
A Type System for TAL-0

Software Security

Spring 2025

The material in these notes has been adapted from Section 4 of [1].

Types

The goal of the type system presented here is to ensure that when well-typed
programs never “get stuck” when run using the abstract machine from last week.

Operand types τ are given by the following BNF grammar:

τ ::= int (integers)

| code(Γ) (code labels)

| α (type variables)

| ∀α.τ (polymorphic types)

Figure 1: Operand types for TAL-0

We begin by introducing the different sorts of “type” that will be required.
First, we require operand types, constructed as in Figure 1. Integer values will
have type int, and labels will have type code(Γ) where Γ is a register valuation
type. That is, a total function:

Γ : {1, . . . , k} → T

where T is the set of all operand types τ . The idea here is that label l ∈ L has
type code(Γ) when the code pointed to by l expects register ri to store a value
of type Γ(i) for each 1 ≤ i ≤ k. We also support type variables and polymorphic
types, which will be discussed a bit later on in these notes1. Finally, we require
heap types ψ, which are partial functions:

ψ : L → T
1It is worth mentioning that in the type ∀α.τ , any occurrences of the variable α in τ

are considered bound, and that we treat types that are equivalent up to renaming of bound
variables as the same type (recall: α-equivalence in the lambda calculus). If this does not
make sense to you, do not worry! You should still be able to understand these notes.

1



The idea here is essentially that a heap H will have type ψ in case for any l ∈ L
the code H(l) has the type ψ(l).

Typing Rules

While the type system for TAL-0 is, at a glance, quite complicated, most of the
concepts being expressed are relatively straightforward. We will go through the
different parts of the type system in a “bottom-up” fashion, proceeding from
values and operands to abstract machine states. The rules of the type system
are summarized in Figure 2.

Values A value typing judgement looks like:

ψ ⊢ v : τ

which we read as the statement that value v has type τ in the context of any
heap with type ψ. The rules concerning value typing judgements assert that
integer constants have type int and that labels have the type assigned to them
by the heap type:

n ∈ Z
ψ ⊢ n : int

s-int
l ∈ dom(ψ)

ψ ⊢ l : ψ(l)
s-lab

Operands An operand typing judgement looks like:

ψ; Γ ⊢ v : τ

which we read as the statement that operand v has type τ in the context of any
heap with heap type ψ and register valuation with register valuation type Γ.
Two rules concerning operand typing judgements assert that registers have the
type assigned to them by the register valuation type, and that derivable value
typing judgements hold in the context of any register valuation type:

i ≤ k

ψ; Γ ⊢ ri : Γ(i)
s-reg

ψ ⊢ v : τ

ψ; Γ ⊢ v : τ
s-val

There is one more rule concerning operand typing judgements, which allows us
to instantiate polymorphic types:

ψ; Γ ⊢ v : ∀α.τ
ψ; Γ ⊢ v : τ [τ ′/α]

s-inst

That is, for v to have type ∀α.τ in some context means that for any type τ ′ it is
sensible to v as having type τ [τ ′/α] in that context, where τ [τ ′/α] is the result
of substituting2 τ ′ for each instance of the variable α in τ .

2In a variable-capture avoiding manner. Again, if this means nothing to you, that’s okay!

2



Instructions An instruction typing judgement looks like:

ψ ⊢ ι : Γ1 → Γ2

which we read as the statement that in the context of any heap with type ψ and
any register valuation with type Γ1, it is possible to execute the instruction ι,
and moreover that this will result in a register valuation of type Γ2. The rules
concerning instruction typing judgements are as follows:

ψ; Γ ⊢ v : τ

ψ ⊢ ri := v : Γ → Γ[(i, τ)]
s-move

ψ; Γ ⊢ rj : int ψ; Γ ⊢ v : int

ψ ⊢ ri := rj + v : Γ → Γ[(ri : int)]
s-add

ψ; Γ ⊢ ri : int ψ; Γ ⊢ v : code(Γ)

ψ ⊢ if ri jump v : Γ → Γ
s-cond

Of particular interest is the second part of the antecedent of the rule for condi-
tional jumps, which says that in order for a jump instruction to be well-typed in
the context of a register valuation with type Γ, the instruction sequence jumped
to must expect a register valuation of precisely that type.

