Elgot Categories and Abacus Programs

Chad Nester Tallinn University of Technology

18/04/2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The Plan

• Structured Monoidal Categories

- ... review of rig categories etc.
- Categorical Representation of Partial Functions ... review of (strong) representability etc.

• Elgot Categories

- ... represent the partial recursive functions
- Abacus Programs
 - ... define an initial elgot category (and more)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Structured Monoidal Categories

Our monoidal categories will all be *strict*, for the sake of concision.

Composition is written correctly, in diagrammatic order.

$$\frac{f:A \to B \qquad g:B \to C}{fg:A \to C}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

String diagrams are read top to bottom, like everything else.

A cocartesian monoidal category is a tuple

$$(\mathbb{C}, (+, 0, \sigma^+), (\eta, \mu))$$

such that:

- $(\mathbb{C}, +, 0, \sigma^+)$ is a symmetric monoidal category.
- $\mu_A: A + A \to A$ and $\eta_A: 0 \to A$ are monoidal natural transformations.
- For all objects A, (A, μ_A, η_A) is a commutative monoid in \mathbb{C} .

$$\mu \iff \bigvee \qquad \eta \iff \boxed{}$$

Coproducts. Copairing $[f,g] = (f+g)\mu$. Injections $\mu_0 = (1+\eta)$.

A traced monoidal category is a tuple

$$(\mathbb{C}, (\oplus, 0, \sigma^{\oplus}), \mathsf{Tr})$$

such that:

- $(\mathbb{C},\oplus,0,\sigma^\oplus)$ is a symmetric monoidal category.
- Tr is a family of operations

$$\operatorname{Tr}_{A,B}^C : \mathbb{C}(A \oplus C, B \oplus C) \to \mathbb{C}(A, B)$$

which must satisfy a number of equations.

$$\operatorname{Tr}_{A,B}^{C}(f) \iff \operatorname{F}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

A traced monoidal category is called *uniform* (or *enzymatic*) in case for all appropriately typed f, g, h we have:

For example, in a cocartesian setting uniformity implies:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A cocartesian monoidal category is traced if and only if it admits a parameterised fixed point operator.

Defining $(-)^{\dagger} : \mathbb{C}(A, X + A) \to \mathbb{C}(A, X)$ by $f^{\dagger} = \operatorname{Tr}_{A, X}^{A}(\mu_{A}f)$ gives a parameterised fixed point operator. $f^{\dagger} = f[1_{X}, f^{\dagger}]$ as in:

A rig category is a tuple

$$(\mathbb{C}, (\oplus, 0, \sigma^{\oplus}), (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^{l}, \delta^{r}))$$

such that:

- $(\mathbb{C},\oplus,0,\sigma^{\oplus})$ is a symmetric strict monoidal category.
- (\mathbb{C}, \otimes, I) is a monoidal category.
- λ^{\bullet} and ρ^{\bullet} are natural isomorphisms with components

$$\lambda_A^{\bullet}: 0 \otimes A \to 0 \qquad \qquad \rho_A^{\bullet}: A \otimes 0 \to 0$$

• δ^l and δ^r are natural isomorphisms with components

$$\delta^l_{A,B,C}:A\otimes (B\oplus C)\to (A\otimes B)\oplus (A\otimes C)$$

 $\delta^r_{A,B,C}: (A\oplus B)\otimes C \to (A\otimes C)\oplus (B\otimes C)$

Satisfying a number of coherence axioms. (22 axioms!)

We write \otimes as juxtaposition for objects of rig categories.

For example:

$$\begin{split} ABC &= A \otimes B \otimes C \qquad AB + AC = (A \otimes B) + (A \otimes C) \\ IA &= I \otimes A \qquad (A + B)(C + D) = (A + B) \otimes (C + D) \\ \delta^l_{A,B,C} &: A(B + C) \to AB + AC \end{split}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

And so on. We don't do this for morphisms.

A cocartesian rig category is a tuple

$$(\mathbb{C}, (\oplus, 0, \sigma^{\oplus}), (\mu, \eta), (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^{l}, \delta^{r}))$$

such that:

- $(\mathbb{C}, (+, 0, \sigma^+), (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^l, \delta^r))$ is a rig category.
- $(\mathbb{C}, (+, 0, \sigma^+), (\mu, \eta))$ is a cocartesian monoidal category.

