Matchings and coverings



Consider a set X. We want to pair its elements.

The set of potential pairs is constrained by the relation

PC{{z,y}|z,ve X z#y}

showing which elements can be paired.
In this lecture, we assume (X, P) to be a simple graph.

Often (X, P) is a bipartite graph. E.g., X can be the set of
lecture halls and potential times of particular lectures. P
can indicate which halls can accommodate which lectures.



Let G = (V, E) be a simple graph. Matching (kooskdla)
in the graph GG 1s a set M C E of edges such that for each
v € V we have deg,,(v) < 1.

The matching 1s mazimal if 1ts cardinality is the largest
possible.

The matching M is perfect (tdielik) if deg,,(v) = 1 holds
for every v € V.






Let G = (V, E) be a simple graph, M C E a matching and
P some path (with different endpoints) in the graph G.

The path P is M-alternating (vahelduv) if its edges al-
ternately belong to the sets M and E\ M.

The path P with endpoints z and y is M -extensible (laienev)
if it is M-alternating and deg,,(z) = deg,,(y) = O.






Theorem (Berge). Matching M in the graph G = (V, E)
1s maximal iff there are no M-extensible paths in G.

Proof =. Assume to the contrary that there exists an M-
extensible path P in G.

Consider P as a set of edges.
Let M' = (M\P)U (P\M). Then |M'| = |M|+ 1.



It is easy to verify that M’ is a matching. Let v € V, we
will show that deg,,(v) < 1. There are three options.

e v is not on the path P. Then deg,,(v) = deg,.(v).
Indeed, let e € F be incident with v. As e & P, we
havee e M < ec M'.

e visanendvertex of P. Then deg,,(v) = deg,,(v)+1 =
1.

e vis an internal vertex of P. Then deg,, (v) = deg,,(v) =
1.



Proof <. We will construct an M-extensible path.

Let M* be a maximal matching in G. Then |M| < |M*|.
Consider the graph H = (V, M U M*).




For each v € V we have degy(v) < 2. Possible connected
components of H are:

e [solated vertices.

e Paths.

— Closed paths, i1.e. cycles.
x The edges of M and M* alternately.

— Open paths. Options:
x A lonely edge e € M N M*.
x The edges of M and M* alternately. Options:
- Having one end in M, another end in M*.
- Having both ends in M.
- Having both ends in M*.



Since |M| < |M*|, there must exist a connected component
of H having more edges from M* than edges from M.

The only such components are open paths having both
ends in M*.

These paths are M-extensible. []



Let G = (V, E) be a graph and let S C V. Neighbourhood
(naabrus) of S is the set

N(S)={w|weV,dec E,Fve S:E(e) =4v,w}} .

Theorem (Hall). Let G = (V, E) be a bipartite graph
with vertex set partition to X and Y. The graph G has a
matching M with the property Vz € X : deg,(z) = 1 iff
for each S C X the inequality |N(S)| > |S| holds.




Proof =. Let M be a matching with the required property.
Let S C X. Consider the set

T={ylyeY,FzeS:(z,y) € M} .

Then |T| = |S|, since each z € S defines a different y. We
also have T' C N(S), consequently |S| = |T'| < |N(S)|.



Proof <=. Let M be some maximal matching. Assume to
the contrary that there exists z € X, such that deg,,(z) =
0.

Let S C X be the set of all vertices v € X such that there
exists an M-alternating path from z to v. Note that z € S.

Let T' C Y Dbe the set of all vertices w € Y such that there
exists an M-alternating path from z to w.
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We will show that
I. N(S)=T;
I |S\{z}| = T
As a consequence, we will get a contradiction:

IN(S)| = |T| = |S\1z} = |S| =1 <|S] .



Part I. Let v € S and let P be an M-alternating path from
z to v. Note that the last edge on the path P belongs to
M.

Let w € Y be a neighbour of vertex v. There are two

options:

1. w 1s on the path P. The part of P from z to w 1s an
M-alternating path from z to w. Thus w € T..

