from X.

We have now shown that restriction products exist in asm(F ), and in turn that it is

a cartesian restriction category.

Before moving on to more complex structure in the category of assemblies, we note

that the functor F : A→ X allows us to define another functor H : A→ asm(F ).

Lemma 5.4. There is a restriction functor H : A→ asm(F ).

Proof. On objects A of A, define H(A) to be the assembly ∆(−1) ∈ O(F (A)× F (A)).

On maps f : A → B in A, define H(f) : H(A) → H(B) to be the map given by

F (f) : F (A)→ F (B) in X. F (f) is tracked by f in A as follows:

[Tk.1]

∆(−1)(F (f)× F (f))∆(−1) = ∆(−1)∆(F (f)× F (f))∆(−1)∆

= ∆(−1)F (f)∆∆(−1)∆ = ∆(−1)F (f)∆

= ∆(−1)∆(F (f)× F (f)) = ∆(−1)(F (f)× F (f))

[Tk.2]

∆(−1)(F (f)× F (f)) = ∆(−1)∆〈π0F (f), π1F (f)〉

= ∆(−1)〈∆π0F (f),∆π1F (f)〉 = ∆(−1)〈F (f), F (f)〉

= ∆(−1)F (f) = ∆(−1)〈1, F (f)〉

= ∆(−1)〈∆π0,∆π1F (f)〉 = ∆(−1)∆〈π0, π1F (f)〉

= ∆(−1)(1× F (f))

Thus, H(f) is well-defined. That H is a restriction functor follows immediately from

F being a restriction functor.
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We remark that H inherits many other properties of F in the same way. For

example, if F is a cartesian restriction functor, so is H, if F is faithful (or even an

embedding), so is H, and if F preserves joins, so does H.

5.2 Adding Structure

Our eventual goal is to construct the realizability tripos associated with the category

of assemblies. For this, we will require more categorical structure, which in turn re-

quires stronger assumptions about the cartesian restriction categories involved. Recall

that the traditional category of assemblies is regular, cartesian closed, and has finite

colimits. Each of these properties has a restriction categorical counterpart. Regu-

larity is related to having ranges [22] [23], discreteness ensures the existence of finite

restriction colimits, and the counterpart of a cartesian closed category is a cartesian

closed restriction category.

We show that, with no additional assumptions on the category of realizers, if the

base category has ranges, so does the category of assemblies, and that if the base

category is discrete, so is the category of assemblies. With the additional assumption

that the category of realizers is a weakly cartesian closed restriction category (such as

a Turing category) we show that if the base category is a cartesian closed restriction

category, so is the category of assemblies. This is not all strictly necessary for the

construction of the realizability tripos as every discrete cartesian closed restriction

category necessarily has ranges, but it is interesting that the category of realizers is

required only to be a cartesian restriction category for the category of assemblies to

inherit the discrete and range structure of the base category. We complete the story

by showing that if the base category has finite joins and the category of realizers is

a discrete cartesian restriction category with finite interleaving, then the category of

assemblies has finite joins.

Lemma 5.5. If ϕ ∈ O(F (A)×X) is an assembly and e ∈ O(X) is a restriction
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idempotent in X, then e is tracked by the identity map 1A, and gives a restriction

idempotent e ∈ O(ϕ) in asm(F ).

Proof. We need only show that the two tracking identities are satisfied:

[Tk.1]

ϕ(F (1A)× e)ϕ = ϕ(F (1A)× e)ϕ = ϕϕ(F (1A)× e)

= ϕ(F (1A)× e)

[Tk.2]

ϕ(F (1A)× e) = ϕ(1F (A) × e)

as required.

Corollary 5.6. If X has universal quantification, so does asm(F ). If X has existential

quantification, so does asm(F ). In particular, this means that if X has ranges, so does

asm(F ), as having existential quantification implies that each map is open. (See [22]

[23]).

Proposition 5.7. If A is a cartesian restriction category, X is a discrete cartesian

restriction category, and F : A → X is a cartesian restriction functor, then asm(F )

is a discrete cartesian restriction category.

Proof. It suffices to show that for two maps f, g : ϕ → ψ of asm(F ) where ϕ ∈

O(F (A)×X), ψ ∈ O(F (B)× Y ), with underlying maps f, g : X → Y in X, tracked

by a, b : A → B in A respectively, the meet f ∩ g : X → Y is tracked, giving a map

ϕ→ ψ of asm(F ). In that case, the meet identities are satisfied because they hold in

X, and asm(F ) is therefore discrete. We actually have two tracking maps for f ∩ g,

as either of a, b suffices. We show that a tracks the meet
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[Tk.1]

ϕ(F (a)× (f ∩ g))ψ = ϕ(F (a)× (f ∩ g) f)ψ

= ϕ(1× (f ∩ g))(F (a)× f)ψ = (1× (f ∩ g))ϕ(F (a)× f)ψ

= (1× (f ∩ g))ϕ(F (a)× f) = ϕ(1× (f ∩ g))(F (a)× f)

= ϕ(F (a)× (f ∩ g) f) = ϕ(F (a)× (f ∩ g))

[Tk.2]

ϕ(F (a)× (f ∩ g)) = ϕ(1× (f ∩ g))(F (a)× f)

= (1× (f ∩ g))ϕ(F (a)× f) = (1× (f ∩ g))ϕ(1× f)

= ϕ(1× (f ∩ g) f) = ϕ(1× (f ∩ g))

as required.

Proposition 5.8. If A is a weakly cartesian closed restriction category, X is a discrete

cartesian closed restriction category, and F : A→ X is a cartesian restriction functor,

then asm(F ) is a cartesian closed restriction category.

Proof. We write TA,B for the weak exponential of A,B in A, and write the corre-

sponding evaulation map as τA,B : A× TA,B → B.

Let ϕ ∈ O(F (A)×X) and ψ ∈ O(F (B)× Y ) be objects of asm(F ). We define

the exponential assembly ψϕ ∈ O(F (TA,B)× Y X) as follows

ψϕ :=λ((ϕ× 1)ex(F (τA,B)× ev)) ∩ λ((ϕ× 1)ex(F (τA,B)× ev)ψ)

λ((ϕ× 1)ex(F (τA,B)× ev)!) ∩ λ((ϕ× 1)ex(1× ev)!)

where the typing is given by ev : X × Y X → Y . The idea being that a map of
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assemblies ψϕ is a map Y X of X together with a tracking map in TA,B of A. Our

exponential idempotent ψϕ ∈ O(F (TA,B)× Y X) is defined precisely when the F (TA,B)

component of the product tracks the Y X component as a map ϕ → ψ in asm(F ).

The left and right conjuncts that form ψϕ ensure that tracking identities [Tk.1] and

[Tk.2] hold, respectively.

The evaluation map ϕ∗ψϕ ev−→ ψ is given by ev : X×Y X → X in X, with tracking

map τA,B : A× TA,B → B. For the tracking identities, we have

[Tk.1]

(ϕ ∗ ψϕ)(F (τ)× ev)ψ

= ex(1× ψϕ)(ϕ× 1)ex(F (τ)× ev)ψ

= ex(1× ψϕ)(1× λ((ϕ× 1)ex(F (τ)× ev)ψ))ev

= ex(1× ψϕλ((ϕ× 1)ex(F (τ)× ev)ψ))ev

= ex(1× ψϕλ((ϕ× 1)ex(F (τ)× ev)))ev

= ex(1× ψϕ)(1× λ((ϕ× 1)ex(F (τ)× ev)))ev

= ex(1× ψϕ)(ϕ× 1)ex(F (τ)× ev)

= (ϕ ∗ ψϕ)(F (τ)× ev)

[Tk.2]

(ϕ ∗ ψϕ)(F (τ)× ev)

= ex(1× ψϕ)(ϕ× 1)ex(F (τ)× ev)!

= ex(1× ψϕ)(1× λ((ϕ× 1)ex(F (τ)× ev)!))ev

= ex(1× ψϕ)(1× λ((ϕ× 1)ex(1× ev)!)ev

= ex(1× ψϕ)(ϕ× 1)ex(1× ev)!

= (ϕ ∗ ψϕ)(1× ev)
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as required.

We proceed to show that our construction is the exponential. Suppose χ ∈

O(F (C)× Z) is an assembly, and that (ϕ ∗ χ)
f−→ ψ is a map of asm(F ) corre-

sponding to f : X × Z → Y in X with tracking map γ : A × C → B in A. We

must define, for every e ∈ O(χ), an exponential transpose χ
λe(f)−→ ψϕ in asm(F ). This

is the map given by λe(f) : Z → Y X in X, tracked by any weak transpose of γ,

h : C → TA,B in A, as in

A× TA,B τ // B

A× C
γ

::

1×h
OO

We show the tracking identities:

[Tk.1] We work with each of the two idempotents that make up ψϕ separately.

First, we have

χ(F (h)× λe(f))λ((ϕ× 1)ex(F (τ)× ev))

= χ(F (h)× λe(f))λ((1× χ(F (h)× λe(f)))(ϕ× 1)ex(F (τ)× ev))

= χ(F (h)× λe(f))λ((ϕ× χ)(1× 1× F (h)× λe(f))ex(F (τ)× ev))

= χ(F (h)× λe(f))λ((ϕ× χ)ex(1× F (h)× 1× λe(f))(F (τ)× ev))

= χ(F (h)× λe(f))λ(exex(ϕ× χ)ex((1× F (h))F (τ)× (1× λe(f))ev))

= χ(F (h)× λe(f))λ(ex(ϕ ∗ χ)(F (γ)× f))

= χ(F (h)× λe(f))λ(ex(ϕ ∗ χ)(F (γ)× f)ψ)

= χ(F (h)× λe(f))λ((1× χ(F (h)× λe(f)))(ϕ× 1)ex(F (τ)× ev)ψ)

= χ(F (h)× λe(f))λ((ϕ× 1)ex(F (τ)× ev)ψ)

which gives

χ(F (h)× λe(f))λ((ϕ× 1)ex(F (τ)× ev) ∩ λ((ϕ× 1)ex(F (τ)× ev)ψ)
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= χ(F (h)× λe(f))λ((ϕ× 1)ex(F (τ)× ev))χ(F (h)× λe(f))

= χ(F (h)× λe(f))

Next, we have

χ(F (h)× λe(f))λ((ϕ× 1)ex(1× ev)!)

= χ(F (h)× λe(f))λ((1× χ(F (h)× λe(f)))(ϕ× 1)ex(1× ev)!)

= χ(F (h)× λe(f))λ((ϕ× χ)ex((1× F (h))× (1× λe(f))ev)!)

= χ(F (h)× λe(f))λ(exex(ϕ× χ)ex((1× F (h))× f)!)

= χ(F (h)× λe(f))λ(ex(ϕ ∗ χ)(1× f)!)

= χ(F (h)× λe(f))λ(ex(ϕ ∗ χ)(F (γ)× f)!)

= χ(F (h)× λe(f))λ((ϕ× χ)ex(F (h)× 1× λe(f)× 1)(F (τ)× ev)!)

= χ(F (h)× λe(f))λ((1× χ(F (h)× λe(f)))(ϕ× 1)ex(F (τ)× ev)!)

= χ(F (h)× λe(f))λ((ϕ× 1)ex(F (τ)× ev)!)

which gives

χ(F (h)× λe(f))λ((ϕ× 1)ex(F (τ)× ev)!) ∩ λ((ϕ× 1)ex(1× ev)!)

= χ(F (h)× λe(f))λ((ϕ× 1)ex(F (τ)× ev)!)χ(F (h)× λe(f))

= χ(F (h)× λe(f))

Together, the above identities give immediately that

χ(F (h)× λe(f))ψϕ = χ(F (h)× λe(f))
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[Tk.2] Since h is total we have

χ(F (h)× λe(f)) = χ(F (h)× λe(f)) = χ(1× λe(f))

so our transpose χ
λe(f)−→ ψϕ is well-defined. Finally, we know (1 × λe(f))ev = f ,

λe(f) = e, and that λe(f) is the unique map with these properties since this is all the

case in X.

