Type Soundness for TAL-0

Software Security

Spring 2025

The material in these notes has been adapted from Section 4 of [1].

The Goal

The goal of this lecture is to explain how we might prove that that any well-
typed (i.e., derivable) machine state (H, R,I) cannot “get stuck”. It suffices
to show that for any machine state (H, R, I) that is well-typed (in the sense
that = (H, R,I) is derivable in the TAL-0 type system) there is a machine
state (H', R',I') such that (H,R,I) — (H', R',I') according to the operational
semantics and that (H', R, I') well-typed.

The Argument

Suppose - (H, R,I) is well-typed. Then its derivation must end with the S-
MACH inference rule, so we may conclude that for some heap type v and register
valuation type I' we have derivations of:

FH:Y YFR:T Y+ I:code(T)
We proceed by structural induction on I, which must be one of:

e jump v, in which case our derivation of ¢ - I : code(I") must end with the
S-JUMP inference rule, which means that we have a derivation of:

;' F v : code(T)

But this means that H(R(v)) = I’ for some instruction sequence I’ for
which ¢ F I’ : code(T") is derivable. Now, the the JUMP rule gives
(H,R,jump v) — (H,R,I'), and further we can derive - (H, R,I') us-
ing the S-MACH rule.

e 74 := v;I', in which case our derivation of ¢ - I : code(I') must end
with the S-SEQ inference rule, which means that for some I'y we have
derivations of:

Yhrg:=v:T =Ty I : code(Ts)



Now, our derivation of ¥ F 1y :=v : ' — I'y must end with the S-MOVE
rule which means that we have a derivation of:

v TkFo:T
and that 'y = T'[(d,7)]. The MOVE rule gives (H,R,rq = v;I') —
(H, R|(d,v)],I") and since obviously ¢ F R[(d,v)] : T'[(d, )] = 'y we can
derive - (H, R[(d,v)],I") using the S-SEQ rule.
e 7y := 75 + v;I’, in which case our derivation of ¢ F I : code(T") must

end with the S-SEQ inference rule, which means that for some I'y we have
derivations of:

YhErg=rs+v:T =Ty = 1" : code(T')

Now, our derivation of ¥ F r4 := rs +v : I' = I's must end with the
S-ADD rule, which means that we have derivations of:

;I Frgcint ;Do int

and that I'y = T'[(d,int)]. The existence of such derivations implies that
R(s) =ny € Z and R(v) = ny € Z, which means that the ADD rule gives
(H,R,7q :=rs+v;I') — (H, R[(d,n1 + n2)],I"). Obviously we have 1) -
R[(d,n1 + n2)] : T[(d, int)], and so we can derive - (H, R[(d,ny + n2)],I")
using the S-SEQ rule.

e if r; jump v; I’, in which case our derivation of ¢ - I : code(T") must end
with the S-SEQ inference rule, which means that for some I's we have
derivations of:

Whifr; jumpov:L — 1Ty I : code(Ts)
Now, our derivation of ¥ F if r; jump v : I' — T's must end with the
S-COND inference rule, which means that we have derivations of:

;T Forycint ;' F v code(I)

and that Ty = I'. That ¢;T + v : code(I') means that H(R(v)) = J for
some instruction sequence J for which ¢ F J : code(T") is derivable, and
that R(i) =n € Z. There are two cases:
x If n = 0 then rule COND-1 gives (H, R,if r; jump v;I') — (H, R, J),
and we can derive - (H, R, J) using the S-SEQ rule.
* If n # 0 then rule COND-2 gives (H, R,if r; jump v : I') — (H,R,I'),
and we can derive - (H, R, I") using the S-SEQ rule.

This completes the proof.

References

[1] Pierce, B.C. Advanced Topics in Types and Programming Languages. MIT
Press, 2004.



