Protocol Choice and Iteration for the Free Cornering

Chad Nester ¹ Niels Voorneveld ²

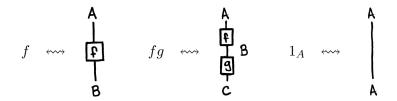
¹University of Tartu. kodu.ut.ee/~nester/

²Cybernetica AS. nvoorneveld.com/

MSFP 2024

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

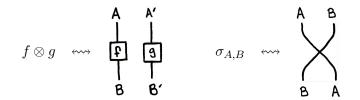
Categories:



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Objects, morphisms, composition, identities.

Symmetric Monoidal Categories:

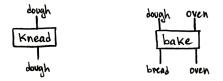


Tensor product and braiding. Monoid of objects.

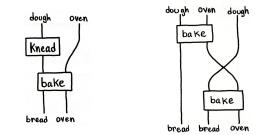
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Naturality Conditions.

"Resource-Theoretic" interpretation.

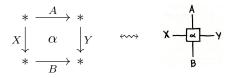


Composite processes.

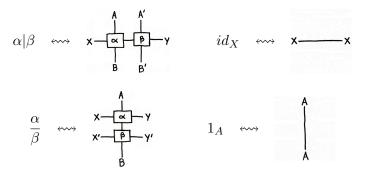


▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

(Single-Object) Double Categories:



Horizontal and vertical edge monoids, cells.



Horizontal and vertical composition, identities.

The free cornering [A] of a monoidal category A has (Part 1):

Horizontal edge monoid is $(\mathbb{A}_0, \otimes, I)$.

Vertical edge monoid is $(\mathbb{A}^{\circ \bullet}, \otimes, I)$, as in: (also monoid equations)

$$\frac{A \in \mathbb{A}_0}{A^\circ \in \mathbb{A}^{\circ \bullet}} \qquad \frac{A \in \mathbb{A}_0}{A^\bullet \in \mathbb{A}^{\circ \bullet}} \qquad \frac{U \in \mathbb{A}^{\circ \bullet}}{U \otimes W \in \mathbb{A}^{\circ \bullet}}$$

Interpretation: A-valued exchanges. $A^{\circ} \otimes B^{\bullet} \otimes C^{\bullet} \in \mathbb{A}^{\circ \bullet}$ is:

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

The free cornering [A] of a monoidal category A has (Part 2):

For each $f: A \to B$ in \mathbb{A} , a cell:

$$\begin{bmatrix} \vec{f} \end{bmatrix} \iff \begin{bmatrix} \vec{f} \\ \vec{f} \end{bmatrix} \underset{B}{\overset{A}{\overset{B}{\overset{B}}}}$$

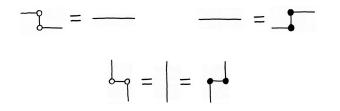
Subject to equations:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

The free cornering [A] of a monoidal category A has (Part 3):

Corner cells for each object A of \mathbb{A} :

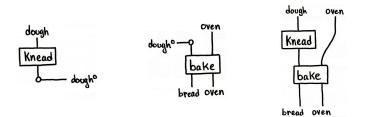
Subject to equations:



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Interpretation: resource-passing.

Transform input (top) to output (bottom) by participating in exchanges (left/right).



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Horizontal composition ++++ interaction.

Alternatively, elements of $\mathbb{A}^{\circ \bullet}$ are *protocol types!*

Q: Is this a good foundation for interactive programming?

A: Not yet. $\mathbb{A}^{\circ \bullet}$ is disappointing as a system of protocol types.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Goal: Support for more protocols. Choice. Iteration.

For choice, vertical edge monoid becomes (plus monoid equations):

$$\frac{A \in \mathbb{A}_{0}}{A^{\circ} \in \mathbb{A}_{\oplus}^{\circ \bullet}} \quad \frac{A \in \mathbb{A}_{0}}{A^{\bullet} \in \mathbb{A}_{\oplus}^{\circ \bullet}} \quad \overline{I \in \mathbb{A}_{\oplus}^{\circ \bullet}} \quad \frac{U \in \mathbb{A}_{\oplus}^{\circ \bullet} \quad W \in \mathbb{A}_{\oplus}^{\circ \bullet}}{U \otimes W \in \mathbb{A}_{\oplus}^{\circ \bullet}} \\
\frac{U \in \mathbb{A}_{\oplus}^{\circ \bullet} \quad W \in \mathbb{A}_{\oplus}^{\circ \bullet}}{U + W \in \mathbb{A}_{\oplus}^{\circ \bullet}} \quad \frac{U \in \mathbb{A}_{\oplus}^{\circ \bullet} \quad W \in \mathbb{A}_{\oplus}^{\circ \bullet}}{U \times W \in \mathbb{A}_{\oplus}^{\circ \bullet}}$$

Interpretation:

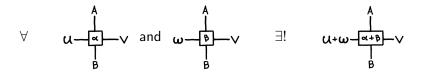
- *U* + *W* is the protocol in which the *left* participant chooses one of *U* or *W*, which then happens.
- $U \times W$ is the protocol in which the *right* participant chooses one of U or W, which then happens.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

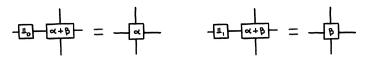
E.g., $(A^{\circ} \otimes B^{\bullet}) + (A^{\circ} \times B^{\bullet})$

For U + W, we require *injections*:

Moreove, we require that:



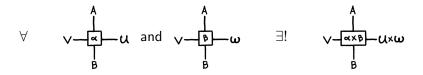
satisfying:



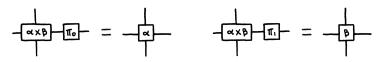
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

For $U \times W$ we require *projections*:

Moreove, we require that:



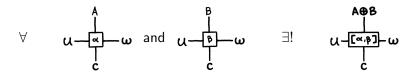
satisfying:



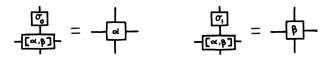
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Let A have distributive binary coproducts $A \oplus B$ with injections:

Then we can require cells as in:



satisfying:



▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Case statements / "sequential choice".