We have now shown

Theorem 5.9. If A is weakly cartesian closed restriction category, X is a discrete

cartesian closed restriction category, and F : A→ X is a cartesian restriction functor,

then asm(F ) is a discrete cartesian closed restriction category.

In particular, we have shown that this holds when A is a Turing category, since

every Turing category is weakly cartesian closed.

We also consider joins, and show how joins in the base category correspond to

joins in the category of assemblies when the category of realizers admits interleaving

of maps.

Proposition 5.10. If X is a cartesian restriction category with finite joins, A is a

discrete cartesian restriction category with finite interleaving and F : A → X is a

cartesian restriction functor that preserves joins, then asm(F ) has finite joins.

Proof. We must show that asm(F ) has restriction zeroes and binary joins.

The restriction zero 0ϕ,ψ : ϕ → ψ is given by 0X,Y in X, which is tracked by

rAsB : A→ B in A. Using the fact that for any map k : A→ B we have

(F (k)× 0X,Y ) = (F (k)× 0X,Y )(F (k)× 0X,Y )
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= π0F (k) π10X,Y (F (k)× 0X,Y )

= 0 π0F (k)(F (k)× 0X,Y )

= 0π0F (k)(F (k)× 0X,Y )

= 0

we show the tracking identities as follows.

[Tk.1]

ϕ(F (rAsB)× 0X,Y )ψ = ϕ0ψ = 0 = ϕ0

= ϕ(F (rAsB)× 0X,Y )

[Tk.2]

ϕ(F (rAsB)× 0X,Y ) = ϕ0 = ϕ(1× 0X,Y )

Thus, our restriction zero is well-defined. That 0ϕ,ψ is in fact the restriction zero

in asm(F ) follows immediately from the fact that 0X,Y is the restriction zero in X, as

usual.

The join of two maps f, g : ϕ → ψ with f ^ g is given by the join of the

corresponding maps f, g : X → Y in the base. Clearly f ^ g in X, so f ∨ g : X → Y

is a map in X. If f and g are tracked by γ : A→ B and ω : A→ B respectively, then

any interleaving h : A→ B of γ and ω in A tracks f ∨ g as follows

[Tk.1]

ϕ(F (h)× (f ∨ g))ψ = ϕ(F ((h ∩ γ) ∨ (h ∩ ω))× (f ∨ g))ψ

= ϕ((F (h ∩ γ) ∨ F (h ∩ ω))× (f ∨ g))ψ

88



= ϕ((F (h ∩ γ)× f) ∨ (F (h ∩ ω)× g))ψ

= ϕ((F (h ∩ γ)F (γ)× f) ∨ (F (h ∩ ω)F (ω)× g))ψ

= ϕ(F (h ∩ γ)F (γ)× f)ψ ∨ ϕ(F (h ∩ ω)F (ω)× g)ψ

= ((F (h ∩ γ)× 1)ϕ(F (γ)× f)ψ) ∨ ((F (h ∩ ω)× 1)ϕ(F (ω)× g)ψ)

= ((F (h ∩ γ)× 1)ϕ(F (γ)× f)) ∨ ((F (h ∩ ω)× 1)ϕ(F (ω)× g))

= ϕ((F (h ∩ γ)× f) ∨ (F (h ∩ ω)× g)) = ϕ(F (h)× (f ∨ g)

[Tk.2] Notice that

ϕ(1× f) = ϕ(F (γ)× f) = ϕ(F (γ)× f)

≤ ϕ(F (h)× f) = ϕ(F (h)× f)

≤ ϕ(F (h)× (f ∨ g))

and similarly ϕ(1× g) ≤ ϕ(F (h)× (f ∨ g)). We now have

ϕ(1× (f ∨ g)) = ϕ((1 ∨ 1)× (f ∨ g))

= ϕ((1× f) ∨ (1× g)) = ϕ(1× f) ∨ ϕ(1× g)

= ϕ(1× f) ∨ ϕ(1× g)

≤ ϕ(F (h)× (f ∨ g))

which gives ϕ(F (h)× (f ∨ g)) = ϕ(1× (f ∨ g)) as the reverse inequality clearly

holds.

So f ∨ g : ϕ → ψ is well-defined in asm(F ). That it is the join follows from

f ∨ g : X → Y being the join in X.
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6 Latent Fibrations

Fibrations play an important role in categorical logic, where they are used to model

systems of logic with universal or existential quantification [18]. We are interested in

constructing such logical fibrations, in particular triposes, in our restriction categor-

ical setting. However, the relevant techniques from categorical logic presuppose that

the category on which we base our fibrations is one of total maps, and that the logical

structure is presented accordingly. Logical structure in a restriction category is more

nuanced due to the partiality of the maps, and the techniques must be adapted. In

this chapter, we introduce the restriction categorical analogue of a fibration, called a

latent fibration. We show some elementary properties of latent fibrations, and show

that if a latent fibration reflects total maps, we can construct from it a fibration over

the total map category of the original base category. Finally, we give two examples

of latent fibrations, the properties of which will be investigated in some depth in the

sequel.

6.1 Latent Fibrations

We begin with the definition:

Definition 6.1. Let ∂ : E → X be a restriction functor, with E and X arbitrary

restriction categories.

(i) An arrow f : X ′ → X in E is prone in ∂ in case whenever we have g : Y → X

in E and h : ∂(Y )→ ∂(X ′) in X such that h∂(f) ≥ ∂(g),

in E Y
g

  
∃
∼
h ��
X ′

f
//

≥

X

in X ∂(Y )
∂(g)

##
h
��

∂(X ′)
∂(f)

//
≥

∂(X)

there is a lifting
∼
h: Y → X ′ in X such that
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(a)
∼
h is a candidate lifting. That is,

∼
h f ≥ g and ∂(

∼
h) ≤ h.

(b)
∼
h is the smallest candidate lifting. That is, for any other candidate lifting

k : Y → X ′ in X,
∼
h≤ k.

(ii) A restriction functor ∂ : E → X is a latent fibration in case for each f : A →

∂(X) in X for some X in E, there is a prone arrow over f with codomain X.

It is equivalent to require in the definition that
∼
h f = g, instead of

∼
h f ≥ g, as

follows.

Lemma 6.2. If f is a prone arrow where k∂(f) ≥ ∂(g) and
∼
k is the lifting of k

in E
g

��

∼
k
��

f
//

≥

in X
∂(g)

��
k

��
∂(f)

//
≥

then g
∼
k=
∼
k=
∼
k f and

∼
k f = g.

Proof. Since g
∼
k≤
∼
k and

∼
k f ≤

∼
k trivially, it suffices to show that both g

∼
k and

∼
k f

are candidate liftings of k.
∼
k is ≤ any other candidate lifting of k, and so this gives

the identities immediately.

For g
∼
k, we have g ≤ g

∼
k f immediately, and using the fact that ∂(

∼
k) ≤ k,

∂(g
∼
k)k = ∂(g) ∂(

∼
k)k = ∂(g)∂(

∼
k) = ∂(g

∼
k)

which gives ∂(g
∼
k) ≤ k, meaning g

∼
k is a candidate lifting of k, and so

∼
k= g

∼
k.

For
∼
k f , we know g ≤

∼
k f =

∼
k ff , and using that ∂(

∼
k) = k,

∂(
∼
k f)k = ∂(

∼
k)∂(f)k = k∂(f)k = k∂(f) = ∂(

∼
k)∂(f) = ∂(

∼
k f)

which gives ∂(
∼
k f) ≤ k, meaning

∼
k f is a candidate lifting of k, and so

∼
k=
∼
k f .

Finally,
∼
k f = g

∼
k f = g.
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Many results and constructions involving fibrations have a restriction categorical

analogue for latent fibrations. For example, given a fibration, any two prone arrows

over the same arrow induce an isomorphism between their domains. For a latent

fibration, we show that the analogous situation induces a partial isomorphism instead.

Lemma 6.3. If f, f ′ are prone arrows with codomain Y such that ∂(f) = ∂(f ′)

X
f

  
X ′

f ′
// Y

then there is a unique partial isomorphism α : X → X ′ such that ∂(α) ≤ 1,

αf ′ = f , and α = f , and α−1 = f ′

Proof. Let β, β′ be the liftings of the identity as in

X

β
��

f

  
X ′

f ′
// Y

X ′

β′

��

f ′

  
X

f
// Y

Then by the previous lemma, f ′β′ = β′ = β′f , fβ = β = βf ′, β′f = f ′, and βf ′ = f .

Consider

X
f

  
k
��
X

f
// Y

where k is the lifting of the identity. Since f is a candidate lifting of the identity,

k ≤ f , which also means k = k. We then have

k = k f = k f = kf = kf = f

and therefore we have that f is the lifting of the identity in the above situation.

Now ββ′f = βf ′ = f ≥ f , and ∂(ββ′) = ∂(β)∂(β′) ≤ 1, so ββ′ is a candidate

lifting of the identity as well, meaning that f ≤ ββ′. Then we have
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ββ′ = fββ′ = f

and similarly obtain β′β = f ′. Finally,

β = fβ = f β = β f = βββ′ = ββ′ = f

and similarly β′ = f ′, so ββ′ = β and β′β = β′, which means that β is a partial

isomorphism with β−1 = β′. To see that β is unique, suppose h : X → X ′ is a partial

iso with ∂(h) ≤ 1, hf ′ = f , and h = f . Then h is clearly a candidate lifting of the

identity, and so β ≤ h. This gives β = βh = fh = hh = h and we are done. The

unique partial isomorphism is β : X → X ′, with β−1 = β′ : X ′ → X as above.

Analogous to the fiber of an object in a fibration, we can talk about the fiber of

an object in a latent fibration. Note that maps in a fiber of a latent fibration are not

those above the identity map of an object, but those over any restriction idempotent

on that object.

Definition 6.4. The fiber of B an object of X, written ∂−1(B), is the category whose

objects are objects X of E such that ∂(X) = B, and whose maps are maps f of E

such that ∂(f) ≤ 1B. (That is, such that ∂(f) ∈ O(B)).

Latent fibrations may be cloven, which means the same thing it does for ordinary

fibrations:

Definition 6.5. A latent fibration has a cleavage (is cloven) in case there is a chosen

prone arrow f ∗X : f ∗(X)→ X over each f : A→ B for each X over B.

We construct the analogue for latent fibrations of reindexing functors between the

fibers in a fibration. In general we will only be able to obtain restriction semifunctors,

which are like restriction functors, but do not preserve the identity.
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Definition 6.6. A restriction semifunctor F : X → Y consists of an assignment of

objects A of X to objects F (A) of Y, and an assignment of maps f : A→ B of X to

maps F (f) : F (A)→ F (B) of Y such that F (fg) = F (f)F (g) and F (f) = F (f).

Definition 6.7. Let ∂ : E → X be a cloven latent fibration, and let u : A → B be

a map in X. We define the reindexing semifunctor u∗ : ∂−1(B)→ ∂−1(A) as follows:

on arrows f : X → Y in ∂−1(B), u∗(f) is the arrow u∗(X)→ u∗(Y ) in ∂−1(A) given

by the lifting of the identity for

in E u∗(X)

u∗(f)

��

u∗X

""
X

f

��
u∗(Y )

u∗Y

// Y

in X A

1A

��

u

��
B

∂(f)

  
A u

//

≥

B

where u∗(X) is the domain of the prone map above u with codomain X.

we then have

Proposition 6.8. If ∂ : E→ X is a latent fibration with a cleavage and u : A→ B is

a map in X, then u∗ : ∂−1(B)→ ∂−1(A) as defined above is a restriction semifunctor.

Proof. We must show that u∗(f) = u∗(f) and u∗(fg) = u∗(f)u∗(g).

