
Threshold Homomorphic Encryption in the

Universally Composable Cryptographic Library

Peeter Laud1,2⋆ and Long Ngo1

1 Tartu University
2 Cybernetica AS

peeter.laud@ut.ee, ngothanglong@yahoo.com

Abstract. The universally composable cryptographic library by Backes,
Pfitzmann and Waidner provides Dolev-Yao-like, but cryptographically
sound abstractions to common cryptographic primitives like encryptions
and signatures. The library has been used to give the correctness proofs
of various protocols; while the arguments in such proofs are similar to
the ones done with the Dolev-Yao model that has been researched for a
couple of decades already, the conclusions that such arguments provide
are cryptographically sound.
Various interesting protocols, for example e-voting, make extensive use
of primitives that the library currently does not provide. The library can
certainly be extended, and in this paper we provide one such extension —
we add threshold homomorphic encryption to the universally composable
cryptographic library and demonstrate its usefulness by (re)proving the
security of a well-known e-voting protocol.

1 Introduction

Cryptographic protocol verification is an error-prone task. A tractable way of
doing it usually involves employing some abstraction of cryptographic opera-
tions, for example using the Dolev-Yao model [23]. In this model, messages are
modeled as terms over a certain algebra, possibly with some cancellation rules,
and possible operations are defined over the structure of those terms. This ap-
proach makes it simple to use formal methods to analyse the protocol, but the
question of soundness of the abstraction has not been satisfactorily solved yet.
On the other hand, computational methods can produce computationally sound
proofs, but are complex and error-prone.

There exists a sound abstraction of cryptographic operations — the univer-
sally composable cryptographic library [12, 11, 7] — that has the abstraction level
comparable to the Dolev-Yao model. The first version of this library contained
signature and public-key encryption schemes. Later, the library has been ex-
tended to some more primitives common in the Dolev-Yao model, and shown
that it can not unconditionally have some special primitives.

⋆ Supported by Estonian Science Foundation, grant #6944, and European Union
through the European Regional Development Fund and the 6th Framework Pro-
gramme project AEOLUS (FP6-IST-15964)

1



In this paper we extend the library to have threshold homomorphic encryp-
tion. The extension involves adding some new commands to the library, while
maintaining its abstraction level. We show that the extended library is still
computationally sound. It is suitable for the analysis of important classes of
protocols, for example electronic voting, auctions or lotteries. A separate contri-
bution of this paper is also the actual introduction of a possible Dolev-Yao style
abstraction for threshold homomorphic encryption.

2 Related Work

The model of universal composability alias reactive simulatability was proposed
by Canetti [20] and by Pfitzmann et al [34, 13]. The model has been used to
define sound abstractions of various cryptographic primitives. Among the most
celebrated abstractions is the universally composable cryptographic library [12,
11, 7] providing Dolev-Yao-style abstractions for common cryptographic primi-
tives, namely symmetric and asymmetric encryption, signatures, MACs, nonces.
The library has been used in the security proofs for some protocols: Needham-
Schroeder-Lowe protocol (asymmetric) [6], the Otway-Rees protocol (symmetric)
[2], the strengthened Yahalom protocol (real secrecy) [10], a payment system [3].
There have also been approaches in using the library to construct secure sys-
tems [30, 5, 1, 35]. It is also known that certain primitives cannot be reasonably
abstracted by such a library [14, 8]. Recently, the notion of Conditional Reactive
Simulatability [4] has been proposed, providing soundness only for a certain class
of users and potentially allowing to abstract more primitives.

Threshold homomorphic encryption [33, 22] is one of the most versatile cryp-
tographic primitives, combining the distribution of trust with the ability to com-
bine plaintexts under encryption. An overview of using this primitive in e-voting
is given in [32]. Such e-voting protocols have been proved to be universally
composable [27]. In these proofs, the security requirement put on the thresh-
old homomorphic encryption primitive has basically been security under chosen
plaintext attacks (IND-TCPA) [24, 25]. We are not aware of any attempts to
abstract this primitive in the Dolev-Yao-style.

3 UC Cryptographic Library

In the treatment of reactive simulatability [34] the systems are modeled as sets
of structures. A structure Str is a collection of probabilistic interactive Turing
machines. Each of the machines has a number of input and output ports ; an in-
put and output port with the same name (which must not repeat) form a secure
communication channel between corresponding machines. Authentic or insecure
channels are modeled using secure channels. A port in the structure may also
be unconnected; a certain subset S of such ports are called the free ports. The
structure provides the intended service over those ports. The rest of unconnected
ports represent the possible weaknesses of the structure; the adversary will con-
nect to those ports. A configuration of (Str , S) is a closed collection (i.e. no

2



unconnected ports), consisting of the machines in Str , a machine H representing
the users of the service (called the environment in [20]) and connecting only to
the free ports of the structure, and an adversarial machine A. There may also be
connection(s) between H and A. The view of the user H in some configuration C,
denoted viewC(H), is the distribution of the sequence of messages on the ports
of H.

