Syntax and Operational Semantics of TAL-0
Software Security

Spring 2025

The material in these notes has been adapted from Section 4 of [1].

Syntax

The syntax of TAL-0 is parameterised over a natural number k& € N (the number
of registers) and a set £ of labels, and is given in Figure 1.

Registers r as in:
ra=ry|ra || g
Operands v as in:
vi=neEZl (integer literals)
[lel (labels)
| r (registers)
Instructions ¢ as in:

Lu=Tg = (move)
| rq i =rs+wv (add)
| if r jump v (conditional jump)

Instruction sequences I as in:
I:=jumpuw (jump)
| e 1 (sequence)

Figure 1: The Syntax of the TAL-0 Langauge

Let O be the set of all operands v in TAL-0, and let S be the set of all

instruction sequences I. For example:

3¢0 home € £L = home € O r<k=r,e0
veOD=jumpvesS z,y,v €0 =>ry =71y +v;jumpv €S
jump 3 €S

Operational Semantics

TAL-0 programs are evaluated with respect to a register valuation, which is a
function:

R:{1,...,k} = O
together with a heap, which is a (finitely-supported) partial function:

H:L—S

Every heap can be written as a (finite) set of pairs (I,I) with [€ £ and
I € S, subject to the restriction that each [€ £ appears in at most one such
pair. For example, if one, two, three € £ and we define:

H = {(one, jump 2), (two, jump 3), (three,r; := 73 + 1;jump 4)}
then we have:
H(one) = jump?2 H (two) = jump3 H(three) = ry :=r9 + 1;jump 4,

with H(l) undefined for any other [€ L.
If H is a finitely supported partial function then for any a € £ and X € §
we may define another heap H|(a, X)] as in:

X ifa=1

Hl(a, X)|(I) = {H(l) otherwise

The operational semantics of TAL-0 is given by an abstract machine. A
state of the abstract machine is a 3-tuple (H, R, I) where:

e H:L — Sisaheap

e R:{1,...,k} — O is a register valuation

e [€ S is an instruction sequence

We define a function R: @ — O as in:

R() ifv=mr
Rv)=<n ifv=neZ
l ifo=1lel

and we define a partial function H:0 - S asin:

Aw) = H(v) 1fv:l.€£
0 otherwise

Now the transition rules for our abstract machine are as in Figure 2.

H(R(v)) =1
(H,R,jumpv) — (H,R,I)

JUMP

(H,R,rq :=v;1) — (H, R[(rq, R(v))], T MOVE

R(rs)=m €Z ﬁ(v) =ng €7Z
(H7R7Td =T +U7[) — (H7R[(Td7n1 +n2)}71)

ADD

R(r)=0 HR@w)=J
(H,R,if r jump v;I) — (H,R,J)

COND-1

R(r)#0

-2
(H,R,if r jump ;1) — (H, R, 1)

Figure 2: Transition rules for the TAL-0 abstract machine

It is convenient to specify heaps as in:

prod: r3 :=0; // result = 0
jump loop

loop: if 71 jump done; // if a =0 we are done
r3 =19 + T3] // result := result + b
r1 =711+ (—1); //a:=a-1
jump loop

done: jump ry // return

where, ignoring the comments for a moment, this corresponds to the heap:
{(prod, r3 := 0; jump loop)
J(loop, if 1 jump done;rg :=ro + 73571 := 71 + (—1); jump loop)

,(done, jump r4)}

Now, let H be the above heap, and suppose that Ry(r1) = 2, Ro(r2) = 2, and
Ry(ry) = exit € L. Then we have:

(
—(H, Rg, 73 := 0, jump loop)
—(H, Rol(rs,0)], jump loop)
—(H, Rol[(r3,0)],if r1 jump done;rs :=ro + r3;71 := 11 + (—1); jump loop)
—(H, Ro[(r3,0)],73 := ra +7r3;71 + (—1); jump loop)
—(H, Ro[(r3,2)],71 + (=1); jump loop)
—(H, Rol(rs3,2), (r1,1)],jump loop)
—(H, Rol[(rs3,2), (r1,1)],if 1 jump done;r3 :=ry + r3;71 :=r1 + (—1); jump loop)
—(H, Rol(r3,2), (r1,1)],73 := ro + 13571 := 11 + (—1); jump loop)
—(H, Ro[(r3,4), (r1,1)],71 := r1 + (=1); jump loop)
—(H, Rol(rs3,4), (r1,0)],jump loop)
—(H, Rol[(rs3,4), (r1,0)],if 1 jump done;r3 :=ry + r3;71 :=r1 + (—1); jump loop)
—(H, Ro|(rs,4), (r1,0)],jump r4)

In this way, the program encoded by our heap allows us to multiply the value
stored in 7; by the value stored in 79, with the result ending up in r3. Once
finished, our program jumps to the label exit € £ which we assume is stored in
rq.

Exercises

e Write a program (specified as a heap, as in the example above) that com-
putes the factorial n! of a positive integer 0 < n € Z.

e Test your program by showing that it successfully computes 3! when run
using the abstract machine. This should look something like computa-
tion above, in which we show that our program successfully computes the
product of 2 and 2.

e Write a program that causes the machine to “get stuck”, in the sense that
the antecedent of a the relevant transition rule of the abstract machine is
not satisfied.

References

[1] Pierce, B.C. Advanced Topics in Types and Programming Languages. MIT
Press, 2004.