First, suppose f : X → Y is a map in ∂−1(B). Then u∗(f) is defined as the lifting

of 1A for

u∗(X)
u∗X

""
u∗(f)

��

X
f

��
u∗(X)

u∗X

// X
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Now, u∗(f)u∗X ≥ u∗Xf by

u∗Xf u
∗(f)u∗X = u∗Xf u

∗(f)u∗X = u∗(f)u∗Y u
∗(f)u∗X

= u∗(f)u∗Y u
∗(f)u∗X = u∗(f)u∗Y u

∗
X = u∗(f)u∗Y u

∗
X

= u∗Xfu
∗
X = u∗Xf

and since ∂ is a restriction functor ∂(u∗(f)) ≤ 1A, meaning that u∗(f) is a candidate

lifting of 1A, so we have u∗(f) ≤ u∗(f). In particular, note that this means u∗(f) is

a restriction idempotent. Then, we have

u∗(f) = u∗(f)u∗X = u∗(f)u∗X = u∗Xf = u∗Xf

= u∗(f)u∗Y = u∗(f)u∗Y = u∗(f)

and so u∗ preserves the restriction combinator.

Next, suppose f : X → Y and g : Y → Z are maps of ∂−1(B). Then u∗(fg) is

defined as the lifting of 1A for

u∗(X)
u∗X

""
u∗(fg)

��

X
fg

��
u∗(Z)

u∗Z

// Z

Now, u∗(f)u∗(g)u∗Z = u∗(f)u∗Y g = u∗Xfg ≥ u∗Xfg, and clearly ∂(u∗(f)u∗(g)) ≤ 1A,

so u∗(f)u∗(g) is a candidate lifting of 1A and we have u∗(fg) ≤ u∗(f)u∗(g). Then, we

have

u∗(fg) = u∗(fg)u∗(f)u∗(g) = u∗(fg)u∗Z u
∗(f)u∗(g) = u∗Xfg u

∗(f)u∗(g)
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= u∗(f)u∗Y g u
∗(f)u∗(g) = u∗(f)u∗(g)u∗Z u

∗(f)u∗(g)

= u∗(f)u∗(g)u∗Z u
∗(f)u∗(g) = u∗(f)u∗(g)u∗(f)u∗(g) = u∗(f)u∗(g)

and so u∗ preserves composition, and is therefore a restriction semifunctor.

Definition 6.9. A latent fibration ∂ : E→ X is said to reflect total maps if whenever

f is total and ∂g = f , then g is also total.

These reindexing semifunctors become restriction functors precisely when our la-

tent fibration reflects total maps.

Proposition 6.10. If ∂ : E → X is a latent fibration with a cleavage that reflects

total maps u : A→ B is a total map in X, then u∗ : ∂−1(B)→ ∂−1(A) is a restriction

functor.

Proof. We have already shown that u∗ is a restriction semifunctor. Since ∂ reflects

total maps, we have that u∗X : u∗(X)→ X is total, as u is. This gives

u∗(1X) = u∗(1X) = u∗(1X) = u∗(1X)u∗X

= u∗(1X)u∗X = u∗X = 1u∗(X)

and so u∗ is a restriction functor.

Given a latent fibration over base category X which reflects total maps, there is

a fibration (in the usual sense) over base category total(X). We use the fact that the

category of restriction categories and restriction functors has finite limits [10], and in

particular pullbacks, to construct this fibration.

Proposition 6.11. The pullback of a latent fibration along any restriction functor is

a latent fibration.
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Proof. Suppose ∂ : Z→ Y is a latent fibration, that F : X→ Y is restriction functor,

and consider the pullback

W p1 //

p0
��

Z
∂
��

X
F
// Y

in which the category W is defined by

objects are pairs (X,Z) where X and Z are objects of X and Z respectively which

satisfy F (X) = ∂(Z).

maps of type (X,Z) → (X ′, Z ′) are pairs (f, g) where f and g are maps of X and

Z respectively which satisfy F (f) = ∂(g).

composition and identities are pairwise.

restriction is given by (f, g) = (f, g), which is well defined since, if F (f) = ∂(g),

then F (f) = F (f) = ∂(g) = ∂(g).

and the pullback maps p0, p1 are the first and second projections.

We must show that p0 is a latent fibration. To that end, suppose f : X → X ′ is

a map of X, with (X ′, Z) an object of W. We define the prone map above f to be

(X,F (f)∗(Z))
(f,F (f)∗) // (X ′, Z)

where F (f)∗ is the prone map above F (f) in ∂. F (f) = ∂(F (f)∗) by definition, so

(f, F (f)∗) is a well-defined map of W. We proceed to show that (f, F (f)∗) is prone

in p0. Suppose we have

in W (Y,D)
(g,k)

''
(X,F (f)∗(Z))

(f,F (f)∗)
// (X ′, Z)

in X Y

h
��

g

  
X
≥

f
// X ′

and notice that in this case we must also have
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in Z D
k

$$
F (f)∗(Z)

F (f)∗
// Z

in Y F (Y )

F (h)

��

F (g)

$$
F (X)

≥

F (f)
// F (x′)

The properties of W ensure that F (g) = ∂(k), and we already knew that ∂(F (f)∗) =

F (f). Since ∂ is a latent fibration, we thus have a lifting

∼
F (h): D → F (f)∗(Z)

of F (h) in ∂. Recall that our current goal is to find a lifting of h in p0. This

lifting is (h,
∼

F (h)) : (Y,D)→ (X,F (f)∗(Z)), which is a well-defined map of W since

F (h) = ∂(
∼

F (h)) by definition. We have hf ≥ g by assumption, and
∼

F (h) F (f)∗ ≥ k

because ∂ is a latent fibration, so (h,
∼

F (h))(f, F (f)∗) = (hf,
∼

F (h) F (f)∗) ≥ (g, k),

and our lifting is a candidate lifting. To see that it is the smallest candidate lifting,

suppose (h, ω) is also a candidate lifting of h in p0. Then (h, ω)(f, F (f)∗) ≥ (g, k),

and so in particular ωF (f)∗ ≥ k. But we also know that since (h, ω) is a map of W,

F (h) = ∂(ω), and so ω is a candidate lifting of F (h) in ∂, meaning that
∼

F (h)≤ ω.

This in turn means that (h,
∼

F (h)) ≤ (h, ω), and so (h,
∼

F (h)) is the smallest candidate

lifting of h in p0. We conclude that (f, F (f)∗) is prone in p0, and have therefore

shown that p0 is a latent fibration.

Next, we consider the pullback of a latent fibration ∂ : Z→ X which reflects total

maps along the inclusion total(X)→ X, a special case of the above situation.

Proposition 6.12. If ∂ : Z→ X is a latent fibration which reflects total maps, then

in the pullback

W p1 //

p0
��

Z
∂
��

total(X) // X
the arrow p0 is a fibration.
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Proof. We have already shown that p0 is a latent fibration. Notice that for every map

(f, g) of W, since f is a map of total(X), ∂ reflects total maps, and ∂(g) = f , we

know that f and g are both total maps. Thus, (f, g) = (f, g) = (1, 1) = 1, and so

every map of W is total.

Observe that for total maps h and k, h ≤ k if and only if h = k. Since p0 : W→

total(X) is a latent fibration and the restriction is trivial in both W and total(X), the

inequalities in the definition of a latent fibration are replaced with equalities, and p0

is a fibration.

6.2 The Domain Latent Fibration

Let X be a restriction category, and define the restriction category R(X) by

objects: pairs (X, e) where X is an object of X, and e is a restriction idempotent

on X.

maps: (X, e) to (X ′, e′) are maps f : X → X ′ of X such that e ≤ fe′, or equivalently

e = efe′.

composition: is composition in X. This is well-defined since if

(X, e)
f−→ (X ′, e′)

f ′−→ (X ′′, e′′)

are maps of R(X) given by f : X → X ′ and f ′ : X ′ → X ′′ in X, then we have

eff ′e′′ = efe′ff ′e′′ = efe′ff ′e′′ = efe′f ′e′′

= efe′f ′e′′ = efe′ = e

meaning ff ′ gives a map (X, e)→ (X ′′, e′′) in R(X).

identities: as in X. That is, 1(X,e) = 1X . Trivially e = e1Xe, so this is well-defined.
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restriction: also as in X, with f : (X, e)→ (X, e) for f : (X, e)→ (X ′, e′) given by

f : X → X. This is well-defined as

e = efe′ = effe′ = eeffe′ = efefe′ = ef efe′ = efe

Associativity of composition, the restriction combinator axioms, and the requirements

on identity maps all hold in R(X) immediately since they hold in X.

Now, we define a restriction functor O : R(X)→ X by mapping (X, e) to X, and

mapping f : (X, e) → (X ′, e′) to f : X → X ′. It is easy to see that this is in fact a

restriction functor. In fact, we have:

Proposition 6.13. O : R(X)→ X is a latent fibration.

Proof. Suppose f : X ′ → X in X and let (X, e) be an object ofR(X). Then (X ′, fe) is

also an object of R(X), and f gives a map (X ′, fe)→ (X, e) in R(X) since fe = fefe

trivially. It suffices to show that this map is prone. To that end, suppose that

g : (Y, e′)→ (X, e) and h : Y → X ′ are maps in R(X) and X respectively such that

Y
g

  
h
��
X ′

f
//

≥

X

in X. Then ghf gives a map (Y, e′)→ (X ′, fe) in R(X) since

e′ghf fe = e′gfe = e′ge = e′

and this map is a candidate lifting of h in X as clearly O(ghf) = ghf ≤ h in X

and ghff = ghf = g ≥ g in R(X) since this is the case in X. To see that ghf is

the smallest candidate lifting, suppose k : (Y, e′) → (X ′, fe) has ∂(k) = k ≤ h and
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kf ≥ g. Then ghf ≤ k since

ghf h = ghf h = g h = gkf h

= g kf k h = g kf k ≤ k

and so the lifting of h is ghf , meaning that f is a prone map in R(X) as required.

We refer to O : R(X)→ X as the domain latent fibration.

Notice that the fiber O−1(X) of O are exactly the restriction idempotents on X,

which we have been denoting O(X). We will abuse our notation and often write

O(X) for the fiber over X in O in the sequel.

It is easy to see that O : R(X) → X reflects total maps. Thus, we can pull O

back along the inclusion X→ total(X)

W p1 //

p0
��

R(X)

O
��

total(X) // X
and in doing so obtain a fibration p0 : W→ X.

Consider the restriction category W. In this case, W is defined to be

objects: pairs (X, (Y, e)) where X, Y are objects of X, e ∈ O(Y ), and X = O(Y ) =

Y . We may thus equivalently specify objects of W as pairs (X, e) where e ∈ O(X).

maps: (X, e)→ (X ′, e′) are then pairs (f, g) where f : X → X ′ is a map of total(X),

and g : X → X ′ is a map of X with e ≤ ge′ and f = O(g) = g. Note that it suffices

to supply a total map f : X → X ′ of X with e ≤ fe′.

composition: is now composition of total maps in X.

The identity: on (X, e) is given by 1X in X.

restriction: is trivial.
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It is easy to see that in this situation W is isomorphic to total(R(X)).

We define total(O) : total(R(X)) → total(X) to be the fibration p0 obtained this

way, and refer to total(O) as the domain fibration, since the fiber of X in total(X)

consists of the collection of restriction idempotents on X, which are sometimes called

“domains of definition”.

6.3 The Realizability Latent Fibration

Our second example of a latent fibration is constructed from a category of assemblies.

It turns out that if X is a cartesian restriction category and F : A → X is

a restriction functor, the forgetful functor ∂ : asm(F ) → X is a latent fibration.

Specifically, if ϕ ∈ O(F (A)×X), ψ ∈ O(F (B)× Y ), and f : ϕ → ψ a map in

asm(F ), then ∂(f) is f : X → Y , the underlying map in X. Clearly ∂ is a cartesian

restriction functor.

Proposition 6.14. ∂ : asm(F )→ X as defined above is a latent fibration.

Proof. Suppose f : X → Y is a map in X, and let ψ ∈ O(F (B)× Y ) be an assembly.

Then (1× f)ψ ∈ O(F (B)×X) is also an assembly, and f gives a map (1× f)ψ → ψ

in asm(F ). The tracking map is 1B, and we verify the required identities:

[Tk.1] (1× f)ψ(1× f)ψ = (1× f)ψψ = (1× f)ψ = (1× f)ψ(1× f)

[Tk.2] is immediate.

