Finding a maximum matching
(in any graph)

To find a maximum matching in a graph G = (V, E), let
us start from any matching M.

It might be empty; or constructed with the greedy algorit-
hm.

By Berge’s theorem:

e If we can find M-extensible paths for any non-maximal
M, then we can increase the matching until it becomes
maximal.

By our proof of Berge’s theorem:

e Increasing the matching M will give us a M-extensible
path.

We need to find an M-extensible path.

P
We are going to search it in the oriented graph G:

V(Gu) =V
B(Gu) = {(u,w)|3v € V : (u,v) € B\M, (v,w) € M} .

—

./:\- E\M G

Let W = {v € V' |deg,,(v) = 0}.

>
Any directed path in G;; from W to N(W) corresponds to
an M-extensible walk (not necessarily a path).

M-extensible walk (not path) from wu to v:

ué\

AN

(Ve ~—_ —

But we need to find a path, not a walk. ..

Lemma. Let P = vg—v; —- - - —v,, be aminimum-length
M-extensible walk from W (i.e. vg € W) to some v = v,,.
One of the following holds:

e P 1s a path.

e There exist such 0 <172 < 7 < m, that
(1) vi = vy
(ii) 2 is even, 7 is odd
— meaning that v;—v;;; and v;_; —v; are not in
M;

(iii) wvp,...,v;_1 are all distinct.

Proof. If P is a path then the lemma holds. Assume P is
not a path.
Let 1, 7 be defined by v, being the first vertex that coincides

with some earlier v;. This choice satisfies (i) and (iii).

If (7 — 1) were even, then...

P.--\K—v-
— S

\ .

P would not be of minimum length.

If 2 would be odd and 5 would be even, then. ..

U Vo Vi—1 Vi1 Vit

vi+1 would equal v,_;.

'This contradicts the choice of v;.

Let G = (V, F) be a simple graph and U C V. The cont-
raction (kokkutombamine) of U in G gives us the simple
graph G /U, where

e instead of vertices of U, we have a single new vertex u;

e all neighbours of U are connected to u.

U

G G/U

Also define:
o If H LG, then G/H=G/V(H).

o If M C E(G) jaU C V(G), then M/U is the set of
edges of the graph (V(G), M)/U.

U

G G/U

Let M be a matching in G = (V,E). A cycle C < G is
M-blossom (M-61s), if

o |V(C)| =2k—+1 for some k € N;

o |E(C)NM|=k.

e (passes through a vertex not covered by M.

Theorem. Let M be a matching in G = (V, E). Let C be
an M-blossom. M is a maximal matching in G iff M/C is
a maximal matching in G/C.

Proof. Let ¢ € V(G/C) be the vertex that C was contracted
to.

M /C does not cover C, because no edge in M is between
V(C) and V(G)\V(C).

Proof by contradiction:

1. M not maximal = M/C not maximal.

Let P be a M-extensible path in GG. If P does not intersect
C, then it is a M /C-extensible path in G/C.

If P intersects C, then at least one of its endpoints v is
outside C.

e Because C contains only one vertex not covered by M.

Let @ be a subpath of P from v to the first vertex in C.
Then @ is M /C-extensible in G/C.

T O

Q

2. M/C not maximal = M not maximal.

Let P be a M/C-extensible path in G/C. If it does not
contain c, then it 1s also M-extensible in G.

If P contains ¢, then c is one of the end-vertices of P. Let
e v be c’s neighbour on P;

e u be the other end-vertex of P.

u P

Construct a M-extensible path in G by
e Going from u to v along P;
e stepping from v to some vertex in C;

e going along C from that vertex to the vertex not co-
vered by M. []

Algorithm for increasing the matching M in G by an edge:
1. Find the minimum-length M-extensible walk P from
W to W.

e Find the shortest directed path from W to N(W)

L =
in Gjy.

o
— Do a breadth-first traversal of Gy,.
2. If no such P exists, then M i1s maximal. Stop.

3. If P is a path, then return M A E(P).
e AN B=(A\B)U(B\A).

4. If P =vy—v;—--—7p 1s not a path then let v, be
the first vertex, such that 3¢ < 7 : v, = v;.

—=
Vo U1
Ui—1 = V54

M remains a matching because only deg,,(vy) increased.

C =v;,—vjy1—---—v; 1s a M-blossom.

6. Recursively invoke the algorithm for M/C and G/C.
7. If M/C is maximal, then M is maximal. Stop.

8. If a matching N was returned, then

e If degy(c) =0, then return

(NNE(G\C)U(MnNEC)) .

e If deg,(c) = 1 then return
(NNE(G\C))U{v—w}tu MZ

where
— v is the vertex, such that {v,c} € N;
— w € V(C) is a neighbour of v in G;

— MY 1s the maximum matching in C not covering
w.

Complexity:

e To find a maximal matching, the previous algorithm
has to be called up to |V|/2 times.

e During one execution of the algorithm:

— The walk P can be found in time O(|E|). The matc-
hing M can be updated in time O(|E|).

— The recursion depth is O(|V]).

One execution requires O(|V| - |E|) time altogether.

e Maximal matching can be found in time O(|V|? - |E]).

G M w N(W)
Shortest M-extensible walk

G M w N(W)
M-blossom

G/C M/C W N(W)

G M w N(W)
Shortest M-extensible walk

G M W N(W)

Shortest M-extensible walk
A cycle on that walk

G M W N(W)

Shortest M-extensible walk
M-blossom

G/C M/C W N(W)

G M w N(W)
Shortest M-extensible walk

G M w N(W)
M-blossom

G/C M/C W N(W)

G M w N(W)
M-blossom

G/C M/C W N(W)

G M w N(W)
Shortest M-extensible walk

|

e

|

PP

