Networks and flows Ford-Fulkerson algorithm

Let G = (V, E) be a directed graph. For vertex $v \in V$ we can define its *indegree (sisendaste)* $\overrightarrow{\deg}(v)$ and *outdegree (väljundaste)* $\overleftarrow{\deg}(v)$.

If $\overrightarrow{\deg}(v) = 0$ or $\overleftarrow{\deg}(v) = 0$, the vertex v is called *source* (*lähe*) or *sink* (*suue*) of graph G, respectively.

Capacity of graph G is a function $\psi: E \longrightarrow \mathbb{R}_+$.

The quantities

$$\overrightarrow{\deg_{\psi}}(v) = \sum_{e \in E \ \mathcal{E}(e) = (u,v)} \psi(e) \ ext{and} \ \overleftarrow{\deg_{\psi}}(v) = \sum_{e \in E \ \mathcal{E}(e) = (v,u)} \psi(e)$$

are called ψ -indegree and ψ -outdegree of vertex $v \in V$, respectively.

Network (võrk) is a pair (G, ψ) where G is a directed graph and ψ its capacity.

Proposition. The sums of all ψ -indegrees and ψ -outdegrees of graph G are equal.

Proof.

$$\sum_{v \in V} \overrightarrow{\deg_{\psi}}(v) = \sum_{v \in V} \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} \psi(e) = \sum_{e \in E} \psi(e) = \sum_{v \in V} \psi(e) = \sum_{v \in V} \overleftarrow{\deg_{\psi}}(v) \; .$$

Let (G, ψ) be a network. We assume that G has exactly one source s and exactly one sink t.

Flow (voog) on the network (G, ψ) is a function $\varphi : E \longrightarrow \mathbb{R}_+$, such that

•
$$\varphi(e) \leq \psi(e)$$
 for every $e \in E$.

$$\bullet \ \overrightarrow{\deg_{\varphi}}(v) = \overleftarrow{\deg_{\varphi}}(v) \ \text{for every} \ v \in V \backslash \{s,t\}.$$

The previous proposition implies $\overleftarrow{\deg_{\varphi}}(s) = \overrightarrow{\deg_{\varphi}}(t)$. This quantity is called *value (väärtus)* of the flow φ and denoted $|\varphi|$.

The flow is *maximal* if its value is the largest possible.

We assume that G = (V, E) has no loops nor multiple directed arcs, i.e. $E \subseteq V \times V$.

Proposition. Consider a network (G, ψ) with G = (V, E). Let $V = V_s \cup V_t$, such that $s \in V_s$ and $t \in V_t$. Let

$$\Phi(V_s,V_t) = \sum_{e \in E \cap (V_s imes V_t)} arphi(e) - \sum_{e \in E \cap (V_t imes V_s)} arphi(e) \;\;.$$

Then $\Phi(V_s, V_t)$ is equal to the value of φ .

Proof. Induction over $|V_s|$.

Base. If $|V_s| = 1$ then $V_s = \{s\}$. The set $V_s \times V_t$ contains all the arcs originating from s and $V_t \times V_s = \emptyset$.

Step. Let the claim hold for some sets V_s and V_t . Let $x \in V_t \setminus \{t\}, V'_s = V_s \cup \{x\}$ and $V'_t = V_t \setminus \{x\}$. It is enough to prove $\Phi(V_s, V_t) = \Phi(V'_s, V'_t)$.

$\Phi(V_s,V_t)$:				$\Phi(V_s',V_t')$:				
V imes V	V_s	x	V_t'		V imes V	V_s	x	V_t'
V_s		$+\varphi$	$+\varphi$		V_s			$+\varphi$
x	$-\varphi$				x			$+ \varphi$
V_t'	$-\varphi$				V_t'	$-\varphi$	$-\varphi$	

$$egin{array}{lll} \Phi(V_s,V_t)-\Phi(V_s',V_t')=\ & V imes V & V_s & x & V_t' \ \hline V_s & +arphi & +arphi & \ \hline V_s & +arphi & \ \hline V_s & +arphi & \ \hline V_t' & +arphi & \ \hline =arphi e arphi e arphi (x) - arphi e arphi e arphi e arphi (x) = 0 \end{array}$$

A cut (lõige) in the network (G, ψ) (where G = (V, E)) is such an arc set $L \subseteq E$ that every directed path from source to sink uses some arc from the set L.