Now, suppose that in asm(F ) we have an assembly χ ∈ O(F (C)× Z) a map

g : χ → ψ given by g : Z → Y in X tracked by ω : C → B in A such that for some

h : Z → X in X, hf ≥ g

in asm(F ) χ
g

##
(1× f)ψ

f
// ψ

in X: Z

h
��

g

  
X

f
//

≥
Y
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and define the lifting of h to be ghf , which is tracked by ω as a map χ → (1× f)ψ

since

[Tk.1]

χ(F (ω)× ghf)(1× f)ψ = χ(F (ω)× ghff)ψ(F (ω)× ghf)

= χ(F (ω)× ghf)ψ(F (ω)× ghf) = χ(F (ω)× g)ψ(F (ω)× ghf)

= χ(F (ω)× g)(F (ω)× ghf) = χ(1× g)(F (ω)× ghf)

= χ(1× g)(1× ghf) = χ(1× ghf)

[Tk.2]

χ(F (ω)× ghf) = χ(F (ω)× ghf) = χ(F (ω)× g hf)

= χ(F (ω)× g)(1× hf) = χ(F (ω)× g)(1× hf) = χ(1× g)(1× hf)

= χ(1× g)(1× hf) = χ(1× g hf) = χ(1× ghf)

and so gives a map in asm(F ). Clearly ∂(ghf) = ghf ≤ h and ghff = ghf = g ≥ g,

so ghf is a candidate lifting for h. It remains to show that it is the smallest such

candidiate lifting. To that end, suppose that k is also a candiate lifting for h. That

is, ∂(k) = k ≤ h and g ≤ kf . Then, we have gkf = g = ghf , and consequently

g kf = g hf . Additionally, k ≤ h gives gkf ≤ ghf . Now, we can derive

ghfk = g hfk = g kfk = gkf = gkf ghf

= g kf ghf = g hf ghf = ghf ghf = ghf

and so ghf ≤ k, meaning that ghf is the smallest candidate lifting for h, and is

therefore the lifting for h in f . Thus, f : (1× f)ψ → ψ is prone, and ∂ : asm(F )→ X

is a latent fibrantion.
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We refer to ∂ : asm(F )→ X as the realizability latent fibration.

It is easy to see that ∂ : asm(F ) → X reflects total maps. Thus, we can pull ∂

back along the inclusion total(X)→ X

W p1 //

p0
��

asm(F )

∂
��

total(X) // X
to obtain a fibration p0. We again consider what W is defined to be in this situation:

objects are pairs (X,ϕ) in which ϕ ∈ O(F (A)×X) for some A of A. Since ϕ alone

determines the pair, an object of W is an object of asm(F ).

maps of type ϕ→ ψ where ϕ ∈ O(F (A)×X), ψ ∈ O(F (B)×X ′) for A,B objects

of A, X,X ′ objects of X are then total maps f : X → X ′ of X with a tracking

element A→ B in A.

composition, identities, and restriction are all as in asm(F )

Thus, W is isomorphic to total(asm(F )). We define total(∂) : total(asm(F )) →

total(X) to be the fibration p0 obtained this way, and refer to total(∂) as the realiz-

ability fibration, since it is how we construct the realizability tripos in the sequel.
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7 Triposes

Introduced in [31], triposes play an important role in the construction of the classical

realizability topos. A realizability tripos is constructed, and then the realizability

topos is defined in terms of the internal language of the tripos. We construct our

more general realizabilty topos in the same way, constructing a realizability tripos in

the restriction categorical setting, with the associated realizability topos constructed

from this tripos as it is in the classical case (see the final chapter). Further, we notice

that from any tripos one can construct a partial topos in the sense of [13] whose total

maps are the realizability topos. This construction involves a minor modification of

the tripos-to-topos construction, and as such makes use of the internal language of a

tripos. We use the internal language rather informally, and do not provide the details

of the interpretation of proof of soundness here. For this we recommend [36].

7.1 Definition and Internal Logic

Definition 7.1. If X is a cartesian closed category, an X-tripos is a fibration p : E→

X satisfying:

(i) Each fiber of p is a Heyting pre-algebra (a preorder whose poset completion

is a Heyting algebra), and for every map f : X → Y of X, the reindexing

f ∗ : p−1(Y )→ p−1(X) is a morphism of Heyting pre-algebras.

(ii) p has universal and existential quantification. That is, for each map f : X → Y

of X, the reindexing functor f ∗ : p−1(Y ) → p−1(X) has a right adjoint ∀f :

p−1(X) → p−1(Y ) and a Frobenius left adjoint ∃f : p−1(X) → p−1(Y ), both of

which satisfy the Beck-Chevalley condition. That is, if

A

k
��

h // B

f
��

C g
// D
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is a pullback in X, then g∗ ◦ ∀f ' ∀k ◦ h∗, and g∗ ◦ ∃f ' ∃k ◦ h∗.

(iii) p has a generic predicate. That is, an object σ in p−1(Σ) for some Σ in X such

that for every object X in X, every ϕ in p−1(X), there is a map [ϕ] : X → Σ of

X such that ϕ is isomorphic to [ϕ]∗(σ).

It is worth mentioning that it is possible to define a tripos over any cartesian

category, not necessarily cartesian closed [31] [36]. In this more general setting we

require a membership predicate ( [36] Definition 2.1.2) instead of a generic predicate.

In the cartesian closed case the definition is slightly easier to satisfy, and is general

enough for our purposes.

We have already constructed one example of a tripos:

Proposition 7.2. If X is a discrete cartesian closed restriction category, then the

domain fibration total(O) : total(R(X))→ total(X) is a tripos.

Proof. Clearly total(X) is a cartesian closed category. Universal and existential quan-

tification for total(O) are given by the (different notion of) universal and existential

quantification in X, which are both present since X is a discrete cartesian closed re-

striction category. Similarly, that each fiber of total(O) is a Heyting algebra follows

from each O(X) for X in X being a Heyting algebra. We have also shown that for

total maps f of X the pullback functor f ∗ is a Heyting algebra morphism, so we need

only show the existence of a generic predicate. For this, we use the subobject classifier

Ω ev // 1

then ev ∈ O(Ω) is the generic predicate. Suppose e ∈ O(X) for some object X of X.

Then we have χϕ : X → Ω which satisfies

χϕev = χϕev = ϕ! = ϕ

as required.
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The following well known lemma [27] [18] about existential quantification in a

fibered Heyting algebra (such as a tripos) will be useful in the next section:

Lemma 7.3. If ∃f : O(X) → O(Y ) is a left adjoint to f ∗ : O(Y ) → O(X) for

some map f : X → Y of a restriction category X such that both O(X) and O(Y ) are

Heyting algebras, then the Frobenius identity

∃f (ϕ) ∧ ψ ≤ ∃f (ϕ ∧ f ∗(ψ))

holds if and only if

f ∗(ϕ⇒ ψ) = (f ∗(ϕ)⇒ f ∗(ψ))

holds.

Proof. Suppose ∃f (ϕ) ∧ ψ ≤ ∃f (ϕ ∧ f ∗(ψ)). First, we have

f ∗(ϕ⇒ ψ) ≤ f ∗(ϕ)⇒ f ∗(ψ)

f ∗(ϕ⇒ ψ) ∧ f ∗(ϕ) ≤ f ∗(ψ)

∃f (f ∗(ϕ⇒ ψ) ∧ f ∗(ϕ)) ≤ ψ)

∃f (f ∗(ϕ⇒ ψ)) ∧ ψ ≤ ψ

and certainly ∃f (f ∗(ϕ⇒ ψ)) ∧ ψ ≤ ψ, so f ∗(ϕ⇒ ψ) ≤ f ∗(ϕ)⇒ f ∗(ψ).

Next, we show the reverse inequality

f ∗(ϕ)⇒ f ∗(ψ) ≤ f ∗(ϕ⇒ ψ)

∃f (f ∗(ϕ)⇒ f ∗(ψ)) ≤ ϕ⇒ ψ

∃f (f ∗(ϕ)⇒ f ∗(ψ)) ∧ ϕ ≤ ψ

∃f ((f ∗(ϕ)⇒ f ∗(ψ)) ∧ f ∗(ϕ) ≤ ψ

(f ∗(ϕ)⇒ f ∗(ψ)) ∧ f ∗(ϕ) ≤ f ∗(ψ)

f ∗(ϕ)⇒ f ∗(ψ) ≤ f ∗(ϕ)⇒ f ∗(ψ)

and certainly f ∗(ϕ)⇒ f ∗(ψ) ≤ f ∗(ϕ)⇒ f ∗(ψ), so f ∗(ϕ)⇒ f ∗(ψ) ≤ f ∗(ϕ⇒ ψ), and

therefore f ∗(ϕ⇒ ψ) = f ∗(ϕ)⇒ f ∗(ψ).

Now, suppose f ∗(ϕ ⇒ ψ) = f ∗(ϕ) ⇒ f ∗(ψ). We must show ∃f (ϕ) ∧ ψ ≤ ∃f (ϕ ∧

f ∗(ψ)). Notice that
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∃f (ϕ) ∧ ψ ≤ ∃f (ϕ ∧ f ∗(ψ))

∃f (ϕ) ≤ ψ ⇒ ∃f (ϕ ∧ f ∗(ψ))

ϕ ≤ f ∗(ψ ⇒ ∃f (ϕ ∧ f ∗(ψ)))

ϕ ≤ f ∗(ψ)⇒ f ∗(∃f (ϕ ∧ f ∗(ψ)))

ϕ ∧ f ∗(ψ) ≤ f ∗(∃f (ϕ ∧ f ∗(ψ)))

∃f (ϕ ∧ f ∗(ψ)) ≤ ∃f (ϕ ∧ f ∗(ψ))

Clearly ∃f (ϕ ∧ f ∗(ψ)) ≤ ∃f (ϕ ∧ f ∗(ψ)), and thus ∃f (ϕ) ∧ ψ ≤ ∃f (ϕ ∧ f ∗(ψ)) as

required.

7.2 The Partial Topos of a Tripos

Every tripos has as its internal language a model of higher-order intuitionistic logic

without equality. Given a tripos p : E → X, formulas are interpreted as elements

over some fiber p(X) of the tripos. For a closed formula ϕ, say that p � ϕ in case the

interpretation of ϕ into p is the top element of p(1), the fiber of the terminal object.

Working in this internal language, we define the category X[p] of partial equivalance

relations over p as follows, writing [ϕ] for the interpretation of ϕ as an element of

some fiber of the tripos:

objects are pairs (X,∼) where ∼∈ p(X ×X) such that ∼ is symmetric and tran-

sitive. That is,

p � ∀xy(x ∼ y → y ∼ x)

p � ∀xyz(x ∼ y ∧ y ∼ z → x ∼ z)

hold.
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maps (X,∼) → (Y,∼) of X[p] are isomorphism classes of objects F ∈ p(X × Y )

that are strict, relational, deterministic, and total. That is,

p � ∀xy(F (x, y)→ x ∼ x ∧ y ∼ y)

p � ∀xx′yy′(F (x, y) ∧ x ∼ x′ ∧ y ∼ y′ → F (x′, y′)

p � ∀xyy′(F (x, y) ∧ F (x, y′)→ y ∼ y′)

p � ∀x(x ∼ x→ ∃yF (x, y))

hold.

composition is as in the category of relations. That is, the composite of

F : (X,∼)→ (Y,∼) and G : (Y,∼)→ (Z,∼) is defined to be

FG := [∃y(F (x, y) ∧G(y, z))]

The identity map on (X,∼) is given by ∼∈ p(X ×X) itself.

So defined, the category X[p] is a topos [31].

There is a notion of partial topos, first introduced in [13], that can be phrased in

terms of restriction categories as follows:

Definition 7.4. A partial monic in a restriction category is a map m such that if

fm = gm, then fm = gm.

Definition 7.5. A partial topos is a discrete cartesian closed restriction category in

which every partial monic has a partial inverse.