A (uniform) traced rig category is a tuple

$$(\mathbb{C}, (\oplus, 0, \sigma^{\oplus}), \mathsf{Tr}, (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^l, \delta^r))$$

such that:

- $(\mathbb{C}, (\oplus, 0, \sigma^{\oplus}), (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^l, \delta^r))$ is a rig category.
- $(\mathbb{C}, (\oplus, 0, \sigma^{\oplus}), \mathsf{Tr})$ is a (uniform) traced monoidal category.

Categorical Representation of Partial Functions

A natural numbers algebra (N, z, s) in a monoidal category (\mathbb{C}, \otimes, I) is a diagram:

$$I \xrightarrow{z} N \xleftarrow{s} N$$

Every natural numbers algebra defines a *numeral* $\underline{n}: I \to N$ in \mathbb{C} for each $n \in \mathbb{N}$ as in $\underline{0} = z$ and $n + 1 = \underline{n}s$.

A natural numbers algebra is called¹ strong in case:

$$\underline{n} = \underline{m} \Rightarrow n = m$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

¹This is new terminology.

Let (N, z, s) be a natural numbers algebra in (\mathbb{C}, \otimes, I) .

Let $f: \mathbb{N}^n \to \mathbb{N}$ be a partial function, and let $\underline{f}: N^n \to N$ be a morphism of \mathbb{C} .

We say that \underline{f} represents f in case $\forall k_1, \dots, k_n \in \mathbb{N}$ we have: $f(k_1, \dots, k_n) = k \implies (\underline{k_1} \otimes \dots \otimes \underline{k_n}) \underline{f} = \underline{k}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Representability is about interpretation.

Let (N, z, s) be a natural numbers algebra in (\mathbb{C}, \otimes, I) .

Let $f:\mathbb{N}^n\to\mathbb{N}$ be a partial function, and let $\underline{f}:N^n\to N$ be a morphism of $\mathbb{C}.$

We say that \underline{f} strongly represents f in case $\forall k_1, \ldots, k_n \in \mathbb{N}$ we have:

$$f(k_1,\ldots,k_n) = k \iff (\underline{k_1} \otimes \cdots \otimes \underline{k_n}) \underline{f} = \underline{k}$$

Strong representability is about definition.

 $(\mathbb{N}, 0, +1)$ is a natural numbers algebra in $(\mathsf{Par}, \times, 1)$.

Let $f: \mathbb{N}^n \to \mathbb{N}$ be a partial function, and let $g: \mathbb{N}^n \to \mathbb{N}$ be a partial function.

We say that g is *Kleene equal* to f in case $\forall k_1, \ldots, k_n \in \mathbb{N}$ we have:

$$f(k_1,\ldots,k_n)=k \quad \Leftrightarrow \quad g(k_1,\ldots,k_n)=k$$

So strong representability is generalised Kleene equality $(f \simeq g)$.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Let (N, z, s) be a strong natural numbers algebra in (\mathbb{C}, \otimes, I)

Then any $f: N^n \to N$ of \mathbb{C} defines a partial function $\overline{f}: \mathbb{N}^n \to \mathbb{N}$ as in:

$$\overline{f}(k_1,\ldots,k_n) = \begin{cases} k \text{ if } (\underline{k_1} \otimes \cdots \otimes \underline{k_n})f = \underline{k} \\ \uparrow \text{ otherwise} \end{cases}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Moreover, f strongly represents \overline{f} .

Each f strongly represents exactly one partial function.

A weak left natural numbers object in (\mathbb{C}, \otimes, I) is a natural numbers algebra (N, z, s) with the property that for any diagram $B \xrightarrow{b} A \xleftarrow{a} A$ there exists a morphism $h: N \otimes B \to A$ such that:

Theorem (Thibault, Lambek & Scott, Paré & Román)

Let (\mathbb{C}, \otimes, I) be a monoidal category, and let (N, z, s) be a weak left natural numbers object in \mathbb{C} . Then all primitive recursive functions are representable in \mathbb{C} relative to (N, z, s). In a cocartesian rig category ...

A natural numbers algebra is a morphism $\iota: I + N \to N$.

A natural numbers coalgebra is a morphism $\gamma: N \to I + N$.

We say γ is *weakly final* in case for any $\beta : A \to I + A$ there exists $h : A \to N$ such that:

$$\begin{array}{ccc} A & \stackrel{\beta}{\longrightarrow} & I + A \\ h \downarrow & & \downarrow^{1_I + h} \\ N & \stackrel{\gamma}{\longrightarrow} & I + N \end{array}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Theorem (Plotkin)

In a cocartesian rig category \mathbb{C} , suppose that:

- $\iota: I + N \to N$ is an isomorphism.
- (N, ι) is a weak left natural numbers object.
- (N, ι^{-1}) is a weakly final natural numbers coalgebra.

