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Abstract. We identify the algebraic structure of the material histories generated by
concurrent processes. Specifically, we extend existing categorical theories of resource
convertibility to capture concurrent interaction. Our formalism admits an intuitive graphical
presentation via string diagrams for proarrow equipments. We also consider certain induced
categories of resource transducers, which are of independent interest due to their unusual
structure.

1. Introduction

Concurrent systems are abundant in computing, and indeed in the world at large. Despite
the large amount of attention paid to the modelling of concurrency in recent decades
(e.g., [Hoa78, Mil80, Pet66, Mil99, Abr14]), a canonical mathematical account has yet to
emerge, and the basic structure of concurrent systems remains elusive.

In this paper we present a basic structure that captures what we will call the material
aspect of concurrent systems: As a process unfolds in time it leaves behind a material history
of effects on the world, like the way a slug moving through space leaves a trail of slime. This
slime is captured in a natural way by resource theories in the sense of [CFS16], in which
morphisms of symmetric monoidal categories — conveniently expressed as string diagrams —
are understood as transformations of resources.

↭

From the resource theoretic perspective, objects of a symmetric monoidal category are
understood as collections of resources, with the unit object denoting the empty collection
and the tensor product of two collections consisting of their combined contents. Morphisms
are understood as ways to transform one collection of resources into another, which may be
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combined sequentially via composition, and in parallel via the tensor product. For example,
the process of baking bread might generate the following material history:

meaning that the baking process involved kneading dough and baking it in an oven to obtain
bread (and also the oven).

This approach to expressing the material history of a process has many advantages:
It is general, in that it assumes minimal structure; canonical, in that monoidal categories
are well-studied as mathematical objects; and relatively friendly, as it admits an intuitive
graphical calculus (string diagrams). However, it is unable to capture the interaction between
components of a concurrent process. For example, consider our hypothetical baking process
and suppose that the kneading and baking of the dough are handled by separate subsystems,
with control of the dough being handed to the baking subsystem once the kneading is
complete. Such interaction of parts is a fundamental aspect of concurrency, but is not
expressible in this framework — we can only describe the effects of the system as a whole.

We remedy this by extending a given resource theory to allow the decomposition of
material histories into concurrent components. Specifically, we augment the string diagrams
for symmetric monoidal categories with corners, through which resources may flow between
different components of a transformation.

↭

Returning to our baking example, we might express the material history of the kneading
and baking subsystems separately with the following diagrams, which may be composed
horizontally to obtain the material history of the baking process as a whole.

These augmented diagrams denote cells of a single-object double category constructed
from the original resource theory. The corners make this double category into a proarrow
equipment, which turns out to be all the additional structure we need in order to express
concurrent interaction. From only this structure, we obtain a theory of exchanges — a sort
of minimal system of behavioural types — that conforms to our intuition about how such
things ought to work remarkably well.

Our approach to these concurrent material histories retains the aforementioned advan-
tages of the resource-theoretic perspective: We lose no generality, since our construction
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applies to any resource theory; It is canonical, with proarrow equipments being a funda-
mental structure in formal category theory — although not usually seen in such concrete
circumstances; Finally, it remains relatively friendly, since the string diagrams for monoidal
categories extend in a natural way to string diagrams for proarrow equipments [Mye16].

Every single-object double category defines two monoidal categories: one composed of
cells with trivial left and right boundary, and one composed of cells with trivial top and
bottom boundary. For the double category obtained by adding corners to a resource theory
the induced monoidal categories are, respectively, the resource theory itself and a category
of resource transducers — being an alternative interpretation of concurrent transformations
that neither begin nor end with any resources. This category of resource transducers is rich
in structure, exhibiting unusual features that make it an interesting object of study in its own
right. We establish some elementary properties of this category and axiomatize it directly

— that is, we give a monoidal signature and a collection of equations that characterize the
category of resource transducers.

This paper is an extended version of [Nes21b], including additional examples and an
exploration of the aforementioned categories of resource transducers.

