Planar graphs



Graph is planar (tasandliline), if it can be drawn in
the plane so that its edges do not intersect outside the

vertices.
Example: K, is planar, ()3 1s planar, K33 1s not.

This definition is not formally strict, because “drawing”

1s not a mathematical term.

Next we will give one mathematical definition of drawing,
but we will use the intuitive one in what follows anyway.



A curve (kéver) in the Euclidean space R” is a function
v : la,b] — R”, where a,b € R.

The curve 7y is continuous (pidev), if for every y € R we
have lim y(z) = v(y).
T—Y

The length of the curve 7 is
k

sup{) d(y(tic1),7(t:)) |k €EN,a =10 <ty <... <t =b} .
i=1

Jordan curve i1s a non-self-intersecting continuos curve
that has a length (note that a curve is not guaranteed to
have it). Let J, be the set of all Jordan curves in the
space R".



A drawing of the graph G = (V, E) in the space R” is a
pair of mappings

Ly . V — R"
g B — J,,
such that
e .y and .y are injective.

o If E(e) = {u, v}, then the endpoints of Lz (e) are ¢y (u)
and ty(v).

e The curves tg(e;) intersect each other only in their
endpoints.

Graph is planar, if it has a drawing in the space R2.



The drawing of a graph partitions the portion of the plane
not covered by the drawing.

Iy
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These parts are called faces (tahud).
The face F3 is infinite face.

A planar graph can be drawn in such a way that any face
1s infinite.

— A planar graph be drawn so that any edge is outer.
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Every face has a number of sides (kuljed).

e The number of sides: f; — 4, fo — 3, f3 — 8, fa —
5.

e If some side has the same face on both sides, this side
1s counted twice.

e The number of all sides of all the faces is equal to the
double of the number of edges in the graph.



Theorem (Euler). Let G be a connected planar graph.
Let

e n — the number of vertices of G,
e m — the number of edges of G,

e f — the number of faces of G.
Thenn+ f —m = 2.
Proof. Induction on the number of edges.

Base. G 1s a tree. Thenn=m+ 1 and f = 1. Thus
n+f-m=m+1+1—m=2.



Step. Let GG be a graph having m edges and not being a
tree. There exists an edge e such that when it is deleted,

(& still remains connected.

The graph G — e has one edge and one face less than the
graph G. According to the induction hypothesis, we have
n+(f—1)—(m—1) =2. This implies n+ f —m = 2.0J



Corollary. Let GG be a planar graph. Let

e n — the number of vertices of G,
e m — the number of edges of G,
e f — the number of faces of G,

e k — the number of connected components of G.

Thenn+ f—m=k+ 1.

Proof. Apply the previous theorem to every connected
component of G. The infinite face is counted only once.

]



Corollary. If G 1s a simple planar connected graph hav-
ing at least three vertices, then m < 3n — 6 (again, m is
the number of edges and n is the number of vertices).

Proof. Each face of the drawing of such a simple graph
has at least 3 sides. Every side belongs to two sides,

hence

2m = Z (# of F's sides) > 3f .

F' is a face
Eluler’s theorem gives

2 3n —m
2:n+f—m§n+§m—m: 3

or 3n — m > 6. []




Corollary. K; is not planar.

Proof. In the graph K5, we have n = 5 and m = 10. If
Ks would be planar, then the previous corollary would
imply m < 3n —6 or 10 < 9. []



Corollary. If G is a simple planar connected graph hav-
ing at least three vertices, but no cycles of length 3, then
m < 2n — 4.

Proof. Each face of the drawing of such a simple graph
has at least 4 sides. Every side belongs to two sides,
hence 2m > 4f. Euler’s theorem gives

1 2n —m
2:n+f—m§n+§m—m: >

or 2n — m > 4. []




Corollary. Kj 3 1s not planar.

Toestus. In the graph K33 we have n = 6 and m = 9.
Evenmore, K33 has no cycles of length 3. If K53 would
be planar, then the previous corollary would imply m <
2n — 4 or 9 < 8. []



Corollary. FEach planar simple graph has a vertex of

degree at most 5.

Proof. Let G be a connected component of such a graph.
Assume to the contrary that all the vertices of G have

degree > 6.

Since every edge is incident to two vertices, we have 6n <
2m or m > 3n. At the same time we have proven that
m < 3n — 6. A contradiction. []



The operation of sudividing (poolitamine) an edge (G —
G'):
G G’

The edge e is replaced by a the vertex w and edges €', e”.

Graphs G; and G, are homeomorphic (homéomorfsed),
if there exists a graph G such that G; and G, can be
obtained from G by subdividing the edges.



Theorem (Kuratowski). A graph is planar iff it has no
subgraphs homeomorphic to K5 or K.

Stating it otherwise, graph G is not planar iff it “contains”
Ky or K3 in the following way:

e The vertices of K5 or K33 are some vertices of G.
e The edges of K5 or K33 are some simple paths of G-s.

e These paths do not intersect anywhere but in the
vertices.



Proof. Assume to the contrary that there exist non-
planar graphs that do not contain Ky nor K3;. Let G
be such a graph and let its edge set cardinality be the
smallest possible.

The following holds true for G:
e (G 1s a simple graph.
e (G 1s connected.
e (G has no bridges.

e (& has no cut-vertices.

Let e be one of the edges of the graph G and let £(e) =
{u,v}. Let ' =G — {e}. Then F' is planar, since it does
not contain Ky nor Ksjs.



