Networks and flows
Ford-Fulkerson algorithm



Let G = (V, E) be a directed graph. For vertex v € V' we
=
can define its indegree (sisendaste) deg(v) and outdegree
%
(valjundaste) deg(v).
H %
If deg(v) = 0 or deg(v) = 0, the vertex v is called source
(ldhe) or sink (suue) of graph G, respectively.
Capacity of graph G is a function ¥ : B — R,..
The quantities
—> %_
degy(v)= Y. (e)and degy(0)= Y 9(e)
ecE&(e)=(u,v) ecE&(e)=(v,u)

are called ¥-indegree and Y-outdegree of vertex v € V,
respectively.

Network (vork) is a pair (G,v%) where G is a directed
graph and v its capacity.






Proposition. The sums of all ¥-indegrees and y-outdegrees
of graph G are equal.

Proof.
Sdegy (@)=Y S0 W)= D 9(e) =
veV veV ech echH
E(e)=(u,v)
ST wle) = degylv) -
" o) vey



Let (G,v%) be a network. We assume that G has exactly
one source s and exactly one sink ¢.

Flow (voog) on the network (G, ) is a function p : E — R, ,
such that

e pe) <Y(e) for every e € F.

e deg,(v) = deg,(v) for every v € V'\{s,1}.

— =
The previous proposition implies deg,(s) = deg,(t). This

quantity is called value (vddrtus) of the flow ¢ and de-
noted |¢|.

The flow 1s mazimal if 1ts value 1s the largest possible.

We assume that G = (V, E) has no loops nor multiple
directed arcs, 1.e. E CV x V.






Proposition. Consider a network (G, ¢) with G = (V, E).
Let V =V,UV,, such that s € V; and t € V;. Let

Vo, Vi)= > wle)— > e .

e€ BN (Vs x V3) e€ BN(VixVs)
Then ®(V;, V;) is equal to the value of ¢.
Proof. Induction over |V;|.

Base. If |Vs| = 1 then V; = {s}. The set V; x V; contains
all the arcs originating from s and V; x V; = 0.

Step. Let the claim hold for some sets V, and V;. Let
r € Vi\{t}, V! =V, U{z} and V/ = V;\{z}. It is enough
to prove ®&(V;, V;) = &(V], V).



®(V,,V;) : eV, V/)):

S

VxV|Vs| z |V VxV|Vs| z |V
Vs + |+ Vs +¢
T | — x +¢
Vil —w Vil —¢|—p

VxV| V.|l z |V
Vs +¢
| —¢ —p
v +¢




A cut (l61ge) in the network (G,®) (where G = (V, E))
1s such an arc set L, C F that every directed path from
source to sink uses some arc from the set L.

Alternatively: L C E is a cut, if there are no directed paths
from s to ¢ in the graph (V, E\L).

Capacity (ldbisaskevoime) of L is the quantity (L) =

> Y(e).

ecL

The cut 1s minimal if 1ts capacity is the smallest possible.



Theorem (Ford and Fulkerson). The value of all max-
imal flows in a network i1s equal to the capacity of all the
minimal cuts.

Proof. Let (G, %) be a network with G = (V, E), source s
and sink t. We will show that

I. The value of no flow is larger than the capacity of any
cut.

II. For any maximal flow ¢ there exists a cut with capacity
ol



Part I Let ¢ be a flow and L a cut.

Let V; C V be the set of such nodes v that there exists a
directed path from s to v without using any arc from L.
Let V; = V\V;. Since E N (V, x V) C L, we have

Y(IL)> > Ye)> > ple) >V, Vi) =el .

e€c EN(VsxV}) e€cEN(Vsx Vi)



Part II Let ¢ be a maximal flow.
Let V, C V be the set of all vertices v such that:

€1 €2 e
There exists an undirected paths = vy — v — -+ — U, = v,

such that

o If e; = (v;_1,v;) then p(e;) < Y(e;).
o If e; = (v;,v;_1) then p(e;) > 0.

We say that the flow between v,_; and v; 1s unsaturated
(killastamata).

Such a path is called augmenting (suurendav).