1.1. Contributions and Related Work. Related Work. Monoidal categories are ubiqui-
tous — if often implicit — in theoretical computer science. An example from the theory of
concurrency is [MM90], in which monoidal categories serve a purpose similar to their purpose
here. String diagrams for monoidal categories seem to have been invented independently a
number of times, but until recently were uncommon in printed material due to technical
limitations. The usual reference is [JS91]. We credit the resource-theoretic interpretation of
monoidal categories and their string diagrams to [CFS16]. Double categories first appear
in [Ehr63]. Free double categories are considered in [DP02] and again in [FPP08]. The
idea of a proarrow equipment first appears in [Woo82], albeit in a rather different form.
Proarrow equipments have subsequently appeared under many names in formal category
theory (see e.g., [Shu08,GP04]). String diagrams for double categories and proarrow equip-
ments are treated precisely in [Mye16]. We have been inspired by work on message passing
and behavioural types, in particular [CP09], from which we have adopted our notation for
exchanges.
Contributions. The main contribution of this paper is the resource-theoretic interpretation
of the free cornering and the observation that it captures the structure of concurrent process
histories. Other contributions concern the categorical structure of the free cornering of a
resource theory: we show that it has crossing cells and is consequently a monoidal double
category in Lemma 4.5 and Lemma 4.7, argue that the vertical cells are the original monoidal
category in Proposition 4.4, show that the induced monoidal category of horizontal cells can
be understood as a category of resource transducers, and establish Lemma 6.2, Lemma 6.3,
Observation 1, Lemma 6.4, Lemma 6.5, and Proposition 6.7 — all of which concern the
structure of this category of horizontal cells. Finally, we give an axiomatization of the
category of horizontal cells in terms of equations over a monoidal signature in Section 7. The
original contributions of this paper over [Nes21b] are Lemma 6.2, Lemma 6.4, Lemma 6.5,
Proposition 6.7, and the axiom scheme of Section 7.
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1.2. Organization and Prerequisites. Prerequisites. This paper is largely self-contained,
but we assume some familiarity with category theory, in particular with monoidal categories
and their string diagrams. Some good references are [Mac71,Sel10,FS19].
Organization. In Section 2 we review the resource-theoretic interpretation of symmetric
monoidal categories. We continue by reviewing the theory of double categories in Section 3,
specialized to the single object case. In Section 4 we recall the notion of proarrow equipment,
introduce the free cornering of a resource theory, and exhibit the existence of crossing cells
in the free cornering. In Section 5 we show how the free cornering of a resource theory
inherits its resource-theoretic interpretation while enabling the concurrent decomposition of
resource transformations. In Section 6 we consider the category of resource transducers and
investigate its structure, and in Section 7 we give an axiom scheme for it. In Section 8 we
conclude and consider directions for future work.

2. Monoidal Categories as Resource Theories

Symmetric strict1 monoidal categories can be understood as theories of resource transforma-
tion. Objects are interpreted as collections of resources, with A ⊗ B the collection consisting
of both A and B, and I the empty collection. Arrows f : A → B are understood as ways to
transform the resources of A into those of B. We call symmetric strict monoidal categories
resource theories when we have this sort of interpretation in mind.

For example, let B be the free symmetric strict monoidal category with generating
objects

{bread, dough, water, flour, oven}
and with generating arrows

mix : water ⊗ flour → dough knead : dough → dough

bake : dough ⊗ oven → bread ⊗ oven

subject to no equations. B can be understood as a resource theory of baking bread. The
arrow mix represents the process of combining water and flour to form a bread dough, knead
represents kneading dough, and bake represents baking dough in an oven to obtain bread
(and an oven).

The structure of symmetric strict monoidal categories provides natural algebraic scaf-
folding for composite transformations. For example, consider the following arrow of B:

(bake ⊗ 1dough); (1bread ⊗ σoven,dough; bake)
of type

dough ⊗ oven ⊗ dough → bread ⊗ bread ⊗ oven
where σA,B : A ⊗ B

∼→ B ⊗ A is the braiding. This arrow describes the transformation of
two units of dough into loaves of bread by baking them one after the other in an oven.

It is often more intuitive to write composite arrows like this as string diagrams: Objects
are depicted as wires, and arrows as boxes with inputs and outputs. Composition is
represented by connecting output wires to input wires, and we represent the tensor product
of two morphisms by placing them beside one another. Finally, the braiding is represented

1We work with strict monoidal categories for the sake of convenience and readability. We expect the
present development to apply equally well to the general case, and if pressed would appeal to the coherence
theorem for monoidal categories [Mac71].
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by crossing the wires involved. For the morphism discussed above, the corresponding string
diagram is:

Notice how the topology of the diagram captures the logical flow of resources.
Given a pair of parallel arrows f, g : A → B in some resource theory, both f and g are

ways to obtain B from A, but they may not have the same effect on the resources involved.
We explain by example: Consider the parallel arrows 1dough, knead : dough → dough of B.
Clearly these should not be understood to have the same effect on the dough in question,
and this is reflected in B by the fact that they are not made equal by its axioms. Similarly,
knead and knead ◦ knead are not equal in B, which we understand to mean that kneading
dough twice does not have the same effect as kneading it once, and that in turn any bread
produced from twice-kneaded dough will be different from once-kneaded bread in our model.

Consider a hypothetical resource theory constructed from B by imposing the equation
knead ◦ knead = knead. In this new setting we understand kneading dough once to have the
same effect as kneading it twice, three times, and so on, because the corresponding arrows
are all equal. Of course, the sequence of events described by knead is not the one described
by knead ◦ knead: In the former the dough has been kneaded only once, while in the latter
it has been kneaded twice. The equality of the two string diagrams indicates that these two
different processes would have the same effect on the dough involved. We adopt as a general
principle in our design and understanding of resource theories that transformations should
be equal as morphisms if and only if they have the same effect on the resources involved.