Given two structures Str and Str ′ with the same set S of free ports, we say
that Str is at least as secure as Str ′ if for all H and A there exists an adversary
S, such that viewStr‖H‖A(H) ≈ viewStr ′‖H‖S(H), where ≈ denotes computational
indistinguishability [26]. The simulatability is black-box if there exists a single
machine Sim, called the simulator, such that Sim‖A is a suitable choice for S, for
all H and A. The at least as secure as-relation is lifted to systems in the natural
way. The central result of the theory of UC is the composition theorem. It states
that if we replace a substructure of some structure with something that is at
least as secure, then the entire resulting structure is also at least as secure as
the original one.

When modeling and analysing systems, one speaks about real and ideal struc-
tures. The real structure reflects the distribution of components in the real world,
with each participant typically having one or several machines implementing the
cryptographic operations and protocol logic. A typical ideal structure consists of
a single machine that “obviously” satisfies the security requirements we have put
on the system. A well-designed ideal structure also has a simple internal state
and does not use hard-to-analyse operations (e.g. random number generation).
One has to show that the real structure is at least as secure as the ideal structure.
While analysing a system, one may locate the real structures it is using, replace
them with the corresponding ideal structures (using the composition theorem)
and analyse the resulting ideal system instead.

The simulatable cryptographic library [12] is such a (set of) pair(s) of real
and ideal structures. The ideal structure quite precisely imitates the Dolev-Yao
terms used to abstract the cryptographic messages. The main part of the ideal
machine T Hn for n participants is the database of terms. For each term that
has ever been created by one of the participants or the adversary, it records its
outermost constructor and immediate subterms. The library also records which
parties know which term; if a party knows a term then it has a handle to it.
These handles are generated as needed and are themselves devoid of information
(they are just consecutive integers). Hence all message transmissions have to
happen through the library, which has to translate the handles. For a term t, let
thndu be its handle for the user u; u may be omitted if it is clear from the context.
All parties can store “raw” bit-strings in the database (called the payloads) and
retrieve their contents, construct new terms and decompose them. The rules for
the possibility of composing and decomposing terms are very similar to the rules
in the Dolev-Yao model. The adversary has some extra commands in its disposal,
for example, creating garbage terms or invalid ciphertexts. The machine T Hn

has the input port inui
? and the output port outui

! for communicating with the
i-th user and the ports ina? and outa! for communicating with the adversary. In

3



the real structure, the users still access the terms through the handles (because
the real and the ideal interfaces must be the same), but there is a machine Mi for
each participant Pi. Bit-strings are used to represent cryptographic messages; the
machines use them to communicate with each other (and with the adversary).
The cryptographic operations are implemented using conventional primitives.
Each secure channel between two parties is modeled by one, each authentic or
insecure channel by two (from the transmitter to the adversary, and from the
transmitter or the adversary to the receiver) communication channels.

In the model of asynchronous relative simulatability [34], the machines them-
selves are in charge of scheduling. The scheduling is channel-based, each channel
is scheduled by a certain machine. Whenever a machine finishes its step and
stores the newly generated messages in the buffers of channels it has output
ports for, it may also clock at most one of the channels it schedules. The first
message in the buffer of that channel is then delivered to its recipient and this
machine is the next to run. If this buffer is empty or if no channel was clocked
then the control passes to a designated machine (usually the adversary) called
the master scheduler. Such clocking mechanism is very versatile and allows one
to model both network delays (channel is clocked by the adversary) and API
calls (there is a channel in each direction between two machines, clocked by
their transmitters and scheduled each time they are written to). The commands
from the user H to T Hn / Mi are made through API calls. The machine T Hn

also communicates with the adversary using API calls. In the real structure, the
machine Mi clocks the channels from itself to the adversary, while the channels
from the adversary or between two machines are clocked by the adversary.

More details on the asynchronous relative simulatability and the UC cryp-
tographic library can be found in [34, 12], as well as in the full version of this
paper [31].

4 Adding Threshold Homomorphic Encryption

4.1 The Cryptographic Primitives

A (t, w)-threshold (⊡, ⊞)-homomorphic encryption primitive is a tuple of al-
gorithms (K, E ,D,Z,V , C) where the key generation algorithm K returns a new
public key pk , secret keys sk1, . . . , skw and (public) verification keys vk1, . . . , vkw

at each invocation; the encryption Epk (m, r) returns the encryption of the mes-
sage m under the public key pk with the random coins r; the decryption Dski

(c)
returns the i-th decryption share dsi of the ciphertext c, the correctness of de-
cryption can be verified by invoking Vvki

(ds i, pi, c) where pi = Zski
(c); the share

combination algorithm C takes any t decryption shares ds i1 , . . . , ds it
and com-

bines them into the plaintext m. For any (pk, sk1, . . . , skw, vk1, . . . , vkw) possi-
bly returned by K, the algorithms must satisfy the following conditions [27]. The
cryptosystem of [22] can be used here.

– Correctness: If c = Epk (m, r) and ds i = Dsk i
(c) then C(ds i1 , . . . , ds it

) = m.

4



– Homomorphism: Let ci = Epk (mi, ri). Then c1 ⊡ c2 is a valid ciphertext
corresponding to the plaintext m1 ⊞ m2.

