
Planar graphs



Graph is planar (tasandliline), if it can be drawn in

the plane so that its edges do not intersect outside the

vertices.

Example: K4 is planar, Q3 is planar, K3;3 is not.

This definition is not formally strict, because “drawing”

is not a mathematical term.

Next we will give one mathematical definition of drawing,

but we will use the intuitive one in what follows anyway.



A curve (kõver ) in the Euclidean space R n is a function
 : [a; b℄ −→ R n, where a; b 2 R .

The curve 
 is continuous (pidev), if for every y 2 R we

have limx!y 
(x) = 
(y).
The length of the curve 
 is

supf kXi=1 d(
(ti�1); 
(ti)) j k 2 N ; a = t0 < t1 < : : : < tk = bg :

Jordan curve is a non-self-intersecting continuos curve

that has a length (note that a curve is not guaranteed to

have it). Let Jn be the set of all Jordan curves in the

space R n.



A drawing of the graph G = (V;E) in the space R n is a

pair of mappings �V : V −→ R n�E : E −→ Jn;
such that� �V and �E are injective.� If E(e) = fu; vg, then the endpoints of �E(e) are �V (u)

and �V (v).� The curves �E(ei) intersect each other only in their

endpoints.

Graph is planar , if it has a drawing in the space R 2.



The drawing of a graph partitions the portion of the plane

not covered by the drawing.

F1
F2

F3
These parts are called faces (tahud).

The face F3 is infinite face .

A planar graph can be drawn in such a way that any face

is infinite.) A planar graph be drawn so that any edge is outer.



f1
f2

f3

f4
Every face has a number of sides (küljed).� The number of sides: f1 — 4, f2 — 3, f3 — 8, f4 —

5.� If some side has the same face on both sides, this side

is counted twice.� The number of all sides of all the faces is equal to the

double of the number of edges in the graph.



Theorem (Euler). Let G be a connected planar graph.

Let� n — the number of vertices of G,� m — the number of edges of G,� f — the number of faces of G.

Then n+ f �m = 2.
Proof. Induction on the number of edges.

Base. G is a tree. Then n = m+ 1 and f = 1. Thusn+ f �m = m+ 1 + 1�m = 2.



Step. Let G be a graph having m edges and not being a

tree. There exists an edge e such that when it is deleted,G still remains connected.

e
The graph G� e has one edge and one face less than the

graph G. According to the induction hypothesis, we haven+(f � 1)� (m� 1) = 2. This implies n+ f �m = 2.�



Corollary. Let G be a planar graph. Let� n — the number of vertices of G,� m — the number of edges of G,� f — the number of faces of G,� k — the number of connected components of G.

Then n+ f �m = k + 1.
Proof. Apply the previous theorem to every connected

component of G. The infinite face is counted only once.�



Corollary. If G is a simple planar connected graph hav-

ing at least three vertices, then m � 3n� 6 (again, m is

the number of edges and n is the number of vertices).

Proof. Each face of the drawing of such a simple graph

has at least 3 sides. Every side belongs to two sides,

hence 2m = XF is a face

h# of F ’s sidesi � 3f :
Euler’s theorem gives

2 = n+ f �m � n+ 23m�m = 3n�m3
or 3n�m � 6. �



Corollary. K5 is not planar.

Proof. In the graph K5, we have n = 5 and m = 10. IfK5 would be planar, then the previous corollary would

imply m � 3n� 6 or 10 � 9. �



Corollary. If G is a simple planar connected graph hav-

ing at least three vertices, but no cycles of length 3, thenm � 2n� 4.
Proof. Each face of the drawing of such a simple graph

has at least 4 sides. Every side belongs to two sides,

hence 2m � 4f . Euler’s theorem gives

2 = n+ f �m � n+ 12m�m = 2n�m2
or 2n�m � 4. �



Corollary. K3;3 is not planar.