Then all partial recursive functions are representable in \mathbb{C} relative to (N, z, s) where $[z, s] = \iota$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (Plotkin)

In a cocartesian rig category \mathbb{C} , suppose that:

- $\iota: I + N \to N$ is an isomorphism.
- (N, ι) is a weak left natural numbers object.
- (N, ι^{-1}) is a weakly final natural numbers coalgebra.
- $z \neq zs : I \rightarrow N$ where $[z, s] = \iota$ (iff (N, ι) strong).
- Every partial function that is strongly representable in $\mathbb C$ is partial recursive.

Then all partial recursive functions are strongly representable in \mathbb{C} relative to (N, z, s) where $[z, s] = \iota$.

Elgot Categories

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

A pre-Elgot Category is a tuple

 $(\mathbb{C}, (+, 0, \sigma^+), (\mu, \eta), \mathsf{Tr}, (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^l, \delta^r), (N, \iota))$

in which:

- $(\mathbb{C}, (+, 0, \sigma^+), (\eta, \mu), (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^l, \delta^r))$ is a cocartesian rig category.
- $(\mathbb{C}, (+, 0, \sigma^+), \mathrm{Tr}, (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^l, \delta^r))$ is a traced rig category.
- N is an object of \mathbb{C} with $\iota: I + N \xrightarrow{\sim}$ an isomorphism.

An *Elgot category* is a pre-Elgot category in which the underlying traced rig category is uniform.

Lemma

In any pre-Elgot category, (N,ι) is a weak left natural numbers object.

It suffices to show for for any $B \xrightarrow{b} A \xleftarrow{a} A$ we have $h : NB \to A$ such that:

$$(I+N)B \xrightarrow{\iota \otimes 1_B} NB$$

$$\delta^r_{I,N,B} \downarrow \qquad \qquad \downarrow h$$

$$B+NB \xrightarrow{[b,ha]} A$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let
$$h = \operatorname{Tr}_{NB,A}^{NA}([1_N \otimes b, 1_N \otimes a](\iota^{-1} \otimes 1_A)\delta_{I,N,A}^r)$$

Then $(\iota \otimes 1_B)h = \delta_{I,N,B}^r[b, ha]$ as in:

イロト イヨト イヨト イヨト

æ

Lemma

In any pre-Elgot category, (N, ι^{-1}) is a weakly final natural numbers coalgebra.

It suffices to show that for any $\beta:A\to I+A$ we have $h:A\to N$ such that:

$$\begin{array}{ccc} A & \stackrel{\beta}{\longrightarrow} & I + A \\ h \downarrow & & \downarrow^{1_I + h} \\ N & \longleftarrow & I + N \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $h = \operatorname{Tr}_{A,N}^{AN}([1_A \otimes z, 1_A \otimes s](\beta \otimes 1_N)\delta_{I,A,N}^r)$ Then $h = \beta(1_I + h)\iota$ as in:

▲□▶ ▲圖▶ ▲ 国▶ ▲ 国▶ ▲ 国 ● ● ● ●

So we have:

Theorem

The partial recursive functions are representable in any pre-Elgot category.

and moreover:

Theorem

The partial recursive functions are strongly representable in any pre-Elgot category such that:

- (N, ι) is a strong natural numbers algebra.
- Every partial function that is strongly representable is partial recursive.

Abacus Programs

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

(If
$$Y \neq \emptyset$$
, take
one pebble away
and go to the
left; else go to
the right)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

FIGURE 2. Abacus instructions

Next, a category \mathbb{A} of abacus programs. This construction owes much to the work of Bonchi, Di Giorgio, and Santamaria.

Objects are *polynomials* over the set $\{N\}$. i.e., $\mathbb{A}_0 = (\{N\}^*)^*$.

 $I \in \{N\}^*$ is the empty sequence.

 $0 \in (\{N\}^*)^*$ is the empty sequence of sequences.

Concatenation of sequences $U, V \in \{N\}^*$ is written $UV \in \{N\}^*$.

Concatenation of sequences of sequences $P, Q \in (\{N\}^*)^*$ is written $P + Q \in (\{N\}^*)^*$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ のへぐ

Singleton sequences of sequences are called *monomials*.

The following are all monomials:

I N NN NNN NNNNNN

The following are all polynomials that are not monomials:

0 NN + N NNN + NNNN

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Important: INN = NN = NIN and 0 + NN + N = NN = N = NN + 0 + N etc. The morphisms of $\mathbb A$ are given as follows:

U,V monomial	U, V, monomial		
$\overline{succ_{U,V}:UNV\to UNV}$	$\overline{zero_{U,V}:UV\to UNV}$		
U, V monomial	U monomial	U monomial	
$pred_{U\!,V}:UNV\to UV+UNV$	$\overline{1_U:U\to U}$	$\overline{\eta_U:0\to U}$	
U monomial U, W	monomial U, W monomial		
$\overline{\mu_U: U + U \to U} \qquad \overline{\sigma_{U,W}^+: U}$	$+W \rightarrow W + U$	$\overline{1_0: 0 \to 0}$	
$\frac{f: P \to Q \qquad g: Q \to R}{fg: P \to R}$	$\frac{f:P \to Q}{f+q:P+I}$		
	0 0	C A	
$\underline{W \text{ monomial } P, Q \text{ polynomial } f: P + W \rightarrow Q + W}$			
$Tr^W_{P,Q}(f):P o Q$			

シック 単 (中本) (中本) (日)

Morphisms of \mathbb{A} are (modified) abacus programs:

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQQ

Arrows of $\mathbb A$ are subject to equations ensuring that:

- $(\mathbb{A}, (+, 0, \sigma^+), (\eta, \mu), \mathrm{Tr})$ is a cocartesian monoidal category.
- $(\mathbb{A},(+,0,\sigma^+),\mathrm{Tr})$ is a uniform traced monoidal category.

Along with a few equations concerning succ, zero, and pred:

- [N1] $(\operatorname{zero}_{U,V} + \operatorname{succ}_{U,V})\mu_{UNV}\operatorname{pred}_{U,V} = 1_{UV+UNV}$
- [N2] $\operatorname{pred}_{U,V}(\operatorname{zero}_{U,V} + \operatorname{succ}_{U,V})\mu_{UNV} = 1_{UNV}$
- [N3] $succ_{U,VNW}succ_{UNV,W} = succ_{UNV,W}succ_{U,VNW}$
- . . .
- [N9]

 $succ_{UNV,W}pred_{U,VNW} = pred_{U,VNW}(succ_{UV,W} + succ_{UNV,W})$

• [N10]

 $\mathsf{zero}_{UNV,W}\mathsf{pred}_{U,VNW} = \mathsf{pred}_{U,VW}(\mathsf{zero}_{UV,W} + \mathsf{zero}_{UNV,W})$

• [N11] $\operatorname{pred}_{U,VNW}(\operatorname{pred}_{UV,W} + \operatorname{pred}_{UNV,W}) = \operatorname{pred}_{UNV,W}(\operatorname{pred}_{U,VW} + \operatorname{pred}_{U,VNW})(1_{UVW} + \sigma_{UNVW,UVNW}^+ + 1_{UNVNW})$

Equations [N3] through [N9] say things like:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへ()~

Equation [N1] says:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

And equation [N2] is the "converse".

Theorem

 \mathbb{A} is an Elgot category.

Theorem

A is an initial Elgot category.

Lemma

- $\underline{0} \neq \underline{1}$ in \mathbb{A} .
- If f : Nⁿ → Nⁿ is strongly representable in A then it is partial recursive.

Theorem

A strongly represents all (and only) the partial recursive functions.

The only hard part is the construction of the multiplicative monoidal category structure on \mathbb{A} .

On Objects: On monomials UV is sequence concatenation. For U monomial and Q polynomial define UQ by induction on Q:

$$U0 = 0 \qquad \qquad U(V+Q) = UV + UQ$$

Now for polynomials P, Q define PQ by induction on P:

$$0Q = 0 \qquad (U+P)Q = UQ + PQ$$

This works. For all polynomials P, Q, R we have:

(PQ)R = P(QR) IP = P PI = P

 $0P = 0 \qquad P0 = 0 \qquad (P+Q)R = PR + QR$

And also for monomials U we have:

$$U(Q+R) = UQ + UR$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The rig category structure on \mathbb{A} will be *right strict*. That is, $\delta^r, \lambda^{\bullet}, \rho^{\bullet}$ will be identities.

Monomial Whiskering. Let U be monomial and define $(U \ltimes -) : \mathbb{A} \to \mathbb{A}$ and $((- \rtimes U) : \mathbb{A} \to \mathbb{A}$ as in:

- $U \ltimes \operatorname{succ}_{V,W} = \operatorname{succ}_{UV,W}$
- $U \ltimes \operatorname{zero}_{V,W} = \operatorname{zero}_{UV,W}$
- $U \ltimes \operatorname{pred}_{V,W} = \operatorname{pred}_{UV,W}$
- $U \ltimes 1_V = 1_{UV}$
- $U \ltimes \eta_V = \eta_{UV}$
- $U \ltimes \mu_V = \mu_{UV}$
- $U \ltimes 1_0 = 1_0$
- $U \ltimes \sigma^+_{V,W} = \sigma^+_{UV,UW}$
- $\bullet \ U \ltimes fg = (U \ltimes f)(U \ltimes g)$
- $\bullet \ U \ltimes f + g = (U \ltimes f) + (U \ltimes g)$
- $U \ltimes \operatorname{Tr}_{P,Q}^W =$ $\operatorname{Tr}_{UP,UQ}^{UW}(U \ltimes f)$

- $\operatorname{succ}_{V,W} \rtimes U = \operatorname{succ}_{V,WU}$
- $\operatorname{zero}_{V,W} \rtimes U = \operatorname{zero}_{V,WU}$
- $\operatorname{pred}_{V,W} \rtimes U = \operatorname{pred}_{V,WU}$
- $1_V \rtimes U = 1_{VU}$
- $\eta_V \rtimes U = \eta_{VU}$
- $\mu_V \rtimes U = \mu_{VU}$
- $1_0 \rtimes U = 1_0$
- $\bullet \ \sigma^+_{V\!,W} \rtimes U = \sigma^+_{VU\!,WU}$
- $\bullet \ fg \rtimes U = (f \rtimes U)(g \rtimes U)$
- $\bullet \ f+g \rtimes U = (f \rtimes U) + (g \rtimes U)$
- $\begin{array}{l} \bullet \ \operatorname{Tr}^W_{P,Q} \rtimes U = \\ \operatorname{Tr}^{WU}_{PU,QU}(f \rtimes U) \end{array} \end{array}$

Define $\delta^l_{P,Q,R}: P(Q+R) \to PQ + PR$ by induction on P: $\delta^l_{0,Q,R} = \mathbf{1}_0$

$$\delta_{U+P,Q,R}^{l} = (1_{UQ+UR} + \delta_{P,Q,R}^{l})(1_{UQ} + \sigma_{UR,PQ}^{+} + 1_{PR})$$

Now define $(P \ltimes -)$ and $(- \rtimes P)$ by induction on P:

$$0 \ltimes f = 1_0 \qquad \qquad U + P \ltimes f = (U \ltimes f) + (P \ltimes f)$$

and

 $f\rtimes 0=1_0 \qquad f\rtimes U+P=\delta^l_{R,U,P}((f\rtimes U)+(f\rtimes P))(\delta^l_{S,U,P})^{-1}$

- ロ ト - 4 回 ト - 4 □

Then we have (after much proof by induction):

Lemma

For all $f : R \to S$ in \mathbb{A} and all polynomials P, Q of \mathbb{A} :

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- $I \ltimes f = f$
- $f \rtimes I = f$
- $\bullet \ PQ \ltimes f = P \ltimes (Q \ltimes f)$
- $\bullet \ f \rtimes PQ = (f \rtimes P) \rtimes Q$
- $\bullet \ (P \ltimes f) \rtimes Q = P \ltimes (f \rtimes Q)$

Lemma

For all
$$f: P \to Q$$
 and $g: R \to S$ of \mathbb{A} ,
 $(f \rtimes R)(Q \ltimes g) = (P \ltimes g)(f \rtimes S).$

And it follows that:

Lemma

Define $f \otimes g = (f \rtimes R)(Q \ltimes g)$ for $f : P \to Q$ and $g : R \to S$. Then (\mathbb{A}, \otimes, I) is a (strict) monoidal category.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Lemma

The δ^l make \mathbb{A} into a (right strict) rig category.

Theorem

 \mathbb{A} is an Elgot category.

Some conjectures about \mathbb{A} :

- The multiplicative structure of A is a distributive restriction category.
- A *uniquely* strongly represents all and only the partial recursive functions.
- A is isomorphic (perhaps equivalent) to the (rig) category of partial recursive functions.

Some questions, future work:

- What about dynamics?
- Relationship to Turing categories.
- Free cornering with choice and iteration of A as a notion of *interactive* computability. Write a programming language?