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We can construct a model of first-order intuitionistic arithmetic
out of the partial recursive functions (Kleene 1945)

Instead of truth values, propositions are modelled as subsets of N,
which we say realize them. These act as constructive evidence that
a proposition holds.

This model is sound, but not complete. Some propositions are
realizable, but not provable in the intuitionistic deductive system.
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We define the set of realizers JϕK ⊆ N for a proposition ϕ by

JϕK = N if ϕ is a true atomic formula, e.g. 4 = 4

JϕK = {} if ϕ is a false atomic formula, e.g. 3 = 4

Jϕ ∧ ψK = {〈n,m〉 | n ∈ JϕK,m ∈ JψK}

Jϕ ∨ ψK = {〈0, n〉 | n ∈ JϕK} ∪ {〈1, n〉 | n ∈ JψK}

Jϕ⇒ ψK = {n | ∀m ∈ JϕK.φn(m) ∈ JψK}

J∃xϕK = {〈n,m〉 | n ∈ Jϕ[m/x]K}

J∀xϕK = {n | ∀m ∈ N.φn(m) ∈ Jϕ[m/x]K}
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A similar approach can be used to construct a realizabilty model
for topos logic. This is called the effective topos (Hyland 1982)

We can construct this sort of realizability topos for any partial
combinatory algebra∗, not just the one given by the partial
recursive functions. (Hyland, Pitts, Johnstone, . . . )

These are pretty cool. Applications in programming language
semantics.

∗: Any partial combinatory algebra on sets.
(Cockett & Hofstra 2008)
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A partial applicative system in a cartesian restriction category X
consists of an object A and a map • : A×A→ A. (That’s it!)

We say a map f : A→ A of X is A-computable in case there is a
total map h : 1→ A such that

A×A • // A

A× 1 ' A

1×h

OO

f

99

A partial applicative system is combinatory complete in case the
A-computable maps form a cartesian restriction subcategory of X.

Such a partial applicative system is called a partial combinatory
algebra (PCA).
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A Turing category is a cartesian restriction category with a Turing
object. That is, a universal object A together with an application
map • : A×A→ A such that for every map f : A→ A there is a
total map h : 1→ A such that

A×A • // A

A× 1 ' A
f

99

1×h

OO

Think of a Turing category as a bunch of computable maps, with
the Turing object representing the “data” that we want to
compute with.

We can do computability theory in every Turing category. There is
a universality theorem, parameter theorem, and so on.
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For example, the partial recursive functions give a Turing category
that embeds into the category of sets and partial functions, ptl.

The Turing object is N, and the application map • : N× N→ N is
defined by •(m,n) = φn(m). Then, for the nth partial recursive
function f , the total map h : 1→ N such that

N× N • // N

N× 1 ' N

1×h

OO

f

::

is the map {∗ 7→ n}.

This example is caled Kleene’s first model of computation.
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We want to construct realizability models in which the realizers
come from an arbitrary Turing category, not necessarily a
subcategory of sets and partial functions, ptl.

To that end, we work with a cartesian restriction functor

F : A→ X

where A is a Turing category.

If the codomain of F is ptl and F : A→ ptl is an inclusion, the
construction yields the usual realizability tripos.

If the codomain of F is ptl, the construction yields the generalized
reazliabiliy tripos of (Birkedal 2002).
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Let A be a Turing category, X be a cartesian restriction category,
and F : A→ X be a cartesian restriction functor.

An assembly is a restriction idempotent ϕ : O(F (A)×X) in X
where A is an object of A, and X is an object of X.

A morphism of assemblies f : ϕ→ ψ for ϕ : O(F (A)×X),
ψ : O(F (B)× Y ) is a map f : X → Y of X which is tracked by
some map γ : A→ B of A. That is

(i) ϕ(F (γ)× f) = ϕ(F (γ)× f)ψ

(ii) ϕ(1× f) = ϕ(F (γ)× f)

Assemblies and their morphisms form a cartesian restriction
category, denoted asm(F ).
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For example, when F is the inclusion of Kleene’s first model into
ptl, an assembly ϕ : O(N×X) defines a relation ϕ ⊆ N×X,
which we view as a map ϕ : X → P(N).

