Elgot Categories and Abacus Programs

Chad Nester Tallinn University of Technology

18/04/2024

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The Plan

• Structured Monoidal Categories

. . . review of rig categories etc.

Categorical Representation of Partial Functions . . . review of (strong) representability etc.

• Elgot Categories

. . . represent the partial recursive functions

Abacus Programs

. . . define an initial elgot category (and more)

KORKARYKERKER OQO

Structured Monoidal Categories

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Our monoidal categories will all be strict, for the sake of concision.

Composition is written correctly, in diagrammatic order.

$$
\frac{f:A \to B \qquad g:B \to C}{fg:A \to C}
$$

String diagrams are read top to bottom, like everything else.

KO K K Ø K K E K K E K V K K K K K K K K K

A cocartesian monoidal category is a tuple

$$
(\mathbb{C},(+,0,\sigma^+),(\eta,\mu))
$$

such that:

- \bullet $(\mathbb{C}, +, 0, \sigma^+)$ is a symmetric monoidal category.
- $\bullet \mu_A : A + A \rightarrow A$ and $\eta_A : 0 \rightarrow A$ are monoidal natural transformations.
- For all objects A, (A, μ_A, η_A) is a commutative monoid in \mathbb{C} .

$$
\mu \quad \leftrightsquigarrow \quad \searrow \qquad \qquad \eta \quad \leftrightsquigarrow \quad \mathbf{1}
$$

Coproducts. Copairing $[f, g] = (f + g)\mu$. Injections $\mu_0 = (1 + \eta)$.

KORKAR KERKER SAGA

A traced monoidal category is a tuple

$$
(\mathbb{C},(\oplus,0,\sigma^\oplus),\mathsf{Tr})
$$

such that:

- \bullet $(\mathbb{C}, \oplus, 0, \sigma^{\oplus})$ is a symmetric monoidal category.
- Tr is a family of operations

$$
\mathsf{Tr}^C_{A,B}:\mathbb{C}(A\oplus C,B\oplus C)\to \mathbb{C}(A,B)
$$

which must satisfy a number of equations.

Tr^C A,B(f) ↭

KELK KØLK VELKEN EL 1990

A traced monoidal category is called uniform (or enzymatic) in case for all appropriately typed f, g, h we have:

$$
\begin{bmatrix} \underline{r} \\ \vdots \\ \underline{r} \end{bmatrix} = \begin{bmatrix} \underline{r} \\ \underline{r} \\ \vdots \\ \underline{r} \end{bmatrix} \Rightarrow \begin{bmatrix} \underline{r} \\ \vdots \\ \underline{r} \end{bmatrix} = \begin{bmatrix} \underline{r} \\ \vdots \\ \underline{r} \end{bmatrix}
$$

For example, in a cocartesian setting uniformity implies:

$$
\begin{array}{cccc}\n\psi & = & \psi & \Rightarrow & \psi & = & \text{and} \\
\psi & = & \text{and} & \Rightarrow & \psi & = & \text{and} \\
\end{array}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

A cocartesian monoidal category is traced if and only if it admits a parameterised fixed point operator.

Defining $(-)^{\dagger}$: $\mathbb{C}(A, X + A) \rightarrow \mathbb{C}(A, X)$ by $f^{\dagger} = \text{Tr}_{A,X}^{A}(\mu_A f)$ gives a parameterised fixed point operator. $f^\dagger = f[1_X,f^\dagger]$ as in:

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 ORO

A rig category is a tuple

$$
(\mathbb{C}, (\oplus, 0, \sigma^\oplus), (\otimes, I), (\lambda^\bullet, \rho^\bullet), (\delta^l, \delta^r))
$$

such that:

- \bullet ($\mathbb{C}, \oplus, 0, \sigma^{\oplus}$) is a symmetric strict monoidal category.
- \bullet (\mathbb{C}, \otimes, I) is a monoidal category.
- λ^\bullet and ρ^\bullet are natural isomorphisms with components

$$
\lambda_A^\bullet : 0 \otimes A \to 0 \qquad \qquad \rho_A^\bullet : A \otimes 0 \to 0
$$

 δ^l and δ^r are natural isomorphisms with components

 $\delta^l_{A,B,C} : A \otimes (B \oplus C) \rightarrow (A \otimes B) \oplus (A \otimes C)$

 $\delta_{A,B,C}^r : (A \oplus B) \otimes C \rightarrow (A \otimes C) \oplus (B \otimes C)$

Satisfying a number of coherence axioms. (22 axioms!)

We write ⊗ as juxtaposition for objects of rig categories.

