
Mat
hings and 
overings



Consider a set X. We want to pair its elements.The set of potential pairs is 
onstrained by the relationP � ffx; yg j x; y 2 X;x 6= yg;showing whi
h elements 
an be paired.In this le
ture, we assume (X;P ) to be a simple graph.Often (X;P ) is a bipartite graph. E.g., X 
an be the set ofle
ture halls and potential times of parti
ular le
tures. P
an indi
ate whi
h halls 
an a

ommodate whi
h le
tures.



Let G = (V;E) be a simple graph. Mat
hing (kooskõla)in the graph G is a set M � E of edges su
h that for ea
hv 2 V we have degM(v) � 1.The mat
hing is maximal if its 
ardinality is the largestpossible.The mat
hing M is perfe
t (täielik) if degM(v) = 1 holdsfor every v 2 V .
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Let G = (V;E) be a simple graph, M � E a mat
hing andP some path (with di�erent endpoints) in the graph G.The path P is M-alternating (vahelduv) if its edges al-ternately belong to the sets M and EnM .The path P with endpoints x and y isM-extensible (laienev)if it is M -alternating and degM(x) = degM(y) = 0.



a



Theorem (Berge). Mat
hing M in the graph G = (V;E)is maximal i� there are no M -extensible paths in G.

Proof ). Assume to the 
ontrary that there exists an M -extensible path P in G.
=) aConsider P as a set of edges.Let M 0 = (MnP ) [ (PnM). Then jM 0j = jM j+ 1.



It is easy to verify that M 0 is a mat
hing. Let v 2 V , wewill show that degM 0(v) � 1. There are three options.� v is not on the path P . Then degM(v) = degM 0(v).Indeed, let e 2 E be in
ident with v. As e 62 P , wehave e 2M , e 2M 0.� v is an endvertex of P . Then degM 0(v) = degM(v)+1 =1.� v is an internal vertex of P . Then degM 0(v) = degM(v) =1.



Proof (. We will 
onstru
t an M -extensible path.Let M� be a maximal mat
hing in G. Then jM j < jM�j.Consider the graph H = (V;M [M�).

G M M�



For ea
h v 2 V we have degH(v) � 2. Possible 
onne
ted
omponents of H are:� Isolated verti
es.� Paths.� Closed paths, i.e. 
y
les.� The edges of M and M� alternately.� Open paths. Options:� A lonely edge e 2M \M�.� The edges of M and M� alternately. Options:� Having one end in M , another end in M�.� Having both ends in M .� Having both ends in M�.



Sin
e jM j < jM�j, there must exist a 
onne
ted 
omponentof H having more edges from M� than edges from M .The only su
h 
omponents are open paths having bothends in M�.These paths are M -extensible. �



Let G = (V;E) be a graph and let S � V . Neighbourhood(naabrus) of S is the setN(S) = fw j w 2 V;9e 2 E;9v 2 S : E(e) = fv;wgg :Theorem (Hall). Let G = (V;E) be a bipartite graphwith vertex set partition to X and Y . The graph G has amat
hing M with the property 8x 2 X : degM(x) = 1 i�for ea
h S � X the inequality jN(S)j � jSj holds.



Proof). LetM be a mat
hing with the required property.Let S � X. Consider the setT = fy j y 2 Y;9x 2 S : (x; y) 2Mg :

S T

Then jT j = jSj, sin
e ea
h x 2 S de�nes a di�erent y. Wealso have T � N(S), 
onsequently jSj = jT j � jN(S)j.



Proof (. Let M be some maximal mat
hing. Assume tothe 
ontrary that there exists x 2 X, su
h that degM(x) =0.Let S � X be the set of all verti
es v 2 X su
h that thereexists anM -alternating path from x to v. Note that x 2 S.Let T � Y be the set of all verti
es w 2 Y su
h that thereexists an M -alternating path from x to w.X

Yx
v X

Yx w



We will show thatI. N(S) = T ;II. jSnfxgj = jT j.As a 
onsequen
e, we will get a 
ontradi
tion:jN(S)j = jT j = jSnfxgj = jSj � 1 < jSj :



Part I. Let v 2 S and let P be anM -alternating path fromx to v. Note that the last edge on the path P belongs toM .Let w 2 Y be a neighbour of vertex v. There are twooptions:1. w is on the path P . The part of P from x to w is anM -alternating path from x to w. Thus w 2 T .2. w is not on the path P . Two options again:� (v;w) 2M . Then (v;w) is the last edge on the pathP , be
ause there are no other edges in M in
identwith v. Thus we are ba
k to the 1st option.� (v;w) 62 M . Then P together with the edge (v;w)is anM -alternating path from x to w. Thus w 2 T .