Let V; = V\V;. We will show that ¢ € V;. Indeed, if t € V;
then ¢ 1s not maximal:



é1 €2 e .
Let s =v9 — vy — --+ — v,, = t be some augmenting

path. Define positive real numbers 9; as follows:

PY(e;) —ple;), ife; = (vi_1,v5)
p(e:), if e; = (vs, Vi1) -

0; = X

Let € = min §; and let ¢’ be the following flow:

o), ifed{er...,em)
p'(e) = ple)+e, ife=e = (vi_1,v)

ple)—e, ife=e = (v;,vi 1) .

Then ¢’ is a flow and |¢'| = |p| + €.



Construction of the sets Vs and V; gives:
o Ifec EN(V; xV;) then p(e) = Y(e).
e Ifec EN(V; xV;) then p(e) = 0.
Let L=EN (Vs x V). Then L is a cut and ¢ (L) = |¢|. O



Algorithm for finding a maximal flow (Ford-Fulkerson).
Let (G, %) be a network with G = (V, E).

Let ¢ be some initial flow on the network (G, ), say, Ve :
p(e) = 0.
Repeat:

1. Find an augmenting path s = vq = Uq 2. Uy, = t.
If there 1s no such path then stop and output .

2. Construct ¢’ as described 2 slides ago.

3. Assign ¢ = ¢'.

The augmenting path is found traversing the graph in some
manner.



Theorem. Ford-Fulkerson algorithm finds a maximal flow.

Proof. The algorithm obviously outputs a flow. We need
to prove that it does not stop before a maximal flow is
found.

We will show that if ¢ 1s not a maximal flow then there
exists an augmenting path s ~» ¢ for it.

Let V, be the set of vertices v such that there exists an
augmenting path from s to v and let V; = V\V;. Assume
that t € V..

Similarly to the proof of the previous theorem we get that
L=EnNn(VsxV)isacut and ¢¥(L) = |¢|. Thus ¢ must
be maximal. []
















































there 1s an augmenting path to these vertices

minimum cut: with circle — without circle



Finding the augmenting path:
Let V, = {s}, W = {s}.
While W # 0 and t ¢ V; do:
1. Somehow choose v € W. Remove 1t from the set .

2. For each e € E and vertex v incident with it: if the
flow between v and e’s other endpoint w i1s unsaturated

and w ¢ V; then
(a) Add w to sets V; and W.
(b) Remember that v is the vertex “preceding” w.
If t & Vs then there is no augmenting path. If £ € V;

one can construct an augmenting path moving from ¢ by
“preceding” vertices to s.



Proposition. If capacities of all the edges are integers
then the main cycle of the algorithm is run at most |y

times where ¢ is a maximal flow.

Proof. Each iteration increases the value of the flow. Since
our computations do not introduce non-integers, each in-
crease has to be at least by 1. []



We will now assume that the augmenting path is found
using breadth-first traversal of the graph (Edmonds-Karp
algorithm).

€1 €2 €m

The augmenting path s = vg — vy — --- — v,, = t found
will have the following property:

For each 1, the path s = vq 2oy 22

v; 1s the
shortest augmenting path from source to v;.
Let (G,%) be a network with G = (V, E) and let ¢ be a

flow on 1t. Denote the length of the shortest path from
source to v € V as d,(v).



Proposition. Let ¢g, ¢1, s, ... be the sequence of flows
generated during the maximal flow finding algorithm. Then
for each v € V the sequence d,,(v) is non-decreasing.

Proof. Consider the flows ¢, and ¢, ; in this sequence
and let B ={v | 0p,.,(v) < dyp,(v)}. Assume that B is not
empty and let v € B be such that J,,,,(v) is the smallest
possible.

Let P’ be the shortest augmenting path from source to v
w.r.t the flow ¢,,:. Let u be the vertex preceding v on
this path. Since d,,,,,(uv) < d,,.,(v), we have u & B.

Consider the flow ¢,, between the vertices u and v.



If ¢, 1s unsaturated between the vertices © and v then
0p, (V) < 0, (w) +1 <0y, (w) +1=104,,,(v)

and v ¢ B, a contradiction.

If ¢, 1s saturated between the vertices u and v then let P,
be the augmenting path from source to sink that was used
to generate ¢, from ¢,.

In ¢,.1, the flow between u and v becomes unsaturated.

Thus, in the path P, there exists an edge - - - v U —
According to the properties of P, we get d,, (v) =
d,,(u) — 1. Consequently,

5‘Pn(v) — 5‘Pn ('U,)—]. S 5‘Pn+1(u)_1 — 5‘Pn+1(v)_2 < 5‘Pn+1(v)

and v ¢ B, a contradiction. []



Theorem. Edmonds-Karp algorithm makes at most
([V| —2) - | E| iterations.

Proof. Consider the nth iteration of the algorithm. On this
iteration, the augmenting path P, : s = vq Rl Uy 2.
vm = t is constructed. Call the pair of vertices (v;_1,v;)
critical if the respective quantity §; (showing how much
the flow between v;_; and v; must be changed to make it

saturated) is minimal (i.e. J; = €).

Elach iteration has a critical pair of vertices. On the next
iteration i1t becomes saturated.

Let’s count the number of iterations where a pair (u,v) can
be critical. If it i1s critical on the nth iteration, we have

b9 (v) = G, () + 1.



To make (u,v) again critical on iteration number n’ > n,

there must exist another augmenting path F,, containing

the arc - - - ) u— ---. Then
5‘Pn/(u) — 5()077,/ ('U) —I_ 1 Z 5‘Pn ('U) —I_ 1 — 5‘Pn (u) —I_ 27

thus every time when (u, v) is critical, d,,(u) has increased
at least by 2.

The quantity d,(u) can not exeed |V| — 2 (when (u,v) is

t MT_Z times. The

number of vertex pairs (u,v) is at most 2 - |E|. O

critical). Thus (u,v) is critical at mos



Let (G,%) be a network. Also, let each edge e of G be
assigned a cost c(e) € R (possibly negative).

Let ¢ be a flow on (G, ¥) the cost of the flow is

c(p) == > cle)p(e) .

ecE(G)

We are looking for a maximum flow with the minimum

cost.



Let (G,v), G = (V, E) be a network (with any number
of sources and sinks). f : B — RT is a circulation
(ringlus) on (G, ), if

o f(e) <y(e)forallec F.
o deg,(v) = degs(v) forallv € V.

Let ¢ : E — R* give the costs of edges. We're looking

for a minimum-cost circulation in (G, ¥).

Finding the minimum-cost maximum flow can be reduced

to finding the minimum-cost circulation.






capacity cost




Let (G,v), G = (V, E) be a network and f a circulation
on it. The residual network (jaakvork) (Gs,s), made
up of the restdual graph G = (V, Es) and the residual
circulation 1s defined as follows:

e For any e = (u,v) € E:
— If f(e) < ¢(e), then et € E;. Also, E(e™) = (u,v)
and y(et) = (e) - f(e).
— If f(e) >0, thene™ € E;. Also, E(e”) = (v, u) and
bi(e”) = f(e).






Let f be a circulation on (G, ¥) and f’ a circulation on the
residual network (G, ¢s). Define (f + f') : E — R by:

Ve € B: (f+ f)(e) = f(e) + fle*) — F(e”)

(if some edge et or e~ does not exist, then assume that f
on it equals 0)

Theorem. f + f’, as defined above, is a circulation on

(G, %) (for any f, f').



Proof. First show that 0 < (f + f')(e) < 9¥(e) for any
e c k.

0= f(e) —ps(e”) < fe) - fi(e7) <
fle)+f(e") = fl(e7) <
fe)+ f'(e™) < fe) +vs(e™) = ¢(e),

(again, f’, applied to a non-existing edge, gives 0)



Show that degfﬂj('u) = éiegf”,('u) for any v € V.

deg, (V)= > (f+)e) =

eckh
&(e)=(u,v)

> (fle)+ fi(e") = fl(en)) =
E(eiga,v)

deg,(v)+ S (fle?) - fl(e))
E(e‘)gia,v)