The total map category of such a partial topos is a topos, and the category of

partial maps formed from the stable system of monics consisting of all monics of some

topos is a partial topos.
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Given the existence of these partial toposes and the fact that our category of

assemblies is a restriction category whose total maps are the classical category of

assemblies, it is natural to ask if there is a restriction category whose total maps

are the realizability tripos we have constructed. We give a positive answer to this

question by showing that when the requirement that maps in the category of partial

equivalence relations be total relations is dropped, the result is a partial topos.

Definition 7.6. If X is a category with finite products and p : E → X is a tripos,

define the restriction category X{p} as follows:

objects as in X[p].

maps (X,∼)→ (Y,∼) are isomorphism classes of objects F in p(X × Y ) which are

strict, relational, and deterministic. That is,

p � ∀xy(F (x, y)→ x ∼ x ∧ y ∼ y)

p � ∀xx′yy′(F (x, y) ∧ x ∼ x′ ∧ y ∼ y′ → F (x′, y′)

p � ∀xyy′(F (x, y) ∧ F (x, y′)→ y ∼ y′)

hold. Note that we do not require our maps to be total, and that the maps of X[p]

are precisely the maps of X{p} for which p � ∀x(x ∼ x→ ∃yF (x, y)) holds.

composition as in X[p].

identities as in X[p].

restriction If F : (X,∼) → (Y,∼) is a map of X{p}, defined F : (X,∼) → (X,∼)

by

F := [(x ∼ x′) ∧ ∃yF (x, y)]

in p(X ×X).
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Since maps of X{p} are defined as isomorphism classes of interpreted formulae,

and the interpretation is sound, we may show two formulas give the same map when

interpreted by showing that each implies the other. In fact, we can more generally

show that [ϕ] ≤ [ψ] in the relevant fiber of p by showing that ϕ � ψ in the internal

language. We make heavy use of this below.

Proposition 7.7. X{p} as defined above is a restriction category.

Proof. We must show that composition is well-defined and associative, that identities

are well-defined and satisfy the definition of identity maps, and that restriction is

well-defined and satisfies the restriction axioms.

For composition, we first show that for F : (X,∼)→ (Y,∼), G : (Y,∼)→ (Z,∼),

the composite FG := [∃y(F (x, y) ∧ G(y, z))] is strict, relational, and deterministic.

For strictness, observe that if FG(x, z), then in particular F (x, y) and G(y, z), so

since F and G are strict we know x ∼ x and z ∼ z, meaning that FG is also strict.

To see that FG is relational, suppose FG(x, z), x ∼ x′, and z ∼ z′. Then for some y

we know F (x, y) and G(y, z), and that y ∼ y since F is strict. Now we have F (x′, y)

and G(y, z′) since F and G are relational, so we know ∃y(F (x′, y) ∧ G(y, z′), which

means FG(x′, z′), and so FG is relational. For determinism, suppose FG(x, z) and

FG(x, z′). Then for some y, y′ we have F (x, y),G(y, z),F (x, y′),G(y′, z′). Since F is

deterministic we then know y ∼ y′, which since G is relational gives G(y, z′), meaning

that z ∼ z′ since G is deterministic. Thus FG is well-defined.

To show that composition is associative, we suppose that F : (X,∼) → (Y,∼),

G : (Y,∼)→ (Z,∼), and H : (Z,∼)→ (W,∼) are maps of X{p}. It suffices to show

that (FG)H a` F (GH), and we have the following two-way inference:

(FG)G(x,w)

∃z(FG(x, z) ∧H(z, w))

∃z(∃y(F (x, y) ∧G(y, z)) ∧H(z, w))

∃y(F (x, y) ∧ ∃z(G(y, z) ∧H(z, w)))

F (GH)(x,w)
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so composition is associative.

Next, we deal with identity maps, and begin by showing that if (X,∼) is an object

of X{p} then ∼∈ p(X ×X) is strict, relational, and deterministic. If x ∼ x′ then by

symmetry x′ ∼ x and transitivity gives x ∼ x and x′ ∼ x′, meaning ∼ is strict. To

see that ∼ is relational, suppose x1 ∼ x2, x1 ∼ x′1, and x2 ∼ x′2. Then x′1 ∼ x1 by

symmetry, and transitivity gives x′1 ∼ x′2. For determinism, if x1 ∼ x2 and x1 ∼ x′2,

then symmetry gives x2 ∼ x1 and by transitivity we have x2 ∼ x′2. Our identity maps

are therefore well-defined.

We must also show that ∼ F = F = F ∼ for F : (X,∼)→ (Y,∼), and it suffices

to show that ∼ F a` F a` F ∼. For ∼ F a` F , suppose ∼ F (x, y). Then ∃x′ with

x ∼ x′ and F (x′, y), and since F is strict and relational we have F (x, y). Conversely

if F (x, y) then since F is strict x ∼ x, and so ∃x′(x ∼ x′ ∧ F (x′, y)), where x′ is

x, giveing ∼ F (x, y). Similarly we have F a` F ∼, and so your identity maps are

indeed identity maps.

Finally, we turn our attention to restirction. Suppose F : (X,∼) → (Y,∼) is a

map of X{p}. We show that the domain of definition of F , defined by

F := [(x ∼ x′) ∧ ∃yF (x, y)]

in p(X ×X) defines a map by showing that it is strict, relational, and deterministic.

For strictness, notice that if F (x, x′) then in particular x ∼ x′. Symmetry gives x′ ∼ x,

and transitivity then gives x ∼ x and x′ ∼ x′ as required. To see that F is relational,

suppose x1 ∼ x′1,x2 ∼ x′2, and F (x1, x2). Then by symmetry and transitivity we have

x′1 ∼ x1 ∼ x2 ∼ x′2, and also y ∼ y since F is strict. As F is also relational we now

know x′1 ∼ x′2 ∧ ∃yF (x′1, y), and so F is relational. For determinism, if F (x1, x2) and

F (x1, x
′
2) then in particluar x1 ∼ x2 and x1 ∼ x′2, so x2 ∼ x′2 as required, and F is

well-defined.
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For the restriction axioms:

For FF = F , it suffices to show FF a` F . If FF (x, y) then ∃x′(F (x, x′) ∧ F (x′, y),

and since F is strict and relational we know F (x, y), so FF ` F . Conversely, if

F (x, y) then x ∼ x since F is strict, so certainly we have ∃x′((x ∼ x′)∧ ∃yF (x, y)∧

F (x, y)) with x′ = x, meaning F ` FF , as required.

For F G = GF , it straightforward to verify that the following two-way inference

holds:

F G(x1, x2)

∃x(F (x1, x) ∧G(x, x2))

∃x(x1 ∼ x ∧ ∃yF (x1, y) ∧ x ∼ x2 ∧ ∃zG(x, z))

∃xyz(x1 ∼ x ∧ F (x1, y) ∧ x ∼ x2 ∧G(x, z))

∃xyz(x1 ∼ x ∧ F (x, y) ∧ x ∼ x2 ∧G(x1, z))

∃x(x1 ∼ x ∧ ∃zG(x1, z) ∧ x ∼ x2 ∧ ∃yF (x, y))

∃x(G(x1, x) ∧ F (x, x2))

GF (x1, x2)

which means F G a` GF , and we are done.

For FG = F G,

FG(x1, x2)

x1 ∼ x2 ∧ ∃zFG(x1, z)

x1 ∼ x2 ∧ ∃z∃x(F (x1, x) ∧G(x, z))

x1 ∼ x2 ∧ ∃z∃x(x1 ∼ x ∧ ∃yF (x1, y) ∧G(x, z))

∃xyz(x1 ∼ x2 ∧ x1 ∼ x ∧ F (x1, y) ∧G(x, z))

∃xyz(x1 ∼ x ∧ x ∼ x2 ∧ F (x1, y) ∧G(x, z))

∃x(x1 ∼ x ∧ ∃yF (x1, y) ∧ x ∼ x2 ∧G(x, z))

∃x(F (x1, x) ∧G(x, x2))

F G(x1, x2)

For FG = FGF ,
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FG(x, y)

∃y′(F (x, y′) ∧G(y′, y))

∃y′(F (x, y′) ∧ y ∼ y′ ∧ ∃zG(y′, z))

∃y′z(y′ ∼ y ∧ F (x, y′) ∧G(y, z))

∃x′y′z(x ∼ x′ ∧ F (x, y′) ∧G(y′, z) ∧ F (x′, y))

∃x′(x ∼ x′ ∧ ∃z∃y′(F (x, y′) ∧G(y′, z)) ∧ F (x′, y))

∃x′(x ∼ x′ ∧ ∃zFG(x, z) ∧ F (x′, y))

∃x′(FG(x, x′) ∧ F (x′, y))

FGF (x, y)

We have now shown that X{p} is a restriction category.

Observe that F = 1(X,∼) if and only if p � ∀x(x ∼ x → ∃yF (x, y)) as follows:

Suppose p � ∀x(x ∼ x → ∃yF (x, y)). Then if x ∼ x′, we know x ∼ x, which means

∃yF (x, y) by assumption and so x ∼ x′ ∧∃yF (x, y). Conversely if x ∼ x′ ∧∃yF (x, y)

then certainly x ∼ x′, and so F =∼= 1(X,∼). On the other hand, if we assume that

F = 1(X,∼), then if x ∼ x, we have F (x, x), which is to say x ∼ x ∧ ∃yF (x, y), so

p � ∀x(x ∼ x→ ∃yF (x, y)) holds.

This means that total(X{p}) is X[p].

Next, observe that X{p} is split. Notice that if (X,∼) is an object of X{p} and

F : (X,∼)→ (Y,∼), then the domain of defintion of F , F ∈ p(X×X), is a symmetric

and transitive relation, and so also defines an object (X,F ) of X{p}. Then we a map

S : (X,F )→ (X,∼) defined by

S(x, x′) := x ∼ x′

e in p(X ×X), and a map R : (X,∼)→ (X,F ) defined by

R(x, x′) := F (x, x′)

in p(X × X). SR =∼ F = F = 1(X,F ) and RS = F ∼= F , meaning that we have
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shown F is split. Since F was an arbitrary map in X{p}, we know that X{p} is a

split restriction category.

Finally, we show that every monic in X{p} is a restriction monic as follows: A map

M : (X,∼)→ (Y,∼) is monic if and only if p � ∀xx′y(M(x, y) ∧M(x′, y)→ x ∼ x′).

Thus, given a monic M : (X,∼)→ (Y,∼), we define its retraction to be

R(y, x) := M(x, y)

We show that this is well-defined: R is obviously strict. To see that R is relational

suppose x ∼ x′ ,y ∼ y′, and R(y, x). Then M(x, y) and since M is relational M(x′, y′),

meaning R(y′, x′). To show R is deterministic suppose R(y, x) and R(y, x′). Then

M(x, y) and M(x′, y), so since M is monic x ∼ x′, as required. Now, we show

that 1 ≤ MR and RM ≤ 1, establishing that MR is total and RM is a restriction

idempotent, and thus that M is a restriction monic. For 1 ≤ MR, we use that M is

total to obtain

x ∼ x′

x ∼ x′ ∧ ∃yM(x, y)

∃y(M(x, y) ∧M(x′, y))

∃y(M(x, y) ∧R(y, x′))

MR(x, x′)

and for RM ≤ 1, we have

RM(y, y′)

∃x(R(y, x) ∧M(x, y′))

∃x(M(x, y) ∧M(x, y′))

y ∼ y′

Thus the class of all monics in X{p} is the class MX{p} of restriction monics in

X{p}, which together with the fact that

X{p} ' Par(total(X{p}),MX{p}) ' Par(X[p],MX{p})
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tells us that X{p} is a partial topos, since X[p] is a topos and MX{p} contains all

the monic maps in X{p} (see [13] theorem 6.1).

8 The Realizability Fibration

Let A be a Turing category, X a discrete cartesian closed restriction category, and

F : A→ X a cartesian restriction functor. In this section we are concerned with the

properties of the fibration

total(∂(X)) : total(asm(F ))→ total(X)

Specifically, we show that it is a tripos. Most of our reasoning will be about the

realizability latent fibration ∂ : asm(F )→ X.

