Coloring edges

Let G = (V, E) be a graph without loops. Its *(correct)* edge coloring with k colors is a function $\gamma : E \longrightarrow$ $\{1, \ldots, k\}$ such that

• for any two different edges $e_1, e_2 \in E$ with a common endpoint we have $\gamma(e_1) \neq \gamma(e_2).$

Stating it otherwise, all the edges incident with some vertex must be colored differently.

Example: let us consoder a set of (school) classes X and a set of teachers Y. For each class it is known how many lessons a given teacher must teach to this class.

The task is to compose a time-table for the school.

Consider a bipartite graph with vertex set $X \cup Y$ and the number of edges between $x \in X$ and $y \in Y$ showing, how many lessons the teacher y teaches to the class x.

The time-table can be represented as a correct edge coloring, where the edge colors are possible time slots for the lessons. Let G = (V, E) be a graph, γ its edge coloring and i one of the colors.

The set
$$\{e \mid e \in E, \gamma(e) = i\}$$
 is a matching.

Coloring the edge set can be thought of as partitioning this set into matchings.

Let G = (V, E) be a graph. Assume it has a correct edge coloring with k colors, but no correct edge coloring with k - 1 colors.

The number k is called *edge chromatic number* and denoted $\chi'(G)$.

Let $\Delta(G) = \max_{v \in V} \deg(v)$ be the maxmal vertex degree of graph G.

Obviously, $\chi'(G) \geq \Delta(G).$

An example where $\chi'(G) > \Delta(G)$: odd cycles.

Theorem. In a bipartite graph G we have $\chi'(G) = \Delta(G)$. Proof. First turn G into a $\Delta(G)$ -regular graph.

- 1. If one of the vertex set parts has less vertices than the other, then add the missing number of vertices to make the parts equal.
- 2. If some of the vertices in one part has a degree less than $\Delta(G)$, then a similar vertex must also exist in the other part. Join these two by an edge.

If the edges of the new graph can be colored using $\Delta(G)$ colors, the same holds true for the original graph as well. Thus we can consider only k-regular bipartite graphs G.

- 1. k-regular bipartite graph G has a complete matching M_1 .
- 2. Remove the edges of M_1 . The remaining graph is a (k-1)-regular bipartite graph.
- 3. This graph has a complete matching M_2 .
- 4. Remove the edges of M_2 . The remaining graph is a (k-2)-regular bipartite graph.

5. etc.

This way we partition the edge set of G into k perfect matchings M_1, \ldots, M_k . These matchings give a suitable coloring.

Theorem (Vizing). Let G = (V, E) be a simple graph. Then $\chi'(G) \leq \Delta(G) + 1$.

Proof is by induction over the number of vertices. The claim is obvious if |V| = 1.

We have to show the following:

Let G = (V, E) be a simple graph and let $k = \Delta(G) + 1$. Choose a vertex $v \in V$ in graph G and let the edges of $G \setminus v$ be colorable with k colors. Then the edges of G can also be colored with k colors.

We will prove this statement using induction over k. In fact, we will even prove a slightly stronger result.

Lemma. Let G = (V, E) be a graph and γ its edge coloring. Let $E' \subseteq E$ be an edge subset being colored with some two colors. Consider the graph G' = (V, E').

Let H be a connected component of graph G'. If we exchange the colors of the edges of H, we again get a correct coloring of the edges of G

Proof is pretty straightforward.

Lemma. Let G = (V, E) be a simple graph and $k \in \mathbb{N}$. Let $v \in V$ be such that

- ullet deg $(v) \leq k$. If $w \in V$ is the neighbour of v, then $\deg(w) \leq k$.
- Vertex v has at most one neighbour with degree k.

Let the edges of $G \setminus v$ be colorable with k colors. Then the edges of k are colorable with k colors.

Proof by induction on k.

Base. k = 1.

Thus $\deg(v) = 0$ or $\deg(v) = 1$.

If $\deg(v) = 0$, the edges of G coincide with the edges of $G \setminus v$.

If $\deg(v) = 1$, then let u be the neighbour of v. According to the assumption of the Lemma we have $\deg(u) \le 1$, thus u - v is a connected component of G.

The coloring of G can be obtained from the coloring of $G \setminus v$ bu coloring the edge between u and v using the only available color.

Step. k > 1.

As long as deg(v) < k, we add another vertex u and an edge u - v to the graph G.

As long as the degree of some neighbour v' of v is less than k or k-1, we add another vertex u and an edge u - v' to the graph G.

Thus we get a graph G with equalities holding in all the inequalities in the statement of the Lemma.

The modified graph is colorable with k colors iff the original graph was.

Let γ be the coloring of the graph $G \setminus v$ with k colors.

Consider the neighbours of the (removed) vertex v. For each $i \in \{1, \ldots, k\}$ let X_i be the set of such neighbours that have <u>no</u> incident edges colored with color i.

One of these vertices belongs to exactly one of the sets X_i , all the others belong to exactly two of these. Thus $\sum_{i=1}^k |X_i| = 2k - 1.$

We will be looking for γ such that there is a color i with $|X_i| = 1$.