For example:

 $ABC = A \otimes B \otimes C$ $AB + AC = (A \otimes B) + (A \otimes C)$ $IA = I \otimes A$ $(A + B)(C + D) = (A + B) \otimes (C + D)$ $\delta^l_{A,B,C}: A(B+C) \to AB+AC$

KORKAR KERKER SAGA

And so on. We don't do this for morphisms.

A cocartesian rig category is a tuple

$$
(\mathbb{C}, (\oplus, 0, \sigma^{\oplus}), (\mu, \eta), (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^l, \delta^r))
$$

such that:

- $(\mathbb{C}, (+, 0, \sigma^+), (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^l, \delta^r))$ is a rig category.
- \bullet $(\mathbb{C}, (+, 0, \sigma^+), (\mu, \eta))$ is a cocartesian monoidal category.

A (uniform) traced rig category is a tuple

$$
(\mathbb{C},(\oplus,0,\sigma^{\oplus}),\mathsf{Tr},(\otimes,I),(\lambda^\bullet,\rho^\bullet),(\delta^l,\delta^r))
$$

such that:

- $(\mathbb{C}, (\oplus, 0, \sigma^\oplus), (\otimes, I), (\lambda^\bullet, \rho^\bullet), (\delta^l, \delta^r))$ is a rig category.
- \bullet (C, (\oplus , 0, σ^{\oplus}), Tr) is a (uniform) traced monoidal category.

Categorical Representation of Partial Functions

KE K K Ø K K E K K E K V R K K K K K K K K

A natural numbers algebra (N, z, s) in a monoidal category (\mathbb{C}, \otimes, I) is a diagram:

$$
I \xrightarrow{z} N \xleftarrow{s} N
$$

Every natural numbers algebra defines a *numeral* $\underline{n} : I \to N$ in $\mathbb C$ for each $n \in \mathbb{N}$ as in $0 = z$ and $n + 1 = ns$.

A natural numbers algebra is called 1 *strong* in case:

$$
\underline{n} = \underline{m} \quad \Rightarrow \quad n = m
$$

KORKAR KERKER SAGA

 $¹$ This is new terminology.</sup>

Let (N, z, s) be a natural numbers algebra in (\mathbb{C}, \otimes, I) .

Let $f : \mathbb{N}^n \to \mathbb{N}$ be a partial function, and let $f : N^n \to N$ be a morphism of C.

We say that f represents f in case $\forall k_1, \ldots, k_n \in \mathbb{N}$ we have: $f(k_1, \ldots, k_n) = k \Rightarrow (k_1 \otimes \cdots \otimes k_n) f = k$

KOD KAD KED KED E VOOR

Representability is about interpretation.

Let (N, z, s) be a natural numbers algebra in (\mathbb{C}, \otimes, I) .

Let $f : \mathbb{N}^n \to \mathbb{N}$ be a partial function, and let $f : N^n \to N$ be a morphism of C.

We say that f strongly represents f in case $\forall k_1,\ldots,k_n \in \mathbb{N}$ we have:

$$
f(k_1,\ldots,k_n)=k \Leftrightarrow (\underline{k_1}\otimes\cdots\otimes\underline{k_n})f=\underline{k}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Strong representability is about definition.

 $(N, 0, +1)$ is a natural numbers algebra in $(Par, \times, 1)$.

Let $f : \mathbb{N}^n \to \mathbb{N}$ be a partial function, and let $g : \mathbb{N}^n \to \mathbb{N}$ be a partial function.

We say that g is Kleene equal to f in case $\forall k_1,\ldots,k_n\in\mathbb{N}$ we have:

$$
f(k_1,\ldots,k_n)=k \quad \Leftrightarrow \quad g(k_1,\ldots,k_n)=k
$$

So strong representability is generalised Kleene equality $(f \simeq g)$.

Let (N, z, s) be a strong natural numbers algebra in (\mathbb{C}, \otimes, I)

Then any $f:N^n\to N$ of $\mathbb C$ *defines* a partial function $\overline f:\mathbb{N}^n\to\mathbb{N}$ as in:

$$
\overline{f}(k_1,\ldots,k_n) = \begin{cases} k \text{ if } (\underline{k_1} \otimes \cdots \otimes \underline{k_n})f = \underline{k} \\ \uparrow \text{ otherwise} \end{cases}
$$

Moreover, f strongly represents \overline{f} .

Each f strongly represents exactly one partial function.