8.1 Existential Quantification

Existential quantification for total(∂) is defined directly in terms of existential quan-

tification for total(O). Universal quantification is a bit more complicated.

Proposition 8.1. total(∂) has existential quantification. That is, for every map

f : X → Y of total(X), the reindexing functor f ∗ : total(∂)−1(Y ) → total(∂)−1(X)

has a left adjoint which satisfies the Beck-Chevalley and Frobenius conditions.

Proof. We use the existential quantification in total(O) to define the existential quan-

tification in total(∂). Suppose X is an object of X, ϕ ∈ O(F (A)×X) is an object of

total(∂)−1(X), and f : X → Y is a map of total(X). Define ∃f (ϕ) ∈ O(F (A)× Y ) by

∃f (ϕ) := ∃(1×f)(ϕ)

We must show that the mapping defined by ∃f : total(∂)−1(X) → total(∂)−1(Y )

is a functor, that it is left adjoint to f ∗ : total(∂)−1(Y )→ total(∂)−1(X), and that it
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satifies the Beck-Chevalley and Frobenius conditions.

First, we show that ∃f is left adjoint to f ∗, the reindexing functor over f in

total(∂). We must prove that if ϕ ∈ O(F (A)×X) and ψ ∈ O(F (B)× Y ) are objects

in the fiber over X and Y respectively, then

∃1×f (ϕ) = ∃f (ϕ) ` ψ

ϕ ` f ∗(ψ) = (1× f)ψ

It suffices to show that γ : A→ B in A is a realizer for ∃1×f (ϕ) ` ψ if and only if

it is a realizer for ϕ ` (1× f)ψ. Notice that

∃(1×f)(ϕ) = ∃(1×f)(ϕ)(F (γ)× 1)

∃(1×f)(ϕ) ≤ (F (γ)× 1)

ϕ ≤ (1× f)(F (γ)× 1) = (F (γ)× 1)

ϕ(F (γ)× 1) = ϕ

and so [Tk.2] in each case implies [Tk.2] in the other, and we may restrict our

attention to [Tk.1] . Suppose that ∃1×f (ϕ) ` ψ is realized by γ. Then we have

∃(1×f)(ϕ) = ∃(1×f)(ϕ)(F (γ)× 1) = ∃(1×f)(ϕ)(F (γ)× 1)ψ

= ∃(1×f)(ϕ)(F (γ)× 1)ψ

meaning ∃(1×f)(ϕ) ≤ (F (γ)× 1)ψ. But then

∃(1×f)(ϕ) ≤ (F (γ)× 1)ψ

ϕ ≤ (1× f)(F (γ)× 1)ψ = (F (γ)× f)ψ

which gives [Tk.1] :

ϕ(F (γ)× 1)(1× f)ψ = ϕ(F (γ)× 1)(1× f)ψ(F (γ)× 1)

= ϕ(F (γ)× f)ψ(F (γ)× 1) = ϕ(F (γ)× 1)
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and so γ realizes ϕ ` (1× f)ψ. For the converse, suppose γ realizes ϕ ` (1× f)ψ.

Then we have

ϕ = ϕ(F (γ)× 1) = ϕ(F (γ)× 1)(1× f)ψ

= ϕ(1× f)(F (γ)× 1)ψ = ϕ (1× f)(F (γ)× 1)ψ

meaning a ≤ (1× f)F (γ)× 1)b. But then

a ≤ (1× f)(F (γ)× 1)b

∃(1×f)(a) ≤ (F (γ)× 1)b

which gives [Tk.1] :

∃(1×f)(ϕ)(F (γ)× 1)ψ = ∃(1×f)(ϕ)(F (γ)× 1)ψ(F (γ)× 1)

= ∃(1×f)(ϕ)(F (γ)× 1)

and so γ realizes ∃1×f (ϕ) ` ψ. Thus, ∃f is left adjoint to reindexing over f in total(∂).

This also gives that ∃f is a functor of preorders. If ϕ ` ψ, then ϕ ` ψ ` f ∗(∃f (ψ)),

and we have ∃f (ϕ) ` ∃f (ψ), as required.

Next, we show that if f : X → Y in total(X) then ∃f in total(∂) satisfies the

Beck-Chevalley condition.

Suppose that the square

W
h //

k
��

X

f
��

Z g
// Y

is a pullback in total(X), and that ϕ : O(F (A)×X) is an object of total(∂)−1(X).

Then the square

F (A)×W 1×h //

1×k
��

F (A)×X
1×f
��

F (A)× Z
1×g

// F (A)× Y
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is also a pullback in total(X), and since the Beck-Chevalley condition holds for exis-

tential quantification in total(O), we know

(1× g)∃1×f (ϕ) = ∃1×k((1× h)ϕ)

which says exactly that

g∗(∃f (ϕ)) = ∃k(h∗(ϕ))

in total(∂), as required.

For the Frobenius condition, we must show that for ϕ ∈ O(F (A)×X) and ψ ∈

O(F (B)× Y ),

∃f (ϕ) ∧ ψ ` ∃f (ϕ ∧ f ∗(ψ))

Specifically, we must construct a realizer γ : A × B → A × B of A for this

entailment.

Notice that if

∃f (ϕ) ∧ ψ ≤ ∃f (ϕ ∧ f ∗(ψ))

then we know that 1A×B : A×B → A×B is our realizer as follows:

[Tk.1]

(∃f (ϕ) ∧ ψ)(F (1)× 1)(∃f (ϕ ∧ f ∗(ψ)))

= (∃f (ϕ) ∧ ψ)(∃f (ϕ ∧ f ∗(ψ)))

= ∃f (ϕ) ∧ ψ
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[Tk.2] immediately

(∃f (ϕ) ∧ ψ)(F (1)× 1) = ∃f (ϕ) ∧ ψ

Using that existential quantification over total(O) satisfies the Beck-Chevalley and

Frobenius conditions, we have

∃f (ϕ) ∧ ψ = (F (π0)× 1)∃1×f (ϕ) (F (π1)× 1)ψ

= ∃1×f ((F (π0)× 1)ϕ) ∧ (F (π1)× 1)ψ

≤ ∃1×f ((F (π0)× 1)ϕ ∧ (F (π1)× 1)(1× f)ψ)

= ∃f (ϕ ∧ f ∗(ψ))

as required.

Thus, total(∂) has existential quantification.

8.2 Fibered Heyting algebra Structure

Consider total(∂)−1(X) for some object X of X. Its objects are assemblies over X,

and if ϕ ∈ O(F (A)×X) and ψ ∈ O(F (B)×X) are two such assemblies, a map

f : ϕ → ψ in total(∂)−1(X) is a map f : ϕ → ψ in asm(F ) with ∂(f) = 1X . This

means there is at most one map between any two objects ϕ and ψ of total(∂)−1(X).

That is, each fiber of total(∂)−1(X) is a preorder. We write ϕ ` ψ to indicate that

a map ϕ → ψ exists, and note that this is the case if and only if there is a tracking

map γ : A→ B for 1X : X → X. So, to show ϕ ` ψ, it is necessary and sufficient to

exhibit a map γ : A→ B of A such that

[Tk.1] ϕ(F (γ)× 1X)ψ = ϕ(F (γ)× 1X)
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[Tk.2] ϕ(F (γ)× 1X) = ϕ

hold.

In fact, each fiber of total(∂) is a Heyting algebra. We show this now, beginning

with the bounded meet semilattice structure.

Proposition 8.2. Each fiber of total(∂) has binary meets and a top element. Further,

reindexing over total(∂) preserves the meet and top element.

Proof. Let X be an object of X. We define the top element of total(∂)−1(X) to be

the identity map on F (1)×X.

> := 1 ∈ O(F (1)×X)

If ϕ ∈ O(F (A)×X) is an object of total(∂)−1(X), we have ϕ ` > since !A : A→ 1

tracks 1X :

[Tk.1]

ϕ(F (!)× 1)1 = ϕ(F (!)× 1)

[Tk.2]

ϕ(F (!)× 1) = ϕ

as required. To see that reindexing over total(∂) preserves the top element, note that

since f is total,

f ∗(>) = (1× f)> = 1 = >

Now, suppose ϕ ∈ O(F (A)×X) and ψ ∈ O(F (B)×X) are objects of total(∂)−1(X).

We define their meet, (ϕ ∧ ψ) ∈ O(F (A×B)×X) to be

(ϕ ∧ ψ) := (F (π0)× 1)ϕ (F (π1)× 1)ψ

We show ϕ ∧ ψ ` ϕ using π0 as the tracking map for 1X :
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[Tk.1]

(ϕ ∧ ψ)(F (π0)× 1)ϕ = (F (π1)× 1)ψ (F (π0)× 1)ϕ(F (π0)× 1)ϕ

= (F (π1)× 1)ψ(F (π0)× 1)ϕϕ = (F (π1)× 1)ψ(F (π0)× 1)ϕ

= (F (π1)× 1)ψ (F (π0)× 1)ϕ(F (π0)× 1)

[Tk.2]

(ϕ ∧ ψ)(F (π0)× 1) = (ϕ ∧ ψ)

Similarly, π1 tracks 1X to give (ϕ ∧ ψ) ` ψ.

Next, suppose that χ ∈ O(F (C)×X) is an object of total(∂)−1(X) with χ ` ϕ

and χ ` ψ. Let γ : C → A and ω : C → B be the tracking maps for 1X that then

exist. We obtain χ ` (ϕ ∧ ψ) by showing that 〈γ, ω〉 : C → A× B is a tracking map

for 1X :

[Tk.1]

χ(F (〈γ, ω〉)× 1)(ϕ ∧ ψ) =

= χ(F (〈γ, ω〉)× 1)(F (π0)× 1)ϕ (F (π1)× 1)ψ

= χ(F (ωγ)× 1)ϕ χ(F (γω)× 1)ψ χ(F (〈γ, ω〉)× 1)

= χ(F (ω)× 1)(F (γ)× 1)ϕ χ(F (γ)× 1)(F (ω)× 1)χ(F (〈γ, ω〉)× 1)

= χ(F (γ)× 1)ϕ χ(F (ω)× 1)ψ χ(F (〈γ, ω〉)× 1)

= χ(F (γ)× 1) χ(F (ω)× 1)χ(F (〈γ, ω)× 1)

= χ(F (〈γ, ω〉)× 1)

[Tk.2]

χ(F (〈γ, ω〉)× 1) = χ(F (〈γ, ω〉)× 1)
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= χ(F (γ)× 1)(F (ω)× 1) = χ (F (γ)× 1) (F (ω)× 1)

= χ(F (γ)× 1) χ(F (ω)× 1)χ

= χ

Finally, we show that reindexing over total(∂) preserves the meet:

f ∗(ϕ ∧ ψ) = (1× f) (F (π0)× 1)ϕ (F (π1)× 1)ψ

= (1× f)(F (π0)× 1)ϕ (1× f)(F (π1)× 1)ψ (1× f)

= (F (π0)× 1)(1× f)ϕ (F (π1)× 1)(1× f)ψ

= (f ∗(ϕ) ∧ f ∗(ψ))

We make the following useful observation:

Lemma 8.3. (ϕ ∧ ψ) = (1×∆)ex(ϕ× ψ)

Proof.

(1×∆)ex(ϕ× ψ) = (1×∆)ex(ϕ× 1)(1× ψ)

= (1×∆)ex(ϕ× 1) (1×∆)ex(1× ψ)(1×∆)ex

= (1×∆)ex(ϕ× 1) (1×∆)ex(1× ψ)

= (1×∆)exπ0ϕ (1×∆)exπ1ψ

= (F (π0)× 1)ϕ (F (π1)× 1)ψ = (ϕ ∧ ψ)

Next, we deal with the Heyting implication
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Proposition 8.4. Each fiber of total(∂) has a Heyting implication. Further, reindex-

ing over total(∂) preserves the Heyting implication.