That is, the edges colored with i are incident with all the neighbours of v, except for one.

We will first show that we can choose γ so that for every $i,j\in\{1,\ldots,k\}$ we have $\big||X_i|-|X_j|\big|\leq 2.$

To do that we will prove that if for some i, j we have $|X_i| - |X_j| \ge 3$, then there is a coloring γ' such that $|X_i|$ is decreased by 1 and $|X_j|$ is increased by 1.

We will also prove that after a finite number of such steps $(\gamma \rightarrow \gamma')$ there will be no such *i* and *j*.

Let *i* and *j* be such that $|X_i| - |X_j| \ge 3$. Let $w \in X_i \setminus X_j$. I.e., the number of vertices having an incident edge of color *j* is larger by at least 3 than the number of vertices having an incident edge of color *i*.

Let $E' \in E$ be the set of all edges e such that $\gamma(e) = i$ or $\gamma(e) = j$. Consider the graph G' = (V, E'). In G', all vertex degrees are ≤ 2 . Thus the connected components of G' are isolated vertices, paths and cycles. The vertex $w \in X_i \setminus X_j$ is an endpoint of some path.

Where can the other endpoint be?

Somewhere else in graph G

In a vertex of the set $X_i ackslash X_j$

In a vertex of the set $X_j \setminus X_i$

Since $|X_i| > |X_j|$, there exists $w \in X_i \setminus X_j$ such that the path that starts in it (being a connoected component in G') ends somewhere else than in the set $X_j \setminus X_i$.

In this path we exchange the colors i and j. We get a new coloring γ' .

 $|X_i|$ and $|X_j|$ will change as follows:

$|X_i|$ decreases by one, $|X_j|$ increases by one

 $|X_i|$ decreases by two, $|X_j|$ increases by two

To show the finiteness of the process, we need a *monovari*ant, i.e. a quantity describing a coloring γ of the graph $G \setminus v$, such that

- On each step $(\gamma
 ightarrow \gamma')$ it changes by a positive integer in a certain direction (e.g. decreases strictly).
- It has a fixed bound in this direction (e.g. 0).

A suitable quantity is $\sum_{i=1}^{k} |X_i|^2$.

Indeed, let $n_i, n_j \in \mathbb{N}$ such that $n_i - n_j \geq 3$. Then

$$(n_{i}-1)^{2}+(n_{j}+1)^{2}=n_{i}^{2}+n_{j}^{2}-2(n_{i}-n_{j})+2\leq n_{i}^{2}+n_{j}^{2}-4(n_{i}-2)^{2}+(n_{j}+2)^{2}=n_{i}^{2}+n_{j}^{2}-4(n_{i}-n_{j})+8\leq n_{i}^{2}+n_{j}^{2}-4$$

We have shown that there is a coloring γ , such that the cardinalities of X_i differ by at most 2.

Average cardinality of the sets X_i is a bit less than 2 (namely $\frac{2k-1}{k}$). Thus the possible sets of cardinalities of X_i are $\{0, 1, 2\}$ and $\{1, 2, 3\}$.

If we have $\{1, 2, 3\}$, then there must exist *i* such that $|X_i| = 1$, otherwise the average cardinality is at least 2.

If we have $\{0, 1, 2\}$, then there must exist *i* such that $|X_i| = 1$, since the sum of cardinalities of X_i is odd (2k - 1).

W.l.o.g. assume that this *i* is *k*. Let $\{u\} = X_k$.

Let H be obtained from G by deleting

- all edges that γ colors with color k;
- the edge between v and u.

All the deleted edges form a matching in G.

Coloring γ without the color k is a coloring of the edges of $H \setminus v$ using (k-1) colors.

The degree of v and its every neighbour (in H) has decreased by 1.

Induction hypothesis can be applied to graph H and vertex v. Thus the edges of H can be colored with k - 1 colors. Let γ' be such a coloring.

We obtain the required coloring of G with k colors by coloring all the deleted edges with color k.

Let $\mu(G)$ be the maximum multiplicity of edges in the graph G.

Theorem. If G is without loops, then $\chi'(G) \leq \Delta(G) + \mu(G)$.

In the following we will distinguish between colorings and correct colorings.

For a coloring $\gamma: E \longrightarrow \{1, \ldots, k\}$ let $\tilde{\gamma}(v)$ be the number of colors that occur by the vertex $v \in V$.

A coloring γ with k colors is optimal if $\sum_{v \in V} \tilde{\gamma}(v)$ is the maximum possible among colorings with k colors.

Obviously, if there exist correct colorings with k colors, then exactly those are optimal.

Lemma 1. Let G be a connected graph that is not an odd cycle. There exist a coloring γ with 2 colors, such that $\tilde{\gamma}(v) = 2$ for any $v \in V$ where deg $(v) \geq 2$.

Proof. First consider the case where G has an Eulerian walk C.

Move along C and color the edges in alternate colors.

If |E| is odd then start from a vertex with degree ≥ 3 .