Alternatively: $L \subseteq E$ is a cut, if there are no directed paths from s to t in the graph $(V, E \setminus L)$.

Capacity (läbisaskevõime) of L is the quantity $\psi(L) = \sum_{e \in L} \psi(e)$.

The cut is *minimal* if its capacity is the smallest possible.

Theorem (Ford and Fulkerson). The value of all maximal flows in a network is equal to the capacity of all the minimal cuts.

Proof. Let (G, ψ) be a network with G = (V, E), source s and sink t. We will show that

- I. The value of no flow is larger than the capacity of any cut.
- II. For any maximal flow φ there exists a cut with capacity $|\varphi|$.

Part I Let φ be a flow and L a cut.

Let $V_s \subseteq V$ be the set of such nodes v that there exists a directed path from s to v without using any arc from L. Let $V_t = V \setminus V_s$. Since $E \cap (V_s \times V_t) \subseteq L$, we have

$$\psi(L) \geq \sum_{e \in E \cap (V_s imes V_t)} \psi(e) \geq \sum_{e \in E \cap (V_s imes V_t)} arphi(e) \geq \Phi(V_s, V_t) = |arphi|$$

Part II Let φ be a maximal flow.

Let $V_s \subseteq V$ be the set of all vertices v such that: There exists an *undirected* path $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = v$, such that

• If
$$e_i = (v_{i-1}, v_i)$$
 then $\varphi(e_i) < \psi(e_i)$.

• If
$$e_i=(v_i,v_{i-1})$$
 then $arphi(e_i)>0.$

We say that the flow between v_{i-1} and v_i is *unsaturated* (küllastamata).

Such a path is called *augmenting (suurendav)*.

Let $V_t = V \setminus V_s$. We will show that $t \in V_t$. Indeed, if $t \in V_s$ then φ is not maximal:

Let $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$ be some augmenting path. Define positive real numbers δ_i as follows:

$$\delta_i = egin{cases} \psi(e_i) - arphi(e_i), & ext{if } e_i = (v_{i-1}, v_i) \ arphi(e_i), & ext{if } e_i = (v_i, v_{i-1}) \end{array} .$$

Let $arepsilon = \min_i \delta_i$ and let arphi' be the following flow:

$$arphi'(e) = egin{cases} arphi(e), & ext{if } e
ot\in \{e_1,\ldots,e_m\} \ arphi(e) + arepsilon, & ext{if } e = e_i = (v_{i-1},v_i) \ arphi(e) - arepsilon, & ext{if } e = e_i = (v_i,v_{i-1}) \end{cases}$$

Then φ' is a flow and $|\varphi'| = |\varphi| + \varepsilon$.

Construction of the sets V_s and V_t gives:

- If $e \in E \cap (V_s imes V_t)$ then $arphi(e) = \psi(e).$
- If $e \in E \cap (V_t \times V_s)$ then $\varphi(e) = 0$.

Let $L = E \cap (V_s \times V_t)$. Then L is a cut and $\psi(L) = |\varphi|$. \Box

Algorithm for finding a maximal flow (Ford-Fulkerson). Let (G, ψ) be a network with G = (V, E).

Let φ be some initial flow on the network (G, ψ) , say, $\forall e : \varphi(e) = 0$.

Repeat:

- 1. Find an augmenting path $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$. If there is no such path then stop and output φ .
- 2. Construct φ' as described 2 slides ago.
- 3. Assign $\varphi := \varphi'$.

The augmenting path is found traversing the graph in some manner.

Theorem. Ford-Fulkerson algorithm finds a maximal flow. **Proof.** The algorithm obviously outputs a flow. We need to prove that it does not stop before a maximal flow is found.

We will show that if φ is not a maximal flow then there exists an augmenting path $s \rightsquigarrow t$ for it.

Let V_s be the set of vertices v such that there exists an augmenting path from s to v and let $V_t = V \setminus V_s$. Assume that $t \in V_t$.

Similarly to the proof of the previous theorem we get that $L = E \cap (V_s \times V_t)$ is a cut and $\psi(L) = |\varphi|$. Thus φ must be maximal.

there is an augmenting path to these vertices

minimum cut: with circle \rightarrow without circle

Finding the augmenting path:

Let $V_s = \{s\}, W = \{s\}.$

While $W \neq \emptyset$ and $t \not\in V_s$ do:

- 1. Somehow choose $v \in W$. Remove it from the set W.
- 2. For each $e \in E$ and vertex v incident with it: if the flow between v and e's other endpoint w is unsaturated and $w \notin V_s$ then
 - (a) Add w to sets V_s and W.
 - (b) Remember that v is the vertex "preceding" w.

If $t \notin V_s$ then there is no augmenting path. If $t \in V_s$ one can construct an augmenting path moving from t by "preceding" vertices to s.

Proposition. If capacities of all the edges are integers then the main cycle of the algorithm is run at most $|\varphi|$ times where φ is a maximal flow.

Proof. Each iteration increases the value of the flow. Since our computations do not introduce non-integers, each increase has to be at least by 1. \Box

We will now assume that the augmenting path is found using breadth-first traversal of the graph (Edmonds-Karp algorithm).

The augmenting path $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$ found will have the following property: For each *i*, the path $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_i}{\longrightarrow} v_i$ is the shortest augmenting path from source to v_i .

Let (G, ψ) be a network with G = (V, E) and let φ be a flow on it. Denote the length of the shortest path from source to $v \in V$ as $\delta_{\varphi}(v)$.

Proposition. Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ be the sequence of flows generated during the maximal flow finding algorithm. Then for each $v \in V$ the sequence $\delta_{\varphi_i}(v)$ is non-decreasing.

Proof. Consider the flows φ_n and φ_{n+1} in this sequence and let $B = \{v \mid \delta_{\varphi_{n+1}}(v) < \delta_{\varphi_n}(v)\}$. Assume that B is not empty and let $v \in B$ be such that $\delta_{\varphi_{n+1}}(v)$ is the smallest possible.

Let P' be the shortest augmenting path from source to vw.r.t the flow φ_{n+1} . Let u be the vertex preceding v on this path. Since $\delta_{\varphi_{n+1}}(u) < \delta_{\varphi_{n+1}}(v)$, we have $u \notin B$.

Consider the flow φ_n between the vertices u and v.

If φ_n is unsaturated between the vertices u and v then

$$\delta_{arphi_n}(v) \leq \delta_{arphi_n}(u) + 1 \leq \delta_{arphi_{n+1}}(u) + 1 = \delta_{arphi_{n+1}}(v)$$

and $v \not\in B$, a contradiction.

If φ_n is saturated between the vertices u and v then let P_n be the augmenting path from source to sink that was used to generate φ_{n+1} from φ_n .

In φ_{n+1} , the flow between u and v becomes unsaturated. Thus, in the path P_n there exists an edge $\cdots - v - u - \cdots - v$. According to the properties of P_n we get $\delta_{\varphi_n}(v) = \delta_{\varphi_n}(u) - 1$. Consequently,

$$egin{aligned} &\delta_{arphi_n}(v) = \delta_{arphi_n}(u) - 1 \leq \delta_{arphi_{n+1}}(u) - 1 = \delta_{arphi_{n+1}}(v) - 2 < \delta_{arphi_{n+1}}(v) \ \end{aligned}$$
 and $v
ot\in B,$ a contradiction.

Theorem. Edmonds-Karp algorithm makes at most $(|V|-2) \cdot |E|$ iterations.

Proof. Consider the *n*th iteration of the algorithm. On this iteration, the augmenting path $P_n : s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$ is constructed. Call the pair of vertices (v_{i-1}, v_i) critical if the respective quantity δ_i (showing how much the flow between v_{i-1} and v_i must be changed to make it saturated) is minimal (i.e. $\delta_i = \varepsilon$).

Each iteration has a critical pair of vertices. On the next iteration it becomes saturated.

Let's count the number of iterations where a pair (u, v) can be critical. If it is critical on the *n*th iteration, we have $\delta_{\varphi_n}(v) = \delta_{\varphi_n}(u) + 1.$ To make (u, v) again critical on iteration number n' > n, there must exist another augmenting path $P_{n'}$ containing the arc $\cdots - v - u - \cdots$. Then

$$\delta_{arphi_{n'}}(u)=\delta_{arphi_{n'}}(v)+1\geq \delta_{arphi_n}(v)+1=\delta_{arphi_n}(u)+2,$$

thus every time when (u, v) is critical, $\delta_{\varphi}(u)$ has increased at least by 2.

The quantity $\delta_{\varphi}(u)$ can not exceed |V| - 2 (when (u, v) is critical). Thus (u, v) is critical at most $\frac{|V|-2}{2}$ times. The number of vertex pairs (u, v) is at most $2 \cdot |E|$.

Let (G, ψ) be a network. Also, let each edge e of G be assigned a *cost* $c(e) \in \mathbb{R}$ (possibly negative).

Let φ be a flow on (G, ψ) the *cost* of the flow is

$$c(arphi):=\sum_{e\in E(G)}c(e)arphi(e)$$
 .

We are looking for a maximum flow with the minimum cost.

Let (G, ψ) , G = (V, E) be a network (with any number of sources and sinks). $f : E \longrightarrow \mathbb{R}^+$ is a *circulation (ringlus)* on (G, ψ) , if

• $f(e) \leq \psi(e)$ for all $e \in E$.

•
$$\overrightarrow{\deg_f}(v) = \overleftarrow{\deg_f}(v)$$
 for all $v \in V$.

Let $c : E \longrightarrow \mathbb{R}^+$ give the costs of edges. We're looking for a minimum-cost circulation in (G, ψ) .

Finding the minimum-cost maximum flow can be reduced to finding the minimum-cost circulation.

Let (G, ψ) , G = (V, E) be a network and f a circulation on it. The *residual network (jääkvõrk)* (G_f, ψ_f) , made up of the *residual graph* $G = (V, E_f)$ and the *residual circulation* is defined as follows:

• For any
$$e = (u, v) \in E$$
:
- If $f(e) < \psi(e)$ then $e^+ \in E$:

$$egin{aligned} &- ext{ If } f(e) < \psi(e), ext{ then } e^+ \in E_f. ext{ Also, } \mathcal{E}(e^+) = (u,v) \ & ext{ and } \psi_f(e^+) = \psi(e) - f(e). \end{aligned}$$

 $- ext{ If }f(e)>0 ext{, then }e^-\in E_f ext{. Also, }\mathcal{E}(e^-)=(v,u) ext{ and }\psi_f(e^-)=f(e) ext{.}$

Let f be a circulation on (G, ψ) and f' a circulation on the residual network (G_f, ψ_f) . Define $(f + f') : E \longrightarrow \mathbb{R}$ by:

$$\forall e \in E: (f+f')(e) = f(e) + f'(e^+) - f'(e^-)$$

(if some edge e^+ or e^- does not exist, then assume that f' on it equals 0)

Theorem. f + f', as defined above, is a circulation on (G, ψ) (for any f, f').

Proof. First show that $0 \leq (f + f')(e) \leq \psi(e)$ for any $e \in E$.

$$egin{aligned} 0 &= f(e) - \psi_f(e^-) \leq f(e) - f'(e^-) \leq \ & f(e) + f'(e^+) - f'(e^-) \leq \ & f(e) + f'(e^+) \leq f(e) + \psi_f(e^+) = \psi(e), \end{aligned}$$

(again, f', applied to a non-existing edge, gives 0)

$$\text{Show that } \overrightarrow{\deg_{f+f'}}(v) = \overleftarrow{\deg_{f+f'}}(v) \text{ for any } v \in V.$$

$$\overrightarrow{\deg_{f+f'}}(v) = \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} (f+f')(e) =$$
 $\sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} (f(e) + f'(e^+) - f'(e^-)) =$
 $\overrightarrow{\deg_f}(v) + \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} (f'(e^+) - f'(e^-))$

We have

$$\sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} f'(e^+) + \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} f'(e^-) = \overrightarrow{\deg_{f'}}(v) = \left(\overrightarrow{\deg_{f'}}(v) = \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} f'(e^+) + \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} f'(e^-) \right) .$$

Thus

$$\sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} ig(f'(e^+) - f'(e^-)ig) = \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} ig(f'(e^+) - f'(e^-)ig) \;\;.$$

$$egin{aligned} \overrightarrow{\deg}_{f+f'}(v) &= \overrightarrow{\deg}_{f}(v) + \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} \left(f'(e^+) - f'(e^-)
ight) = \ \overleftarrow{\deg}_{f}(v) + \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} \left(f'(e^+) - f'(e^-)
ight) = \ \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} \left(f(e) + f'(e^+) - f'(e^-)
ight) = \ \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,w)}} \left(f(e) + f'(e^+) - f'(e^-)
ight) = \ \overleftarrow{\exp}_{f+f'}(v) \end{cases}$$

Let f and g be circulations on (G, ψ) , G = (V, E). Let $(g - f) : E_f \longrightarrow \mathbb{R}$ be defined by: For any $e \in E$:

• if $g(e) \ge f(e)$, then $(g - f)(e^+) = g(e) - f(e)$ and $(g - f)(e^-) = 0;$

• if
$$g(e) < f(e)$$
, then $(g - f)(e^+) = 0$ and $(g - f)(e^-) = f(e) - g(e)$.

Theorem. g - f, as defined above, is a circulation on (G_f, ψ_f) .

Theorem. f + (g - f) = g.

Proofs are similar to the proof of the previous theorem.

Let f be a circulation on (G, ψ) , G = (V, E). Let $c : E \longrightarrow \mathbb{R}$ give the costs of the edges of G. Define the costs c_f of edges of (G_f, ψ_f) as follows:

$$egin{aligned} c_f(e^+) &= c(e) \ c_f(e^-) &= -c(e) \end{aligned}$$

for any $e \in E$.

Theorem. Let f be a circulation on (G, ψ) , G = (V, E), and f' a circulation on the residual network (G_f, ψ_f) . Let $c: E \longrightarrow \mathbb{R}$ give the costs of the edges of G. Then $c(f + f') = c(f) + c_f(f')$.

Proof: from the definition of f + f'.

Lemma. If the network (G, ψ) , G = (V, E) (the costs of edges are given by c) has no cycles with negative costs, then the minimum-cost circulation on this network is the zero circulation.

Proof. Using mathematical induction over the cardinality of

$${
m supp}\, f = \{ e \in E \, : \, f(e) > 0 \},$$

show that any circulation f has a non-negative cost.

Base. $|\operatorname{supp} f| = 0$. Then c(f) = 0.

Step. $|\operatorname{supp} f| = n > 0$. Let $V' \subseteq V$ be the set of all vertices, such that some edge e with f(e) > 0 ends there. There are also edges e with f(e) > 0 starting from all these vertices.

Graph $(V', \operatorname{supp} f)$ contains a directed cycle C. Let $\delta = \min_{e \in C} f(e)$. Define the following circulation g:

$$g(e) = egin{cases} f(e), ext{ if } e
ot\in C \ f(e) - \delta, ext{ if } e \in C \end{cases}$$

 $egin{array}{lll} ext{Then} & |\operatorname{supp} g| < |\operatorname{supp} f| ext{ and } c(g) = c(f) - \delta \cdot c(C). & \operatorname{As} \ c(C) \geq 0, ext{ then } c(f) \geq c(g) \geq 0. & \Box \end{array}$

Theorem. Let (G, ψ) be a network, *c* the costs of its edges, and *f* a circulation on it. *f* is minimal-cost iff the network (G_f, ψ_f) has no cycles of negative cost.

Proof. \Rightarrow . If (G_f, c_f) had cycles of negative cost, then it also would contain a negative-cost circulation f'. But then f + f' would have smaller cost than f.

 \Leftarrow . Let f be a circulation on (G, ψ) whose cost is not minimal. Let f^* be a minimal-cost circulation on (G, ψ) . Then $f^* - f$ is a negative-cost circulation on (G_f, ψ_f) . Hence it also contains cycles of negative cost.

<u>Algorithm</u> to find a minimum-cost circulation in (G, ψ) with the costs of edges c. Let f be some initial circulation. Repeat:

- 1. Find a negative-cost cycle C in (G_f, ψ_f) . If such C does not exist, then f is a circulation of minimum cost.
- 2. Let $\delta = \min_{e^? \in C} \psi_f(e^?)$. Let f' be a circulation in (G_f, ψ_f) , such that $f'(e^?) = \delta$ or $f'(e^?) = 0$, depending on whether $e^?$ lies on C or not.
- 3. Set f := f + f'.

The initial f may be found using e.g. the Ford-Fulkerson algorithm.

Bellman-Ford's algorithm may be used to find a cycle of negative cost.

Add an additional vertex x to G_f . Add arcs of cost 0 from x to all other vertices. Find the distances of all vertices from x (length of edge \equiv cost of edge); also find the shortest paths.

If something happens at the |V|-th iteration of the Bellman-Ford algorithm, then the back-pointers of all vertices (to previous vertices on shortest paths) will give us a cycle of negative length.