Instruction Sequences An instruction sequence typing judgement looks like:

ψ ⊢ I : τ

which, in particular when τ = code(Γ), we read as the statement that in the
context of any heap with type ψ, the instruction sequence I expects a register
valuation of type Γ. Two rules concerning instruction sequence typing judge-
ments are as follows:

ψ; Γ ⊢ v : code(Γ)

ψ ⊢ jump v : code(Γ)
s-jump

ψ ⊢ ι : Γ → Γ2 ψ ⊢ I : code(Γ2)

ψ ⊢ ι; I : code(Γ)
s-seq

There is one more rule concerning instruction sequence typing judgements:

ψ ⊢ I : τ

ψ ⊢ ∀α.τ
s-gen

Register Valuations A register valuation typing judgement looks like:

ψ ⊢ R : Γ

which we read as the statement that in the context of any heap with type ψ
the register valuation R has type Γ. There is only one rule concerning register
valuation typing judgements:

∀i ∈ {1, . . . , k}.ψ ⊢ R(i) ⊢ Γ(i)

ψ ⊢ R : Γ
s-regval

3



Heaps A heap typing judgement looks like:

⊢ H : ψ

which we read as the statement that heap H has heap type ψ. There is only
one rule concerning heap typing judgements:

∀l ∈ dom(ψ).ψ ⊢ H(l) : ψ(l) ∀l ∈ dom(ψ).FV(ψ(l)) = ∅
⊢ H : ψ

s-heap

where the rightmost antecedent insists that each ψ(l) contains no free type
varaibles. That is, that each type variable α in ψ(l) is bound by some ∀α.

Machine States Finally, a machine state typing judgement looks like:

⊢ (H,R, I)

which we read as the statement that the abstract machine state (H,R, I) is
well-typed. There is only one rule concerning machine state typing judgements:

⊢ H : ψ ψ ⊢ R : Γ ψ ⊢ I : code(Γ)

⊢ (H,R, I)
s-mach

So, a machine state (H,R, I) is well-typed in case the heap has some heap type
H : ψ, in the context of which the register valuation has some register valuation
type R : Γ, such that I is well-typed.

Example

Recall the heap H specifiying our example program from last week:

prod: r3 := 0; // result = 0

jump loop

loop: if r1 jump done; // if a = 0 we are done

r3 := r2 + r3; // result := result + b

r1 := r1 + (−1); // a := a - 1

jump loop

done: jump r4 // return

and let Γ : {1, . . . , k} → T be the following register valuation type:

Γ = {(1, int), (2, int), (3, int), (4, ∀α.code{(1, int), (2, int), (3, int), (4, α)})}

4



Let ψ : L → T be the following heap type:

ψ = {(prod, code(Γ)), (loop, code(Γ)), (done, code(Γ)), (exit, ∀α.code{(1, int), (2, int), (3, int), (4, α)})}

We will begin by deriving the following intruction sequence typing judgement:

ψ ⊢ H(loop) : code(Γ)

That is:

ψ ⊢ if r1 jump done; r3 := r2 + r3; r1 := r1 + (−1); jump loop : code(Γ)

Observe that it is sufficient to derive all of:

1. ψ ⊢ if r1 jump done : Γ → Γ

2. ψ ⊢ r3 := r2 + r3 : Γ → Γ

3. ψ ⊢ r1 := r1 + (−1) : Γ → Γ

4. ψ ⊢ jump loop : code(Γ)

since, we could then obtain ψ ⊢ H(loop) : code(Γ) using the sequencing rule.
We proceed to derive 1-4:

1. We have:

1 ≤ k

ψ; Γ ⊢ int = Γ(1)
s-reg

done ∈ dom(ψ)

