
Syntax and Operational Semantics of TAL-0

Software Security

Spring 2025

The material in these notes has been adapted from Section 4 of [1].

Syntax

The syntax of TAL-0 is parameterised over a natural number k ∈ N (the number
of registers) and a set L of labels, and is given in Figure 1.

Registers r as in:

r ::= r1 | r2 | . . . | rk

Operands v as in:

v ::= n ∈ Z (integer literals)

| l ∈ L (labels)

| r (registers)

Instructions ι as in:

ι ::= rd := v (move)

| rd := rs + v (add)

| if r jump v (conditional jump)

Instruction sequences I as in:

I ::= jump v (jump)

| ι ; I (sequence)

Figure 1: The Syntax of the TAL-0 Langauge

Let O be the set of all operands v in TAL-0, and let S be the set of all

1

instruction sequences I. For example:

3 ∈ O home ∈ L ⇒ home ∈ O x ≤ k ⇒ rx ∈ O

v ∈ O ⇒ jump v ∈ S x, y, v ∈ O ⇒ rx := ry + v; jump v ∈ S

jump 3 ∈ S

Operational Semantics

TAL-0 programs are evaluated with respect to a register valuation, which is a
function:

R : {1, . . . , k} → O

together with a heap, which is a (finitely-supported) partial function:

H : L → S

Every heap can be written as a (finite) set of pairs (l, I) with l ∈ L and
I ∈ S, subject to the restriction that each l ∈ L appears in at most one such
pair. For example, if one, two, three ∈ L and we define:

H = {(one, jump 2), (two, jump 3), (three, r1 := r2 + 1; jump 4)}

then we have:

H(one) = jump2 H(two) = jump3 H(three) = r1 := r2 + 1; jump 4,

with H(l) undefined for any other l ∈ L.
If H is a finitely supported partial function then for any a ∈ L and X ∈ S

we may define another heap H[(a,X)] as in:

H[(a,X)](l) =

{
X if a = l

H(l) otherwise

The operational semantics of TAL-0 is given by an abstract machine. A
state of the abstract machine is a 3-tuple (H,R, I) where:

• H : L → S is a heap

• R : {1, . . . , k} → O is a register valuation

• I ∈ S is an instruction sequence

We define a function R̂ : O → O as in:

R̂(v) =


R(i) if v = ri

n if v = n ∈ Z
l if v = l ∈ L

2

and we define a partial function Ĥ : O → S as in:

Ĥ(v) =

{
H(v) if v = l ∈ L
↑ otherwise

Now the transition rules for our abstract machine are as in Figure 2.

Ĥ(R̂(v)) = I

(H,R, jump v) → (H,R, I)
jump

(H,R, rd := v; I) → (H,R[(rd, R̂(v))], I)
move

R(rs) = n1 ∈ Z R̂(v) = n2 ∈ Z
(H,R, rd := rs + v; I) → (H,R[(rd, n1 + n2)], I)

add

R(r) = 0 Ĥ(R̂(v)) = J

(H,R, if r jump v; I) → (H,R, J)
cond-1

R(r) ̸= 0

(H,R, if r jump v; I) → (H,R, I)
cond-2

Figure 2: Transition rules for the TAL-0 abstract machine

It is convenient to specify heaps as in:

prod: r3 := 0; // result = 0

jump loop

loop: if r1 jump done; // if a = 0 we are done

r3 := r2 + r3; // result := result + b

r1 := r1 + (−1); // a := a - 1

jump loop

done: jump r4 // return

where, ignoring the comments for a moment, this corresponds to the heap:

{(prod, r3 := 0; jump loop)

,(loop, if r1 jump done; r3 := r2 + r3; r1 := r1 + (−1); jump loop)

,(done, jump r4)}

3

Now, let H be the above heap, and suppose that R0(r1) = 2, R0(r2) = 2, and
R0(r4) = exit ∈ L. Then we have:

(H,R0, jump prod)

→(H,R0, r3 := 0, jump loop)

→(H,R0[(r3, 0)], jump loop)

→(H,R0[(r3, 0)], if r1 jump done; r3 := r2 + r3; r1 := r1 + (−1); jump loop)

→(H,R0[(r3, 0)], r3 := r2 + r3; r1 + (−1); jump loop)

→(H,R0[(r3, 2)], r1 + (−1); jump loop)

→(H,R0[(r3, 2), (r1, 1)], jump loop)

→(H,R0[(r3, 2), (r1, 1)], if r1 jump done; r3 := r2 + r3; r1 := r1 + (−1); jump loop)

→(H,R0[(r3, 2), (r1, 1)], r3 := r2 + r3; r1 := r1 + (−1); jump loop)

→(H,R0[(r3, 4), (r1, 1)], r1 := r1 + (−1); jump loop)

→(H,R0[(r3, 4), (r1, 0)], jump loop)

→(H,R0[(r3, 4), (r1, 0)], if r1 jump done; r3 := r2 + r3; r1 := r1 + (−1); jump loop)

→(H,R0[(r3, 4), (r1, 0)], jump r4)

In this way, the program encoded by our heap allows us to multiply the value
stored in r1 by the value stored in r2, with the result ending up in r3. Once
finished, our program jumps to the label exit ∈ L which we assume is stored in
r4.

Exercises

• Write a program (specified as a heap, as in the example above) that com-
putes the factorial n! of a positive integer 0 < n ∈ Z.

• Test your program by showing that it successfully computes 3! when run
using the abstract machine. This should look something like computa-
tion above, in which we show that our program successfully computes the
product of 2 and 2.

• Write a program that causes the machine to “get stuck”, in the sense that
the antecedent of a the relevant transition rule of the abstract machine is
not satisfied.

References

[1] Pierce, B.C. Advanced Topics in Types and Programming Languages. MIT
Press, 2004.

4