In this case, a morphism of assemblies f : ϕ→ ψ for
ϕ : O(N×X), ψ : O(N× Y ) is a map f : X → Y such that there
exists a partial recursive function γ : N→ N satisfying

∀x ∈ X.(b ∈ ϕ(x) ∧ f(x) ↓)⇒ (γ(b) ↓ ∧ γ(b) ∈ ψ(f(x)))

The category of total maps of asm(F ) is the usual category of
assemblies constructed from Kleene’s first model.
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For a Turing category A and cartesian restriction functor
F : A→ X . . .

If X is a cartesian restriction category, then asm(F ) is a cartesian
restriction category.

If X is a discrete range restriction category, then asm(F ) is a range
restriction category.

If X is a discrete cartesian closed restriction category, then asm(F )
is a locally cartesian closed range restriction category.
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A discrete cartesian closed restriction category is a cartesian closed
restriction category in which, for each object X, the diagonal map
∆ : X → X ×X has a partial inverse.

For example, ptl is a discrete cartesian closed restriction category.

However, ptl is a partial topos (Curien & Obtulowicz 1989). It has
more logical structure than a discrete cartesian closed restriction
category.

Our realizability tripos construction only requires the codomain of

F : A→ X

to be a discrete cartesian closed restriction category.
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Let ∂ : E→ X be a restriction functor.

An arrow f : X → X ′ of E is prone in case whenever we have
maps g : Y → X ′ in E and h : ∂(Y )→ ∂(X) in X such that
h∂(f) ≥ ∂(g), there exists a map ĥ : Y → X such that ĥf ≥ g,
∂ĥ ≤ h, and for any other map k : Y → X with these properties,
ĥ ≤ k.

In E: Y
g

  
∃ĥ
��
X

f
//

≥
X ′

In X: ∂(Y )

h
��

∂(g)

##
∂(X)

∂(f)
//

≥

∂(X ′)
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∂ : E→ X is a latent fibration in case, for each map f : A→ ∂(X)
of X, there is prone arrow above f with codomain X.

Latent fibrations are the correct notion of fibration for restriction
categories.

A latent fibration ∂ : E→ X is total if it reflects total maps. That
is, if ∂(f) = 1 implies f = 1.

From any total latent fibration ∂ : E→ X, we can construct a
fibration in the usual sense, ∂t : E→ total(X), whose fibers are
those of ∂.
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Now, for a cartesian restriction functor F : A→ X, A a Turing
category, X a cartesian restriction category, there is a forgetful
restriction functor

∂ : asm(F )→ X

This turns out to be a total latent fibration. The prone map above
f : X → ∂(ψ) for ψ : O(F (B)× Y ) is

(1× f)ψ
f−→ ψ

If X is a discrete cartesian closed restriction category, then ∂t is a
tripos. The realizability tripos.

We can also do this construction when A has only part of the
structure of a Turing category to obtain a series of realizability
pretriposes in the sense of (Birkedal 2002)
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Let X be a restriction category.

Define the category R(X) by

objects: pairs (X, e) where X an object of X, e : O(X)

maps: a map (X, e)
f−→ (X ′, e′) is a map f : X → X ′ of X

satisfying e ≤ fe′.
composition: as in X
identities: the identity on (X, e) is 1X

There is a forgetful restriction functor

O : R(X)→ X

which also reflects total maps.
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In fact O : R(X)→ X is a total latent fibration.

The prone map above f : X → O(X ′, e′) is

(X, fe′)
f−→ (X ′, e′)

If X is a discrete cartesian closed restriction category then the
corresponding fibration Ot is a tripos.

That’s new. (Cockett & Hofstra unpublished notes)
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Given a tripos p : E→ X, we can use the internal language to
construct a topos whose objects are partial equivalence relations on
objects of X, and whose maps f : X → Y are relations that are

Strict: ∀xy(f(x, y)⇒ x ∼ x ∧ y ∼ y)

Relational: ∀xx′yy′(f(x, y) ∧ x ∼ x′ ∧ y ∼ y′ ⇒ f(x′, y′)

Deterministic: ∀xyy′(f(x, y) ∧ f(x, y′)⇒ y ∼ y′)
Total: ∀x(x ∼ x⇒ ∃y(f(x, y)))

If we remove the requirement that a relation is total, the resulting
category is a partial topos. Since every discrete cartesian closed
restriction category determines a tripos, this means it also
determines a partial topos. More generally, every tripos determines
a partial topos.
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Thanks for listening!
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