Proof. Let ϕ ∈ O(F (A)×X) and ψ ∈ O(F (B)×X) be objects of total(∂)−1(X).

Define (ϕ⇒ ψ) ∈ O(F (TA,B)×X) to be

(ϕ⇒ ψ) :=λ((ϕ ∧ 1F (TA,B)×X)(F (τA,B)× 1)) ∩ λ((ϕ ∧ 1F (TA,B)×X)(F (τA,B)× 1)ψ

λ((ϕ ∧ 1F (TA,B)×X)(F (τA,B)× 1)!) ∩ λ((ϕ ∧ 1F (TA,B)×X)!)

We must show

(χ ∧ ϕ) ` ψ
χ ` (ϕ⇒ ψ)

Suppose (χ ∧ ϕ) ` ψ. Then also (ϕ ∧ χ) ` ψ, and this is realized by some

γ : A× C → B in A. Let h : C → TA,B be a weak exponential transpose of γ, as in

A× TA,B τ // B

A× C

1×h
OO

γ

::

We show that h realizes χ ` (ϕ⇒ ψ):

[Tk.1] Observe that

χ(F (h)× 1)λ((ϕ ∧ 1)(F (τ)× 1))

= χ(F (h)× 1)λ((1×∆)ex(ϕ× 1)ex(1×∆(−1))(F (τ)× 1))

= χλ((1× (F (h)× 1))(1×∆)ex(ϕ× 1)ex(1×∆(−1))(F (τ)× 1))

= χλ((1×∆)ex(ϕ× χ)ex(1×∆(−1))(F ((1× h)τ)× 1))

= χλ((ϕ ∧ χ)(F (γ)× 1)) = χλ((ϕ ∧ χ)(F (γ)× 1)ψ)

= χλ((1×∆)ex(ϕ× χ)ex(1×∆(−1))(F ((1× h)τ)× 1)ψ)
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= χ(F (h)× 1)λ((ϕ ∧ 1)(F (τ)× 1)ψ)

and similarly

χ(F (h)× 1)λ((ϕ ∧ 1)(F (τ)× 1)!)

= χλ((1× (F (h)× 1))(1×∆)ex(ϕ× 1)ex(1×∆(−1))(F (τ)× 1))

= χλ((ϕ ∧ χ)(F (γ)× 1)!) = χλ((ϕ ∧ χ)!)

= χλ((1×∆)ex(ϕ× χ)ex(1×∆(−1))!)

= χλ((1×∆)ex(ϕ× χ)ex(1×∆(−1))((1× F (h))× 1)!)

= χλ((1× χ(F (h)× 1))(1×∆)ex(ϕ× 1)ex(1×∆(−1))!)

= χ(F (h)× 1)λ((ϕ ∧ 1)!)

which gives

χ(F (h)× 1)(ϕ⇒ ψ)

= χ(F (h)× 1)λ((ϕ ∧ 1)F (τ)× 1) χ(F (h)× 1)λ((ϕ ∧ 1)!)χ(F (h)× 1)

= χ(F (h)× 1)

[Tk.2] Since h is total we have

χ(F (h)× 1) = χ

For the converse, suppose χ ` (ϕ ⇒ ψ). Then some map ω : C → TA,B of A

realizes this. We show that (1× ω)τ : A× C → B realizes (ϕ ∧ χ) ` ψ as follows:
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[Tk.1]

(ϕ ∧ χ)(F ((1× ω)τ)× 1)ψ = (1×∆)ex(ϕ× χ)(F ((1× ω)τ)× 1)ψ

= (1×∆)ex(ϕ× χ)(1×∆)ex(1× (F (ω)× 1))ex(1×∆(−1))(F (τ)× 1)ψ

= (1×∆)ex(ϕ× χ(F (ω)× 1))ex(1×∆(−1))(F (τ)× 1)ψ

= (1× χ(F (ω)× 1))(1×∆)ex(ϕ× 1)ex(1×∆(−1))(F (τ)× 1)ψ

= (1× χ(F (ω)× 1)(ϕ⇒ ψ))((ϕ ∧ 1)(F (τ)× 1)ψ)

= (1× χ(F (ω)× 1)(ϕ⇒ ψ)(1× λ((ϕ ∧ 1)(F (τ)× 1)ψ))ev

= (1× χ(F (ω)× 1)(ϕ⇒ ψ)(1× λ((ϕ ∧ 1)(F (τ)× 1))ev

= (1× χ(F (ω)× 1)(ϕ ∧ 1)(F (τ)× 1)

= (1× χ(F (ω)× 1)(1×∆)ex(ϕ× 1)ex(1×∆(−1))(F (τ)× 1)

= (ϕ ∧ χ)(F ((1× ω)τ)× 1)

[Tk.2]

(ϕ ∧ χ)(F ((1× ω)τ)× 1)

= (1× χ(F (ω)× 1)(1×∆)ex(ϕ× 1)ex(1×∆(−1))(F (τ)× 1)!

= (1× χ(F (ω)× 1)(ϕ⇒ ψ))(1× λ((ϕ ∧ 1)(F (τ)× 1)!))ev

= (1× χ(F (ω)× 1)(ϕ⇒ ψ))(1× λ((ϕ ∧ 1)!))ev

= (1× χ(F (ω)× 1))(1×∆)ex(ϕ× 1)!

= (1×∆)ex(ϕ× 1)(1× χ(F (ω)× 1))

= (1×∆)ex(ϕ× 1)χ = (ϕ ∧ χ)

So our Heyting implication is in fact a Heyting implication.

Reindexing over total(∂) preserves our Heyting implication since existential quan-

tification for total(∂) satisfies the Frobenius condition.
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We move on the the join semilattice structure

Proposition 8.5. Each fiber of total(∂) has binary joins and a bottom element. Fur-

ther, reindexing over total(∂) preserves the join and bottom element.

Proof. Let X be an object of X. Since X is a discrete cartesian closed restriction

category, we know that O(F (T )×X) has a bottom element. We define the bottom

element of total(∂)−1(X) to be

⊥ := ⊥ ∈ O(F (T )×X)

If ϕ ∈ O(F (A)×X) is an object of total(∂)−1(X), then since any e ∈ O(F (T )×X)

has ⊥ ≤ e, any map γ : T → A is a tracking map for 1X as a map ⊥ → ϕ in asm(F ):

[Tk.1]

⊥(F (γ)× 1)ϕ = ⊥ (F (γ)× 1)ϕ (F (γ)× 1) = ⊥(F (γ)× 1)

[Tk.2]

⊥(F (γ)× 1) = ⊥ (F (γ)× 1) = ⊥

and since each object A of A is a retract of T , the retraction rA : T → A is such

a map and ⊥ ` ϕ for all ϕ in total(∂)−1(X). To see that reindexing over total(∂)

preserves the bottom element, we recall that reindexing over total(O) does, and so

f ∗(⊥) = (1× f)⊥ = ⊥

For the join of ϕ ∈ O(F (A)×X) and ψ ∈ O(F (B)×X), we use the join in the

fibers total(O) to define

(ϕ ∨ ψ) := (∃(F (κ)×1)(ϕ) ∨ ∃(F (κ′)×1)(ψ)) ∈ O(F (A#B)×X)
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where

A
κ // A#B B

κ′oo

is the weak coproduct of A and B in A. We show that this is actually the join.

ϕ ` (ϕ ∨ ψ) since κ : A→ A#B is a tracking map for 1X :

[Tk.1] Notice that we have

∃F (κ)×1(ϕ) ≤ (∃F (κ)×1(ϕ) ∨ ∃F (κ′)×1(ψ))

ϕ ≤ (F (κ)× 1)(∃F (κ)×1(ϕ) ∨ ∃F (κ′)×1(ψ))

ϕ = ϕ (F (κ)× 1)(∃F (κ)×1(ϕ) ∨ ∃F (κ′)×1(ψ))

which gives

ϕ(F (κ)× 1)(ϕ ∨ ψ) = ϕ(F (κ)× 1)(∃F (κ)×1(ϕ) ∨ ∃F (κ′)×1(ψ))

= ϕ (F (κ)× 1)(∃F (κ)×1(ϕ) ∨ ∃F (κ′)×1(ψ))(F (κ)× 1)

= ϕ(F (κ)× 1)

as required.

[Tk.2] κ is total so immediately

ϕ(F (κ)× 1) = ϕ

Similarly, κ′ : B → A#B is a tracking map for 1X to give ψ ` (ϕ ∨ ψ). Next,

we suppose that for some χ ∈ O(F (C)×X) we have ϕ ` χ and ψ ` χ, realized by

γ : A → C and ω : B → C in A respectively. We take ν to be their weak coproduct

map, as in

A

γ
""

κ // A#B

ν
��

Bκ′oo

ω
||

C

and now (ϕ ∨ ψ) ` χ since ν is a tracking map for 1X as follows:
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[Tk.1] Notice that we have

ϕ (F (κ)× 1)(F (ν)× 1)χ = ϕ(F (κ)× 1)(F (ν)× 1)χ

= ϕ(F (γ)× 1)χ = ϕ(F (γ)× 1) = ϕ

and that this gives

ϕ (F (κ)× 1)(F (ν)× 1)χ = ϕ

ϕ ≤ (F (κ)× 1)(F (ν)× 1)χ

∃F (κ)×1(ϕ) ≤ (F (ν)× 1)χ

(F (ν)× 1)χ∃F (κ)×1(ϕ) = ∃F (κ)×1(ϕ)

Similarly, we obtain

(F (ν)× 1)χ∃F (κ′)×1(ψ) = ∃F (κ′)×1(ψ)

and then we have

(ϕ ∨ ψ)(F (ν)× 1)χ = (ϕ ∨ ψ)(F (ν)× 1)χ(F (ν)× 1)

= (F (ν)× 1)χ(ϕ ∨ ψ)(F (ν)× 1)

= (F (ν)× 1)χ(∃F (κ)×1(ϕ) ∨ ∃F (κ′)×1(ψ))(F (ν)× 1)

= ((F (ν)× 1)χ∃F (κ)×1(ϕ) ∨ (F (ν)× 1)∃F (κ′)×1(ψ))(F (ν)× 1)

= (∃F (κ)×1(ϕ) ∨ ∃F (κ′)×1(ψ))(F (ν)× 1) = (ϕ ∨ ψ)(F (ν)× 1)

[Tk.2] Using again that

(F (ν)× 1)χ∃F (κ)×1(ϕ) = ∃F (κ)×1(ϕ)

and

(F (ν)× 1)χ∃F (κ′)×1(ψ) = ∃F (κ′)×1(ψ)
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we have

(ϕ ∨ ψ)(F (ν)× 1) = (F (ν)× 1)(∃F (κ)×1(ϕ) ∨ ∃F (κ′)×1(ψ))

= (F (ν)× 1)∃F (κ)×1(ϕ) ∨ (F (ν)× 1)∃F (κ′)×1(ψ)

= ∃F (κ)×1(ϕ) ∨ ∃F (κ′)×1(ψ) = (ϕ ∨ ψ)

and so our join is in fact a join. We proceed to show that reindexing over total(∂)

preserves the join. Since

1×f //

F (κ)×1

��
F (κ)×1

��
1×f
//

is a pullback square in total(X) and ∃ satisfies the Beck-Chevalley condition in

total(O), we have

(1× f)∃F (κ)×1(ϕ) = ∃F (κ)×1((1× f)ϕ)

and similarly

(1× f)∃F (κ′)×1(ψ) = ∃F (κ′)×1((1× f)ψ

which gives

f ∗(ϕ ∨ ψ) = (1× f)(∃F (κ)×1(ϕ) ∨ ∃F (κ′)×1(ψ))

= (1× f)∃F (κ)×1(ϕ) ∨ (1× f)∃F (κ′)×1(ψ)

= ∃F (κ)×1((1× f)ϕ) ∨ ∃F (κ′)×1((1× f)ψ)

= (f ∗(ϕ) ∨ f ∗(ψ))
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We have now shown

Theorem 8.6. Each fiber of total(∂) is a Heyting algebra. Further, reindexing over

total(∂) is a Heyting algebra morphism.

