Probabilistic proofs



A vertex colouring with k£ colours of a graph G = (V, E) is
a mapping v : V — {1,...,k}, such that y(u) # v(v) for
any edge (u,v) € E.

The chromatic number x(G) of a graph G is the smallest

k, such that GG has vertex colouring with k£ colours.

The girth g(G) of a graph G is the length of the shortest
cycle in G.

A graph with a large girth “locally looks” like a tree. Trees
can be coloured with two colours. Nevertheless

Theorem. For any k € N there exists a graph G, such
that g(G) > k and x(G) > k.

Proof follows. ..



A probability distribution on a set X is a function u :

X — |0,1], such that > u(z) =1.
zeX

(we assume that X is finite)

An event on a set X 1s a subset A C X.

Let u be fixed. Then P(4) = ) u(z).
€A

If A,B CX, then P(AUB) <P(A4) +P(B).



Let FF: X — RT. F can be seen as a random variable
with the distribution u.

The mean of F'is E(F') = ) u(z)F(z).
zeX

E is linear: E(F + F') = E(F) + E(F'). This holds even if
F' and F' are not independent.

If F(X) C {0,1}, then E(F) =P(F =1).

If AC X, then let x4 be its characteristic function. Then
E(xa) = P(A).

If F(X)CN, then E(F) > P(F > 0).



Lemma (Markov’s inequality). Let F' be a random vari-
able and a > 0. Then

P(F >a) <E(F)/a .
Proof.

E(F)=) u(@F(z)> ) w(z)F(z)

zeX zeX
F(z)>a
> Z,u(:c)-a:P(FZa)-a. ]
zeX
F(z)>a

This inequality is helpful for showing that P(F < a) is
large.



Let p € [0, 1]. Define the following probability distribution
G(n,p) on the set G,, of n-vertex labeled graphs:

Picking G according to G(n,p) (denote G + G(n,p)) pro-
ceeds as follows:
o V(G):={vy,...,u,}. Let E(G) :=0.
e Forallze{l,...,n—1}and j€e {1+ 1,...,n}
— Toss a coin, where the probability of heads is p.

— If the result was heads, then E(G) = E(G) U
{(vs,v5)}-

— The coin-tosses must be mutually independent.

In the following denote ¢ = 1 — p.



Example. Picking an (unlabeled) graph according to §(3, p)
gives us the following graphs with the following probabili-
ties:

E(A) = 3pg® +6p°q+p°. If p=¢qg=1/2, then E(A) = 5/4.



Let G < Y(n,p). Let H be a fixed graph with n’ < n

vertices and m’ edges.

Let ¢ : V(H) — V(G) be an injective function. The
probability that 1 locates a copy of H as a subgraph of G,
is p™ .
The probability that 9 locates an induced subgraph H of
G is pm'q(g/)_m/.
In general, P(H — G) < Y  P(H = G[U)).

UCV(G)

U|=n/
This sum 1s the average number of times H occurs in G as
an induced subgraph.



Lemma. Let G < §(n,p). The average number of k-

vertex cliques in G is (Z) p(g) and the average number of

k-vertex independent sets is (Z)q(g)

Proof. Fix U C V(G), such that |U| = k. The probability
that U 1s a clique is p(g)

The average number of cliques in position U is p(g)

There are () possible positions, and we can just add the

averages. []

Let a(G) be the size of the largest independent set that G
contains. Then P(a > k) < ('Z)q(g)

Recall that x(G) > n/a(G), where n is the number of
vertices of G.



Denote

(n)y=n(n—1)(n-2)---(n—k+1) .
Lemma. Let G < G(n,p). The average number of cycles
of length k > 3 in G is p*(n)i/2k.

Proof. A cycle of length k is determined by a sequence
(v1, Vg, ..., V) of different vertices of G.

Such a sequence can be chosen in (n); different ways. Each
cycle corresponds to 2k such sequences.

The probability that G contains the edges (vy, v2), (v2, v3),- - -,

(vk—l)vk)7 ('Uk,'Ul) 1S pk L]



Let X;(G) be the number of cycles of length at most & in
the graph G. If G < G(n, p), then

k (
k—2 .- knk lf,npz]_

1 ;i k=2nkp
2 Z_ k—2 1

L 2n3p3 " 1-np?

E[X] =

i—3 fnp <1

This is an upper bound for P(g < k).



To show the existence of a graph G with g(G) > k and
x(G) > k we could try to fix n and p so, that

Plg<k—1)+Pla>n/k)<1.

