
Graphs
(MTAT.05.080, 4 AP / 6 ECTS)

Lectures: Fri 12-14, hall 405

Exercises: Mon 14-16, hall 315

või N 12-14, aud. 405

homepage:

http://www.ut.ee/~peeter_l/teaching/graafid08s

(contains slides)

For grade: three tests (during or after semester)



Königsberg, 1736

Does there exist a walk that would 
ross every bridge ex-a
tly on
e and return to the beginning?



Graphi
al representation of the Königsbergi bridge prob-lem:
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Euler: �Su
h a walk is impossible!�



Kir
hho� laws (1847):� At any point in an ele
tri
al 
ir
uit, the sum of 
ur-rents �owing towards that point is equal to the sum of
urrents �owing away from that point.� The dire
ted sum of the ele
tri
al potential di�eren
esaround a 
ir
uit must be zero.



Sir Arthur Cayley (1857): �How many isomers of al
anesCnH2n+2 are there?�



USA army (1955): �How fast is it possible to transportsupplies from Soviet Union to Eastern Europe?�

Ford&Fulkerson: �Using the railway system, up to 163000tons as a time.�



(Undirected) graph is a triple G = (V;E;E), where� V is the set of vertices (also denote V (G));� E is the set of edges (also denote E(G)).� E : E �! P(V ) is the incidency mapping . For alle 2 E, E(e) must have 1 or 2 elements.

In this course we only consider finite graphs.



Example: Let V = fv1; v2; v3; v4g, E = fe1; e2; e3; e4; e5; e6g

and e E(e)e1 fv1; v2ge2 fv2; v3ge3 fv2; v4ge4 fv3; v4ge5 fv3; v4ge6 fv2g

e1
e2e3 e4

v1

v3
v2

v4 e5
e6

A drawing may illustrate a graph.

But a graph itself is still the triple (V;E;E).



Directed graph consists of the sets of vertices V and edgesE, and the incidency mapping E : E �! V � V .

The edges of a directed graph may also be called arcs .

Example: let V = fv1; v2; v3; v4g, E = fe1; e2; e3; e4; e5; e6g ande E(e)e1 (v1; v2)e2 (v2; v3)e3 (v2; v4)e4 (v3; v4)e5 (v4; v3)e6 (v2; v2)

e1
e2e3 e4

v1

v3
v2

v4 e5
e6



Let G = (V;E;E) be a graph. Notations:� If v 2 E(e), then v and e are incident .� If there exists e, such that E(e) = fv1; v2g, then v1 andv2 are adjacent .� If E(e) = fv1; v2g, then v1 and v2 are the endpoints ofe. Denote also v1 e
— v2.

Let G = (V;E;E) be a directed graph. Notations:� If E(e) = (v1; v2), then v1 is the start vertex and v2

the end vertex of e.



e 2 E is a multiple edge , if there exists e0 2 Enfeg, such

that E(e) = E(e0). e 2 E is a loop, if jE(e)j = 1.

e1
e2e3 e4

v1

v3
v2

v4 e5
e6

multiple edges

loop

A simple graph is a graph without loops and multiple

edges.



In a directed simple graph, we may assume E � V � V .

To an edge e 2 E, where E(e) = (v1; v2), corresponds(v1; v2) 2 V � V .

Example: let V = fv1; v2; v3; v4g, E = fe1; e2; e3; e4g ande E(e)e1 (v1; v2)e2 (v2; v3)e3 (v2; v4)e4 (v3; v4)

We may assume that E = f(v1; v2); (v2; v3); (v2; v4); (v3; v4)g.



In an undirected simple graph we may also assume E �V � V .

To an edge e 2 E, where E(e) = fv1; v2g, correspondsf(v1; v2); (v2; v1)g � V � V .

Example: let V = fv1; v2; v3; v4g, E = fe1; e2; e3; e4g ande E(e)e1 fv1; v2ge2 fv2; v3ge3 fv2; v4ge4 fv3; v4g

We may assume that E = f(v1; v2); (v2; v1); (v2; v3); (v3; v2);(v2; v4); (v4; v2); (v3; v4); (v4; v3)g.



The degree of a vertex v in the graph (V;E;E) is the num-

ber of edges incident to it (the loops count twice). Denotedeg(v).deg(v) = j�e 2 E j v 2 E(e)	j+ j�e 2 E jE(e) = fvg	j

e1
e2e3 e4

v1

v3
v2

v4 e5
e6

1 5

3 3



Let G = (V;E) be undirected simple graph. Let V =fv1; : : : ; vng. The adjacency matrix of G is a n�n matrix

A = [aij℄, where� If (vi; vj) 2 E, then aij = 1.� If (vi; vj) 62 E, then aij = 0.
The adjacency matrix is symmetric and its main diagonal

contains zeroes.

