Eulerian graphs



Graph G is a pair (V, E), where V is the set of vertices

and FE 1s the set of edges. Besides that, we are given the
incidence function E.

Walk 1n the graph G is a sequence

e1 e es €4 €k
Yo — V) — VU — Vs — ...Vg—1 — Vg,

where vg,...,Ux € V,e1,...,ex € Eand E(e;) = {v;_1,v;}.
The walk 1s closed, if its first and last vertices coincide.

Path 1s a walk where every vertex occurs at most once.

Cycle 1s a closed path.



Eulerian walk in the graph G = (V, E) is a closed walk
covering each edge exactly once.

Eulerian graph 1s a graph with a Eulerian walk.

A graph that has a non-closed walk covering each edge

exactly once is called semi-Eulerian.

A well-known class of puzzles: draw the figure without rais-
ing the pen from the paper and covering each line exactly

OI1CeE.
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“Original problem”:
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Theorem. Let G = (V, E) be a connected graph. The
following are equivalent:

(i). G is a Eulerian graph.
(ii). All vertex degrees of G are even.

(iii). E can be represented as a union of edge-wise non-

intersecting cycles.



Proof (i)=-(ii). Let P be some Eulerian walk of G and let
velV.

The walk P enters v some number of times and also exits
1t the same number of times. Thus the number of edges of
P incident with v is even (again, loops are counted twice).

On the other hand, P i1s a Eulerian walk, thus the edges of
P incident with v are exactly all the edges of G incident

with v.



Proof (ii)=-(iii). Induction over |E|.

Base. |E| = 0. Then E is a union of 0 pieces, each one of

them is ....

Step. |E| > 0. Since G is connected, all the vertex degrees
must be positive.

According to (ii), all the vertex degrees are > 2.

Using a theorem from the previous lecture, there is a cycle
C in G.

Theorem. If all the vertex degrees in a graph are at least 2, then there

i1s a cycle in this graph.



Delete all the edges of C from grapg G; let the remaining
graph be G'.

G’ has less edges than G and all its vertex degrees are still

even.

Let Hy,..., H; be the connected components of graph G’.
Induction hypothesis implies that each of them can be rep-
resented as a union of edge-wise non-intersecting cycles.
Adding the cycle C to the union of these representations,
we have obtained the required representation for F.



Proof (iii)=(i). Let E = C,UCyU---UC,, where
C4,...,C, are cycles.

If n =1, the claim is clear. Assume n > 2.

W.l.0o.g assume that every cycle C; (2 > 1) has a common

vertex with some cycle C; (5 < 1).

We will now construct closed walks P, ..., P, so that each
P, covers each edge of the cycles Cj,...,C; exactly once

and does not cover any other edges.



Let the closed walk P; be the cycle C;.
Construct the walk P, based on the walk P, ; as follows.

e Move along the walk P,_; until we hit a vertex also
present in the cycle C;.

e Follow the cycle C; starting and finishing in vertex wv.

e Move along the rest of the walk P,_;.

The walk P, 1s a Eulerian one in graph G. []



The proof gives an algorithm for finding a Eulerian cycle
in a Eulerian graph G:
e Partition E(G) into cycles.

— Construct one of these cycles, say, C.

x Move along the edges of G until we reach some
vertex for the second time.

— Remove the edges of C from graph G.

— Partition the edges of the connected components of
G (without C) to cycles.

— Output these cycles and the cycle C.

e Construct a Fulerian walk as shown in the previous
slide.
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Corollary. Connected graph G is semi-Eulerian < the
graph G has exactly two vertices with odd degree.

Proof =. Let z < y be a walk in G covering each of the
edges of G exactly once.

Add an edge e to G so that £(e) = {z, y}.

The graph we obtain is Eulerian (z % y — z is a Bulerian

walk), thus all the vertex degrees are even.

Hence in the original graph z and y have odd degree and
all the other vertices have even degrees.



Proof <. Let z and y be the two vertices of G having odd
degree.