– Correct decryption: Let c = Epk (m, r), ds i = Dski
(c) and pi = Zski

(c). Then
Vvki

(ds i, pi, c) = true.
– Simulatability: there exists and algorithm S taking as inputs any m, c, and

ds i1 , . . . , ds i
t′−1

(t′ ≤ t) and returning the (simulated) decryption shares for
the rest of the authorities, such that any t of the shares will be combined to
m and the simulated shares are indistinguishable from the real shares even
to someone with the knowledge of sk1, . . . , sk i

t′−1
.

– IND-CPA-security, even if the adversary has learned up to t− 1 secret keys.

To ease the presentation, we will in the following assume that vk i = (pk , i). I.e.
the public key includes the verification keys.

A non-interactive zero-knowledge (NIZK) proof is a message, constructed by
a party (the prover) that convinces any other party that the prover knows the
witness for the membership of a certain bit-string in a certain language, without
leaking any other information.

4.2 Ideal Library

We extend the machine T Hn to accommodate the new primitive. The extension
involves introducing new message constructors for the kinds of data created
by the new primitive, as well as commands for generating keys, encrypting,
and decrypting messages, verifying and combining shares and performing the
homomorphic operations. Foreseeing the application of the extended library in
the analyses of various protocols, where the participants must show that the
plaintext in the ciphertexts they have produced comes from a restricted set, we
parameterize the library with a predicate V over bit-strings, giving their validity.
The library allows one to encrypt only the payloads, because it is far from clear
what the ⊞-combination of non-payload terms should be. The extension adds
several new commands and term constructors to T Hn.

To initiate the generation of a new key, a party u (or the adversary; all
commands available to a party are also available to the adversary) invokes the
command gen enc thres keylist(a1, . . . , aw), where ai indicates who receives the
i-th share of the secret key (its either a user or the adversary with the adversary
receiving at most t − 1 shares). Upon receiving that command, T Hn adds to
the database a new public key pk (constructor thpk, no arguments) and secret
key shares sk i (constructor thsk, arguments pk , i, ai) for 1 ≤ i ≤ w. It sends
to the adversary the command keylist notify(pk hnd, u, a1, . . . , aw, skhnd

i1
, . . . , skhnd

ik
)

where sk i1 , . . . , sk ik
are the secret key shares intended for the adversary. As

this command abstracts a certain multiparty computation protocol, the adver-
sary controls when a user learns the key shares intended for it. The adver-
sary may later send a command adv learn share(pk hnd, j), causing T Hn to send
learn share(pk hnd, a1, . . . , aw, skhnd

i1
, . . . , skhnd

ik
) the user uj , where sk i1 , . . . , sk ik

are
intended for it. The adversary can also generate invalid keys by invoking the com-
mand adv gen key(). This causes T Hn to generate just a single new term for a
public key (constructor thpk) and return its handle to the adversary.

5



The encryption is straightforward: a command encth(pk hnd, mhnd) causes T Hn

to create a new term c with the constructor thciph and the arguments pk and
m. But T Hn verifies before that pk is a public key, m is a payload, and V(m)
holds. If the verification is unsuccessful, an error is returned. In addition to c,
T Hn also creates a term p = nizkv(c) embodying the NIZK proof of correctness
of the validity of m. The handles of both c and p are returned. The adversary can
also generate an invalid ciphertext or proof — the commands adv invenc(pk hnd, l)
and adv invproof(pk hnd, l) return handles to terms c and p, respectively, where
c = thciph(pk , l) and p = nizkv(l). Here l is the intended length of the plaintext.
The plaintext itself does not have to be present. Similarly to [12], it is possible
to find the public key from a ciphertext using the command keyofth, and it is
impossible to use the secret key shares for anything else than decryption.

The decryption command is more complex — it is decth(skhnd
, chnd

1 , phnd
1 , . . . ,

chnd

k , phnd

k ), where c1, . . . , ck are ciphertexts and p1, . . . , pk are NIZK proofs. T Hn

verifies that all ciphertexts are created with the public key pk , where sk is the
term thsk(pk , j, ). T Hn also verifies that pi = nizkv(ci) (for all i). If some pi was
an invalid proof (had only a length argument) then T Hn sends adv findwit(chnda

i , phnda

i )

to the adversary and expects to receive adv foundwit(chnda

i , phnda

i , mhnda

i ). If mi is
the plaintext of ci then T Hn changes pi into nizkv(ci) and accepts it. While
constructing the adv foundwit(. . .)-answer, the adversary is allowed to parse the
terms and store new payloads, but not communicate with H. If the checks succeed
then T Hn creates a new payload term d whose payload is the ⊞-combination
of the plaintexts of c1, . . . , ck. It also creates new terms ds (plaintext share;
constructor thshare, arguments d, j, c1, . . . , ck) and dp (proof of correctness of
decryption, constructor sharepr, argument ds) and returns the handles to the
last two terms. The adversary can also use the command adv decth to decrypt;
it takes the same arguments, except for NIZK proofs of plaintext validity, and
returns a plaintext share and proof of correctness of decryption. The adversary
can also construct an invalid share by invoking adv invshare(l, j, chnd

1 , . . . , chnd
k ),

where l is the length of the plaintext, j is the position of the plaintext share and
c1, . . . , ck are the ciphertexts from whose combination the plaintext share has
been apparently obtained. This command verifies that c1, . . . , ck have the same
public key, adds a single new term (constructor thshare, arguments⊥, j, c1, . . . , ck)
to the database and returns the handle to it. An invalid proof of correctness of
decryption can also be created by the adversary by invoking adv invdp(); it cre-
ates a new sharepr-term without arguments. A valid proof can be transformed
by invoking adv transdp(dphnd); it creates a copy of the term dp and returns a
handle to it.