For the sake of further illustration, observe that by naturality of the braiding maps the
following two resource transformations are equal in B:
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Each transformation gives a method of baking two loaves of bread. On the left, two batches
of dough are mixed and kneaded before being baked one after the other. On the right, first
one batch of dough is mixed, kneaded and baked and only then is the second batch mixed,
kneaded, and baked. Their equality tells us that, according to B, the two procedures will
have the same effect, resulting in the same bread when applied to the same ingredients with
the same oven.

3. Single-Object Double Categories

In this section we set up the rest of our development by presenting the theory of single-
object double categories, being those double categories D with exactly one object. In this
case D consists of a horizontal edge monoid DH = (DH , ⊗, I), a vertical edge monoid
DV = (DV , ⊗, I), and a collection of cells

where A, B ∈ DH and X, Y ∈ DV . Given cells α, β where the right boundary of α matches
the left boundary of β we may form a cell α|β — their horizontal composite — and similarly
if the bottom boundary of α matches the top boundary of β we may form α

β — their vertical
composite — with the boundaries of the composite cell formed from those of the component
cells using ⊗. We depict horizontal and vertical composition, respectively, as in:

and

Horizontal and vertical composition of cells are required to be associative and unital. We
omit wires of sort I in our depictions of cells, allowing us to draw horizontal and vertical
identity cells, respectively, as in:

and

Finally, the horizontal and vertical identity cells of type I must coincide — we write
this cell as □I and depict it as empty space, see below on the left — and vertical and
horizontal composition must satisfy the interchange law. That is, α

β |γ
δ = α|γ

β|δ , allowing us to
unambiguously interpret the diagram below on the right:
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Every single-object double category D defines strict monoidal categories VD and HD,
consisting of the cells for which the DH and DV valued boundaries respectively are all I, as
in:

and

That is, the collection of objects of VD is DH , composition in VD is vertical composition of
cells, and the tensor product in VD is given by horizontal composition:

In this way, VD forms a strict monoidal category, which we call the category of vertical cells
of D. Similarly, HD is also a strict monoidal category (with collection of objects DV ) which
we call the horizontal cells of D.

4. Cornerings and Crossings

In this section we introduce the free cornering of a resource theory, our primary technical
device, and show that the free cornering contains special crossing cells with nice formal
properties. We begin by recalling the notion of proarrow equipment, specialised to the case
of single-object double categories:

Definition 4.1. Let D be a single-object double category. D is called a proarrow equipment
in case for each A ∈ DH there are distinguished elements A◦ and A• of DV along with
distinguished cells of D:

called ◦-corners and •-corners respectively, which satisfy the yanking equations:

Tersely, the free cornering of a resource theory is the proarrow equipment obtained by
freely adding corner cells. Explicitly, we define:

Definition 4.2. Let A be a resource theory. Then the monoid A◦• of A-valued exchanges
is defined by A◦• = (A0 × {◦, •})∗. That is, A◦• is the free monoid on the set A0 × {◦, •}
of polarized objects of A, whose elements we write A◦ and A•. Intuitively, elements of A◦•

describe a sequence of resources moving between participants in the exchange, where A◦

denotes an instance of A moving from left to right, and A• denotes an instance of A moving
from right to left (see Section 5).

Now the free cornering is given as follows:

Definition 4.3. Let A be a resource theory. Then the free cornering of A, written ⌜⌞A⌝⌟, is
the free single-object double category determined by the following data:
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• The horizontal edge monoid ⌜⌞A⌝⌟H = (A0, ⊗, I) is given by the objects of A.
• The vertical edge monoid ⌜⌞A⌝⌟V = A◦• is the monoid of A-valued exchanges.
• The generating cells consist of corners for each object A of A as in Definition 4.1, subject

to the yanking equations, along with a vertical cell ⌜⌞f⌝⌟ for each morphism f : A → B of A
subject to equations as in:

For a precise development of free double categories see [FPP08]. In brief: cells are
formed from the generating cells by horizontal and vertical composition, subject to the
axioms of a double category in addition to any generating equations. We call this the “free”
cornering both because it is freely generated, and because we imagine there is an adjunction
relating proarrow equipments and arbitrary double categories under which ⌜⌞A⌝⌟ is “free” in a
more principled sense. We leave the construction of such an adjunction for future work.

An important property of the free cornering is that the vertical cells are the original
resource theory:

Proposition 4.4. There is an isomorphism of categories V ⌜⌞A⌝⌟ � A.

Proof. Intuitively V ⌜⌞A⌝⌟ � A because in a composite vertical cell every wire bent by a corner
must eventually be un-bent by the matching corner, which by yanking is the identity. The
only other generators are the cells ⌜⌞f⌝⌟, and so any vertical cell in ⌜⌞A⌝⌟ can be written as ⌜⌞g⌝⌟ for
some morphism g of A. A more rigorous treatment of corner cells can be found in [Mye16],
to the same effect.