8.3 Universal Quantification

We require a technical lemma before we can define the universal quantification.

Lemma 8.7. In a Turing category, for every object A, there is an object TA and a

map τA : TA → A such that for any map γ : B → A there is a total map δ : B → TA

such that δτA = γ, as in

TA
τA // A

B

δ

OO

γ

>>

Proof. Fix an object A. Using the weakly cartesian closed notation, we define TA :=

1× T1,A and τA := τ1,A. Suppose γ : B → A. Then we have

1× TA
τ1,A // A

1×B
1×h

OO

π1γ

77

B

〈!B ,1B〉

OO γ

>>

and the δ := 〈!B, 1B〉(1× h).

With this in hand, we move on to the universal quantification.

Proposition 8.8. total(∂) has universal quantification. That is, for every map f :

X → Y of total(X), the reindexing functor f ∗ : total(∂)−1(X)→ total(∂)−1(Y ) has a

right adjoint which satisfies the Beck-Chevalley condition.

Proof. Define, for ϕ ∈ O(F (A)×X) an assembly over X,

∀f (ϕ) := ∀1×f ((F (τA)× 1)ϕ)
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where the quantifier on the right hand side is the universal quantification for total(O).

First, we show that ∀f is right adjoint to reindexing over f ∗ in total(∂). It suffices

to show that

f ∗(ϕ) ` ψ
ϕ ` ∀f (ψ)

Suppose that for ϕ : O(F (A)×X) and ψ ∈ O(F (B)× Y ), the map γ : A → B

realizes f ∗(ϕ) = (1× f)ϕ ` ψ. That is,

[Tk.1] (1× f)ϕ(F (γ)× 1)ψ = (1× f)ϕ(F (γ)× 1)

[Tk.2] (1× f)ϕ(F (γ)× 1) = (1× f)ϕ

Now, let δ : A→ TB be defined by

TB
τB // B

A

δ

OO

γ

>>

We show that δ realizes ϕ ` ∀1×f ((F (τB)× 1)ψ) = ∀f (ψ):

[Tk.1] Notice that if

ϕ ≤ (F (δ)× 1)∀1×f ((F (τB)× 1)ψ)

then we have the required identity as follows

ϕ(F (δ)× 1)∀1×f ((F (τB)× 1)ψ)

= ϕ (F (δ)× 1)∀1×f ((F (τB)× 1)ψ)(F (δ)× 1)

= ϕ(F (δ)× 1)

Now, since δ is total,
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F (δ)×1//

1×f
��

1×f
��

F (δ)×1
//

is a pullback square in total(X), and so since universal quantification in total(O)

satisfies the Beck-Chevalley condition, we have

F (δ)∀1×f ((F (τB)× 1)ψ)

= ∀1×f ((F (δτB)× 1)ψ)

= ∀1×f ((F (γ)× 1)ψ)

and so

ϕ ≤ (F (δ)× 1)∀1×f ((F (τB)× 1)ψ)

ϕ ≤ ∀1×f ((F (γ)× 1)ψ)

(1× f)ϕ ≤ F (γ)× 1)ψ

but using our assumption that γ realizes (1× f)ϕ ` ψ we have

(1× f)ϕ (F (γ)× 1)ψ = (1× f)ϕ (F (γ)× 1)ψ

= (1× f)ϕ (F (γ)× 1) = (1× f)ϕ

meaning (1× f)ϕ ≤ (F (γ)× 1)ψ, as required.

[Tk.2] Since δ is total, we immediately have

ϕ(F (δ)× 1) = ϕ
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For the converse, suppose δ : A → TB realizes ϕ ` ∀f (ψ). We show that δτB :

A→ B realizes (1× f)ϕ = f ∗(ϕ) ` ψ:

Notice that (1× f)ϕ ≤ (F (δτB)× 1)ψ since

(1× f)ϕ = (1× f)ϕ(F (δ)× 1)

= (1× f)ϕ(F (δ)× 1)∀f (ψ)

= (1× f)ϕ(F (δ)× 1)∀1×f ((F (τB)× 1)ψ)

= (1× f)ϕ(F (δ)× 1)(1× f)∀1×f ((F (τB)× 1)ψ)

≤ (1× f)ϕ(F (δ)× 1)(F (τB)× 1)ψ

= (1× f)ϕ(F (δτB)× 1)ψ

= (1× f)ϕ (F (δτB)× 1)ψ

Using this, we have

[Tk.1]

(1× f)ϕ(F (δτB)× 1)ψ = (1× f)ϕ (F (δτB)× 1)ψ (F (δτB)× 1)

= (1× f)ϕ(F (δτB)× 1)

[Tk.2] since (1× f)ϕ ≤ (F (δτB)× 1)ψ ≤ (F (δτB)× 1),

(1× f)ϕ (F (δτB)× 1) = (1× f)ϕ (F (δτB)× 1) = (1× f)ϕ

and we have established the required adjunction.

This also gives that ∀f is a preorder morphism, as if ϕ ` ψ, then f ∗(∀f∗ϕ) ` ϕ ` ψ,

and so ∀f (ϕ) ` ∀f (ψ).

Finally, we show that universal quantification over total(∂) satisfies the Beck-

Chevalley condition. To that end, suppose
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W

k
��

h // X

f
��

Z g
// Y

is a pullback square in total(X). Then

F (TB)×W 1×h //

1×k
��

F (TB)×X
1×f
��

F (TB)× Z
1×g

// F (TB)× Y
is also a pullback square in total(X). Now, the Beck-Chevalley condition is satisfied

by universal quantification in total(O), so we have

(1× g)∀1×f ((F (τB)× 1)ψ) = ∀1×k((1× h)(F (τB)× 1)ψ)

and then because (1× h)(F (τB)× 1)ψ = (F (τB)× 1)(1× h)ψ we have shown that in

total(∂)

g∗(∀f (ψ)) = (1× g)∀f (ψ) = ∀k((1× h)ψ) = ∀k(h∗(ψ))

and so certainly we have

g∗(∀f (ψ)) a` ∀k(h∗(ψ))

as required. Thus total(∂) has universal quantificaiton.

8.4 The Generic Predicate

Proposition 8.9. total(∂) has a generic predicate.

Proof. The genereic predicate is the assembly ev ∈ O(F (T )× 1F (T )) where T is the

Turing object of A. Let ϕ ∈ O(F (A)×X) be an object of total(∂)−1(X) for some

object X of X. We use the fact that T is a universal object to define (F (rA)× 1)ϕ ∈
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O(F (T )×X), and then define h : X → 1F (T ) in total(X) by h := λ((F (rA)× 1)ϕ !),

as in

F (T )× 1F (T ) ev // 1

F (T )× A

1×h

OO

(F (rA)×1)ϕ !
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We must show that ϕ a` h∗(ev) = (1× h)ev = (1× h)ev = (F (rA)× 1)ϕ.

For ϕ ` (F (rA)× 1)ϕ, the realizer is sA : A→ T as follows:

[Tk.1]

ϕ(F (sA)× 1)(F (rA)× 1)ϕ = ϕ(F (sArA)× 1)ϕ(F (sA)× 1)

= ϕϕ(F (sA)× 1) = ϕ(F (sA)× 1)

[Tk.2] ϕ(F (sA)× 1) = ϕ immediately as sA is total.

For (F (rA)× 1)ϕ ` ϕ, the realizer is rA : T → A as follows:

[Tk.1] (F (rA)× 1)ϕ(F (rA)× 1)ϕ = (F (rA)× 1)ϕϕ = (F (rA)× 1)ϕ(F (rA)× 1)

[Tk.2] (F (rA)× 1)ϕ(F (rA)× 1) = (F (rA)× 1)ϕ

and so ev : O(F (T )× 1F (T )) is a generic predicate for total(∂).

Note that we have now shown

Theorem 8.10. total(∂) is a tripos.

We call total(∂) the realizability tripos of F : A→ X where A is a Turing category,

X is a discrete cartesian closed restriction category, and F is a restriction functor.

Similarly, we call X[total(∂)] the realizability topos of F .

We conclude by observing that when the realizability fibration is a tripos, the

constant objects functor [31] can be modified to give a restriction functor from the
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base category into the partial topos of the realizability tripos. Define

∆∂ : X→ total(X){total(∂)} by, for X an object of X and f : X → Y in X:

∆∂(X) := ∃∆X
(1F (1)×X) ∈ ∂−1(X ×X)

∆∂(f) := ∃〈1,f〉(1F (1) × f) ∈ ∂−1(X × Y )

It is straightforward to verify that this gives a restriction functor. A more detailed

proof for the total case can be found in [36], and the details are largely the same in the

partial case. The main difference is that instead of having ∆∂(f) be a total relation,

we require that ∆∂(f) = ∆∂(f). That is, we require

[∃〈1,f〉(1× f)(x, y)] ' [∃∆X
(1)(x, x′) ∧ ∃y(∃〈1,f〉(1× f))(x, y)]

which is immediate since ∆∂(f) : ∆∂(X) → ∆∂(Y ) defines a strict relation in the

internal language of the tripos (see [36]).

Recall that in a discrete cartesian closed restriction category we can define a range

combinator by f̂ = ∃f (f). We observe that on objects

∆∂(X) = ∃∆X
(1F (1)×X) = ∃1×∆X

(1×∆X) = ̂(1×∆X) = (1× ∆̂X) = (1×∆(−1))

and similarly, on maps

∆∂(f) = ∃〈1,f〉(1F (1)× f) = ∃1×〈1,f〉(1× 〈1, f〉) = ̂1× 〈1, f〉 = 1× 〈̂1, f〉

offering another way to understand the constant objects functor in which we use the

range combinator to construct a restriction idempotent 〈̂1, f〉 corresponding to the

graph of a function f .

Now, we construct a functor from the category of realizers into the partial topos
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of the realizability tripos by composing H : A → asm(F ) (lemma 5.4) and the

realizability latent fibration ∂ : asm(F ) → X with our modified constant objects

functor:

A F //

H
��

X ∆∂ // total(X){total(∂)}

asm(F )

∂

<<

or equivalently by composing F : A → X with ∆∂. This has the potential to be an

interesting functor, since it captures the sense in which the category of realizers is

present in the realizability (partial) topos.
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9 Conclusions and Further Research

We have constructed categories of assemblies in a way that generalizes existing con-

structions of such categories, and investigated their structure. We have introduced

latent fibrations, and have shown that each category of assemblies defines a related

latent fibration. We have shown that for a cartesian restriction functor with a Turing

category and discrete cartesian closed restriction category as its domain and codomain

respectively, this latent fibration defines a fibration, and this fibration is a tripos. We

have also noticed that given a tripos, we can construct a partial topos, and that the

total maps of this partial topos are exactly the topos associated with the tripos.

There are many directions for further research. Perhaps the most glaring omission

in this thesis is the absence of a definition of “latent tripos”. As mentioned in the

chapter on restriction categories, there ought to be such a thing, and our domain latent

fibration and realizability latent fibration ought to be examples of it. More generally,

finding latent fibrational analogues of fibrational structure in categorical logic and

connecting these to the work already done on the logical structure of restriction

categories would be a good thing to do.

Having constructed our more general categories of assemblies, it would be nice

to have some more general examples. There are likely to be interesting categories of

assemblies in which the domain and/or codomain of the associated functor have less

structure than they do in the classical examples. What are they, and how do they

relate to the classical examples? From here, one might investigate the realizability

latent fibration of interesting categories of assemblies. What structure does it have?

This ties in to the first avenue of further research on logical structure in latent fibra-

tions. Lars Birkedal’s work in [4] deals with a part of this question for fibrations, and

would be a good place to start.

Another potentially interesting area of study is how relationships between the

functors associated with different categories of assemblies induce relationships be-
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tween the categories of assemblies themselves. For example, an applicative morphism

between two partial combinatory algebras in the category of sets and partial functions

induces a regular functor between the corresponding categories of assemblies [29].

What other things like this happen? This extends, of course, to induced relationships

between the associated realizability fibrations as well.
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