Finally, there is the command to combine plaintext shares: when receiv-
ing combine(dshnd

1 , dphnd

1 , . . . , dshnd

t , dphnd

t , pk hnd), T Hn checks that the decryp-
tion shares correspond to the same set of ciphertexts, that they are different,
and that the public key is the one that was used to create the ciphertexts. If
these checks pass then there are two options. If pk was created by the command
gen enc thres keylist then T Hn checks that all proofs of correctness of decryption
point to their respective decryption shares. If all checks pass, then a handle to

6



the payload d referenced by all ds i is returned. If pk was created by the com-
mand adv gen key then T Hn forwards the combine-command to the adversary
(translating the handles in the process) and forwards its answer (which must be
a handle to a payload, or ⊥) back to the user.

The adversary can also invoke a command adv parse(thnd) for any term for
which it has a handle. In most cases, T Hn answers with the type of t, as well
as with t’s arguments (the subterms are translated into handles). Only if t is
a ciphertext and the adversary does not know enough plaintext and key shares
to decrypt, is the adversary given no handle to the plaintext, but is given only
the length of the plaintext. Similarly, if t is a plaintext share (its arguments
are the plaintext and the ciphertexts whose combination is decrypted) and the
adversary is unable to find the plaintext (for the same reasons as above), is the
plaintext omitted from the answer of T Hn.

Remark. We assume that while the ideal adversary processes an adv findwit-
command, its behavior is somehow constrained. Such assumptions on the ideal-
process adversary are relatively wide-spread, but little-researched. They ap-
peared already in the original report introducing universal composability [19],
where the ideal signature functionality FSIG assumed the adversary to return
a bit-string representing the signature when asked so. The rationale of putting
such restrictions on the ideal adversary are twofold. First, they make the ideal
functionality more secure, and second, this restricted class of ideal adversaries is
large enough to take into account all possible real adversaries — the composition
of the simulator and the real adversary will always belong to this restricted class.
We will see more examples of such constraints in Sec. 4.3.

4.3 Real (or Hybrid) Library

The real library for n participants consists mainly of n machines M1, . . . , Mn

where Mi, having the ports inui
? and outui

! handles the cryptographic tasks for
the i-th participant. The machines Mi work as in [12], but they also have to
be extended to cope with the new commands. Additionally, we will use certain
ideal functionalities for some tasks. These functionalities also have universally
composable implementations, with the help of the composition theorem we will
get the entire implementation of the real library (in the common reference string
model [21]).

We make use of the NIZK functionality FR
NIZK [28], where R is the witness

relation. It works as follows. On input prove(x, w) from some party (including
the adversary) it first verifies whether (x, w) ∈ R. If not then it ignores the
input. Otherwise it sends proof(x) to the adversary and expects it to return
some bit-string π. FR

NIZK stores (x, π) and returns π (representing the proof) to
the querying party. To verify a proof, a party submits verify?(x, π) to FR

NIZK.
If (x, π) has been stored, it returns “yes”. Otherwise FR

NIZK sends witness(x, π)
to the adversary and expects it to return some witness w. If (x, w) ∈ R then
FR

NIZK stores (x, π) and returns “yes”, otherwise it returns “no”. While answering
to the queries from FR

NIZK, the adversary is not allowed to change its state
or communicate with other machines. In other words, the adversary will not

7



remember that it has answered those queries. The simulator given in [28] satisfies
this property.

Our real structure contains two machines realizing FNIZK, with different wit-
ness relations. F1

NIZK is used to give validity proofs of ciphertexts; its witnessing
relation is R1 = {((pk , c), (m, r)) | c = Epk(m, r) ∧V(m)}. The machine F2

NIZK

is used to construct the correctness proofs for decryption; its witnessing relation
is R2 = {((ds , c, pk , j), p) | V(pk,j)(ds , p, c) = true}. Those machines have con-
nections to and from the machines M1, . . . , Mn, as well as the adversary. All
communication over those connections is through API calls (subroutine-style),
i.e. the sender on a channel also clocks that channel.

Our real structure also contains a machine FKEY serving as the ideal func-
tionality for distributed key generation. It also has connections to and from
the machines M1, . . . , Mn and the adversary. The connections from Mi and be-
tween FKEY and the adversary are clocked subroutine-style. However, as FKEY

represents a distributed protocol, the connections from it to machines Mi are
clocked by the adversary. FKEY accepts a single command keygen(a1, . . . , aw)
from one of the machines M1, . . . , Mn or the adversary. Here a1, . . . , aw have
the same meaning as by gen enc thres keylist. It responds by generating a set
of keys pk , sk1, . . . , skw and sending to the adversary and all parties mentioned
among a1, . . . , aw the public key and all secret key shares intended for this party.
Protocols implementing FKEY are given e.g. in [37].

