
Networks and �owsFord-Fulkerson algorithm



Let G = (V;E) be a dire
ted graph. For vertex v 2 V we
an de�ne its indegree (sisendaste) ��!deg(v) and outdegree(väljundaste)  ��deg(v).If ��!deg(v) = 0 or  ��deg(v) = 0, the vertex v is 
alled sour
e(lähe) or sink (suue) of graph G, respe
tively.Capa
ity of graph G is a fun
tion  : E �! R +.The quantities��!deg (v) = Xe2EE(e)=(u;v) (e) and  ��deg (v) = Xe2EE(e)=(v;u) (e)are 
alled  -indegree and  -outdegree of vertex v 2 V ,respe
tively.Network (võrk) is a pair (G; ) where G is a dire
tedgraph and  its 
apa
ity.
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Proposition. The sums of all  -indegrees and  -outdegreesof graph G are equal.
Proof.Xv2V ��!deg (v) =Xv2V Xe2E

E(e)=(u;v) (e) =
Xe2E  (e) =Xv2V Xe2E

E(e)=(v;u) (e) =
Xv2V  ��deg (v) :

�



Let (G; ) be a network. We assume that G has exa
tlyone sour
e s and exa
tly one sink t.Flow (voog) on the network (G; ) is a fun
tion ' : E �! R +,su
h that� '(e) �  (e) for every e 2 E.� ��!deg'(v) = ��deg'(v) for every v 2 V nfs; tg.The previous proposition implies  ��deg'(s) = ��!deg'(t). Thisquantity is 
alled value (väärtus) of the �ow ' and de-noted j'j.The �ow is maximal if its value is the largest possible.We assume that G = (V;E) has no loops nor multipledire
ted ar
s, i.e. E � V � V .
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Proposition. Consider a network (G; ) with G = (V;E).Let V = Vs _[Vt, su
h that s 2 Vs and t 2 Vt. Let�(Vs; Vt) = Xe2E\(Vs�Vt)'(e)� Xe2E\(Vt�Vs)'(e) :Then �(Vs; Vt) is equal to the value of '.

Proof. Indu
tion over jVsj.Base. If jVsj = 1 then Vs = fsg. The set Vs � Vt 
ontainsall the ar
s originating from s and Vt � Vs = ;.Step. Let the 
laim hold for some sets Vs and Vt. Letx 2 Vtnftg, V 0s = Vs [ fxg and V 0t = Vtnfxg. It is enoughto prove �(Vs; Vt) = �(V 0s ; V 0t ).



�(Vs; Vt) : �(V 0s ; V 0t ) :V � V Vs x V 0tVs +' +'x �'V 0t �'

V � V Vs x V 0tVs +'x +'V 0t �' �'�(Vs; Vt)� �(V 0s ; V 0t ) =V � V Vs x V 0tVs +'x �' �'V 0t +'= ��!deg'(x)� ��deg'(x) = 0 : �



A 
ut (lõige) in the network (G; ) (where G = (V;E))is su
h an ar
 set L � E that every dire
ted path fromsour
e to sink uses some ar
 from the set L.Alternatively: L � E is a 
ut, if there are no dire
ted pathsfrom s to t in the graph (V;EnL).Capa
ity (läbisaskevõime) of L is the quantity  (L) =Pe2L (e).The 
ut is minimal if its 
apa
ity is the smallest possible.



Theorem (Ford and Fulkerson). The value of all max-imal �ows in a network is equal to the 
apa
ity of all theminimal 
uts.
Proof. Let (G; ) be a network with G = (V;E), sour
e sand sink t. We will show thatI. The value of no �ow is larger than the 
apa
ity of any
ut.II. For any maximal �ow ' there exists a 
ut with 
apa
ityj'j.



Part I Let ' be a �ow and L a 
ut.Let Vs � V be the set of su
h nodes v that there exists adire
ted path from s to v without using any ar
 from L.Let Vt = V nVs. Sin
e E \ (Vs � Vt) � L, we have (L) � Xe2E\(Vs�Vt) (e) � Xe2E\(Vs�Vt)'(e) � �(Vs; Vt) = j'j :



Part II Let ' be a maximal �ow.Let Vs � V be the set of all verti
es v su
h that:There exists an undire
ted path s = v0 e1� v1 e2� � � � em� vm = v,su
h that� If ei = (vi�1; vi) then '(ei) <  (ei).� If ei = (vi; vi�1) then '(ei) > 0.We say that the �ow between vi�1 and vi is unsaturated(küllastamata).Su
h a path is 
alled augmenting (suurendav).Let Vt = V nVs. We will show that t 2 Vt. Indeed, if t 2 Vsthen ' is not maximal:



Let s = v0 e1� v1 e2� � � � em� vm = t be some augmentingpath. De�ne positive real numbers Æi as follows:

Æi = 8<: (ei)� '(ei); if ei = (vi�1; vi)'(ei); if ei = (vi; vi�1) :Let " = mini Æi and let '0 be the following �ow:

'0(e) =
8>><>>:

'(e); if e 62 fe1; : : : ; emg'(e) + "; if e = ei = (vi�1; vi)'(e)� "; if e = ei = (vi; vi�1) :Then '0 is a �ow and j'0j = j'j+ ".



Constru
tion of the sets Vs and Vt gives:� If e 2 E \ (Vs � Vt) then '(e) =  (e).� If e 2 E \ (Vt � Vs) then '(e) = 0.Let L = E \ (Vs � Vt). Then L is a 
ut and  (L) = j'j. �



Algorithm for �nding a maximal �ow (Ford-Fulkerson).Let (G; ) be a network with G = (V;E).Let ' be some initial �ow on the network (G; ), say, 8e :'(e) = 0.Repeat:1. Find an augmenting path s = v0 e1� v1 e2� � � � em� vm = t.If there is no su
h path then stop and output '.2. Constru
t '0 as des
ribed 2 slides ago.3. Assign ' := '0.The augmenting path is found traversing the graph in somemanner.



Theorem. Ford-Fulkerson algorithm �nds a maximal �ow.

Proof. The algorithm obviously outputs a �ow. We needto prove that it does not stop before a maximal �ow isfound.We will show that if ' is not a maximal �ow then thereexists an augmenting path s t for it.Let Vs be the set of verti
es v su
h that there exists anaugmenting path from s to v and let Vt = V nVs. Assumethat t 2 Vt.Similarly to the proof of the previous theorem we get thatL = E \ (Vs � Vt) is a 
ut and  (L) = j'j. Thus ' mustbe maximal. �
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Finding the augmenting path:Let Vs = fsg, W = fsg.While W 6= ; and t 62 Vs do:1. Somehow 
hoose v 2W . Remove it from the set W .2. For ea
h e 2 E and vertex v in
ident with it: if the�ow between v and e's other endpoint w is unsaturatedand w 62 Vs then(a) Add w to sets Vs and W .(b) Remember that v is the vertex �pre
eding� w.If t 62 Vs then there is no augmenting path. If t 2 Vsone 
an 
onstru
t an augmenting path moving from t by�pre
eding� verti
es to s.



Proposition. If 
apa
ities of all the edges are integersthen the main 
y
le of the algorithm is run at most j'jtimes where ' is a maximal �ow.
Proof. Ea
h iteration in
reases the value of the �ow. Sin
eour 
omputations do not introdu
e non-integers, ea
h in-
rease has to be at least by 1. �



We will now assume that the augmenting path is foundusing breadth-�rst traversal of the graph (Edmonds-Karpalgorithm).The augmenting path s = v0 e1� v1 e2� � � � em� vm = t foundwill have the following property:For ea
h i, the path s = v0 e1� v1 e2� � � � ei� vi is theshortest augmenting path from sour
e to vi.Let (G; ) be a network with G = (V;E) and let ' be a�ow on it. Denote the length of the shortest path fromsour
e to v 2 V as Æ'(v).



Proposition. Let '0; '1; '2; : : : be the sequen
e of �owsgenerated during the maximal �ow �nding algorithm. Thenfor ea
h v 2 V the sequen
e Æ'i(v) is non-de
reasing.

Proof. Consider the �ows 'n and 'n+1 in this sequen
eand let B = fv j Æ'n+1(v) < Æ'n(v)g. Assume that B is notempty and let v 2 B be su
h that Æ'n+1(v) is the smallestpossible.Let P 0 be the shortest augmenting path from sour
e to vw.r.t the �ow 'n+1. Let u be the vertex pre
eding v onthis path. Sin
e Æ'n+1(u) < Æ'n+1(v), we have u 62 B.Consider the �ow 'n between the verti
es u and v.



If 'n is unsaturated between the verti
es u and v thenÆ'n(v) � Æ'n(u) + 1 � Æ'n+1(u) + 1 = Æ'n+1(v)and v 62 B, a 
ontradi
tion.If 'n is saturated between the verti
es u and v then let Pnbe the augmenting path from sour
e to sink that was usedto generate 'n+1 from 'n.In 'n+1, the �ow between u and v be
omes unsaturated.Thus, in the path Pn there exists an edge � � �� v � u�� � � . A

ording to the properties of Pn we get Æ'n(v) =Æ'n(u)� 1. Consequently,Æ'n(v) = Æ'n(u)�1 � Æ'n+1(u)�1 = Æ'n+1(v)�2 < Æ'n+1(v)and v 62 B, a 
ontradi
tion. �



Theorem. Edmonds-Karp algorithm makes at most(jV j � 2) � jEj iterations.
Proof. Consider the nth iteration of the algorithm. On thisiteration, the augmenting path Pn : s = v0 e1� v1 e2� � � � em�vm = t is 
onstru
ted. Call the pair of verti
es (vi�1; vi)
riti
al if the respe
tive quantity Æi (showing how mu
hthe �ow between vi�1 and vi must be 
hanged to make itsaturated) is minimal (i.e. Æi = ").Ea
h iteration has a 
riti
al pair of verti
es. On the nextiteration it be
omes saturated.Let's 
ount the number of iterations where a pair (u; v) 
anbe 
riti
al. If it is 
riti
al on the nth iteration, we haveÆ'n(v) = Æ'n(u) + 1.



To make (u; v) again 
riti
al on iteration number n0 > n,there must exist another augmenting path Pn0 
ontainingthe ar
 � � �� v � u� � � � . ThenÆ'n0 (u) = Æ'n0 (v) + 1 � Æ'n(v) + 1 = Æ'n(u) + 2;thus every time when (u; v) is 
riti
al, Æ'(u) has in
reasedat least by 2.The quantity Æ'(u) 
an not exeed jV j � 2 (when (u; v) is
riti
al). Thus (u; v) is 
riti
al at most jV j�22 times. Thenumber of vertex pairs (u; v) is at most 2 � jEj. �



Let (G; ) be a network. Also, let each edge e of G be

assigned a cost 
(e) 2 R (possibly negative).

Let ' be a flow on (G; ) the cost of the flow is
(') := Xe2E(G) 
(e)'(e) :
We are looking for a maximum flow with the minimum

cost.



Let (G; ), G = (V;E) be a network (with any number

of sources and sinks). f : E −→ R + is a circulation

(ringlus) on (G; ), if� f(e) �  (e) for all e 2 E.� ��!degf(v) = ��degf(v) for all v 2 V .

Let 
 : E −→ R + give the costs of edges. We’re looking

for a minimum-cost circulation in (G; ).
Finding the minimum-cost maximum flow can be reduced

to finding the minimum-cost circulation.
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Let (G; ), G = (V;E) be a network and f a circulation

on it. The residual network (jääkvõrk) (Gf ;  f), made

up of the residual graph G = (V;Ef ) and the residual

circulation is defined as follows:� For any e = (u; v) 2 E:

– If f(e) <  (e), then e+ 2 Ef . Also, E(e+) = (u; v)

and  f(e+) =  (e)� f(e).
– If f(e) > 0, then e� 2 Ef . Also, E(e�) = (v; u) and f(e�) = f(e).
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Let f be a circulation on (G; ) and f 0 a circulation on the

residual network (Gf ;  f). Define (f + f 0) : E −→ R by:8e 2 E : (f + f 0)(e) = f(e) + f 0(e+)� f 0(e�)

(if some edge e+ or e� does not exist, then assume that f 0

on it equals 0)
Theorem. f + f 0, as defined above, is a circulation on(G; ) (for any f; f 0).



Proof. First show that 0 � (f + f 0)(e) �  (e) for anye 2 E.

0 = f(e)�  f(e�) � f(e)� f 0(e�) �f(e) + f 0(e+)� f 0(e�) �f(e) + f 0(e+) � f(e) +  f(e+) =  (e);

(again, f 0, applied to a non-existing edge, gives 0)



Show that

����!degf+f 0(v) = ����degf+f 0(v) for any v 2 V .����!degf+f 0(v) = Xe2E
E(e)=(u;v)(f + f 0)(e) =

Xe2E
E(e)=(u;v)

�f(e) + f 0(e+)� f 0(e�)� =

��!degf(v) + Xe2E
E(e)=(u;v)