Tõestus. In the graph K3;3 we have n = 6 and m = 9.
Evenmore, K3;3 has no cycles of length 3. If K3;3 would

be planar, then the previous corollary would imply m �2n� 4 or 9 � 8. �



Corollary. Each planar simple graph has a vertex of

degree at most 5.
Proof. Let G be a connected component of such a graph.

Assume to the contrary that all the vertices of G have

degree � 6.
Since every edge is incident to two vertices, we have 6n �2m or m � 3n. At the same time we have proven thatm � 3n� 6. A contradiction. �



The operation of sudividing (poolitamine) an edge (G =)G0):

u
v

G0u
v

G
e we00 e0

The edge e is replaced by a the vertex w and edges e0, e00.
Graphs G1 and G2 are homeomorphic (homöomorfsed),

if there exists a graph G such that G1 and G2 can be

obtained from G by subdividing the edges.



Theorem (Kuratowski). A graph is planar iff it has no

subgraphs homeomorphic to K5 or K3;3.
Stating it otherwise, graph G is not planar iff it “contains”K5 or K3;3 in the following way:� The vertices of K5 or K3;3 are some vertices of G.� The edges of K5 or K3;3 are some simple paths of G-s.� These paths do not intersect anywhere but in the

vertices.



Proof. Assume to the contrary that there exist non-

planar graphs that do not contain K5 nor K3;3. Let G

be such a graph and let its edge set cardinality be the

smallest possible.

The following holds true for G:� G is a simple graph.� G is connected.� G has no bridges.� G has no cut-vertices.

Let e be one of the edges of the graph G and let E(e) =fu; vg. Let F = G�feg. Then F is planar, since it does

not contain K5 nor K3;3.



Claim 1. The graph F has no vertex w, such that F

would be of the form

u vwF

i.e. Fnw would have u and v in different connected com-

ponents.



Assume to the contrary that F has the form

u vwF
Let F 0 be the graph obtained from F by adding two edges:

u vwF 0



Let B1 and B2 be the following graphs:

u vwF 0
u wB1

vw B2
Graphs B1 and B2 have less edges than G, thus they

satisfy the claim of the theorem

There are two options:



1st option. B1 (or B2) contains either K5 or K3;3.
This embedding must use the edge between u and w.

Then G contains either K5 or K3;3:
eu

GB1 w v
The new edge can be replaced by a simple path outsideB1.



2nd option. B1 and B2 are planar.

Then G is planar as well: draw B1 and B2 so that the

new edges would be outer:B1 B2

u w ve

G

Claim 1 is proven.



Claim 2. There exists a cycle containing both u and v.
First make some observations about u (and v).� u is not a cut-vertex of F (as Fnu = Gnu, it would

then also be a cut-vertex of G)� u and v are not neighbours in F (otherwise there

would be a multiple edge between them in G)� u has at least two neighbours in F (if it had only

one, removing it would cause u and v ending up in

different connected components)� Consequently, the edges incident with u can not be

bridges



Let U � V (F )nfug be the set of all vertices that are on

some cycle together with u.

Assume to the contrary that v 62 U .

First we prove that U 6= ;.
Let u0 be a neighbour of u in F . Since fu; u0g is not a

bridge, there exists a path u  u0 in Fnfu; u0g. This

path together with fu; u0g is a cycle proving that u0 2 U .

Let w 2 U be the vertex having the minimal distance

from v. Let� P0 – the shortest simple path from w to v;� P1, P2 – non-intersecting simple paths from u to w.

Due to the choice of w, P0 does not intersect P1 and P2.



u vu0
w0

P1
P2

P 0 P0w
� Let P 0 be a simple path u  v not passing throughw (it exists due to Claim 1, since otherwise removingw would disconnect u and v);� Let w0 be the first (starting from u) vertex on the

path P 0 that is also on the path P0;� Let u0 be the last (starting from u) vertex on the

path P 0 before w0 that is also on the path P1 or P2.
W.l.o.g. assume that it is on P1.u P2 w P0 w0 P 0 u0 P1 u is a cycle, thus w0 2 U andd(w0; v) < d(w; v). Contradiction with the choice of w.