Recall that the state of the machines Mi mainly consisted of a dictionary
that mapped handles of messages to bit-strings; we assume that the type of each
message can be uniquely determined from the bit-string representing it. Let us
now describe how Mi processes commands from H. The key-generation command
gen enc thres keylist(a1, . . . , aw) is forwarded to FKEY as keygen(a1, . . . , aw). If
some answer is received from FKEY (recall that this answer is scheduled by
the adversary) then the received public key and secret key shares are stored
together with new handles generated for them (we assume that each secret key
share includes its position). The handles are also sent to the user as arguments
of the command learn share.

The command encth(pk hnd,mhnd) is realized by performing the same checks
as the ideal library, generating random coins r, calling c∗ ← Epk (m), submitting
(pk , c∗) together with the witness (m, r) to F1

NIZK, getting back p∗, generating
new handles chnd and phnd, and storing chnd 7→ (c∗, pk) and phnd 7→ (p∗, c∗). Fi-
nally, Mi returns chnd and phnd. Note that the NIZK proof includes the ciphertext.
The command keyofth is straightforward to implement.

Decryption decth(skhnd, chnd
1 , phnd

1 , . . . , chnd
k , phnd

k ) is done by checking all the
proofs pi with the help of F1

NIZK, combining the ciphertexts as c = c1 ⊡ · · ·⊡ ck,
decrypting c as ds∗ = Dsk (c), finding the proof of correctness by dp◦ = Zsk (c),
turning it into a NIZK proof of correctness by submitting (ds∗, c, (pk , j)) with
the witness dp◦ to F2

NIZK and getting back dp∗ (here j is the position of sk
among the secret key shares; Mi has stored it alongside sk), generating new
handles dshnd and dphnd, and storing dshnd 7→ (ds∗, j, c1, . . . , ck) and dphnd 7→
(dp∗, ds∗, j, c1, . . . , ck). Here j is the position of the secret key share sk (stored

8



together with it). The newly generated handles are returned. Again note that the
proof contains its subject plaintext share which in turn contains the ciphertexts
it was generated from. Finally combine (whose argument was a list of handles
to plaintext shares, correctness proofs of decryption, and the public key) is im-
plemented by verifying all the proofs with the help of F2

NIZK and combining the
shares using the algorithm C.

Theorem 1 The real structure consisting of machines M1, . . . , Mn, F1
NIZK, F2

NIZK,
FKEY is at least as secure (in the black-box sense) as the ideal structure consist-
ing of the machine T Hn.

5 The Simulator

Theorem 1 is proved by constructing a suitable simulator Sim. The main task of
the simulator is to translate between the views of the real and the ideal adversary.
Whenever a message is received from T Hn, the simulator has to assign a bit-
string to it and forward it to the real adversary. Whenever a message is received
from the real adversary, the simulator has to parse that message and enter it
into T Hn, receiving a handle for it in the process. Additionally, the scheduling
decisions have to be translated. On the one hand, the simulator Sim has the ports
ina! and outa? to communicate with T Hn (the simulator also clocks the channel
ina). On the other hand, it has all the ports for the real adversary, such that it
can play the machines M1, . . . , Mn, F i

NIZK and FKEY to it. The simulator can be
thought of as containing the copies of those machines, although it is possible to
intervene with their normal operation. In principle, all channels between those
machines also exist, even though both their input and output ports belong to
Sim. If the channel is also clocked by Sim, then one does not have to consider
this channel. But there are also some channels from Sim to Sim (originally from
FKEY to Mi) that are scheduled by the adversary.

The full description of the simulator, as well as its correctness proof is given
in [31]. Here we will only describe some more interesting aspects of its work. The
main part of the state of the simulator is a database, similar to the machines
Mi. It stores the handles of the messages (coinciding with the handles assigned
to terms by T Hn) together with the bit-string representation of those messages.
There may be some additional arguments associated with each entry. The state
of the simulator also includes the states of the “embedded” machines F i

NIZK.
To translate the handles received from T Hn to bit-strings given to the real

adversary, parse the term corresponding to the received handle, generate new
keys, ciphertexts, etc. for all terms that the simulator has not seen before, use the
saved bit-string representations for terms already seen, and combine everything
together using the cryptographic operation corresponding to the constructor of
the term. The simulator may have difficulties if T Hn does not allow it to parse
a certain term. If this term was a ciphertext (and the simulator does not have
access to sufficiently many secret key shares to decrypt it) then translate it by
generating a random ciphertext and let the embedded F1

NIZK give a validity

9



proof for it. If the untranslatable term was a decryption share then construct
a bit-string corresponding to it by invoking the share simulation algorithm S
(if the simulator can obtain a handle to the plaintext term) or by generating
a random bit-string (otherwise). The matching proof of validity is given by the
embedded F2

NIZK, whose operation is modified to not require a witness.