Add an edge e to G so that E(e) = {z, y}.

As a result, all the vertex degrees become even, thus there
exists a FHulerian walk P.

W.l.o.g assume that the last edge in this walk is e. Re-
moving it from P we obtain the required walk. []

The proof gives an algorithm for finding such a walk:

Add an additional edge e, find the Eulerian walk and
then drop e from it.



Fleury’s algorithm for finding a Fulerian walk in Eule-
rian graph G = (V, E):

1. Pick any vertex u € V as the first one in the walk. Let
1 := 0 and v := u.

2. Pick an edge e incident with vertex v;, add it to the
walk and delete it from the graph G. Let v;,; be the
other endpoint of e and let 2 :=1 + 1.

e If e 1s a bridge, pick it only if there i1s no other

alternative.

3. Repeat the last step until all the edges are deleted.



Theorem. Fleury’s algorithm is correct (i.e. it will always
run successfully and produce a Eulerian walk).

Proof. The algorithm produces some walk P starting from
u. At some point 1t stops, because it reaches a vertex v,,

that has all the incident edges deleted. Considering the
vertex degrees, i1t 1s obvious that v, = u.

We have to show that at that moment all the edges are
deleted.



Let GG; be the graph remaining of G after step 2. Then
Go = G and G;,; contains one edge less than the graph
G;. Let H, be the connected component of G; containing
the vertex u.

Note that the degrees of all the vertices of G; (except for,
possibly, © and v;) are even. If u = v; then also deg(u) is
even. If u # v; then deg(u) and deg(v;) are odd.

We will show that all the remaining connected components
of G; are 1solated vertices.

We will use induction over 2. If 1 = 0 then Gy = G = H,,
and G, has only one connected component, thus the claim

holds.



Let the claim hold for ;. Consider first the case u # v;.
In order to give the proof for G;,, 1t 1s enough to prove
that there is at most one bridge incident with v, in the
graph G;.

e If so, then we are done, because the connected compo-
nents of G;; are the following.

— If we deleted a non-bridge, the connected compo-
nents did not change.

— If we deleted a bridge, it was the last edge incident
with v;. The component H; is divided into two new
components — v and H;,; = H;\v. The first one is
an 1solated vertex, the second one contains vertex
U.



If at least two bridges were incident to v; then:
U

7 !

VA e\

H,

e There exists an edge e incident to v; such that the
connected component of H; — e not containing v; does
not contain w either.

o degy (z) is even. Thus degy(z) is odd.

e There has to exist another vertex w of K so that
degy (w) is odd. At the same time, deg,(w) = degy, (w)
an this had to be even.



If u = v;, 1t 1s enough to show that there are no bridges
incident with u, 1.e. G; and G;,; have the same connected

components.

If © would have an incident bridge,

7

there would again exist a vertex w with odd degree. []



Let the edges of the graph G = (V, E, £) have non-negative
weights (“lengths”).
Let the function w : F —— R* give the lengths.

€1 €2 €k

IfP=.—.— ... — .is a walk then let w(P) :=
S w(k) be its length.

Chinese postman problem (Huina postiljoniprobleem)
(CPP): find the closed walk of minimum length that passes
each edge at least once.

Obviously, if G is Eulerian the the solution to CPP is any
Elulerian walk.



Tasks that reduce to CPP (or its variants):
e Routing postmen, garbage trucks, snowplows, etc.

e Checking the transportation routes (highways, rail-
ways, power lines, etc.)

e Optimizing the testing strategies of state automata
(e.g. Uls)

— A test: does the system in state A go to state B
after the action s?



Let a pseudo-Eulerian walk be a closed walk that passes

through all edges of a graph at least once.

CPP 1i1s looking for a pseudo-Eulerian walk of minimum

length.

Let P be a pseudo-Eulerian walk in the graph G. Define
the graph Gp = (V, Ep, Ep) as follows:

o Ep={e|1<1i<|P|},
(] 8p(e(i)) = 8(6),

where |P|, is the number of occurrences of e in P.



