
Coloring vertices



(Correct) vertex coloring of the vertices of graph G =(V;E) using k colors is a function 
 : V �! f1; : : : ; kg

such that� for each e 2 E, where E(e) = fu; vg, we have 
(u) 6=
(v).
I.e. end vertices of all the edges are colored with different

colors.

Graph G is colorable with k colors if there exists a correct

vertex coloring of G using k colors.

(Vertex) chromatic number of graph G is the smallest

number k such that the graph is colorable with k colors.

This number is denoted �(G).
Graphs colorable with k colors may be called k-partite .



Let �(G) denote the maximal vertex degree of G.

Theorem. Graph G = (V;E) without loops is colorable

with �(G) + 1 colors.

Proof. Induction over jV j.
Base. jV j = 1. Obvious.

Step. jV j > 1. Let v 2 V . Induction hypothesis implies

that Gnv can be colored with �(Gnv)+ 1 colors. It is also

colorable with �(G) + 1 colors, since �(G) � �(Gnv).
Let 
 be a coloring of Gnv with �(G) + 1 colors. There

exists a color i, such that none of the neighbours of v is of

this color. Thus we can use the color i for v. �



Let G = (V;E) be a graph. Vertex subset S � V is called

a clique , if any two (different) vertices u; v 2 S are joined

by an edge in G.

Stating it otherwise, S is a clique if the induced subraphG[S℄ is a complete one.

Vertex subset S � V is called an independet set if no two

(different) vertices u; v 2 S are joined by an edge in G.

Stating it otherwise, S is an independent set if the induced

subraph G[S℄ is a null graph.

Recall that the null graph with n vertices is denoted On.



Theorem (Brooks). Let G = (V;E) be a graph without

loops. Let �(G) � d (d � 3). If G has no (d+ 1)-element

clique, then �(G) � d.
Proof. Assume that the statement of the theorem is wrong

and let G = (V;E) be the counterexample with minimal

number of vertices. We have� �(G) = d � 3;� no connected component of G is Kd+1;� �(G) > �(G).
Let v 2 V be a vertex. Let H = Gnv and let 
 be some

coloring of H using d colors.v has d neighbours and they all are colored differently. LetN(v) = fv1; : : : ; vdg, such that 
(vi) = i.



v1 v2
v3v4

vd
H

To prove the theorem, we must show that H has a coloring
0 using d colors such that two neighbours of v are colored

the same.



Let i and j be two colors and let Hij be the subgraph ofH induced by the vertices of colors i and j.
v1 v2

v3v4
vd

H



If we exchange the colors of vertices in some connected

compon ent of Hij, we get a correct coloring.

v1 v2
v3v4

vd
H

Thus vi and vj must be located in the same connected

component of Hij.



Denote this component by Cij.

Cijv1 v2
v3v4

vd
H

Next we will show that Cij must be a path with end-

vertices vi and vj.
It is enough to prove that otherwise H would have a col-

oring 
0 such that the vertices vi and vj are in different

connected components of H 0ij.



The degree of vj in the graph H is � d� 1. If vj had two

neighbours colored the same, the neighbours of vj would

have at most d� 2 different colors.

Cijv1 v2
v3v4

vd
H



Thus the vertex vj can be colored in two different colors.

One of them is j, but thete mus be another color as well.

Cijv1 v2
v3v4

vd
H

Now two vertices of the set fv1; : : : ; vdg have the same

color.

Thus degCij(vj) = 1.



Consider a path from vj to vi. Let z be the first vertex in

this path with a degree in Cij being � 3.
v1 v2

v3v4
vd

H

Cij
z

The neighbours of z have � d� 2 different colors (at mostd neighbours, at least 3 colored the same).



z can be colored in two ways. One of them is i or j, but

there is another.

v1 v2
v3v4

vd
H

Cij
z

Then Cij breaks into (at least) two components, vi and vj

falling into different components.

Thus Cij is a path.



Next we will show that the paths Cij and Cjk intersect only

in the vertex vj.

Cjkv1 v2
v3v4

vd
H

Cij
Otherwise the neighbours of the comon vertex would have

at most d� 2 different colors and and this vertex could be

re-colored.



Summing up:� For every two vertices vi and vj there is exactly one

path Cij from vi to vj, with the vertices being alter-

nately of colors i and j.
– If vi and vj are connected by an edge, this edge is

the path.� These paths intersect only in end-vertices.



There exist vertices vi and vj that are not connected by an

edge (since G had no cliques of d+ 1 elements).