The translation of bit-strings received from the real adversary to terms en-
tered into T Hn is similar — parse the bit-string as much as possible, using the
information already available to the simulator, enter the subterms into T Hn and
finally use a message constructor operation to create the term corresponding to
the entire bit-string (or some other command available to honest users to obtain
a handle to an already existing term). If the simulator cannot fully parse the
received bit-string, then one of the adversarial commands of T Hn has to be used
to construct a suitable term; the set of adversarial commands given in Sec. 4.2
is sufficient for all cases. A bit-string representing a public key that the simu-
lator has not yet seen is entered into T Hn by using the command adv gen key.
A ciphertext encrypted with such a key is entered with the help of the com-
mand adv invenc. This command also returns the handle for a suitable proof
of plaintext validity. If another proof for the same ciphertext is received from
the real adversary then adv invproof is used to create a handle corresponding
to it. The received decryption shares are treated similarly — if the adversary
does not have a handle to the necessary secret key share then the commands for
creating invalid shares and/or validity proofs are used. Note that the choice be-
tween transforming and existing proof (command adv transdp) and generating
an invalid proof (command adv invdp) depends on whether the corresponding
decryption share already has a validity proof in the database of T Hn.

Note that by containing a copy of FKEY, the simulator knows the secret key
shares for all key generations initiated by honest participants (through T Hn), as
well as by the real adversary, if it chose to use the functionality FKEY for it. The
commands adv gen key and adv invproof are only necessary if the real adversary
has generated the keys without any help from the simulator.

6 Example: a Simple e-Voting System

To demonstrate the usefulness of our extension, we construct a simple e-voting
system based on it and prove that it satisfies certain security properties. The
system runs with n voters and w authorities. The functionality of the i-th voter is
implemented by the machine MV

i and the functionality of the j-th authority by
the machine MAU

j . These machines can be seen as parts of the honest user H of
T Hn+w. They receive commands (to vote in a particular way, to start tallying)
from the rest of the honest user, implement the voting protocol, and use our
library to implement the cryptography and networking. In other words, they are
the protocol machines of [30]. Any number of machines MV

i and at most (t− 1)
of the machines MAU

j may be under adversarial control (only static corruptions
are allowed).

10



Later we will recall a number of security requirements for voting systems and
show that this system (using the ideal library) meets these requirements. By the
composition theorem, the security of the e-voting system is still preserved when
we replace the ideal library with the real one.

We put an additional condition on the adversary: when interfering with the
communication from voters to authorities, it treats all authorities equally. I.e., it
may block a voter transmitting its vote to the authorities, but it may not allow
the vote to reach some authorities and not reach the others. If the adversary
changes the message sent from a voter to the authorities, all adversaries will
still receive the same message. This restriction models the bulletin board that
is typically used for the voters to publish their (encrypted) votes [27]. We also
assume that the user(s) of MV

i and MAU
j make sure that different phases of

voting (key distribution, voting, tallying) start and end at the same time for
different machines.

Initialization Each machine MV
i generates a signing and verification key pair

(ks
i , k

v
i ) using the command gen sig keypair [12] and sends it to all other parties

over the authentic channel. Some party (or the adversary) invokes
gen enc thres keylist(AU1, . . . , AUw). The authorities will learn their respective
secret key shares sk1, . . . , skw and the encryption key pk . The public key is also
transmitted to the voters in an authentic manner. This might be realized by
having each authority send pk to each voter over an authentic channel and let
the voter accept if it has received the same pk at least t times.

Voting Fig. 1 (left) describes the actions of MV
i upon receiving the command

vote(v) from the user for the first time (each subsequent time, the command
is ignored). For sending messages to multiple receivers, one has to handle the
scheduling [34], but we will omit the details here. Fig. 1 (right) describes the
actions of MAU

j upon receiving a vote lhnd, apparently from the voter MV
i.

After MAU
j has successfully received the vote of MV

i, it ignores the subsequent
attempts to send it.

Tallying Fig. 2 (left) describes the actions of MAU
j after receiving the command

to count the votes and publish a share of the final result. As usual, the final
result is presumed to be the ⊞-combination of the votes. Fig. 2 (right) describes
how the votes are combined in any machine.

We see that the system we have thus defined can only be used for a single
voting. It would be straightforward to modify it for several elections, by adding
a session identifier to each command. This session identifier must then be bound
to the messages the parties send to each other, requiring the authorities to also
sign their messages (plaintext shares). The same key can be used for several
elections, in contrast to [27]. Such possibility is given by the functionality FNIZK,
which can be implemented so, that the simulator has a trapdoor for extracting
witnesses, and does not have to resort to rewinding the user H.

11



votehnd ← store(v)
(chnd, phnd)← encth(pkhnd, votehnd)
shnd ← sign(ks,hnd

i , chnd)
lhnd ← list(shnd, phnd)
for all i ∈ {1, ..., w} do

send i(AUi, l
hnd)

end for

shnd ← list proj(lhnd, 1)
phnd ← list proj(lhnd, 2)
chnd ← msg of sig(shnd)
if verify(shnd, k

v,hnd

i , chnd)
and (chnd, phnd) 6∈ image(S) then

S ← S ∪ {i 7→ (chnd, phnd)}
/* Initially, S is empty */

end if

Fig. 1. Algorithms for sending and receiving a vote

(dshnd, dphnd)←
decth(skhnd, S(1), . . . , S(n))

lhnd ← list(dshnd, dphnd)
for all i ∈ {1, ..., w} do

send i(AUi, l
hnd)

end for

for all i ∈ {1, ..., n} do

send i(Vi, l
hnd)

end for

num shares ← num shares + 1
/* Initially, num shares = 0 */

C ← C ∪ {num shares 7→ (dshnd, dphnd)}
if num shares ≥ t then

for all {i1, . . . , it} ⊆ {1, . . .num shares} do

reshnd ← combine(C(i1), . . . , C(it), pk
hnd)

if reshnd 6= ⊥ then

res← retrieve(reshnd)
Output res to the user and stop

end if

end for

end if

Fig. 2. Algorithms for tallying and for combining the results

6.1 Security of the e-voting system

Several security properties have been defined for e-voting protocols. Some prop-
erties can only be satisfied by policies or voting procedures. We only mention
here the security properties in terms of cryptography.