If G is not Eulerian then make it Eulerian by

- introducing an extra vertex u;
- connecting u with all odd-degree vertices in G.
 - There is an even number of them.

let G' be the resulting graph

Again consider Eulerian walk C and color the edges alternately along it.

If $\deg_G(v)$ is even then C enters it and leaves it along edges in G.

If $\deg_G(v) > 1$ is odd, then $\deg_G(v) \geq 3$ and $\deg_{G'}(v) \geq 4$.

At least once, C enters v and then leaves it along edges in G.

Lemma 2. Let γ be an optimal coloring of G = (V, E)with k colors. Let i, j be two colors. Let $E' = \gamma^{-1}(\{i, j\})$. Consider the graph G' = (V, E').

Let $v \in V$ be such that

- $\deg_{\gamma^{-1}(i)}(v) \geq 2;$
- $\deg_{\gamma^{-1}(j)}(v) \geq 0.$

Then the connected component of G' containing v is an odd-length cycle.

Proof. Take this connected component. Recolor it using the previous lemma.

• Assuming it wasn't an odd-length cycle.

Then $\tilde{\gamma}(v)$ increases and $\tilde{\gamma}(\cdot)$ does not decrease for other vertices. Hence γ was not optimal.

The previous lemma isn't applicable only if this connected component is an odd-length cycle. $\hfill \Box$

Lemma 3. Let γ be an optimal coloring of G = (V, E) with k colors. Let e_1, e_2 be (a part of) a multiple edge between u and v. If deg $(u) \leq k$ then $\gamma(e_1) \neq \gamma(e_2)$.

Proof. If $\gamma(e_1) = \gamma(e_2)$ then recolor e_2 with a color not occurring at u. This increases $\tilde{\gamma}(u)$ and does not decrease $\tilde{\gamma}(v)$. Hence γ was not optimal.

Proof of theorem. Let γ be an optimal coloring of G = (V, E) with $\Delta(G) + \mu(G)$ colors. Assume that γ is not correct.

Let v be a vertex where a color c_1 occurs at least twice. Let $e_0, e_1 \in E$ be incident with v, such that $\gamma(e_0) = \gamma(e_1) = c_1$. Let u_0, u_1 be the other end vertices of e_0, e_1 . By the previous lemma, $u_0 \neq u_1$.

Let color c_2 be missing at u_1

Let color c_2 be missing at u_1 Let e_2 be incident to v, such that $\gamma(e_2) = c_2$ Let u_2 be the other end-vertex of e_2 Note that $u_0 \neq u_1 \neq u_2$

Let color c_3 be missing at u_2

Let color c_3 be missing at u_2 Let e_3 be incident to v, such that $\gamma(e_3) = c_3$ Let u_3 be the other end-vertex of e_3

etc (all colors are different)

- $u_0
 eq u_1
 eq u_2
 eq u_3
 eq \ldots$
- But $u_i = u_j$ is possible if $j i \ge 2$.
- We can arrive at the same u up to $\mu(G)$ times.
- Each time, we choose a different color *c* as the missing one.
- This is possible, because at least µ(G) colors are missing at each vertex.

- The process of alternately picking colors and edges cannot go on forever.
- It can stop in two ways:
 - 1. There is no suitable edge: After choosing c_{i+1} , there is no edge e_{i+1} incident with v, that is of color c_{i+1} .
 - 2. There is no suitable color: all colors missing at u_i have already been picked.
 - In this case, we choose c_{i+1} anyway, but will still stop.

First case (no suitable edge) is simple

Recolor. $\tilde{\gamma}(v)$ increases $\tilde{\gamma}(\cdot)$ does not decrease for any vertex Hence γ was not optimal

Second case. Let c_0 be missing by v

 $c_{i+1} = c_k$ Consider $u_i, \, u_k$ and u_{k-1}

 $u_i
eq u_k$ because $c_k = c_{i+1} ext{ is present at } u_k \ c_k = c_{i+1} ext{ is missing at } u_i$

 $u_i
eq u_{k-1}$ because

we will not choose the same color at the same node twice

 $ext{if } k=1 ext{ then still } u_i
eq u_{k-1} ext{ because} \ c_{i+1}=c_1 ext{ is present at } u_0 ext{, absent at } u_i ext{, absent at } u_i$

We now consider two colorings obtained from γ as follows:

- For γ' , recolor e_j with c_{j+1} for $1 \leq j \leq k-1$.
- For γ'' , recolor e_j with c_{j+1} for $1 \leq j \leq i$.

Both of these colorings are optimal, too, because $\tilde{\gamma}(\cdot)$ will not decrease for any vertex.

For γ' , recolor e_j with c_{j+1} for $1 \leq j \leq k-1$

For γ'' , recolor e_j with c_{j+1} for $1 \leq j \leq i$

Consider the graph $(V, \gamma'^{-1}(\{c_0, c_k\})$ Consider the connected component with v in it

This path of alternating colors between u_{k-1} and u_k also exists according to γ''

There are no other edges incident to u_k or u_{k-1} that have the color c_0 or c_k

Not a cycle — degree of u_k is 1.