For iteration, vertical edge monoid becomes:

$$\frac{A \in \mathbb{A}_{0}}{A^{\circ} \in \mathbb{A}_{*}^{\circ \circ}} \qquad \frac{A \in \mathbb{A}_{0}}{A^{\circ} \in \mathbb{A}_{*}^{\circ \circ}} \qquad \overline{I \in \mathbb{A}_{*}^{\circ \circ}} \qquad \frac{U \in \mathbb{A}_{*}^{\circ \circ} \qquad W \in \mathbb{A}_{*}^{\circ \circ}}{U \otimes W \in \mathbb{A}_{*}^{\circ \circ}} \\
\frac{U \in \mathbb{A}_{*}^{\circ \circ} \qquad W \in \mathbb{A}_{*}^{\circ \circ}}{U + W \in \mathbb{A}_{*}^{\circ \circ}} \qquad \frac{U \in \mathbb{A}_{*}^{\circ \circ} \qquad W \in \mathbb{A}_{*}^{\circ \circ}}{U \times W \in \mathbb{A}_{*}^{\circ \circ}} \\
\frac{U \in \mathbb{A}_{*}^{\circ \circ} \qquad U \in \mathbb{A}_{*}^{\circ \circ}}{U^{+} \in \mathbb{A}_{*}^{\circ \circ}} \qquad \frac{U \in \mathbb{A}_{*}^{\circ \circ} \qquad W \in \mathbb{A}_{*}^{\circ \circ}}{U^{\times} \otimes W \otimes \mathbb{A}_{*}^{\circ \circ}}$$

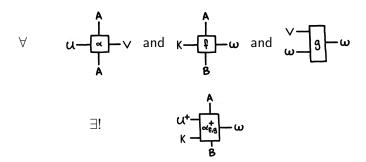
subject to (in addition to monoid equations):

$$U^+ = I + (U \otimes U^+) \qquad \qquad U^{\times} = I \times (U \otimes U^{\times})$$

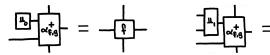
▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Interpretation: given by the equations.

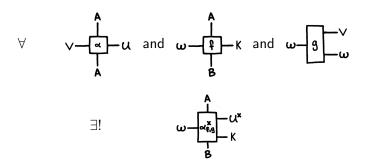
For U^+ , we require:



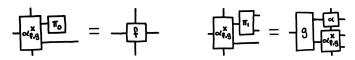
satisfying:



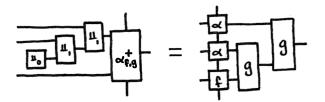
For U^{\times} , we require:



satisfying:



For example:



▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

For convenience, given $\alpha : (U_A^A W)$ we define:

$$\alpha^{+} = \alpha^{+}_{(1_{A}|\mu_{0}),\mu_{1}} : (U^{+}{}^{A}_{A}W^{+})$$

yielding the unique cell such that:

$$u_0 \mid \alpha^+ = 1_A \mid u_0 \qquad \qquad u_1 \mid \alpha^+ = \frac{\alpha}{\alpha^+} \mid u_1$$

~

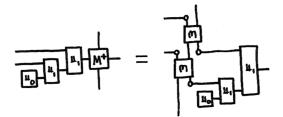
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A Mealy machine in \mathbb{A} is a morphism $m: S \otimes A \to B \otimes S$.

This gives a cell:

$$M = \begin{bmatrix} \mathbf{m} \\ \mathbf{m} \end{bmatrix}$$

Then M^+ is the process that m is meant to define:



イロト 不得 トイヨト イヨト

э

Nice mathematical properties:

Monoidal double category.

Protocol choice a lot like (co)products.

Protocol iteration defines a (co)monad.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

There is a naturally occurring model of all this.

Let $\mathbb C$ be cartesian closed and define $\mathsf{S}(\mathbb C)$ to have:

- **1** Horizontal edge monoid $(\mathbb{C}_0, \otimes, I)$
- **2** Vertical edge monoid $(\mathbb{C}^{\mathbb{C}}, \circ, 1_C)$ (only strong endofunctors)
- Solution Cells $\alpha : S(\mathbb{C})(U_B^A W)$ are strong natural transformations

$$\alpha_X: UX \otimes A \to W(X \otimes B)$$

- $\ \ \, {\sf S}(\mathbb{C}) \ \mbox{models} \ \ \ \, {\sf [C]} \ \ (\mbox{structure-preserving double functor}). \ \ \,$
- 2 If \mathbb{C} distributive, $S(\mathbb{C})$ models cornering with choice.

Furture Work:

Sequential iteration ("Active" iteration).

Term logic. Dynamics. Coherence questions.

Connections to monadic effects. More on $S(\mathbb{C})$.

Questions about double categories. What structure is this?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

... Implementation?

Protocol Choice and Iteration for the Free Cornering. Nester, Voorneveld. 2024.

The Logic of Message Passing. Cockett, Pastro. 2009.

Runners for Interleaving Algebraic Effects. Voorneveld. 2022.

String Diagrams for Double Categories and Equipments. Myers. 2016.

Concurrent Process Histories and Resource Transducers. Nester. 2023.

Situated Transition Systems. Nester. 2021.