Claim 1. The graph F' has no vertex w, such that F

would be of the form
F

i.e. F\w would have u and v in different connected com-

ponents.



Assume to the contrary that F' has the form
F
Let F' be the graph obtained from F' by adding two edges:

F/
w



Let B; and B, be the following graphs:

F/
w

B, B,
E w @

Graphs B; and B, have less edges than (G, thus they
satisfy the claim of the theorem

There are two options:



1st option. B; (or B,) contains either Ky or Kj .
This embedding must use the edge between u and w.

Then G contains either Ky or Kjs:
G

B

”

The new edge can be replaced by a simple path outside
B;.




2nd option. B; and B, are planar.

Then G 1s planar as well: draw B; and B, so that the

new edges would be outer:

Bl B2

Claim 1 1s proven.



Claim 2. There exists a cycle containing both u and v.

First make some observations about u (and v).

e 1 is not a cut-vertex of F' (as F\u = G\u, it would
then also be a cut-vertex of G)

e u and v are not neighbours in F' (otherwise there
would be a multiple edge between them in G)

e u has at least two neighbours in F' (if it had only
one, removing it would cause u and v ending up in

different connected components)

e Consequently, the edges incident with « can not be
bridges



Let U C V(F)\{u} be the set of all vertices that are on
some cycle together with u.

Assume to the contrary that v € U.
First we prove that U # 0.

Let u’' be a neighbour of u in F. Since {u,u'} is not a
bridge, there exists a path u ~» «' in F\{u,u'}. This
path together with {u,u'} is a cycle proving that v’ € U.

Let w € U be the vertex having the minimal distance
from v. Let

e [, — the shortest simple path from w to v;
e P, P, — non-intersecting simple paths from u to w.

Due to the choice of w, B, does not intersect P; and P.



o Let P’ be a simple path u ~» v not passing through
w (it exists due to Claim 1, since otherwise removing
w would disconnect u and v);

o Let w' be the first (starting from u) vertex on the
path P’ that is also on the path Fg;

o Let u' be the last (starting from u) vertex on the
path P’ before w’' that is also on the path P, or PB,.
W.l.o.g. assume that it 1s on P;.

P2 PO P’ P1 .
u ~> w ~> w ~ u ~ uis acycle, thus w' € U and

d(w',v) < d(w,v). Contradiction with the choice of w.



Let F' be drawn in the plane and let C' be a cycle con-
taining v and v. Choose the drawing and the cycle so
that the number of faces remaining inside C is as large

as possible.




Besides the cycle C the graph F' has more components.
Some of them are inner, some outer.

Let £ and y be two vertices on C. We say that some
inner /outer component separates x and y if it is on the
way when drawing a line from z to y inside/outside C.

L C



All the outer components seprate © and v and are joined
with C by exactly two edges:

C/

Otherwise we would get another drawing / cycle contain-

ing more faces.



Claim 3. There exist an inner component and an outer
component (being joined with C' at vertices v’ and v') so
that the inner component separates both u, v and ', v’




Proof of the claim: Let I be an inner component sepa-
rating u and v such that it does not separate any two

vertices where some outer component 1s joined with C-

C




We can take I out:

ST O




If the Claim 3 would not hold, we could take out all the
inner components separating v and v. Then we can put
back the edge e. Thus G would be planar; a contradic-
tion. Thus the Claim 3 holds.




Let =,y be the vertices that I has separating u and v.

Let z’, v’ be the vertices that [ has separating u' and v'.

They can be arranged in several ways. We will consider
them and find K5 or K33 from G 1n all cases.



1st way. z’, v’ differ from v and v and I separates u and
v due to z/, ¢y’ as well.




2nd way z', v’ differ from u and v and [ does not separate

u and v due to z’, v'.

We can assume that z’, ¢y’ are on the same side as z.

1st option. y is between u and v'.




2nd way. z’, vy’ differ from v and v and I does not sepa-

rate u and v due to 2/, ¥'.

We can assume that 2, ¥y’ are on the same side as z.

2nd option. vy is between v’ and wv.




2nd way. z',vy differ from v and v and I does not sepa-

rate © and v due to 2/, vy’'.

We can assume that 2, ¥y’ are on the same side as z.

3rd option. y = v'.




3rd way. £’ = u and ¥y’ # v. Assume that vy’ is between

u' and v.

1st option. y is between u and v'.




3rd way. £’ = u and ¥y’ # v. Assume that vy’ is between

u' and v.

2nd option. vy is between v’ and v or y = v'.




4th way. ¢’ = v and y' = v.

If x and y are not 4’ and ', then we exchange the nota-
tions (u < u',v < v,z « 2,y < ¢, e + the path outside C).
We are back to one of the three first ways.



We are left with thecase ' =u, vy =v, z =v/, y =v'.

The vertices neighbouring u, v, u/, v’ within the inner com-
ponent are connected somehow within the component.

The first possible connection:

T




The second possible connection:

The theorem is proven.



Edge contraction (kokkutombamine) (G — G'):

G G’

I/

When edges are contracted, a planar graph remains pla-
nar.

Theorem (Wagner). A graph is planar iff it has no
subrgaphs contractible to K5 or Ks3.



Proof. If G is planar, then all its subrgaphs are planar.
If we contract edges in a planar subgraph, we still get a

planar graph, thus we can’t get K5 or Kss.

If G 1s not planar then there exists H < G such that H
1s homeomorphic to K5 or Ks3. Contracting the edges
we can reverse the effect of subdividivision. []