It turns out that there are no such n and p. ..



We will show that we can fix n and p so, that
o P(X;,>n/2) <1/2;
e P(a>n/2k) <1/2.
We fix p as a function of n so, that both of those

probabilities approach 0 if n — oo.

Hence there exists an n-vertex graph GG containing less than
n/2 cycles of length > k, and no independent set of size
n/2k. Let H be a graph obtained from G by removing one
vertex from each of those short cycles.

V(H)| > n/2. Obviously g(H) > k and a(H) < n/2k <
|V(H)|/k. Hence k colours are not sufficient to colour H.



Fix € € R, such that 0 < € < 1/k. Let p = n®*. Then
O0<p <Ll

k—2 4 & o
2-(n/2) ©

P(X, > n/2) <E[Xy]/(n/2) <

e because np =nf >n =1.

As ke — 1 < 0, the above expression tends to 0 if n — oo.



Let r be such, that n > r > n/2k.
Note that p > (6kIlnn)/n if n is large enough.

r(r—1)

P(a>r) < (”)q@ <n'q 7z =(ng" V)<
T

—p(r—1)/2\r — —pr/24+p/2\r —(3/2)Inn+p/2\r
(ne /2y = (e Y < (ne y <

(nn—3/2el/2)r _ (e/n)r/2 .
e because 1l —p<e?Pif0<p<1

e because of the lower bounds on 7 and p

If n — oo, then e/n — 0 and /2 — oo. Hence the whole
expression tends to O. []



Let us now consider simple graphs with countably many
vertices. In particular, consider graphs distributed accord-

ing to §(N, 1/2).

Theorem. Let G; + G(N,1/2) and G, + §G(N,1/2),
where (G; and G, are two independent random variables.
Then the following event occurs with probability 1:

There exists an isomorphism from G; to Gs.

In other words, there exists exactly one random countably
infinite simple graph.



Consider the following property (*), that a graph G =
(V, E) may or may not satisfy:

e for any finite U W CV, where UNW =0
e exists z € V\(UUW)

e such that
— forallu € U, (u,z) € V;
—forallw e W, (w,2z) € V.



Lemma. Let G + G(N,1/2). Then G satisfies (*) with
probability 1.

Proof. Fix U and W. If we also fix 2z, then the probability
of (*) holding is 1/2IVI+IW| We have infinitely many choices
for z, thus the probability of (*) holding for some choice
of z 1s 1. []



Lemma. Let Gl = (W,El) and G2 = (%,Eg) be two
countably infinite simple graphs that satisfy (*). Then
G1 = G,.

Proof. Identify both V; and V, with N.

We construct the isomorphism ¢ : V; — V5, in rounds.

e In the beginning, ¢ i1s everywhere undefined. HEach
round defines ¢ for one element of V; (and V).

e For any v; € Vi, p(v;) will be defined after a finite
number of rounds.

e For any vy, € Vs, ¢ *(vy) will be defined after a finite
number of rounds.

After countably many rounds, we have a uniquely defined
bijection between V; and V;. It will be an isomorphism.



n-th round (for odd n):
o Let z, = min{z € V1 | p(z) is undefined}.
o Let U, ={v e Vi|(z,,v) € E1 A p(v) is defined }.
o Let W, ={veVi|(z,,v) & E1 A p(v) is defined }.

e By (*) for G,, there exists some y, € V\(¢(U,) U
©(W,)), such that y, is connected to all vertices in
¢(U,) and to no vertices in (W,,).

— ! is defined only for vertices in ¢(U,) U p(W,,),
— hence ¢~ !(y,) is not defined.

e Let the new value of ¢ be p|z, — Y]



n-th round (for even n) (just swap G; and G»):
e Let y, = min{y € V3| ¢ !(y) is undefined}.
o Let U, ={v € V3| (yn,v) € Ex A p~!(v) is defined}.
o Let W,, = {v € V5| (yn,v) € Ex A p(v) is defined }.

e By (*) for Gy, there exists some z, € Vi\(p 1 (U,) U
@ *(W,)), such that z, is connected to all vertices in
0 *(U,) and to no vertices in ¢~ 1(W,,).

— ¢ is defined only for vertices in ¢~} (U,)Up 1 (W,,),
— hence ¢(z,) is not defined.

e Let the new value of ¢ be p|z, — y,]. [

From those two lemmas, the theorem immediately follows.
[]