Before we properly explain our interest in ⌜⌞A⌝⌟ we develop a convenient bit of structure:
crossing cells. For each B of ⌜⌞A⌝⌟H and each X of ⌜⌞A⌝⌟V we define a cell

of ⌜⌞A⌝⌟ inductively as follows: In the case where X is A◦ or A•, respectively, define the crossing
cell as in the diagrams below on the left and right, respectively:

in the case where X is I, define the crossing cell as in the diagram below on the left, and in
the composite case define the crossing cell as in the diagram below on the right:

We prove a technical lemma:
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Lemma 4.5. For any cell α of ⌜⌞A⌝⌟ we have

Proof. By structural induction on cells of ⌜⌞A⌝⌟. For the ◦-corners we have:

and for the •-corners, similarly:

the final base cases are the ⌜⌞f⌝⌟ maps:

There are two inductive cases. For vertical composition, we have:

Horizontal composition is similarly straightforward, and the claim follows by induction.

From this we obtain a “non-interaction” property of our crossing cells, similar to the
naturality of braiding in symmetric monoidal categories:
Corollary 4.6. For cells α of V ⌜⌞A⌝⌟ and β of H ⌜⌞A⌝⌟, the following equation holds in ⌜⌞A⌝⌟:

These crossing cells greatly aid in the legibility of diagrams corresponding to cells in
⌜
⌞A
⌝
⌟, but also tell us something about the categorical structure of ⌜⌞A⌝⌟, namely that it is a

monoidal double category in the sense of [Shu10]:

Lemma 4.7. If A is a symmetric strict monoidal category then ⌜⌞A⌝⌟ is a monoidal double
category. That is, ⌜⌞A⌝⌟ is a pseudo-monoid object in the strict 2-category VDblCat of double
categories, lax double functors, and vertical transformations.
Proof. We give the action of the tensor product on cells:
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This defines a pseudofunctor, with the component of the required vertical transformation
given by exchanging the two middle wires as in:

Notice that ⊗ is strictly associative and unital, in spite of being only pseudo-functorial.

5. Concurrency Through Cornering

We proceed to extend the resource-theoretic interpretation of some symmetric strict monoidal
category A to its free cornering ⌜⌞A⌝⌟. We interpret elements of ⌜⌞A⌝⌟V = A◦• as A-valued
exchanges. Each exchange X1 ⊗ · · · ⊗ Xn involves a left participant and a right participant
giving each other resources in sequence, with A◦ indicating that the left participant should
give the right participant an instance of A, and A• indicating the opposite. For example
say the left participant is Alice and the right participant is Bob. Then we can picture the
exchange A◦ ⊗ B• ⊗ C• as:

Alice⇝ f Bob

Think of these exchanges as happening in order. For example the exchange pictured above
demands that first Alice gives Bob an instance of A, then Bob gives Alice an instance of
B, and then finally Bob gives Alice an instance of C.

We interpret cells of ⌜⌞A⌝⌟ as concurrent transformations. Each cell describes a way to
transform the collection of resources given by the top boundary into that given by the bottom
boundary, via participating in A-valued exchanges along the left and right boundaries. For
example, consider the following cells of ⌜⌞B⌝⌟:

From left to right, these describe: A procedure for transforming water into nothing by
mixing it with flour obtained by exchange along the right boundary, then sending the
resulting dough away along the right boundary; A procedure for transforming an oven into
an oven, receiving flour along the right boundary and sending it out the left boundary,
then receiving dough along the left boundary, which is baked in the oven, with the resulting
bread sent out along the right boundary; Finally, a procedure for turning flour into bread
by giving it away and then receiving bread along the left boundary. When we compose
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these concurrent transformations horizontally in the evident way, they give a transformation
of resources in the usual sense, i.e., a morphism of A � V ⌜⌞A⌝⌟:

We understand equality of cells in ⌜⌞A⌝⌟ much as we understand equality of morphisms
in a resource theory: two cells should be equal in case the transformations they describe
would have the same effect on the resources involved. In this way, cells of ⌜⌞A⌝⌟ allow us to
break a transformation into many concurrent parts. Note that with the crossing cells, it is
possible for cells that are not immediately adjacent to exchange resource across the cells in
between them. In the above example, flour is sent from the rightmost cell to the leftmost
cell across the middle cell. This makes the double-categorical structure less constraining
that it may seem at first. For example we might rearrange our previous example into the
following horizontally composable cells of ⌜⌞B⌝⌟:

When composed, we obtain a similar morphism of A:

It is worth mentioning that the difference between oven ⊗ flour ⊗ water and water ⊗
oven ⊗ flour is negligible since any permutation of a collection of resources is naturally
isomorphic to the original collection as an object of A.