2. w 1s not on the path P. Two options again:

e (v,w) € M. Then (v, w) is the last edge on the path
P, because there are no other edges in M incident
with v. Thus we are back to the 1st option.

o (v,w) & M. Then P together with the edge (v, w)
i1s an M-alternating path from z to w. Thus w € T.



Part II. We will construct a bijection between S\{z} and
T.

Let v € S\{z}. Then there is an edge e € M incident with
v (the last edge on the M-alternating path from z to v).
We let the other endvertex w of e to correspond to v. We
proved on the last slide that w € T.

Let w € T'. If there was no edge e € M being incident with
w, we would get an M-extensible path from = to w. Berge
Theorem forbids this, thus we have such an edge e.

We let the other endvertex v of e to correspond to w. Ob-
viously, v € S. Also, v # z, since the other endvertex of e
is not z, because deg,,(z) = 0. O



Corollary. Regular (i.e. with all vertex gedrees equal)
bipartite non-null graph has a perfect matching.

Proof. Let G = (V, E) be a bipartite graph with partition
X and Y. Let £ > 0 be the degree of all the vertices. Since

X|-k:Zdeg Zdeg =|Y| k
zeX yey
we have |X| =|Y|. Let S C X. Since
S| k=Y deg(z) < > deg(y) = [N(S)| -k,

TES yeEN(S)

we get |S| < |N(S)|. Thus there exists a matching M such
that deg,,(z) = 1 for each z € X. Since | X| = |Y|, we also
have deg,,(y) =1 foreach y € Y. ]



Let G = (V, E) be a simple graph. Cover (kate) in graph
G 1s the set K C V of vertices such that each e € F 1is

incident with some vertex from K.

Cover 1s minimal if its cardinality is the smallest possible.






Proposition. Let G = (V, E) be a simple graph, M some
of its matchings and and K some of its covers. Then
M| < |K|.

Proof. For each edge e € M, there exists a vertex v € K
such that e 1s incident with v. For different edges these
vertices differ, since the edges of M can not have common
endvertices. []



Theorem (Ko6nig). Let G = (V, E) be a bipartite graph.
Then the cardinalities of maximal matchings and minimal
covers are equal.

Proof. Let X and Y be the partition of G and let M be
one of its maximal matchings. We will construct a cover
K such that |M| = |K]|.

Let U C X be the set of such vertices u € X that deg,,(u) =
0. Then (M| = |X\U|.
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Let S C X Dbe the set of such vertices v € X that for some
u € U there exists an M-alternating path from u to v.
Then U C S.

Let T C Y be the set of all such vertices w € Y that for
some u € U there exists an M-alternating path from u to

Similarly to the proof of Hall’'s Theorem we can prove
N(S) =T and |T| = |S\U|.



Let K =T U(X\S). Then K is a cover.

Indeed, assume that there is an edge e € E that is not
incident with any vertex of K. Then one endvertex of e
is in S and another one in Y\T. Contradiction with the
observation N(S) =T.

X K Y
S 8\ | T = N(3)
U

K| = [T+ |X\S| = |S\U| + | X\S| = | X\U| = |[M] .
[



How to find maximal matchings in bipratite graphs?






find the maximal flow

the capacities of all arcs are 1



Ford-Fulkerson algorithm allows us to find the maximal

flow, assigning an integer flow to each arc.

A maximal matching in the original graph is given by the
edges that were assigned the flow 1.



There are problems where

e The edges of a bipartite graph have been assigned
costs.

e One has to find the maximal matching having the least
cost.

This exercise reduces to finding the minimum-cost maxi-

mal flow.



Example: let two pictu-
res of the same slowly-
moving objects be given,
taken in two different time
moments.

Which two blobs corres-
pond to the same object?




Finding the minimal cover in a bipartite graph:
e HFirst find a maximal matching.

e Then look at our proof of Konig’s theorem. It is const-

ructive.



