Coloring vertices

(Correct) vertex coloring of the vertices of graph G = (V, E) using k colors is a function $c : V \longrightarrow \{1, \ldots, k\}$ such that

• for each $e \in E$, where $\mathcal{E}(e) = \{u, v\}$, we have $c(u) \neq c(v)$.

I.e. end vertices of all the edges are colored with different colors.

Graph G is colorable with k colors if there exists a correct vertex coloring of G using k colors.

(Vertex) chromatic number of graph G is the smallest number k such that the graph is colorable with k colors. This number is denoted $\chi(G)$.

Graphs colorable with k colors may be called k-partite.

Let $\Delta(G)$ denote the maximal vertex degree of G.

Theorem. Graph G = (V, E) without loops is colorable with $\Delta(G) + 1$ colors.

Proof. Induction over |V|.

Base. |V| = 1. Obvious.

Step. |V| > 1. Let $v \in V$. Induction hypothesis implies that $G \setminus v$ can be colored with $\Delta(G \setminus v) + 1$ colors. It is also colorable with $\Delta(G) + 1$ colors, since $\Delta(G) \ge \Delta(G \setminus v)$.

Let c be a coloring of $G \setminus v$ with $\Delta(G) + 1$ colors. There exists a color *i*, such that none of the neighbours of v is of this color. Thus we can use the color *i* for v.

Let G = (V, E) be a graph. Vertex subset $S \subseteq V$ is called a *clique*, if any two (different) vertices $u, v \in S$ are joined by an edge in G.

Stating it otherwise, S is a clique if the induced subraph G[S] is a complete one.

Vertex subset $S \subseteq V$ is called an *independet set* if no two (different) vertices $u, v \in S$ are joined by an edge in G.

Stating it otherwise, S is an independent set if the induced subraph G[S] is a null graph.

Recall that the null graph with n vertices is denoted O_n .

Theorem (Brooks). Let G = (V, E) be a graph without loops. Let $\Delta(G) \leq d$ $(d \geq 3)$. If G has no (d + 1)-element clique, then $\chi(G) \leq d$.

Proof. Assume that the statement of the theorem is wrong and let G = (V, E) be the counterexample with minimal number of vertices. We have

- $\Delta(G) = d \ge 3;$
- no connected component of G is K_{d+1} ;
- $\chi(G) > \Delta(G)$.

Let $v \in V$ be a vertex. Let $H = G \setminus v$ and let c be some coloring of H using d colors.

v has d neighbours and they all are colored differently. Let $N(v) = \{v_1, \ldots, v_d\}$, such that $c(v_i) = i$.

To prove the theorem, we must show that H has a coloring c' using d colors such that two neighbours of v are colored the same.

Let i and j be two colors and let H_{ij} be the subgraph of H induced by the vertices of colors i and j.

If we exchange the colors of vertices in some connected compon ent of H_{ij} , we get a correct coloring.

Thus v_i and v_j must be located in the same connected component of H_{ij} .

Denote this component by C_{ij} .

Next we will show that C_{ij} must be a path with endvertices v_i and v_j .

It is enough to prove that otherwise H would have a coloring c' such that the vertices v_i and v_j are in different connected components of H'_{ij} .

The degree of v_j in the graph H is $\leq d-1$. If v_j had two neighbours colored the same, the neighbours of v_j would have at most d-2 different colors.

Thus the vertex v_j can be colored in two different colors. One of them is j, but there mus be another color as well.

Now two vertices of the set $\{v_1, \ldots, v_d\}$ have the same color.

Thus $\deg_{C_{ij}}(v_j) = 1$.

Consider a path from v_j to v_i . Let z be the first vertex in this path with a degree in C_{ij} being ≥ 3 .

The neighbours of z have $\leq d-2$ different colors (at most d neighbours, at least 3 colored the same).

z can be colored in two ways. One of them is i or j, but there is another.

Then C_{ij} breaks into (at least) two components, v_i and v_j falling into different components.

Thus C_{ij} is a path.

Next we will show that the paths C_{ij} and C_{jk} intersect only in the vertex v_j .

Otherwise the neighbours of the comon vertex would have at most d-2 different colors and and this vertex could be re-colored.

Summing up:

- For every two vertices v_i and v_j there is exactly one path C_{ij} from v_i to v_j , with the vertices being alternately of colors i and j.
 - If v_i and v_j are connected by an edge, this edge is the path.
- These paths intersect only in end-vertices.

There exist vertices v_i and v_j that are not connected by an edge (since G had no cliques of d + 1 elements).

Let w be the neighbour of v_j being colored in i.