An e-voting protocol should have the following properties [32].

Correctness The voting results must be computed from only legitimate votes.

Privacy Voter’s preferences are private.

Coercion-freeness A voter can not later prove that he/she voted in a par-
ticular way (Then he can not be forced to vote for something he does not
prefer).

Independence A voter should know his vote.

We claim that the e-voting system described above is secure in the above
sense. Section 6.2 shows the proof. When the e-voting system uses the real library
instead of the abstract one, the properties automatically preserved.

6.2 Proof for the ideal setting

The arguments below are quite similar to those in the Dolev-Yao model.

12



Correctness The votes that the authority receives from the voters are signed.
Hence the adversary could not change their content. Each authority accepts a
vote from some MV

i only once, hence there are no possibilities for replaying the
votes. Because of the adversary simulating the bulletin board, the same set of
votes reaches each authority. When combining the plaintext shares, the sets of
votes must be the same and at least one of the shares must originate from an
honest authority. The plaintext shares cannot be interfered by the adversary, as
this would invalidate the correctness proofs of decryption.

Privacy The vote privacy can be defined as the secrecy of payloads [9]. To
achieve it, the inability of the adversary to get handles to the actual votes is
sufficient. But the terms representing the votes are only ever used in the cipher-
texts the voters send to the authorities and possibly also in plaintext shares if
the adversary chooses to decrypt a vote. But the adversary has corrupted at
most (t−1) authorities, hence it cannot combine the shares of a decrypted vote.

After the tallying phase, the adversary learns only the result because all of
authorities just give the decryption shares for the correct result.

Coercion-freeness After the voting protocol, a voter has handles to his/her
vote, the encrypted vote and the proof of validity of the vote. The only way that
the ideal library allows one to verify that the ciphertext represents the vote, is
to decrypt the ciphertext. The adversary does not have sufficiently many shares
of the decryption key for that.

Independence The library does not offer any means for a party to change the
plaintext of a ciphertext without decrypting that ciphertext. Hence an adversar-
ial voter cannot change the vote of an honest voter and present it as its own. An
adversarial voter cannot even copy the vote of another voter because algorithm 1
does not allow repetitions.

7 Discussion and Conclusions

We have extended the UC cryptographic library with threshold homomorphic
encryption. While extending it, we have made some design choices, the optimal-
ity of which can only be decided by using the library in the design and analysis
of protocols. In particular, we have chosen to verify the proofs of validity and
decryption correctness at the time where the ciphertexts and plaintext shares
are actually used. One could imagine the existence of special commands to verify
those proofs, and a condition on the user of the library (leading to conditional
reactive simulatability [4]) to always verify the proofs before decrypting or com-
bining. With the current choice we have avoided introducing the conditions,
thereby making the presentation of the library simpler.

As threshold homomorphic encryption is widely applied, this extended library
can be used in analysing various protocols. It enables us to achieve computation-
ally sound proofs for a larger class of protocols, including e-voting, in an easier

13



way (by tools or even by hand). As an example, we specify and analyse a simple
e-voting protocol in Appendix 6.

Conditional reactive simulatability puts conditions on the user of some cryp-
tographic primitive with UC-secure abstraction. In this paper we have shown
that it may be equally important to consider restrictions on the possible behav-
ior of the adversary trying to attack the ideal system. We have seen that the
application of the composition theorem may combine those conditions in vari-
ous ways, sometimes leading to their disappearance. This phenomenon certainly
warrants a more thorough investigation.

UC cryptographic library, when combined with conditions put on the user
and on the adversary, is one approach possibly leading to machine-assisted ver-
ification of security of cryptographic protocols and larger systems. A rather
different approach is the sequence-of-games approach [29, 16–18, 36] that has
seemingly received more attention recently. We believe both approaches have
their unique merits and both deserve attention.

References

1. Pedro Adão and Cédric Fournet. Cryptographically sound implementations for
communicating processes. In ICALP 2006 (LNCS 4052), pp. 83–94.

2. Michael Backes. A Cryptographically Sound Dolev-Yao Style Security Proof of the
Otway-Rees Protocol. In ESORICS 2004 (LNCS 3193), pp. 89–108.

3. Michael Backes and Markus Dürmuth. A cryptographically sound Dolev-Yao style
security proof of an electronic payment system. In CSFW 2005, pp. 78–93.

4. Michael Backes, Markus Dürmuth, Dennis Hofheinz, and Ralf Küsters. Conditional
reactive simulatability. Int. J. Inf. Sec., 7(2):155–169, 2008.

