Trees



A forest 1s a graph without cycles.

A connected forest is a tree.

N

A leaf 1s a vertex of degree 1.

Proposition. Any tree i1s a bipartite graph.

Proof. All cycles (of which there are none) of a tree have
even length. A graph is bipartite iff all its cycles have even
length (shown in the first lecture). []



Proposition. Let G be a graph with n vertices, m edges
and k connected components. Then n — k < m.

Proof. Induction over m.

If m = 0, then £ = n because each vertex is a separate
connected component. The inequality holds.

Let m > 0. Remove an edge from G, giving us a graph
with m — 1 edges. There are two possibilities:

e The number of connected components remained the
same. Induction hypothesis gives us n — k < m — 1.
Then alson — k < m.

e The number of connected components increased by
one. The induction hypothesis gives n—(k+1) < m—1.
Then alson — k < m. []



Theorem. Let T' = (V, E) be a graph with n vertices. Any
two of the claims below imply the third one.

(1). T is connected.
(ii). T has no cycles.
(iii). T has (n — 1) edges.

This theorem gives us two alternative definitions for trees.



Proof.
(1) & (ii) = (iii). Induction over n.

If T' has one vertex then all edges of T are loops. I.e. each
edge of T is a cycle. By (ii), T has no cycles, hence no
edges.

Let T have n vertices.

T has no cycles =— T’ contains a vertex v of degree 0 or 1.

Theorem. If all vertices of a graph have degree > 2, then that graph
contains a cycle.

T 1s connected — degree of v 1s not 0.

The subgraph 7" < T induced by V\{v} is connected and
without cycles, hence it has n — 2 edges.

T has one more edge than T".



(i1) & (iii) = (i). Assume that T is not connected.

Let Ti,...,T% be the connected components of graph T'.
All of them are connected and without cycles, hence the
number of edges in any 7; is one less than the number of

vertices in T;. (by (i) & (ii) = (iii))

Hence T has n — k edges. By (iii), T" has n — 1 edges, i.e.
k=1, 1.e. T 1s connected.

(1) & (iil) = (ii). Assume T has a cycle. Remove an edge
from it. The result is a connected graph with n vertices and

n — 2 edges. Contradiction with the previous proposition.
[]



Theorem. A graph T is a tree iff it 1s connected and all
its edges are bridges.

Proof. =: T has n vertices and n — 1 edges for some n.
Consider an edge. After removing it, a graph with n ver-
tices and n — 2 edges remains. This graph 1s not connected.
Thus that edge was a bridge.

<: T is connected. If it had any cycles, then after removing
an edge in a cycle the graph is still connected. I.e. these
edges are not bridges. Hence T 1s without cycles. []



Teoreem. Let T be a graph with n vertices. The following

claims are equivalent.
1. T 1s a tree.

2. Between any two vertices of T' there is exactly one
path.

3. T has no cycles, but adding an edge between any two
vertices creates a cycle.

Proof. 1 = 2. Between any two vertices there is at least
one path — otherwise T' would not be connected. If there
were two different paths between two vertices, we would
get a cycle and T would not be a tree.



2 = 3. T has no cycles, since otherwise we would get
two different paths bewteen any two vertices on the cycle.
Adding a new edge e between the vertices u and v, we

. e
obtain a cycle u ~» v — w.

3 = 1. Suppose T’ 1s not connected. When adding an edge
between the vertices in different connected components we
get no cycles, a contradiction with the assumption. []



Spanning tree (aluspuu) of the connected graph G =
(V, E) is such a subgraph T, that T'is a treeand V(T') = V.

A spanning forest (alusmets) of a non-connected graph is
the union of spanning trees of its connected components.

AVAVAYSWAYAY




Let G = (V, E) be a graph with n vertices and let us have
a weight w(e) defined for each of its edges e € E.

If G = (V',E') is a subgraph of G, then define w(G') =
2, w(e).

ecE’

Algorithm (for finding the minimal weight spanning
tree of G).

Select the edges eq,...,e,_1 so that

e ¢; differs from the edges eq,...,e;_1;
e e, does not form a cycle together with eq,...,e;_1;

e ¢; has the minimal weight among the edges satisfying
the two conditions above.

Output T'= (V,{e1,...,en_1}).
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Theorem. The presented algorithm is correct.

Proof. T is a (spanning) tree — it has no cycles, but does
have n vertices and n — 1 edges.

Assume that w(T') is not minimal possible. Let T" be some
minimal spanning tree of G. Let T" be such that is has the
maximal possible number of edges in common with T

Let k € {1,...,n — 1} be the least number such that e; ¢
E(T").

Let S =T'U{er}. The graph S has a cycle C.

Since T and T" have no cycles, we must have e; € C and
there exists an edge e € E(T")\E(T) such that e € C.

The graph T" = S\{e} is connected and has n — 1 edges,
1.e. 1t 1s a spanning tree.



Edge €

e is different from eq,...,ex_1,

e does not form a cycle together with eq,...,ex_; (since
€1,...,6k_1 € E(T,))

The edge e, has minimal weight among the edges such that

e are different from eq,...,ex_1,

e do not form a cycle together with e, ..., ex_1.
Thus w(ex) < w(e).
We obtain w(T") = w(T") —w(e) + w(eg) < w(T"), i.e. T”
1s a minimal weight spanning tree.

The tree T" has more edges in common with 7" than 7"
does. A contradiction with the choice of T". []



Proposition. Let G = (V, E) be connected and v € V.
The next three claims are equivalent.