Let F be drawn in the plane and let C be a cycle con-

taining u and v. Choose the drawing and the cycle so

that the number of faces remaining inside C is as large

as possible.

u v
C



Besides the cycle C the graph F has more components.

Some of them are inner, some outer.

Let x and y be two vertices on C. We say that some

inner/outer component separates x and y if it is on the

way when drawing a line from x to y inside/outside C.

y
x C



All the outer components seprate u and v and are joined

with C by exactly two edges:

vCu vCu

C 0
Otherwise we would get another drawing / cycle contain-

ing more faces.



Claim 3. There exist an inner component and an outer

component (being joined with C at vertices u0 and v0) so

that the inner component separates both u, v and u0, v0:
vu C u0

v0



Proof of the claim: Let I be an inner component sepa-

rating u and v such that it does not separate any two

vertices where some outer component is joined with C:

vu C
I



We can take I out:

vu C

I



If the Claim 3 would not hold, we could take out all the

inner components separating u and v. Then we can put

back the edge e. Thus G would be planar; a contradic-

tion. Thus the Claim 3 holds.

vu C e



Let x; y be the vertices that I has separating u and v.
Let x0; y0 be the vertices that I has separating u0 and v0.

u v
u0

v0
I

x
y

x0 y0

e

They can be arranged in several ways. We will consider

them and find K5 or K3;3 from G in all cases.



1st way. x0; y0 differ from u and v and I separates u andv due to x0; y0 as well.

u v
u0

v0x0
y0

e K3;3



2nd way x0; y0 differ from u and v and I does not separateu and v due to x0; y0.
We can assume that x0; y0 are on the same side as x.

1st option. y is between u and v0.
u v

u0
v0y

y0

e K3;3



2nd way. x0; y0 differ from u and v and I does not sepa-

rate u and v due to x0; y0.
We can assume that x0; y0 are on the same side as x.

2nd option. y is between v0 and v.
u v

u0
v0

x0
e K3;3

y



2nd way. x0; y0 differ from u and v and I does not sepa-

rate u and v due to x0; y0.
We can assume that x0; y0 are on the same side as x.

3rd option. y = v0.
u v

u0
v0

x0 y0

e K3;3

y



3rd way. x0 = u and y0 6= v. Assume that y0 is betweenu0 and v.
1st option. y is between u and v0.

u v
u0

v0
y0

e K3;3

y
x0



3rd way. x0 = u and y0 6= v. Assume that y0 is betweenu0 and v.
2nd option. y is between v0 and v or y = v0.

u v
u0

v0
y0

e K3;3

yx0



4th way. x0 = u and y0 = v.
u v

u0
v0

I
x

y
ex0 y0

If x and y are not u0 and v0, then we exchange the nota-

tions (u$ u0, v $ v0, x$ x0, y $ y0, e$ the path outside C).

We are back to one of the three first ways.



We are left with the case x0 = u, y0 = v, x = u0, y = v0.
The vertices neighbouring u; v; u0; v0 within the inner com-

ponent are connected somehow within the component.

The first possible connection:

u v
u0

v0
ex0 y0

x
y

K5



The second possible connection:
u v

u0
v0

ex0 y0
x

y

K3;3
The theorem is proven. �



Edge contraction (kokkutõmbamine) (G =) G0):
eu

v
G G0

w
When edges are contracted, a planar graph remains pla-

nar.

Theorem (Wagner). A graph is planar iff it has no

subrgaphs contractible to K5 or K3;3.



Proof. If G is planar, then all its subrgaphs are planar.

If we contract edges in a planar subgraph, we still get a

planar graph, thus we can’t get K5 or K3;3.
If G is not planar then there exists H � G such that H

is homeomorphic to K5 or K3;3. Contracting the edges

we can reverse the effect of subdividivision. �


