Ramsey theory
Probabilistic proofs



Let G = (V, E) be a graph. The vertex subset S C V is
called a clique if any two (different) vertices u,v € S are
joined by an edge in G.

In other words, S i1s a clique if the induced subrgraph
G|S] is complete.
The vertex subset S C V 1is called independent if none

of the two vertices of S are joined by an edge.

In other words, S 1s independent if the induced subrgraph
G|S]| is a null graph.



Proposition. Let G = (V, E) be a simple graph such
that |VV| > 6. Then this graph has a 3-element clique or
a 3-element independent vertex subset.

Proof. Let v € V be a vertex and let
e X = N(v) (the set of neighbours of v);
e Y = N(v) =V\(XU{v}) (the non-neighbours of v).

Since | X |+ |Y| = |XUY|=|V|—1> 5, we have | X| > 3
or |Y| > 3. Assume |X| > 3. There are two options:

e X 1s an independent set.

e There exist u,w € X, such that (u,w) € E. Then
{u,v,w} is a clique.

The case |Y| > 3 is similar (instead of G we have G). [



Let r(k,l) denote the least integer (if it exists) such that
for each simple graph G = (V, E), where |V| > r(k, 1),

Ky — G or O; — G holds.

|Here — denotes being an induced subrgaph.|

We will show that r(k,[) exists for all £,/ € N and we
will also give some upper and lower bounds.

The first proposition showed that r(3, 3) exists and is at
most 6.

Since K3 4~ Cs and O3 ¥~ C5, we have 7(3,3) = 6.

Lemma. If r(k, 1) exists, then r(I, k) also exists and r(, k) =
r(k,1).

Proof. Obvious — we can exchange edges and non-edges. [



Lemma. Let k,I € N. The quantities 7(k, 1) and r(k, 2)
exist. More precisely, (k,1) = 1 and r(k,2) = k.
Similarly, (1,1) =1 and 7(2,1) = L.

Proof. O; is just a single vertex which is contained in any
other graph. Thus r(k,1) = 1.

Let G = (V, E) be a simple graph with |V| = k. If G = K},
then K, — G. If G # K} then consider u,v € V such
that (u,v) € E. Then G|{u,v}| = O,.

We have shown that r(k,2) < k. At the same time K}
Ky 1 and Oy 4 Kj ;. Thus r(k,2) = k. H



Theorem. Let k,l € N, such that £k > 2 and [ > 2. Then
r(k,l) exists and r(k,1) <r(k—1,1) +r(k,1 —1).

Proof. Induction over k + [.

Base. k+1 = 4. Then £k = [ = 2. The previous lemma

gives

r(2,2)=2=1+1=r(1,2)+r(2,1) .

Step. Induction hypothesis gives that r(k—1,7) and r(k,l — 1)
exist.

Let G = (V, E) be a simple graph, such that
Vi=rk—1,0)+r(k1-1).

Let v € V; consider the sets N(v) and N(v).



Since |[N(v)| + |[N(v)| = r(k — 1,1) + r(k,1 — 1) — 1, at
least one of the following inequalities holds:

1. IN(v)| > r(k—1,1).

2. [N(v)| > r(k,l —1).

In the first case consider the graph G|N(v)|. There are
two options:

e K; 1 — G|N(v)]. Let S C N(v) be a (k—1)-element
clique. Then S U{v} is a k-element clique.

¢ O, — G|N(v)]. Then O; — G, too.



In the other case consider the graph G[N(v)]. There are

two options:

e Oy_1 — G[N(v)]. Let S C N(v) be an (I — 1)- ele-
ment independent set. Then S U {v} is an [-element

independent set.

e K; — G|N(v)]. Then K; — G, too.

We have shown that any (r(k — 1,1) + r(k,l — 1))-vertex
graph has a k-element clique or an /-element independent
set. Thus r(k,![) is at most r(k — 1,1) + r(k,l —1). O



Corollary. If r(k — 1,1) and r(k,l — 1) are even, then
r(k,l)<r(k—1,0)+r(k,1—1)—1.

Proof. Let G = (V, E) be a simple graph, where |V| =
r(k—1,1)4+r(k,l—1)—1. Let v € V be such that |[N(v)|

is even. Such a v exists, because |V| is odd.

Since both |N(v)| and |N(v)| are even, at least one of the
following inequalities holds:

1. IN(v)| > r(k—1,1).

2. [N(v)| > r(k,l —1).

The proof can be completed the same way as the proof
of the previous theorem. []



k—1
Proof. r(1,1) =r(1,2) =7(2,1) =1=(3) = (;) = ().

0 1

k+1—2
Proposition. r(k,1) < < T )

We use induction over k + [ for the other values of k£ and
[. We have completed the base k +1 < 3.

Step. Let k41 > 4. Then r(k,l) < r(k—1,0)+7r(k,1—1) <
(9 + (15 = () -



The numbers r(k, ) can be generalized.

r(k,1) is the least number n, such that if the edges of K,
are colored with two colors (not necessarily in a correct
manner) then there exists a monochromatic subrgaph Kj
of the first color or a monochromatic subrgaph K; of the
second color.

Let r(ai,...,ar) be the least number n, such that if the
edges of K,, are colored with k colors, then there exists a
monochromatic subrgaph K, of the color a;.



The inequality

r(ay,...,ag) <
r(a; —1,as,...,ax) + r(a1,a2 — 1,a3,...,ax) + -+

r(ay,...,ax 1,0, — 1) — (k — 2)

holds and 7(...,1,...) = 1.

Proof i1s similar to the case k = 2.



Theorem. If k > 2, then r(k, k) > 2%/2,

Proof. Let n < 2¥/2 and let G,, be the set of all n-vertex
simple graphs. We have to show that there exists G € (&,
such that Ky 4 G and O, ¥ G.

Consider a set X and some predicate P on it, i.e. a func-
tion P : X — {true,false}. Say, we need to prove that
there exists z € X, such that P(z) holds.

For that it is enough to prove that selecting a random
element z € X, we have P[P(z)] > 0.



In order to define what it means to select a graph ran-
domly from the set (,,, we need to fix a probability dist-
ribution on this set.

Consider the elements of G,, to be labeled simple graphs
on n vertices (with vertex labels from the set {1,...,n}).
Then |G,| = 2(3).

Let the vertex set of G € G,, be {vy,...,v,}, where the

label of v; 1s 1.

Let G be a uniformly chosen random labeled graph from
the set G,

We will find upper bounds for P|K; — G| and
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Similarly, if & > 3, then P[0, — G| < 1/2.

We had P(G) = ,,Kx 4> G and O 4 G“. If k£ > 3, we
get

l1-PKy —-G]—PlO,—G]|>1-1/2-1/2=0 .
Thus, if £ > 3, we have r(k, k) > 2+/2
If k =2, then r(k, k) = 2 = 2F/2, ]

Exact values of r(k,l) are known only for a few pairs
(k,1). A dynamic survey can be found at

http://www.combinatorics.org/Surveys/dsl.ps