A weak left natural numbers object in (\mathbb{C}, \otimes, I) is a natural numbers algebra (N, z, s) with the property that for any diagram $B\stackrel{b}{\to}A\stackrel{a}{\leftarrow}A$ there exists a morphism $h:N\otimes B\to A$ such that:

$$
B \xrightarrow{z \otimes 1_B} N \otimes B \xleftarrow{s \otimes 1_B} N \otimes B
$$

$$
1_B \downarrow \qquad \qquad \downarrow h \qquad \qquad \downarrow h
$$

$$
B \xrightarrow{b} A \xleftarrow{a} A
$$

Theorem (Thibault, Lambek & Scott, Paré & Román)

Let (\mathbb{C}, \otimes, I) be a monoidal category, and let (N, z, s) be a weak left natural numbers object in C. Then all primitive recursive functions are representable in $\mathbb C$ relative to (N, z, s) .

In a cocartesian rig category ...

A natural numbers algebra is a morphism $\iota: I + N \to N$.

A natural numbers coalgebra is a morphism $\gamma : N \to I + N$.

We say γ is weakly final in case for any $\beta : A \to I + A$ there exists $h: A \rightarrow N$ such that:

$$
A \xrightarrow{\beta} I + A
$$

\n
$$
h \downarrow \qquad \qquad \downarrow 1_I + h
$$

\n
$$
N \xrightarrow{\gamma} I + N
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Theorem (Plotkin)

In a cocartesian rig category $\mathbb C$, suppose that:

- $\iota: I + N \to N$ is an isomorphism.
- \bullet (N, ι) is a weak left natural numbers object.
- (N, ι^{-1}) is a weakly final natural numbers coalgebra.

Then all partial recursive functions are representable in $\mathbb C$ relative to (N, z, s) where $[z, s] = \iota$.

KORKARYKERKER OQO

Theorem (Plotkin)

In a cocartesian rig category $\mathbb C$, suppose that:

- $\iota: I + N \to N$ is an isomorphism.
- \bullet (N, ι) is a weak left natural numbers object.
- (N, ι^{-1}) is a weakly final natural numbers coalgebra.
- $\bullet z \neq zs : I \to N$ where $[z, s] = \iota$ (iff (N, ι) strong).
- \bullet Every partial function that is strongly representable in $\mathbb C$ is partial recursive.

Then all partial recursive functions are strongly representable in $\mathbb C$ relative to (N, z, s) where $[z, s] = i$.

KORKARYKERKER OQO

Elgot Categories

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코』 Y 9 Q @

A pre-Elgot Category is a tuple

 $(\mathbb{C}, (+, 0, \sigma^+), (\mu, \eta), \text{Tr}, (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^l, \delta^r), (N, \iota))$

in which:

- $(\mathbb{C}, (+, 0, \sigma^+), (\eta, \mu), (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^l, \delta^r))$ is a cocartesian rig category.
- $(\mathbb{C}, (+, 0, \sigma^+), \textsf{Tr}, (\otimes, I), (\lambda^{\bullet}, \rho^{\bullet}), (\delta^l, \delta^r))$ is a traced rig category.
- N is an object of $\mathbb C$ with $\iota: I + N \stackrel{\sim}{\to}$ an isomorphism.

An *Elgot category* is a pre-Elgot category in which the underlying traced rig category is uniform.

KORKAR KERKER SAGA

Lemma

In any pre-Elgot category, (N, ι) is a weak left natural numbers object.

It suffices to show for for any $B\stackrel{b}{\to} A\stackrel{a}{\leftarrow} A$ we have $h:NB\to A$ such that:

$$
(I + N)B \xrightarrow{\iota \otimes 1_B} NB
$$

$$
\delta_{I,N,B}^r \downarrow \qquad \qquad \downarrow h
$$

$$
B + NB \xrightarrow{\cdot [b,ha]} A
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Let
$$
h = \text{Tr}_{N,B,A}^{NA}([1_N \otimes b, 1_N \otimes a](\iota^{-1} \otimes 1_A)\delta_{I,N,A}^r)
$$

Then $(\iota \otimes 1_B)h = \delta_{I,N,B}^r[b, ha]$ as in:

メロトメ 御 トメ 差 トメ 差 ト È 2990

Lemma

In any pre-Elgot category, (N, ι^{-1}) is a weakly final natural numbers coalgebra.

It suffices to show that for any $\beta: A \to I + A$ we have $h: A \to N$ such that:

$$
A \xrightarrow{\beta} I + A
$$

\n
$$
h \downarrow \qquad \qquad \downarrow 1_I + h
$$

\n
$$
N \leftarrow I + N
$$

KORKARYKERKER OQO

Let $h = \mathsf{Tr}^{AN}_{A,N}([1_A \otimes z, 1_A \otimes s](\beta \otimes 1_N)\delta^r_{I, A, N})$ Then $h = \beta(1_I + h)\iota$ as in:

So we have:

Theorem

The partial recursive functions are representable in any pre-Elgot category.

and moreover:

Theorem

The partial recursive functions are strongly representable in any pre-Elgot category such that:

- \bullet (N, ι) is a strong natural numbers algebra.
- Every partial function that is strongly representable is partial recursive.