Example e1
e2e3 e4

v1

v3
v2

v4

1 2 3 4

1 0 1 0 0

2 1 0 1 1

3 0 1 0 1

4 0 1 1 0



Theorem. An undirected simple graph contains an even

number of vertices of odd degree.

Proof. Count the ones in the adjacency matrix of G =(V;E).� Their number is 2 � jEj.� Their number is
Pv2V deg(v).

These two quantities are equal. Hence the sum of degrees

of all vertices is even. The sum of integers is even if an

even number of summands are odd. �

Similarly, any undirected graph contains an even number

of vertices of odd degree.



Proof. Let V = fv1; : : : ; vng. Consider the setsfe 2 E j v1 2 E(e)	 �e 2 E jE(e) = fv1g	fe 2 E j v2 2 E(e)	 �e 2 E jE(e) = fv2g	

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .fe 2 E j vn 2 E(e)	 �e 2 E jE(e) = fvng	

Each e 2 E belongs to exactly two of those sets.

Hence

Pv2V deg(v) = 2 � jEj, which is even. �



In a directed graph (V;E;E) we define for a vertex v� its indegree

��!deg(v) — the number of edges ending inv;� outdegree

 ��deg(v) — the number of edges starting inv.
Similar theorem:

Pv2V ��!deg(v) = Pv2V  ��deg(v).



� A walk in the graph G = (V;E) (from vertex x to vertexy) is a sequenceP : x = v0 e1
— v1 e2

— v2 e3

— v3 e4

— : : : vk�1 ek

— vk = y :� The number k is the length of the walk P . Denote jP j.� Let x P y denote that P is a walk from x to y.� A path is a walk where all vertices are distinct (only v0

and vk may coincide).� A walk is closed if v0 = vk.� A closed path is a cycle .� A graph is connected if there is a walk between each two

of its vertices.� The distance d(u; v) between vertices u; v 2 V is the

length of the shortest walk connecting them.



Examples:

v5 v6

v3 v4

v1 v2
Walk: v1 — v2 — v4 — v6 — v2 — v3
Path: v1 — v2 — v3 — v4
Closed walk: v1 — v2 — v3 — v1 — v5 — v6 — v1
Cycle: v1 — v2 — v6 — v5 — v1d(v1; v4) = 2, d(v1; v2) = 1, d(v1; v1) = 0.



Theorem. If the degree of each vertex of a graph is at

least 2, then this graph contains a cycle.

Proof. Loops and multiple edges are cycles.

Assume G = (V;E) is simple. Let v1 2 V . Exists v2 2 V ,

such that v1 — v2. Exists v3 2 V , such that v1 — v2 — v3.
This path is simple.

Let v1 — v2 — � � � — vk be a simple path. There existsvk+1 2 V , such that vk+1 6= vk�1 and vk — vk+1.
If vk+1 = vi for some i 2 f1; : : : ; k � 2g, then we have a

cycle.

Otherwise we have a longer simple path v1 — v2 — � � � —vk — vk+1.
The length of a simple path is bounded by jV j. �



Theorem. A simple graph, where the degree of each ver-

tex is at least k > 2, has a cycle of length at least k + 1.
Proof. Let x0 — x1 — � � � — xl be an open path of maxi-

mal length in this graph.

xi xlx0 x1 x2 x3
All neighbours of x0 are located in this path.

Let xi be the neighbour of x0 with maximal index. Theni > k.x0 — x1 — � � �— xi — x0 is a cycle of lengthi+ 1 > k + 1. �



The subgraph of a graph G = (V;E) is a graph G0 =(V 0; E 0), where V 0 � V , E 0 � E and for all e 2 E 0 holds

E(e) � V 0. Denote G0 6 G.

A subgraph (V 0; E 0) is induced (by the set V 0), if the setE 0 is as large as possible, i.e. E(e) � V 0 ) e 2 E 0 holds for

all e 2 E.

Example: v1

v3
v2 v1

v3
v2v1

v3
v2

v4

The connected components of a graph G are its maximal

connected subgraphs.



More notions:� An edge of a graph is bridge if its removal increases

the number of connected components.� A vertex of a graph is cut vertex if its removal (to-

gether with its incident edges) increases the number

of connected components.



A homomorphism from G1 = (V1; E1) to G2 = (V2; E2) is

a mapping f : V1 �! V2, such that x; y 2 V1 are adjacent

iff f(x); f(y) 2 V2 are adjacent.

Example:

f
Homomorphism f is monomorphism , if it’s injective.

Homomorphism f is isomorphism , if it’s bijective.

Graphs G1 and G2 are isomorphic (denote G1 �= G2), if

there exists an isomorphism between them.



Usually we identify isomorphic graphs with each other.