Proposition. Gp 1s an Eulerian graph for any graph G
and pseudo-Eulerian walk P.

Proof. Replace the :-th occurrence of an edge e in P with
e(¥). This gives an Eulerian walk in Gp. []



In the other direction, let ¢ : E —— N. Define G, =
(V, B, E.), as follows:

o B.={e®|1<1i<c(e)},
° 8P(e(i)) = E(e),

If c(e) > 0 for all e € E and G, is an Eulerian graph then
each Eulerian walk in GG, defines a pseudo-Eulerian walk

in G.

The lengths of all pseudo-Eulerian walks resulting from G.
are equal.

o they equal ) 5 c(e)w(e).



Proposition. In the solution to CPP, no edge occurs more
than twice.

Proof. Let P be the solution to CPP in G = (V, E, ).
Assume the opposite: de € E, such that n = |P|. > 3.

Consider the graph Gp. It is an Eulerian graph.

Remove e(® V) and e(® from Gp, giving G.. It is still an
Eulerian graph and elY) € E(G,).

For all e € G, GG, contains at least one copy of G. Hence an
BElulerian walk in G, is a pseudo-Eulerian walk in G. The

cost of such a walk is w(P) — 2w(e) < w(P). []

A generalization.. ..



Proposition. Let P be a solution to CPPin G = (V, E, €).
Let c(e) = |P|. — 1. Then G, does not contain cycles.

Proof. Assume that the graph G, contains a cycle C. Let
c'(e) =|P|le — |Cle. Then c'(e) > 0 for any e € E.

G~ 1s an Bulerian graph, giving pseudo-Eulerian walks in
G with the cost w(P) — w(C). [



Theorem. Let G = (V,E,€) a graph and let V- C V be
the set of vertices of odd degree in G. The set V'~ can be
partitioned to pairs V=~ = {uy, v }U{uq, v2}U- - - U{Un, v, };

o (let P; be the shortest path from u; to v;)

such that an edge occurs twice in a CPP solution P for G
iff this edge belongs to one of P, ..., P,.

In other words, the edges of G, (from the previous propo-
sition) are made up of Py,..., B,.



Proof. Consider this graph G..

Then deg(v) = degs (v) (mod 2) for any v € V, because
degs (v) = degg,(v) — degg(v) and Gp is Eulerian.

Let Go = G.and n=|V~|/2. For all 2 € {1,...,n} define

e let u;,v; € V be two vertices of odd degree in the same

connected component of G;_1;
e let P, be a path from u; to v; in G,_q;

e let GG, be a graph obtained from G,_; be removing from
it the edges of FP,.



In GG, the degrees of u; and v; are even and the parity of
degrees of other vertices did not change from G,_;.

In G,,, all vertices have even degree.

Consider a connected component of GG,,. If it is not an
isolated vertex, then it contains a cycle. The same cycle
exists in GG.. This contradicts the last proposition. Hence

(GG, contains no edges.
We have partitioned the edges of G, to n paths.

P 1s the solution to CPP, hence these paths must be of
minimal length between their endpoints. []



Algorithm for solving CPP in the graph G = (V, E, £):
1. Find the pairwise distances between all vertices in V— C V.

e It makes sense to use e.g. Floyd-Warshall algorithm
to find the pairwise distances between all vertices.

e Find the corresponding shortest paths, too.
2. Partition V'~ to pairs {u;,v;} in such a way, that the

summary length of distances between u; and v; 1s as
small as possible.

e This can be done in polynomial time.
e We might see an algorithm in one of the following

lectures.

3. Augment G with a copy of edges on some of the short-
est paths between u; and v;. Find an Eulerian walk in
the resulting graph.



Example: Distances between vertices of odd degree:

bld|f|g
X| 6|64
6 | X| 7|5
6|7 |X]|2
gll4]5]2 X

The pairs {b,d} and {f,g} give the minimum summary
length.



The solution to CPP 1s an Eulerian walk in the graph