(i) v is a cut-vertex.

(ii) there exist u,w € V\{v}, such that any path u ~» w
passes v.

(iii) The set V\{v} can be partitioned to U and W, such
that for any © € U and w € W, any path u ~» w passes
the vertex v.



Proof. (i) = (iii). Graph G\v is not connected. Let one of
its connected components be U and the rest of the compo-
nents be W.

If w € U and w € W then the graph G\v has no paths
from u to w. Hence any path u ~» w in G passes v.

(iii) = (ii). Take uw from U and w from W.

(ii) = (i). If v is located on all paths u ~» w, then G\v
contains no paths from u to w, i.e. G\v is not connected

l.e. v 18 a cut-vertex. []

A connected graph is a block, if it has no cut-vertices.



Theorem. Let G = (V, E) be a connected simple graph
with at least 3 vertices. The next claims are equivalent.

(i) G is a block. [i.e. without cut-vertices]

(ii) Any two vertices are located on some cycle.
(iii) Any vertex and any edge are located on some cycle.
(iv) Any two edges are located on some cycle.

(v) For any two vertices and one edge, there is a path con-
necting those vertices and passing through that edge.

(vi) For any three vertices, there exists a path connecting
the first two of them and passing the third one.

(vii) For any three vertices, there exists a path connecting
the first two of them and not passing the third one.



Proof.
(i) = (vii)
Let u,v,w € V. As v is no cut-vertex, the claim (ii) of the

previous proposition is not true, i.e. for any u, w there is a
path u ~» w that does not pass v.

(vii) = (i)
Let v € V. We show that it is not a cut-vertex. For any

u,w € V there exists a path u ~» w not passing v, thus

(ii) of the previous proposition is false.



(vii)

(vi)

(v)

(iv)

(i1)

(iii)



(1) = (i1)
Let u,v € V and let U C V\{u} be the set of all vertices
that are located on some cycle together with w.

Assume the opposite: v € U.

U is not empty — it contains at least all neighbours u’ of
u. Indeed, G — (u,u’) is connected, as G has no bridges.
Hence there is a path u ~» 4’ that does not use the edge
(u,u'). This path and this edge together form a cycle.

Let w € U have the minimal possible distance from v. Let
e B, be the shortest path w ~» v;
e P, ja P, paths u ~» w that do not intersect.

By choice of w, paths P, and P, do not intersect .



Also define

e P' — some path u ~» v that does not pass w (exists
by (vii));
o w' — the first (from u) vertex on P’ that is also on Fp;

o u' — the last (from u) vertex on P’ before w', that is
on either P, or P,. Assume w.l.o.g. that 1t i1s on P;.

P P P! P .
u ~ w ~> w o~ U~ uis acycle, hence w' € U and

d(w',v) < d(w,v). Contradiction with the choice of w.



(vii)

(vi)

(v)

(iv)

= (1i)

(iii)



(ii) = (vii)
Let u,v,w € V. There exists a cycle containing u and w.

Hence there are two non-intersecting paths u ~» w. At least

one of them does not contain v.



(vii)=

(vi)

(v)

(iv)

= (1i)

(iii)



(ii) = (iii)

Let u € V and (v, w) € E. Let C be a cycle passing through
4 and v.

If wis on C then replace the subpath of C' between v and
w with the edge (v, w).

U U



If w is not on C, then let P be a path u ~» w that does
not contain v (exists by (vii)). Let v’ be the last (from u)

vertex on that path, that i1s also on C.

In C replace the subpath between v’ and v by v/ Sw— .






(iii) = (ii)
Let u,v € V. Let w be a vertex adjacent to v (there exists

one, because G is connected). A cycle passing through u
and the edge (v, w) passes through v and v.






(iii) = (iv)
Let (u,v), (w,z) € E. If these edges have a common vertex,

e.g. v = w, then a cycle is given by these two edges and a
path u ~» z in the graph G\v (it is connected by (i)).

If u,v,w,z are all different then let C be a cycle passing
through v and (w, z).
If v 1s on C then replace the subpath of C between u and
v with the edge (u,v)

U C w




Otherwise let P be a path £ ~» v not passing u (it exists
by (vii)). Let v’ be the last (from z) vertex on P that is

also on the cycle C.

If v’ is on C between u and z, then the cycle we are looking

. c , P C
forisz ~v ~~>v—u~~w—=x.

U C N\ W

P



If v’ is on C between u and w, then the cycle we are looking
C p ,cC

fori sz ~u—7v~>v~»w—=x.
C W
P

v T

(iv) = (ii)

Like (iii) = (ii)






(iv) = (v)

Let u,v € V and (w,z) € E. The graph is a block because
of (iv)=(i). Define Olgu

y

G if (u,v) € E
\G—i—(u,v) if (u,v) ¢ E .

G' =«

By adding edges to a connected graph, we are not intro-
ducing any cut-vertices. Hence G’ is a block and (iv) holds
for it, too.

By (iv), there exists a cycle C in G’ passing through the
edges (u,v) and (w, z).

C — (u,v) is the path connecting v and v and passing
through the edge (w, z). All edges of that path are in G.



(v) = (vi)

Let u,v,w € V. Let z be adjacent to v. By (v), there exists
a path P : u ~» w, containing the edge (v, z), hence also

the vertex v.
(vi) = (vii)
Let u,v,w € V. By (vi) there exists a path P : u ~» v
passing through w. The subpath of P from u to w does

not contain v. []