5. Michael Backes and Peeter Laud. Computationally sound secrecy proofs by mech-
anized flow analysis. In ACM CCS 2006, pp. 370–379.

6. Michael Backes and Birgit Pfitzmann. A Cryptographically Sound Security Proof
of the Needham-Schroeder-Lowe Public-Key Protocol. In FSTTCS 2003 (LNCS
2914), pp. 1–12.

7. Michael Backes and Birgit Pfitzmann. Symmetric Encryption in a Simulatable
Dolev-Yao Style Cryptographic Library. In CSFW 2004, pp. 204–218.

8. Michael Backes and Birgit Pfitzmann. Limits of the cryptographic realization of
Dolev-Yao-style XOR. In ESORICS 2005 (LNCS 3679), pp. 178–196.

9. Michael Backes and Birgit Pfitzmann. Relating Symbolic and Cryptographic Se-
crecy. In IEEE S&P 2005, pp. 171–182.

10. Michael Backes and Birgit Pfitzmann. On the cryptographic key secrecy of the
strengthened Yahalom protocol. In SEC 2006 (IFIP 201), pp. 233-245.

11. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Symmetric authentica-
tion within a simulatable cryptographic library. In ESORICS 2003 (LNCS 2808),
pp. 271–290.

12. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A Universally Compos-
able Cryptographic Library. In ACM CCS 2003, pp. 220–230.

13. Michael Backes, Birgit Pfitzmann, and Michael Waidner. A General Composition
Theorem for Secure Reactive Systems. In TCC 2004 (LNCS 2951), pp. 336-354.

14. Michael Backes, Birgit Pfitzmann, and Michael Waidner. Limits of the BRSIM/UC
soundness of Dolev-Yao models with hashes. In ESORICS 2006 (LNCS 2189), pp.
404–423.

14



15. Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. A Concrete Secu-
rity Treatment of Symmetric Encryption. In FOCS 1997, pp. 394–403.

16. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In EUROCRYPT 2006 (LNCS 4004),
pp. 409–426.

17. Bruno Blanchet. A computationally sound mechanized prover for security proto-
cols. In IEEE S&P 2006, pp. 140–154.

18. Bruno Blanchet. Computationally sound mechanized proofs of correspondence
assertions. In CSF 2007, pp. 97–111.

19. Ran Canetti. A unified framework for analyzing security of protocols. ECCC,
8(16), 2001.

20. Ran Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In FOCS 2001, pp. 136–145.

21. Ivan Damg̊ard. Efficient Concurrent Zero-Knowledge in the Auxiliary String
Model. In EUROCRYPT 2000 (LNCS 1807), pp. 424–436.

22. Ivan Damg̊ard and Mads Jurik. A generalisation, a simplification and some appli-
cations of Paillier’s probabilistic public-key system. In PKC 2001 (LNCS 1992),
pp. 119–136.

23. Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE

Transactions on Information Theory, IT-29(12):198–208, March 1983.
24. Pierre-Alain Fouque and David Pointcheval. Threshold Cryptosystems Secure

against Chosen-Ciphertext Attacks. In ASIACRYPT 2001 (LNCS 2248), pp. 351–
368.

25. Pierre-Alain Fouque, Guillaume Poupard, and Jacques Stern. Sharing decryption
in the context of voting or lotteries. In FC 2000 (LNCS 1962), pp. 90–104.

26. Oded Goldreich. Foundations of Cryptography. Volume 1 - Basic Tools. Cambridge
University Press, 2001.

27. Jens Groth. Evaluating security of voting schemes in the universal composability
framework. In ACNS 2004 (LNCS 3089), pp. 46–60.

28. Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowl-
edge for np. In EUROCRYPT 2006 (LNCS 4004), pp. 339–358.

29. Peeter Laud. Symmetric encryption in automatic analyses for confidentiality
against active adversaries. In IEEE S&P 2004, pp. 71–85.

30. Peeter Laud. Secrecy Types for a Simulatable Cryptographic Library. In ACM
CCS 2005, pp. 26–35.

31. Peeter Laud and Long Ngo. Threshold Homomorphic Encryption in the Universally
Composable Cryptographic Library. Cryptology ePrint Archive, Report 2008/367.

32. Helger Lipmaa. Secure electronic voting protocols. In The Handbook of Information

Security. John Wiley & Sons, 2006.
33. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity

classes. In EUROCRYPT 1999 (LNCS 1592), pp. 223–238.
34. Birgit Pfitzmann and Michael Waidner. A Model for Asynchronous Reactive Sys-

tems and its Application to Secure Message Transmission. In IEEE S&P 2001, pp.
184–200.

35. Christoph Sprenger, Michael Backes, David A. Basin, Birgit Pfitzmann, and
Michael Waidner. Cryptographically sound theorem proving. In CSFW 2006,
pp. 153–166.

36. Ilja Tšahhirov and Peeter Laud. Application of dependency graphs to security
protocol analysis. In TGC 2007 (LNCS 4912), pp. 294–311.

37. Douglas Wikström. Universally composable DKG with linear number of exponen-
tiations. In SCN 2004 (LNCS 3352), pp. 263–277.

15