Exchange the colors j and k in path C_{jk} . We obtain a new coloring c' and new paths C'_{ij} .

But now w belongs to both C'_{ij} and C'_{ik} . We showed before that this leads to a contradiction.

Theorem. Planar simple graph G = (V, E) is colorable with six colors.

Proof. Induction over |V|.

Base. |V| = 1. Obvious.

Step. |V| > 1. Let $v \in V$ be a vertew with deg $(v) \leq$ 5; such a v exists because of planarity of G. Using the induction hypothesis, $G \setminus v$ can be colored with six colors.

Let c be a coloring of $G \setminus v$ using six colors. There exists a color i such that no neighbour of v is colored with it. Thus, we can choose the color i for v. Theorem. Planar simple graph G = (V, E) is colorable with five colors.

Proof. Induction over |V|.

Base. |V| = 1. Obvious.

Step. |V| > 1. Let $v \in V$ be a vertex with $\deg(v) \leq 5$. If $\deg(v) \leq 4$, we can use similar reasoning as in the previous theorem.

Let $\deg(v) = 5$ and $N(v) = \{v_1, v_2, v_3, v_4, v_5\}.$

Edge *contraction* $(G \Longrightarrow G')$:

Denote G' as G/e.

There exist $v_i, v_j \in \{v_1, v_2, v_3, v_4, v_5\}$ that are not connected by an edge.

Otherwise $K_5 \leq G$, thus G would not be planar.

Let $G' = ig(G/(v,v_i)ig)/(v,v_j).$

G' is like G, only instead of v, v_i, v_j we have one vertex w.

Apply induction hypothesis to G'. Let c be a coloring of G' with five colors.

The vertices v_i and v_j of G will be colored the same as w...

and v using the color that remained unused among its neighbours.

Theorem. (Appel and Haken, 1976) Planar simple graph G = (V, E) is colorable with four colors.

Proof. Cuius rei demonstrationem mirabilem sane detexi. Hanc marginis exiguitas non caperet. Let G = (V, E) be a (simple) graph. In how many ways is it possible to color it using k colors?

I.e. how many functions $c : V \longrightarrow \{1, \ldots, k\}$ are there defining a correct vertex coloring with k colors?

I.e., if

- c is a coloring of G using k colors;
- $\sigma: V \longrightarrow V$ is an automorphism of G;
- $\varphi: \{1, \ldots, k\} \longrightarrow \{1, \ldots, k\}$ is a bijection,

we consider $c, c \circ \sigma$ and $\varphi \circ c$ to be different.

The number of such colorings will be denoted by $P_G(k)$.

We have:

$$egin{aligned} & \operatorname{P}_{O_n}(k) = k^n \ & \operatorname{P}_{K_n}(k) = k(k-1)(k-2)\cdots(k-n+1) \end{aligned}$$

•

If T is a tree on n vertices, then

$$\mathsf{P}_T(k) = k(k-1)^{n-1}$$

Theorem. Let G = (V, E) be a simple graph. Let $e \in E$. Then $P_G(k) = P_{G-e}(k) - P_{G/e}(k)$.

Proof. Let $u, v \in V$ be the end-vertices of e.

- The number of colorings c of the graph G−e, such that
 c(u) ≠ c(v), is the same as the number of colorings of the graph G.
- The number of colorings c of the graph G-e, such that
 c(u) = c(v), is the same as the number of colorings of
 the graph G/e.

Thus $P_{G-e}(k) = P_G(k) + P_{G/e}(k)$.

Corollary. P_G is a polynomial.

Proof. Induction over E.

Base. $G = O_n$. Then $P_G(k) = k^n$.

Step. G has some edges, let e be one of them. Then $P_G(k) = P_{G-e}(k) - P_{G/e}(k)$. By induction hypothesis, P_{G-e} and $P_{G/e}$ are polynomials, making P_G as a difference of two polynomials a polynomial, too.

The function P_G is called a *cromatic polynomial* of G.

The last theorem can be used to compute chromatic polynomials of graphs.

Let a simple graph G have n vertices and m edges. Let G_1, \ldots, G_t be its connected components. Then

- $P_G(k)$ is a polynomial of degree n.
- The coefficient of k^n in $P_G(k)$ is 1.
- The coefficient of k^{n-1} in $P_G(k)$ is -m.
- The coefficients of $P_G(k)$ have alternating signs.
- $P_G(k) = \prod_{i=1}^t P_{G_i}(k).$
- If G is connected, then the free term of $P_G(k)$ is zero and the linear term is different from zero.

Proofs proceed (mostly) by induction on E, using the last theorem and the base case $P_{O_n}(k) = k^n$.

Prove as a homework.