6. Horizontal Cells as Resource Transducers

If A is a resource theory, then the category H ⌜
⌞A
⌝
⌟ of horizontal cells of the free cornering

can be understood as a category of (A-valued) resource transducers.2 Specifically, recall
our interpretation of A◦• = (H ⌜⌞A⌝⌟)0 as A-valued exchanges, in which two parties Alice and
Bob must supply or retreive the resources involved in the exchange in the order specified,
with who gives whom what determined by the polarity of the resources (see Section 5). Let
h : X → Y be an arrow of H ⌜⌞A⌝⌟. We can understand h as a machine operated by a left and
right participant, again called Alice and Bob respectively. To operate the machine, Alice
must play the left hand role of the domain exchange X and Bob must play the right hand

2The word “transducer” is derived from the latin words trans — meaning “across” and ducere — meaning
“lead”. We feel this is a good fit for the horizontal cells of the free cornering, which can be understood as a
method of leading resources across the cell in question.
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role of the codomain exchange Y . The morphism h describes the internals of the machine.
For example, consider the following morphism of H ⌜⌞A⌝⌟:

Alice⇝ f Bob

To operate the transducer, Alice must supply water and then receive bread, while Bob must
supply flour, receive dough, and then supply bread. The effect of the machine is to mix the
flour and water initially supplied into the dough Bob receives, and then to send the bread
Bob supplies to Alice.

The transducer interpretation (along with our previous interpretation of the whole of
⌜
⌞A
⌝
⌟) makes H ⌜

⌞A
⌝
⌟ into a category of independent interest, and in this section we will study

it. Compounding our interest is the fact that H ⌜
⌞A
⌝
⌟ is rather unusual. It is of course a

monoidal category (see Section 3) but fails to have any of the properties common to monoidal
categories. Selinger’s survey paper [Sel10] lists many such properties, for example:

Definition 6.1 [Sel10]. A monoidal category is spatial in case for all objects X and arrows
h : I → I we have:

It is easy to see that H ⌜⌞A⌝⌟ has the property of being spatial:

Lemma 6.2. H ⌜⌞A⌝⌟ is spatial.

Proof. We use the fact that every symmetric monoidal category is spatial. The proof is by
induction on the type X of the wire. If X is A◦ we have:

and so the spatial axiom holds. Similarly the spatial axiom holds if X is A•. If X is I the
spatial axiom holds trivially, and the inductive case is immediate.

We note that H ⌜⌞A⌝⌟ has no other property found in the aforementioned survey paper.
Much of the structure that H ⌜

⌞A
⌝
⌟ does have consists of isomorphisms formed of corner

cells. While isomorphic objects in V ⌜⌞A⌝⌟ � A can be thought of as equivalent collections of
resources — being freely transformable into each other — we understand isomorphic objects
in H ⌜

⌞A
⌝
⌟ as equivalent exchanges. For example, there are many ways for Alice to give Bob

an A and a B: Simultaneously, as A ⊗ B; one after the other, as A and then B; or in the
other order, as B and then A. While these are different sequences of events, they achieve
the same thing, and are thus equivalent. Similarly, for Alice to give Bob an instance of I is
equivalent to nobody doing anything. Formally, we have:

Lemma 6.3. In H ⌜⌞A⌝⌟ we have for any A, B of A:
(1) I◦ � I � I•.
(2) A◦ ⊗ B◦ � B◦ ⊗ A◦ and A• ⊗ B• � B• ⊗ A•.
(3) (A ⊗ B)◦ � A◦ ⊗ B◦ and (A ⊗ B)• � A• ⊗ B•
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Proof. (1) For I � I◦, consider the ◦-corners corresponding to I:

we know that these satisfy the yanking equations:

which exhibits an isomorphism I � I◦. Similarly, I � I•. Thus, we see formally that
exchanging nothing is the same as doing nothing.

(2) The ◦-corner case is the interesting one: Define the components of our isomorphism to
be:

and

then for both of the required composites we have:

and so A◦ ⊗ B◦ � B◦ ⊗ A◦. Similarly A• ⊗ B• � B• ⊗ A•. This captures formally the
fact that if Alice is going to give Bob an A and a B, it doesn’t really matter which
order she does it in.

(3) Here it is convenient to switch between depicting a single wire of sort A ⊗ B and two
wires of sort A and B respectively in our string diagrams. To this end, we allow ourselves
to depict the identity on A ⊗ B in multiple ways, using the notation of [CS17]:

Then the components of our isomorphism (A ⊗ B)◦ � A◦ ⊗ B◦ are:

and

and, much as in (ii), it is easy to see that the two possible composites are both identity
maps. Similarly, (A ⊗ B)• � (A• ⊗ B•). This captures formally the fact that giving
away a collection is the same thing as giving away its components.

For example, we should be able to compose the cells on the left and right below
horizontally, since their right and left boundaries, respectively, indicate equivalent exchanges:
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Our lemma tells us that in cases like this there will be a mediating isomorphism, as above
in the middle, making composition possible.

It is worth noting that we do not have A◦ ⊗ B• � B• ⊗ A◦:

Observation 1. There is a morphism d◦
• : A◦ ⊗ B• → B• ⊗ A◦ in one direction, defined by

but there need not be a morphism in the other direction, and this is not in general invertible.
In particular, H ⌜⌞A⌝⌟ is monoidal, but need not be symmetric.

This observation reflects formally the intuition that if I receive some resources before
I am required to send any, then I can send some of the resources that I receive. However,
if I must send the resources first, this is not the case. In this way, H ⌜

⌞A
⌝
⌟ contains a sort of

causal structure.
Next, we find that H ⌜⌞A⌝⌟ contains the original resource theory A as a subcategory in two

different ways, one for each polarity:

Lemma 6.4. There are strong monoidal functors (−)◦ : A→ H ⌜⌞A⌝⌟ and (−)• : Aop → H ⌜⌞A⌝⌟
defined respectively on f : A → B of A by:

and

Further, each of these functors is full and faithful.

Proof. (−)◦ is functorial as in:

It interacts with the tensor product in A as in:

and is therefore strong monoidal as a consequence of Lemma 6.3. Further (−)◦ is faithful
because ⌜⌞A⌝⌟ is freely generated. It is full because of the coherence theorem of [Mye16], which
implies that for any horizontal cell (morphism of H ⌜

⌞A
⌝
⌟) h : A◦ → B◦ we may yank all of

the wires straight to obtain an equal morphism f◦ = h for some f : A → B of A. Similarly,
(−)• is functorial, strong monoidal, full, and faithful.

There is also a contravariant involution (−)∗ : H ⌜
⌞A
⌝
⌟
op → H ⌜

⌞A
⌝
⌟. As an intermediate

step we define an operation on the cells of ⌜⌞A⌝⌟ as follows: For A ∈ A0 = V ⌜⌞A⌝⌟ let A∗ = A.
For X ∈ A◦• = H ⌜

⌞A
⌝
⌟ define X∗ inductively: I∗ = I, (A◦)∗ = A•, (A•)∗ = A◦, and

(X ⊗ Y )∗ = X∗ ⊗ Y ∗. On cells of ⌜⌞A⌝⌟ we also define (−)∗ inductively: The base cases are



CONCURRENT PROCESS HISTORIES AND RESOURCE TRANSDUCERS 15

⌜
⌞f
⌝
⌟
∗ = ⌜⌞f⌝⌟ along with:

∗7→ ∗7→

∗7→ ∗7→

and the inductive cases are:

∗7→ ∗7→

Informally, α∗ is the mirror image of α. It is easy to see that we have α∗∗ = α for any cell α
of ⌜⌞A⌝⌟. Thus, restricting (−)∗ to H ⌜⌞A⌝⌟ gives:

Lemma 6.5. There is a contravariant involution (−)∗ : H ⌜
⌞A
⌝
⌟
op → H ⌜

⌞A
⌝
⌟ with the property

that (f ⊗ g)∗ = f∗ ⊗ g∗.3

We discuss one final bit of structure in H ⌜⌞A⌝⌟, concerning the following arrows:

These are reminiscent of the string diagrams for rigid monoidal categories, these arrows
make A◦ into the left dual of A• (and so make A• into the right dual of A◦). However, H ⌜⌞A⌝⌟
is neither left nor right rigid: for example A◦ ⊗ B• has neither a left nor right dual. It is
natural to ask whether the arrows introduced above carry significant categorical structure.
We give one answer, and in doing so connect the present work to Cockett and Pastro’s
logic of message passing [CP09]. In particular, the categorical semantics of this logic of
message passing is given by linear actegories. If A is a symmetric monoidal category, a linear
A-actegory is given by a linearly distributive category X (see e.g., [CS17]) together with two
functors:

◦ : A× X→ X • : Aop × X→ X
such that ◦ is the paramaterised left adjoint of • — that is, for all A ∈ A0 we have
A ◦ − ⊣ A • − — along with nine natural families of arrows subject to a large number of
coherence conditions.

The category H ⌜⌞A⌝⌟ exhibits similar, if much simpler, structure. In particular the strong
monoidal functors (−)◦ and (−)• of Lemma 6.4 allow us to define ◦ : A× H ⌜⌞A⌝⌟ → H ⌜⌞A⌝⌟ and
• : Aop × H ⌜

⌞A
⌝
⌟ → H ⌜

⌞A
⌝
⌟ by f ◦ h = f◦ ⊗ h and f • h = f• ⊗ h. Echoing the definition of a

linear actegory, we have:
3It is tempting to call this a contravariant monoidal involution, but in the covariant case a monoidal

involution (−)ι has the property that (f ⊗ g)ι = gι ⊗ f ι, twisting the tensor product [Egg11]. We refrain
from coining any new technical terms lest a “contravariant monoidal involution” turn out to be better suited
to describing contravariant involutions that twist the tensor product instead of those that do not.
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Lemma 6.6. ◦ is the paramaterised left adjoint of •. That is, for all A ∈ A the functors
A ◦ − : H ⌜⌞A⌝⌟ → H ⌜⌞A⌝⌟ and A • − : H ⌜⌞A⌝⌟ → H ⌜⌞A⌝⌟ defined on h : X → Y by, respectively:

and

are such that A ◦ − ⊣ A • −.

Proof. Fix an object A ∈ A. We require natural families of morphisms ηA,X : X → A•(A◦X)
and εA,X : A ◦ (A • X) → X in H ⌜

⌞A
⌝
⌟ that satisfy the triangle identities. Define ηA,X and

εA,X , respectively, by

and

Now the triangle identities hold by repeated yanking, as in:

and

We therefore conclude that A ◦ − ⊣ A • −, as required.