For example, let G1 = (V1; E1) and G2 = (V2; E2) be

graphs. We say that G1 is a subgraph of G2, if there ex-

ist V 01 � V2 and E 01 � E2, such that G1 �= (V 01 ; E 01) and(V 01 ; E 01) 6 G2.

G1 is an induced subgraph of G2 iff there exists a monomor-

phism from G1 to G2.



Graph isomorphism problem: Find whether two given sim-

ple graphs are isomorphic.

The graphs are represented by e.g. their adjacency matri-

ces.

No polynomial-time algorithm for that task is known.

In the following, let us see some polynomial-time verifiable

necessary conditions for the isomorphism of two graphs.



� Isomorphic graphs have equally many vertices and

equally many edges.

The degree sequence of the graph G = (fv1; : : : ; vng; E) is

the non-decreasing sequence of values deg(v1); : : : ;deg(vn).
For example, the degree sequence of the graph

is (1; 1; 2; 2; 3; 3; 4).� Isomorphic graphs have the same degree sequences.



Let A be a square matrix and E a unit matrix of the same

dimensions. The characteristic polynomial (of the vari-

able x) of the matrix A isdet(A� xE) :

The characteristic polynomial of a simple graph is the

characteristic polynomial of its adjacency matrix. E.g.:

e1
e2e3 e4

v1

v3
v2

v4

det
0BBBBB�

�x 1 0 01 �x 1 10 1 �x 10 1 1 �x
1CCCCCA

= x4� 4x2� 2x+1



Two simple graphs are isomorphic iff the first adjacency

matrix can be transformed to the second by permuting its

rows and columns in the same way.

Such permutation does not change the elements on the

main diagonal.

Such permutation contains an even number of swaps of

rows or columns, hence it does not change the determinant.� Isomorphic graphs have the same characteristic poly-

nomial.



� An edgeless graph is a graph without edges. A null

graph of n vertices is denoted by On or Nn.� A complete graph is a simple graph with an edge be-

tween each pair of vertices. A complete graph of n vertices

is denoted by Kn.
Proposition. Graph Kn has n(n�1)2 edges.� Graph G = (V;E) is bipartite , if V can be partitioned to

two sets V1 and V2 (i.e. V1 [ V2 = V and V1 \V2 = ;), such

that the endpoints of any edge belong in different parts.

(More generally: a graph is k-partite if its vertices can be

partitioned into k parts such that all edges are between

different parts.)



A bipartite simple graph with parts of vertices V1 and V2 is

complete bipartite if there is an edge between each v1 2 V1

and v2 2 V2. Let Km;n denote the complete bipartite graph

with jV1j = m and jV2j = n.

Proposition. Km;n has mn edges.

Theorem. A graph is bipartite, all its cycles are of even

length.

Proof ). A cycle goes a number of times from the first

part to the second and the same number of times from the

second part to the first.

Proof (. Assume G = (V;E) is connected. Otherwise

consider each connected component separately.

In the following we’ll colour the vertices of G black and

white.



Pick a vertex v0 2 V and colour it white.

Let u be a coloured vertex that has uncoloured neighbours.

Let v be one of such neighbours. Colour it with the oppo-

site colour to u. Remember that the colour of u was used

to choose the colour of v. Denote it v 
! u.

Repeat the previous paragraph, until one of the following

happens� there appear adjacent vertices x and y of the same

colour;� we run out of vertices to colour.



If such vertices x and y appear thenx
y v0
 

 
 






 
 
 
 
v0

we have a cycle of odd length x — � � �— v0 — � � �— y — x.

Otherwise (we run out of vertices) the black vertices form

one part and white vertices the other part of vertices of

the bipartite graph. �



Some history:� 1735/6: Euler considered the Königsberg bridges ques-

tion.� 1750: Planar graphs: Euler’s polyhedron formula. Proven

1794 by Legendre.� Knight’s tour problem (on chessboard): known hun-

dreds of years. Solutions by Euler (1759), Vander-

monde (1771).� 1845: Kirchhoff’s circuit laws.� 1852: Earliest known mention of the four-color prob-

lem, in a letter from De Morgan to Hamilton.� 1857: Icosian game (Hamilton).� 1874: counting trees (Cayley). 1889: counting labeled

trees.



� 1930: Necessary and sufficient criterions for planarity

(Kuratowsky).� 1976: Proof of the four-color theorem (Appel and Haken).

Möbius’s puzzle to his students (� 1840):
There once was a king with five sons. In his will he stated

that after his death the sons should divide the kingdom

into five regions, such that the boundary of each region

should have a frontier line in common with each of the

other four regions. Can the terms of the will be satisfied?



Tartu Akadeemiline Meeskoor võtab vastu uusi lauljaid.

Proovid toimuvad T 18:30 ja N 18:30 endises EPA klubis

(Veski 6, Kassitoomel).

Uute lauljate vastuvõtt algab 7. septembrist.

Eriti oodatud on tenorid.