Part II. We will 
onstru
t a bije
tion between Snfxg andT .Let v 2 Snfxg. Then there is an edge e 2M in
ident withv (the last edge on the M -alternating path from x to v).We let the other endvertex w of e to 
orrespond to v. Weproved on the last slide that w 2 T .Let w 2 T . If there was no edge e 2M being in
ident withw, we would get an M -extensible path from x to w. BergeTheorem forbids this, thus we have su
h an edge e.We let the other endvertex v of e to 
orrespond to w. Ob-viously, v 2 S. Also, v 6= x, sin
e the other endvertex of eis not x, be
ause degM(x) = 0. �



Corollary. Regular (i.e. with all vertex gedrees equal)bipartite non-null graph has a perfe
t mat
hing.

Proof. Let G = (V;E) be a bipartite graph with partitionX and Y . Let k > 0 be the degree of all the verti
es. Sin
ejXj � k =Xx2X deg(x) =Xy2Y deg(y) = jY j � k;

we have jXj = jY j. Let S � X. Sin
ejSj � k =Xx2S deg(x) � Xy2N(S)deg(y) = jN(S)j � k;

we get jSj � jN(S)j. Thus there exists a mat
hing M su
hthat degM(x) = 1 for ea
h x 2 X. Sin
e jXj = jY j, we alsohave degM(y) = 1 for ea
h y 2 Y . �



Let G = (V;E) be a simple graph. Cover (kate) in graphG is the set K � V of verti
es su
h that ea
h e 2 E isin
ident with some vertex from K.Cover is minimal if its 
ardinality is the smallest possible.
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Proposition. Let G = (V;E) be a simple graph, M someof its mat
hings and and K some of its 
overs. ThenjM j � jKj.
Proof. For ea
h edge e 2 M , there exists a vertex v 2 Ksu
h that e is in
ident with v. For di�erent edges theseverti
es di�er, sin
e the edges of M 
an not have 
ommonendverti
es. �



Theorem (König). Let G = (V;E) be a bipartite graph.Then the 
ardinalities of maximal mat
hings and minimal
overs are equal.
Proof. Let X and Y be the partition of G and let M beone of its maximal mat
hings. We will 
onstru
t a 
overK su
h that jM j = jKj.Let U � X be the set of su
h verti
es u 2 X that degM(u) =0. Then jM j = jXnU j.X Y

U



Let S � X be the set of su
h verti
es v 2 X that for someu 2 U there exists an M -alternating path from u to v.Then U � S.Let T � Y be the set of all su
h verti
es w 2 Y that forsome u 2 U there exists an M -alternating path from u tow.
U

X

Y

v
u U

X

Y wu

Similarly to the proof of Hall's Theorem we 
an proveN(S) = T and jT j = jSnU j.



Let K = T [ (XnS). Then K is a 
over.Indeed, assume that there is an edge e 2 E that is notin
ident with any vertex of K. Then one endvertex of eis in S and another one in Y nT . Contradi
tion with theobservation N(S) = T .X YS T = N(S)U
K e

jKj = jT j+ jXnSj = jSnU j+ jXnSj = jXnU j = jM j :�



How to �nd maximal mat
hings in bipratite graphs?



blaah



s t

the capacities of all arcs are 1

find the maximal flow



Ford-Fulkerson algorithm allows us to find the maximal

flow, assigning an integer flow to each arc.

A maximal matching in the original graph is given by the

edges that were assigned the flow 1.



There are problems where� The edges of a bipartite graph have been assigned

costs.� One has to find the maximal matching having the least

cost.

This exercise reduces to finding the minimum-cost maxi-

mal flow.



Example: let two pictu-

res of the same slowly-

moving objects be given,

taken in two different time

moments.

Which two blobs corres-

pond to the same object?



Finding the minimal cover in a bipartite graph:� First find a maximal matching.� Then look at our proof of König’s theorem. It is const-

ructive.