Now, every monoidal category is a linearly distributive category (with both monoidal
operations given by ⊗), and it turns out that H ⌜

⌞A
⌝
⌟ forms a (somewhat degenerate) linear

actegory. Of the nine natural families of arrows required by the definition, four are accounted
for by the isomorphisms of Lemma 6.3, a further four become identities in our setting, and
the final one is given by the d◦

• morphisms from Observation 1. The coherence conditions all
hold trivially. We record:

Proposition 6.7. Let A be a resource theory. Then H ⌜⌞A⌝⌟ is a linear actegory.

This is intriguing insofar as it exhibits a formal connection between the free cornering of
a resource theory and existing work on behavioural types. For example, the message-passing
interpretation of classical linear logic presented by Wadler in [Wad14] corresponds to the
message-passing interpretation of linear actegories in the special case of a *-autonomous
category acting on itself (Example 4.2(4) of [CP09]). There may be an even stronger
connection to the behavioural type interpretation of intuitionistic linear logic due to Caires
and Pfenning [CP10], although here the connection to the logic of message passing is weaker
(Example 4.2(1) of [CP09]). We leave the full investigation of these connections for future
work.

7. Axioms for Resource Transducers

We have seen that the category of horizontal cells of the free cornering of a resource theory
is an interesting object of study in its own right: it is a planar monoidal category that arises
naturally and is different from those typically considered. In this section we give a direct
presentation of H ⌜⌞A⌝⌟ both to deepen our understanding of its structure and to facilitate its
use as an example (or counterexample) in the future. While there are many axioms, they are
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mostly intuitive, and are conveniently organized into pairs by the contravariant involution
(−)∗ of Lemma 6.5.

Let A be a resource theory. Define T(A) to be the free spatial strict monoidal category
with the generating objects as in:

A ∈ A0

A◦ obj
A ∈ A0

A• obj
and the generating morphisms given by:

f : A → B ∈ A1

f◦ : A◦ → B◦ ◦
f : A → B ∈ A1

f• : B• → A• •

A, B ∈ A0

◁A,B : (A ⊗ B)◦ → A◦ ⊗ B◦ ◁
A, B ∈ A0

▶A,B : A• ⊗ B• → (A ⊗ B)• ▶

A, B ∈ A0

▷A,B : A◦ ⊗ B◦ → (A ⊗ B)◦ ▷
A, B ∈ A0

◀A,B : (A ⊗ B)• → A• ⊗ B• ◀

� : I → I◦ � ⊸ : I◦ → I
⊸

� : I• → I
�

� : I → I• �

A, B ∈ A0

σ◦
A,B : A◦ ⊗ B◦ → B◦ ⊗ A◦ σ◦

A, B ∈ A0

σ•
A,B : A• ⊗ B• → B• ⊗ A• σ•

A ∈ A0

ηA : I → A• ⊗ A◦ η
A ∈ A0

εA : A◦ ⊗ A• → I
ε

The rules ◦ and • correspond to the image of the functors from Lemma 6.4. All of
◁, ▷,◀,▶,⊸,�,�,�, σ◦, σ• correspond to the isomorphisms of Lemma 6.3, and the η
and ε rules correspond to the morphisms considered at the end of Section 6 that lead to
Proposition 6.7.

Before presenting the equations for T(A) we give the following string-diagrammatic
conventions for our generators:

f◦ ↭ f• ↭

◁A,B ↭ ▶A,B ↭

▷A,B ↭ ◀A,B ↭

� ↭ ⊸ ↭ � ↭ � ↭
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σ◦
A,B ↭ σ•

A,B ↭

ηA ↭ εA ↭

While it is initially difficult to keep track of the polarity of each wire, particularly in the
diagrams for the σ◦, σ•, η, and ε morphisms, this is alleviated by the fact that resources
may flow down but not up. Keeping this in mind allows us to omit any sort of directional
information from the wires of our diagrams, which we feel makes them more readable.

Now, we impose the following equations in addition to those of a spatial strict monoidal
category, and those inherited from A. First, concerning the interaction of the ◁, ▷ and ◀,▶
morphisms we require:

We note that this is a polarized version of the axioms for “dividers” and “gatherers” found
in the SZX calculus [CHP19]. We continue with axioms concerning the interaction of the
⊸,� and �,� morphisms:

For the remaining interactions of ◁, ▷,⊸,� and ◀,▶,�,� we require:

Next, the interaction between σ◦, ◦ and σ•, • is captured by:

For the interaction between σ◦, ◁, ▷ and σ•,◀,▶ we require:
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and the interaction between σ◦,⊸,� and σ•,�,� is captured by:

For the interaction between η, ε, ◦, • we require:

The interaction between σ◦, σ•, η, ε is captured by:

And for the interaction between η, ε, ◁, ▷,◀,▶ we ask that:

Finally, we require the following axioms concerning f◦ and f•:
f◦g◦ = (fg)◦ ◁ (f◦ ⊗ g◦) ▷ = (f ⊗ g)◦ (1A)◦ = 1A◦ ▷ (σA,B)◦◁ = σ◦

A,B

g•f• = (fg)• ◀(f• ⊗ g•)▶= (f ⊗ g)• (1A)• = 1A• ▶(σA,B)•◀= σ•
A,B

This concludes the presentation of T(A). We proceed to define a strict monoidal functor
M : T(A) → H ⌜

⌞A
⌝
⌟ on objects by M(X) = X (since T(A) and H ⌜

⌞A
⌝
⌟ have the same objects)

and on the generators by:

M(f◦) = M(f•) =

M(◁A,B) = M(▶A,B) =

M(▷A,B) = M(◀A,B) =

M(�) = M(⊸) = M(�) = M(�) =

M(σ◦
A,B) = M(σ•

A,B) =

M(ηA) = M(εA) =

It is straightforward to verify that M is a strict monoidal functor. Additionally, we have:

Proposition 7.1. M : T(A) → H ⌜⌞A⌝⌟ is full, faithful, and identity-on-objects.
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Proof. That M is full follows from the cohrerence theorem for string diagrams for proarrow
equipments [Mye16]. Intuitively, every arrow of H ⌜⌞A⌝⌟ is either in the image of (−)◦ or (−)•,
or is built out of corner cells and crossing cells. Every horizontal cell of H ⌜

⌞A
⌝
⌟ that can be

built out of only corner cells and does not decompose into multiple such cells is the image of
one of the generators of T(A), and so we know that M is full. Perhaps surprising is that the
horizontal cell d◦

• : A◦ ⊗ B• → B• ⊗ A◦ of Observation 1 decomposes in this way, being the
image under M of the following morphism in T(A):

To show that M is faithful is to show that the equations of T(A) capture all equations
between horizontal cells of ⌜⌞A⌝⌟ when taken together with the equations of a spatial strict
monoidal category. Recall that all of the equations of ⌜⌞A⌝⌟ are generated by the yanking
equations, along with any equations of A. The yanking equations are local, in that each
instance of one of the yanking equations involves exactly two cells of ⌜⌞A⌝⌟, so we need only
consider local interactions of cells of H ⌜⌞A⌝⌟ in our analysis. It is relatively straightforward to
verify that the defining equations of T(A) are precisely the equations that arise in this way,
and so M is faithful.4 Finally, M is clearly identity-on-objects.

It follows that our axiomatization of H ⌜⌞A⌝⌟ is correct. We record:

Corollary 7.2. There is an isomorphism of categories H ⌜⌞A⌝⌟ � T(A).

8. Conclusions and Future Work

We have shown how to decompose the material history of a process into concurrent compo-
nents by working in the free cornering of an appropriate resource theory. We have explored
the structure of the free cornering in light of this interpretation and found that it is consistent
with our intuition about how this sort of thing ought to work. We do not claim to have
solved all problems in the modelling of concurrency, but we feel that our formalism captures
the material aspect of concurrent systems very well.

We find it quite surprising that the structure required to model concurrent resource
transformations is precisely the structure of a proarrow equipment. This structure is already
known to be important in formal category theory, and we are appropriately intrigued by its
apparent relevance to models of concurrency — a far more concrete setting than the usual
context in which one encounters proarrow equipments!

Further, we have considered categories of resource transducers that are induced by
our construction. We have identified some structure they do and do not exhibit, and have
provided a more direct axiomatization of them. We are not aware of any categories with
similar structure, which we feel makes these categories of resource transducers worthy of
further study, and of potential value as a counterexample.

There are of course many directions for future work. For one, it would be nice to
connect the development here to the wider literature on concurrent processes. An obstacle
to this is that the free cornering does not allow us to express branching or recursion, both of
which feature heavily in more general theories of process communication. If we assume that

4Given the large number of equations involved, it is of course possible that we have missed some. That
said, we are reasonably confident that the equations we have given are complete in this sense.
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our monoidal category A has binary coproducts then we may represent a limited sort of
branching computation in which (A + B)◦ and (A + B)• represent choices to be made by the
left and right participant respectively, but this is less flexible than the protocol-level choice
that one finds in e.g. session types or the nondeterminism of process calculi. We speculate
that this is best approached through the “situated transition systems” introduced in [Nes21a],
in which the concurrent resource transformations developed in [Nes21b] (which this paper
extends) are used to augment the category of spans of reflexive graphs — interpreted as
open transition systems [KSW97] — to generate material history over some resource theory
as transitions unfold in time. Alternatively, one might impose additional structure on the
free cornering to allow nondeterministic choice and repetition.

Another direction for future work is to pursue the connection with the message passing
logic of Cockett and Pastro [CP09] (established in Proposition 6.7) and the wider programme
of behavioural types influenced by linear logic including [Wad14] and [CP10]. Finally, the
presence of proarrow equipments here is rather mysterious, and we wonder if some deeper
reason for it might exist.
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