ψ ⊢ done : code(Γ)
s-lab

ψ; Γ ⊢ done : code(Γ)
s-val

ψ ⊢ if r1 jump done : Γ → Γ
s-cond

2. We have:

2 ≤ k

ψ; Γ ⊢ r2 : Γ(2) = int
s-reg

3 ≤ k

ψ; Γ ⊢ r3 : Γ(3) = int
s-reg

ψ ⊢ r3 := r2 + r3 : Γ → Γ = Γ[(3, int)]
s-add

3. We have:

1 ≤ k

ψ; Γ ⊢ r1 : Γ(1) = int
s-reg

(−1) ∈ Z
ψ ⊢ (−1) : int

s-int

ψ; Γ ⊢ (−1) : int
s-val

ψ ⊢ r1 := r1 + (−1) : Γ → Γ = Γ[(1, int)]
s-add

4. We have:

loop ∈ dom(ψ)

ψ ⊢ loop : code(Γ) = ψ(loop)
s-lab

ψ; Γ ⊢ loop : code(Γ)
s-val

ψ ⊢ jump loop : code(Γ)
s-jump

And we have therefore derived ψ ⊢ H(loop) : code(Γ).

5



Concerning Polymorphic Types

A good way to understand the role played by polymorphic types is to consider
the following example heap:

foo: r1 := bar;

jump r1

bar: . . .

Without using polymorphic types, any derivation of ψ ⊢ r1 := bar; jump r1 :
code(Γ) for any ψ and Γ must begin as follows:

ψ ⊢ bar : code(Γ)

ψ; Γ′ ⊢ bar : code(Γ)
s-val

ψ ⊢ r1 := bar : Γ′ → Γ
s-mov

ψ; Γ ⊢ r1 : code(Γ)

ψ ⊢ jump r1 : code(Γ)
s-jump

ψ ⊢ r1 := bar; jump r1 : Code(Γ)
s-seq

But then Γ = Γ′[(1,Γ)] and so in particular Γ[(1, code(Γ))]. This kind of self-
reference is problematic, in that there is no register valuation Γ with this be-
haivour, since register valuations are total functions.

One way to see the problem is to attempt to write such a register valuation
as a set of pairs:

Γ = {(1, {(1, . . .

Polymorphic types allow us to avoid this problem. In particular, let:

Γ = {(1,∀α.code({(1, α)}))} ψ = {(bar,∀α.code({1, α}))}

Notice that we have:

code(Γ) = code({(1, ∀α.code({(1, α)}))}) = code({1, α})[∀α.code({1, α}))/α]

and so using the instantiation rule for our polymorphic types we have:

bar ∈ dom(ψ)

ψ; Γ ⊢ bar : ∀α.code({(1, α)})
ψ; Γ ⊢ bar : ∀α.code({(1, α)})

ψ ⊢ r1 := bar : Γ → Γ

1 ≤ k

ψ; Γ ⊢ r1 : ∀α.code({1, α})
ψ; Γ ⊢ r1 : code(Γ)

ψ ⊢ jump r1 : code(Γ)

ψ ⊢ r1 := bar; jump r1 : code(Γ)

This explains why Γ(4) has a polymorphic type in our example above, which
we continue presently. Polymorphic types are also necessary to type some pro-
grams involving jumps to some location from multiple distinct locations.

6



Continued Example

We pick up our example again, showing that with the Γ,ψ, and H as before, we
can derive:

ψ ⊢ H(done) : code(Γ)

That is:

ψ ⊢ jump r4 : code(Γ)

With what we have just learned about polymorphic types, it is enough to notice:

code(Γ) = code{(1, int), (2, int), (3, int), (4, ∀α.code{(1, int), (2, int), (3, int), (4, α)})}
= code{(1, int), (2, int), (3, int), (4, α)}[∀α.code{(1, int), (2, int), (3, int), (4, α)}/α]

Since then we have:

4 ≤ k

ψ; Γ ⊢ r4 : ∀α.code{(1, int), (2, int), (3, int), (4, α)}
s-reg

ψ; Γ ⊢ r4 : code(Γ)
s-inst

ψ ⊢ jump r4 : code(Γ)
s-jump

as required. Next, we derive:

ψ ⊢ H(prod) : code(Γ)

that is:

ψ ⊢ r3 := 0; jump loop : code(Γ)

This is straightforward. We have:

0 ∈ Z
ψ ⊢ 0 : int

ψ; Γ ⊢ 0 : int

ψ ⊢ r3 := 0 : Γ → Γ

loop ∈ dom(ψ)

ψ ⊢ loop : code(Γ)

ψ; Γ ⊢ loop : code(Γ)

ψ ⊢ jump loop : code(Γ)

ψ ⊢ r3 := 0; jump loop : code(Γ)

Notice that we have now shown ⊢ H : ψ. Let R0 be the starting register
valuation from our example of program execution using the abstract machine
with, say R0(3) = 56 so that the function R0 : {1, . . . 4} → O is fully specified.
That is:

R0 = {(1, 2), (2, 2), (3, 56), (4, exit)}

It is easy to check that ψ ⊢ R0 : Γ and ψ ⊢ jump prod : code(Γ). Together, these
facts give ⊢ (H,R0, jump prod). That is, our example machine state from last
time is well-typed.

7



Exercises

• Using your program that computes the factorial function from last week’s
exercises, show that the machine state (H,R, I) which computes 3! when
executed using the operational semantics is well-typed, in the sense that
we may derive ⊢ (H,R, I) using the typing rules for TAL-0.

• Consider your program from last week’s exercises that “gets stuck”. Is it
well-typed?

References

[1] Pierce, B.C. Advanced Topics in Types and Programming Languages. MIT
Press, 2004.

8



ψ ⊢ v : τ Value typing judgements:

n ∈ Z
ψ ⊢ n : int

s-int
l ∈ dom(ψ)

ψ ⊢ l : ψ(l)
s-lab

ψ; Γ ⊢ v : τ Operand typing judgements:

i ≤ k

ψ; Γ ⊢ ri : Γ(i)
s-reg

ψ ⊢ v : τ

ψ; Γ ⊢ v : τ
s-val

ψ; Γ ⊢ v : ∀α.τ
ψ; Γ ⊢ v : τ [τ ′/α]

s-inst

ψ ⊢ ι : Γ1 → Γ2 Instruction typing judgements:

ψ; Γ ⊢ v : τ

ψ ⊢ ri := v : Γ → Γ[(i, τ)]
s-move

ψ; Γ ⊢ rj : int ψ; Γ ⊢ v : int

ψ ⊢ ri := rj + v : Γ → Γ[(ri : int)]
s-add

ψ; Γ ⊢ ri : int ψ; Γ ⊢ v : code(Γ)

ψ ⊢ if ri jump v : Γ → Γ
s-cond

ψ ⊢ I : τ Instruction sequence typing judgements:

ψ; Γ ⊢ v : code(Γ)

ψ ⊢ jump v : code(Γ)
s-jump

ψ ⊢ I : τ

ψ ⊢ ∀α.τ
s-gen

ψ ⊢ ι : Γ → Γ2 ψ ⊢ I : code(Γ2)

ψ ⊢ ι; I : code(Γ)
s-seq

ψ ⊢ R : Γ Register valuation typing judgements:

∀i ∈ {1, . . . , k}.ψ ⊢ R(i) ⊢ Γ(i)

ψ ⊢ R : Γ
s-regval

⊢ H : ψ Heap typing judgements:

∀l ∈ dom(ψ).ψ ⊢ H(l) : ψ(l) ∀l ∈ dom(ψ).FV(ψ(l)) = ∅
⊢ H : ψ

s-heap

⊢ (H,R, I) Machine state typing judgements:

⊢ H : ψ ψ ⊢ R : Γ ψ ⊢ I : code(Γ)

⊢ (H,R, I)
s-mach

Figure 2: Typing rules for TAL-0

9