We have

ST e+ Y fle) =degy(v) =

ech eck
E(e)=(u,v) E(e)=(v,w)
degp(v) = Y. fle)+ Y fle) .
echH ecH
E(e)=(v,w) E(e)=(u,v)
Thus
>, (FEe)=f))= ), (fle)-Ff).
ech eck

&(e)=(u,v) &(e)=(v,w)



degfﬂj('u) — chf)(’U) + Z (f'(e") = f(e7)) =

£y ()
f@c(v) + Z (f'(e™)—f'(e7)) =
£(eS=(ww)
Yo (f@)+fieh) = fle) =
£(ey=(ww)

5> (f +F)(e) = degy p(v)
£(e)= ()



Let f and g be circulations on (G,v¥), G = (V,E). Let
(9 — f): Ef — R be defined by: For any e € E:

o if g(e) > f(e), then (9 — f)(e™) = g(e) — f(e) and
(9—f)e7) =0;

e if g(e) < f(e), then (g — f)(e™) =0and (g f)(e7) =
f(e) — g(e).

Theorem. g — f, as defined above, is a circulation on

(G 95)-
Theorem. f+(g—f) =g.

Proofs are similar to the proof of the previous theorem.



Let f be a circulationon (G,%), G = (V,E). Letc: E —
R give the costs of the edges of G. Define the costs c; of
edges of (G¢,1¢) as follows:

es(eh) = cle)
cs(e”) = —c(e)
for any e € F.

Theorem. Let f be a circulation on (G,%), G = (V, E),
and f’ a circulation on the residual network (Gy,y). Let
c: E — R give the costs of the edges of G. Then c¢(f +

f') = c(f) +cs(f).
Proof: from the definition of f + f'.



Lemma. If the network (G,%), G = (V, E) (the costs of
edges are given by c¢) has no cycles with negative costs,
then the minimum-cost circulation on this network is the

zero circulation.

Proof. Using mathematical induction over the cardinality
of

supp f ={e € B : f(e) > 0},
show that any circulation f has a non-negative cost.

Base. |supp f| = 0. Then ¢(f) = 0.



Step. |supp f| = n > 0. Let V! C V be the set of all
vertices, such that some edge e with f(e) > 0 ends there.
There are also edges e with f(e) > O starting from all these

vertices.

Graph (V',supp f) contains a directed cycle C. Let § =
min.cc f(e). Define the following circulation g:

fe), ifegC

gle) = <\f(e)—5, fecC .

Then |suppg| < |supp f| and c¢(g9) = c(f) — ¢ - ¢(C). As
c(C) >0, then ¢(f) > c(g) > 0. [



Theorem. Let (G, ¥) be a network, c the costs of its edges,
and f a circulation on it. f is minimal-cost iff the network
(G, %) has no cycles of negative cost.

Proof. =. If (Gy,cs) had cycles of negative cost, then it
also would contain a negative-cost circulation f’. But then
f + f' would have smaller cost than f.

<. Let f be a circulation on (G, 1) whose cost is not mini-
mal. Let f* be a minimal-cost circulation on (G, ). Then
f* — f is a negative-cost circulation on (Gy, ). Hence it
also contains cycles of negative cost. []



Algorithm to find a minimum-cost circulation in (G, ¥)
with the costs of edges c. Let f be some initial circulation.

Repeat:

1. Find a negative-cost cycle C'in (G¢, ¥¢). If such C does
not exist, then f is a circulation of minimum cost.

2. Let 6 = mingccts(e’). Let f' be a circulation in
(G#,%¢), such that f'(e’) = 6 or f'(e’) = 0, depending
on whether e’ lies on C or not.

3. Set fi=f+ f.

The initial f may be found using e.g. the Ford-Fulkerson
algorithm.












Bellman-Ford’s algorithm may be used to find a cycle of

negative cost.

Add an additional vertex z to G¢. Add arcs of cost O from z
to all other vertices. Find the distances of all vertices from
z (length of edge = cost of edge); also find the shortest
paths.

If something happens at the |V|-th iteration of the Bellman-
Ford algorithm, then the back-pointers of all vertices (to
previous vertices on shortest paths) will give us a cycle of

negative length.