Let w be the neighbour of vj being colored in i.

Cjk
w

v1 v2
v3v4

vd
H

Cij



Exchange the colors j and k in path Cjk. We obtain a new

coloring 
0 and new paths C 0ij. C(;)jk
w C 0ik

C 0ij

v1 v2
v3v4

vd
H

Cij
But now w belongs to both C 0ij and C 0ik. We showed before

that this leads to a contradiction. �



Theorem. Planar simple graph G = (V;E) is colorable

with six colors.

Proof. Induction over jV j.
Base. jV j = 1. Obvious.

Step. jV j > 1. Let v 2 V be a vertew with deg(v) �5; such a v exists because of planarity of G. Using the

induction hypothesis, Gnv can be colored with six colors.

Let 
 be a coloring of Gnv using six colors. There exists

a color i such that no neighbour of v is colored with it.

Thus, we can choose the color i for v. �



Theorem. Planar simple graph G = (V;E) is colorable

with five colors.

Proof. Induction over jV j.
Base. jV j = 1. Obvious.

Step. jV j > 1. Let v 2 V be a vertex with deg(v) � 5. Ifdeg(v) � 4, we can use similar reasoning as in the previous

theorem.

Let deg(v) = 5 and N(v) = fv1; v2; v3; v4; v5g.



Edge contraction (G =) G0):
eu

v
G G0

w
Denote G0 as G=e.



There exist vi; vj 2 fv1; v2; v3; v4; v5g that are not con-

nected by an edge.

Otherwise K5 � G, thus G would not be planar.

Let G0 = �G=(v; vi)�=(v; vj).G0 is like G, only instead of v; vi; vj we have one vertex w.G G0
v2

v4
v5v

v1v2
v3 v4

v5 w



Apply induction hypothesis to G0. Let 
 be a coloring ofG0 with five colors.G0
v2

v4
v5w



The vertices vi and vj of G will be colored the same asw. . . G
v

v1v2
v3 v4

v5



and v using the color that remained unused among its

neighbours. G
v

v1v2
v3 v4

v5

�



Theorem. (Appel and Haken, 1976) Planar simple graphG = (V;E) is colorable with four colors.

Proof. Cuius rei demonstrationem mirabilem sane detexi.

Hanc marginis exiguitas non caperet. �



Let G = (V;E) be a (simple) graph. In how many ways is

it possible to color it using k colors?

I.e. how many functions 
 : V �! f1; : : : ; kg are there

defining a correct vertex coloring with k colors?

I.e., if� 
 is a coloring of G using k colors;� � : V �! V is an automorphism of G;� ' : f1; : : : ; kg �! f1; : : : ; kg is a bijection,

we consider 
, 
 Æ � and ' Æ 
 to be different.

The number of such colorings will be denoted by PG(k).



We have:POn(k) = knPKn(k) = k(k � 1)(k � 2) � � � (k � n+ 1)

If T is a tree on n vertices, then

PT (k) = k(k � 1)n�1 :



Theorem. Let G = (V;E) be a simple graph. Let e 2 E.

Then PG(k) = PG�e(k)� PG=e(k).
Proof. Let u; v 2 V be the end-vertices of e.� The number of colorings 
 of the graph G�e, such that
(u) 6= 
(v), is the same as the number of colorings of

the graph G.� The number of colorings 
 of the graph G�e, such that
(u) = 
(v), is the same as the number of colorings of

the graph G=e.
Thus PG�e(k) = PG(k) + PG=e(k). �



Corollary. PG is a polynomial.

Proof. Induction over E.

Base. G = On. Then PG(k) = kn.
Step. G has some edges, let e be one of them. ThenPG(k) = PG�e(k)�PG=e(k). By induction hypothesis, PG�e

and PG=e are polynomials, making PG as a difference of two

polynomials a polynomial, too. �

The function PG is called a cromatic polynomial of G.

The last theorem can be used to compute chromatic poly-

nomials of graphs.



Let a simple graph G have n vertices and m edges. LetG1; : : : ; Gt be its connected components. Then� PG(k) is a polynomial of degree n.� The coefficient of kn in PG(k) is 1.� The coefficient of kn�1 in PG(k) is �m.� The coefficients of PG(k) have alternating signs.� PG(k) =Qti=1 PGi(k).� If G is connected, then the free term of PG(k) is zero

and the linear term is different from zero.

Proofs proceed (mostly) by induction on E, using the last

theorem and the base case POn(k) = kn.
Prove as a homework.