Abacus Programs

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

(If
$$
Y \neq \emptyset
$$
, take
one pebble away
and go to the
left; else go to
the right)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

FIGURE 2. Abacus instructions

Next, a category A of abacus programs. This construction owes much to the work of Bonchi, Di Giorgio, and Santamaria.

Objects are *polynomials* over the set $\{N\}$. i.e., $\mathbb{A}_0 = (\{N\}^*)^*$.

 $I \in \{N\}^*$ is the empty sequence.

 $0 \in (\{N\}^*)^*$ is the empty sequence of sequences.

Concatenation of sequences $U, V \in \{N\}^*$ is written $UV \in \{N\}^*$.

KELK KØLK VELKEN EL 1990

Concatenation of sequences of sequences $P, Q \in (\{N\}^*)^*$ is written $P + Q \in (\{N\}^*)^*$.

Singleton sequences of sequences are called monomials.

The following are all monomials:

I N NN NNN NNNNNNN

The following are all polynomials that are not monomials:

0 $NN + N$ $NNN + NNNN$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이익 @

Important: $INN = NN = NIN$ and $0 + NN + N = NN = N = NN + 0 + N$ etc. The morphisms of A are given as follows:

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Morphisms of A are (modified) abacus programs:

KORK EXTERNE PROVIDE

Arrows of A are subject to equations ensuring that:

- $(A, (+, 0, \sigma^+), (\eta, \mu), \text{Tr})$ is a cocartesian monoidal category.
- $(A, (+, 0, \sigma^+),$ Tr) is a uniform traced monoidal category.

Along with a few equations concerning succ,zero, and pred:

- [N1] $(zero_{U,V} + succ_{U,V})\mu_{UNV}$ pred $_{U,V} = 1_{UV+UNV}$
- [N2] pred $_{UV}$ (zero $_{UV}$ + succ $_{UV}$) $\mu_{UNV} = 1_{UNV}$
- [N3] succ $_{U, VNW}$ succ $_{UNV, W}$ = succ $_{UNV, W}$ succ $_{U, VNW}$
- \bullet . . .
- [N9]

 $\mathsf{succ}_{UNV,W}$ pred $_{UVNW}$ = pred $_{UVVNW}$ (succ $_{UVW}$ + succ $_{UNV,W}$)

• [N10]

zero $_{UNV,W}$ pred $_{UNW}$ = pred $_{UNW}$ (zero $_{UV,W}$ + zero $_{UNV,W}$)

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

• [N11] pred $_{UVNW}$ (pred $_{UVW}$ + pred $_{UNVW}$) = $\mathsf{pred}_{UNUW}(\mathsf{pred}_{U,VW} + \mathsf{pred}_{UVVNW})(1_{UVW} +$ $\sigma_{UNVWW,UVNW}^{+}+1_{UNVNW})$

Equations [N3] through [N9] say things like:

KORK ERKER ADA ADA KORA

Equation [N1] says:

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0$

 2990

 \Rightarrow

And equation [N2] is the "converse".

Theorem

A is an Elgot category.

Theorem

A is an initial Elgot category.

Lemma

- \bullet 0 \neq 1 in A.
- If $f: \mathbb{N}^n \to \mathbb{N}^n$ is strongly representable in $\mathbb A$ then it is partial recursive.

Theorem

A strongly represents all (and only) the partial recursive functions.

KORKARYKERKER POLO

The only hard part is the construction of the multiplicative monoidal category structure on A.

On Objects: On monomials UV is sequence concatenation. For U monomial and Q polynomial define UQ by induction on Q :

$$
U0 = 0 \qquad \qquad U(V + Q) = UV + UQ
$$

Now for polynomials P, Q define PQ by induction on P :

$$
0Q = 0 \qquad (U + P)Q = UQ + PQ
$$

This works. For all polynomials P, Q, R we have:

 $(PQ)R = P(QR)$ $IP = P$ $PI = P$

 $0P = 0$ $P0 = 0$ $(P + Q)R = PR + QR$

And also for monomials U we have:

$$
U(Q+R) = UQ + UR
$$

KO K K Ø K K E K K E K V K K K K K K K K K

The rig category structure on A will be *right strict*. That is, $\delta^r, \lambda^{\bullet}, \rho^{\bullet}$ will be identities.

Monomial Whiskering. Let U be monomial and define $(U \ltimes -) : \mathbb{A} \to \mathbb{A}$ and $((-\times U) : \mathbb{A} \to \mathbb{A}$ as in:

- \bullet U \times succ_{V, W} = succ_{UV, W}
- \bullet $U \ltimes$ zero $_{V,W}$ = zero $_{UV,W}$
- \bullet $U \ltimes \text{pred}_{V,W} = \text{pred}_{UV,W}$
- $\bullet U \ltimes 1_V = 1_{UV}$
- \bullet $U \ltimes \eta_V = \eta_{UV}$
- \bullet $U \ltimes \mu_V = \mu_{UV}$
- $\bullet U \ltimes 1_0 = 1_0$
- $U\ltimes \sigma_{V,W}^+=\sigma_U^+$ UV,UW
- \bullet $U \ltimes f$ \in $(U \ltimes f)(U \ltimes g)$
- $\bullet \, U \ltimes f + q = (U \ltimes f) + (U \ltimes q)$
- $U\ltimes \mathsf{Tr}^W_{P,Q} =$ $\mathsf{Tr}_{UP, UQ}^{UW}(U\ltimes f)$
- succ $_{V,W} \rtimes U =$ succ $_{V,WU}$
- \bullet zero $_{V,W} \rtimes U =$ zero $_{VWH}$
- pred $_{V,W} \rtimes U = \text{pred}_{V,WU}$
- \bullet 1_V \times U = 1_{VII}
- \bullet $\eta_V \rtimes U = \eta_{VII}$
- $\bullet u_V \rtimes U = u_{VII}$
- \bullet 1₀ $\times U = 1_0$
- $\sigma_{V,W}^+ \rtimes U = \sigma_V^+$ $_{VU,WU}$
- \bullet fg $\rtimes U = (f \rtimes U)(g \rtimes U)$
- \bullet $f+q\rtimes U = (f\rtimes U)+(q\rtimes U)$

KORK ERKER ADAM ADA

 $\mathsf{Tr}^W_{P,Q} \rtimes U =$ $\mathsf{Tr}_{PU,QU}^{\dot{W}\dot{U}}(f\rtimes U)$ Define $\delta^l_{P,Q,R} : P(Q+R) \rightarrow PQ + PR$ by induction on P : $\delta^l_{0, Q, R} = 1_0$

$$
\delta_{U+P,Q,R}^l = (1_{UQ+UR} + \delta_{P,Q,R}^l)(1_{UQ} + \sigma_{UR,PQ}^+ + 1_{PR})
$$

Now define $(P \ltimes -)$ and $(- \rtimes P)$ by induction on P:

$$
0 \ltimes f = 1_0 \qquad \qquad U + P \ltimes f = (U \ltimes f) + (P \ltimes f)
$$

and

 $f \rtimes 0 = 1_0$ $f \rtimes U + P = \delta_{R, U, P}^l((f \rtimes U) + (f \rtimes P))(\delta_{S, U, P}^l)^{-1}$

Then we have (after much proof by induction):

Lemma

For all $f: R \to S$ in A and all polynomials P, Q of A:

KORKARYKERKER POLO

- $I \ltimes f = f$
- \bullet f \times I = f
- \bullet $PQ \ltimes f = P \ltimes (Q \ltimes f)$
- \bullet f \times PQ = (f \times P) \times Q
- $(P \ltimes f) \rtimes Q = P \ltimes (f \rtimes Q)$

Lemma

For all
$$
f: P \to Q
$$
 and $g: R \to S$ of A,
\n $(f \times R)(Q \ltimes g) = (P \ltimes g)(f \rtimes S).$

And it follows that:

Lemma

Define $f \otimes g = (f \rtimes R)(Q \ltimes g)$ for $f : P \to Q$ and $g : R \to S$. Then (A, \otimes, I) is a (strict) monoidal category.

KORKAR KERKER ST VOOR

Lemma

The δ^l make $\mathbb A$ into a (right strict) rig category.

Theorem

A is an Elgot category.

Some conjectures about A:

- \bullet The multiplicative structure of $\mathbb A$ is a distributive restriction category.
- \bullet A *uniquely* strongly represents all and only the partial recursive functions.
- \bullet A is isomorphic (perhaps equivalent) to the (rig) category of partial recursive functions.

Some questions, future work:

- What about dynamics?
- Relationship to Turing categories.
- \bullet Free cornering with choice and iteration of $\mathbb A$ as a notion of interactive computability. Write a programming language?