
Type Soundness for TAL-0

Software Security

Spring 2025

The material in these notes has been adapted from Section 4 of [1].

The Goal

The goal of this lecture is to explain how we might prove that that any well-
typed (i.e., derivable) machine state (H,R, I) cannot “get stuck”. It suffices
to show that for any machine state (H,R, I) that is well-typed (in the sense
that ⊢ (H,R, I) is derivable in the TAL-0 type system) there is a machine
state (H ′, R′, I ′) such that (H,R, I) → (H ′, R′, I ′) according to the operational
semantics and that (H ′, R′, I ′) well-typed.

The Argument

Suppose ⊢ (H,R, I) is well-typed. Then its derivation must end with the S-
MACH inference rule, so we may conclude that for some heap type ψ and register
valuation type Γ we have derivations of:

⊢ H : ψ ψ ⊢ R : Γ ψ ⊢ I : code(Γ)

We proceed by structural induction on I, which must be one of:

• jump v, in which case our derivation of ψ ⊢ I : code(Γ) must end with the
S-JUMP inference rule, which means that we have a derivation of:

ψ; Γ ⊢ v : code(Γ)

But this means that Ĥ(R̂(v)) = I ′ for some instruction sequence I ′ for
which ψ ⊢ I ′ : code(Γ) is derivable. Now, the the JUMP rule gives
(H,R, jump v) → (H,R, I ′), and further we can derive ⊢ (H,R, I ′) us-
ing the S-MACH rule.

• rd := v; I ′, in which case our derivation of ψ ⊢ I : code(Γ) must end
with the S-SEQ inference rule, which means that for some Γ2 we have
derivations of:

ψ ⊢ rd := v : Γ → Γ2 ψ ⊢ I ′ : code(Γ2)

1



Now, our derivation of ψ ⊢ rd := v : Γ → Γ2 must end with the S-MOVE
rule which means that we have a derivation of:

ψ; Γ ⊢ v : τ

and that Γ2 = Γ[(d, τ)]. The MOVE rule gives (H,R, rd := v; I ′) →
(H,R[(d, v)], I ′) and since obviously ψ ⊢ R[(d, v)] : Γ[(d, τ)] = Γ2 we can
derive ⊢ (H,R[(d, v)], I ′) using the S-SEQ rule.

• rd := rs + v; I ′, in which case our derivation of ψ ⊢ I : code(Γ) must
end with the S-SEQ inference rule, which means that for some Γ2 we have
derivations of:

ψ ⊢ rd := rs + v : Γ → Γ2 ψ ⊢ I ′ : code(Γ2)

Now, our derivation of ψ ⊢ rd := rs + v : Γ → Γ2 must end with the
S-ADD rule, which means that we have derivations of:

ψ; Γ ⊢ rs : int ψ; Γ ⊢ v : int

and that Γ2 = Γ[(d, int)]. The existence of such derivations implies that

R(s) = n1 ∈ Z and R̂(v) = n2 ∈ Z, which means that the ADD rule gives
(H,R, rd := rs + v; I ′) → (H,R[(d, n1 + n2)], I

′). Obviously we have ψ ⊢
R[(d, n1 + n2)] : Γ[(d, int)], and so we can derive ⊢ (H,R[(d, n1 + n2)], I

′)
using the S-SEQ rule.

• if ri jump v; I ′, in which case our derivation of ψ ⊢ I : code(Γ) must end
with the S-SEQ inference rule, which means that for some Γ2 we have
derivations of:

ψ ⊢ if ri jump v : Γ → Γ2 ψ ⊢ I ′ : code(Γ2)

Now, our derivation of ψ ⊢ if ri jump v : Γ → Γ2 must end with the
S-COND inference rule, which means that we have derivations of:

ψ; Γ ⊢ ri : int ψ; Γ ⊢ v : code(Γ)

and that Γ2 = Γ. That ψ; Γ ⊢ v : code(Γ) means that Ĥ(R̂(v)) = J for
some instruction sequence J for which ψ ⊢ J : code(Γ) is derivable, and
that R(i) = n ∈ Z. There are two cases:

⋆ If n = 0 then rule COND-1 gives (H,R, if ri jump v; I ′) → (H,R, J),
and we can derive ⊢ (H,R, J) using the S-SEQ rule.

⋆ If n ̸= 0 then rule COND-2 gives (H,R, if ri jump v : I ′) → (H,R, I ′),
and we can derive ⊢ (H,R, I ′) using the S-SEQ rule.

This completes the proof.

References

[1] Pierce, B.C. Advanced Topics in Types and Programming Languages. MIT
Press, 2004.

2