�f 0(e+)� f 0(e�)�



We haveXe2E
E(e)=(u;v) f 0(e+) +

Xe2E
E(e)=(v;w) f 0(e�) =

���!degf 0(v) =

 ���degf 0(v) = Xe2E
E(e)=(v;w) f 0(e+) +
Xe2E

E(e)=(u;v) f 0(e�) :

ThusXe2E

E(e)=(u;v)
�f 0(e+)� f 0(e�)� = Xe2E

E(e)=(v;w)
�f 0(e+)� f 0(e�)� :



����!degf+f 0(v) = ��!degf(v) + Xe2E

E(e)=(u;v)
�f 0(e+)� f 0(e�)� =

 ��degf(v) + Xe2E
E(e)=(v;w)

�f 0(e+)� f 0(e�)� =

Xe2E
E(e)=(v;w)

�f(e) + f 0(e+)� f 0(e�)� =

Xe2E
E(e)=(v;w)(f + f 0)(e) = ����degf+f 0(v)

�



Let f and g be circulations on (G; ), G = (V;E). Let(g � f) : Ef −→ R be defined by: For any e 2 E:� if g(e) � f(e), then (g � f)(e+) = g(e) � f(e) and(g � f)(e�) = 0;� if g(e) < f(e), then (g� f)(e+) = 0 and (g� f)(e�) =f(e)� g(e).
Theorem. g � f , as defined above, is a circulation on(Gf ;  f ).
Theorem. f + (g � f) = g.
Proofs are similar to the proof of the previous theorem.



Let f be a circulation on (G; ), G = (V;E). Let 
 : E −→R give the costs of the edges of G. Define the costs 
f of
edges of (Gf ;  f) as follows:
f(e+) = 
(e)
f(e�) = �
(e)

for any e 2 E.

Theorem. Let f be a circulation on (G; ), G = (V;E),
and f 0 a circulation on the residual network (Gf ;  f). Let
 : E −→ R give the costs of the edges of G. Then 
(f +f 0) = 
(f) + 
f(f 0).
Proof: from the definition of f + f 0.



Lemma. If the network (G; ), G = (V;E) (the costs of

edges are given by 
) has no cycles with negative costs,

then the minimum-cost circulation on this network is the

zero circulation.

Proof. Using mathematical induction over the cardinality

of supp f = fe 2 E : f(e) > 0g;

show that any circulation f has a non-negative cost.

Base. j supp f j = 0. Then 
(f) = 0.



Step. j supp f j = n > 0. Let V 0 � V be the set of all

vertices, such that some edge e with f(e) > 0 ends there.

There are also edges e with f(e) > 0 starting from all these

vertices.

Graph (V 0; supp f) contains a directed cycle C. Let Æ =mine2C f(e). Define the following circulation g:
g(e) = 8<:f(e); if e 62 Cf(e)� Æ; if e 2 C :

Then j supp gj < j supp f j and 
(g) = 
(f) � Æ � 
(C). As
(C) � 0, then 
(f) � 
(g) � 0. �



Theorem. Let (G; ) be a network, 
 the costs of its edges,

and f a circulation on it. f is minimal-cost iff the network(Gf ;  f ) has no cycles of negative cost.

Proof. ). If (Gf ; 
f) had cycles of negative cost, then it

also would contain a negative-cost circulation f 0. But thenf + f 0 would have smaller cost than f .(. Let f be a circulation on (G; ) whose cost is not mini-

mal. Let f� be a minimal-cost circulation on (G; ). Thenf� � f is a negative-cost circulation on (Gf ;  f). Hence it

also contains cycles of negative cost. �



Algorithm to find a minimum-cost circulation in (G; )

with the costs of edges 
. Let f be some initial circulation.

Repeat:

1. Find a negative-cost cycle C in (Gf ;  f). If such C does

not exist, then f is a circulation of minimum cost.

2. Let Æ = mine?2C  f(e?). Let f 0 be a circulation in(Gf ;  f ), such that f 0(e?) = Æ or f 0(e?) = 0, depending

on whether e? lies on C or not.

3. Set f := f + f 0.
The initial f may be found using e.g. the Ford-Fulkerson

algorithm.
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Bellman-Ford’s algorithm may be used to find a cycle of

negative cost.

Add an additional vertex x to Gf . Add arcs of cost 0 from x

to all other vertices. Find the distances of all vertices fromx (length of edge � cost of edge); also find the shortest

paths.

If something happens at the jV j-th iteration of the Bellman-

Ford algorithm, then the back-pointers of all vertices (to

previous vertices on shortest paths) will give us a cycle of

negative length.


