Hamiltonian graphs



Icosian game by sir William Rowan Hamilton, 1857
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e Hamaltonian cycle 1n graph G 1s a cycle that passes
through each vertex exactly once.

e Hamaltonian walk in graph G i1s a walk that passes
through each vertex exactly once.

e If a graph has a Hamiltonian cycle, it is called a Hamal-
tonian graph.

e If a graph has a Hamiltonian walk, it is called a semz-
Hamaltonian graph.

®There are no known (non-trivial) conditions that would
be necessary and sufficient for the existence of a Hamil-
toinian cycle or a Hamiltoinian walk.

e In this lecture, only simple graphs are considered.
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Theorem (Ore, 1960). Let G = (V, E) be a simple graph,
where |V| =n > 3. If for every two vertices u,w € V the
implication

(v, w) ¢ B => deg(u) + deg(w) > n

holds, then the graph G is Hamiltonian.

Corollary (Dirac, 1952). If G = (V, E) is a simple graph
having n vertices and for each v € V' we have deg(v) > %
then G 1s a Hamiltonian graph.

Proof of the Corollary. For every two verticesu u,w €
V' (whether they are neighbours or not) the inequality
deg(u) + deg(w) > mn holds, thus Ore’s theorem implies
that G 1s Hamiltonian.



Proof of the theorem. If n = 3 then the only graph satis-
fying the assumption is K3. It 1s Hamiltonian.

Let n > 4. Let the assumption of the theorem hold, but
let the conclusion be wrong.

If we add edges to the graph, the assumption will still hold.
Add edges to G until we reach the graph G’ such that it
1s not Hamiltonian, but addition of any new vertex would
give a Hamiltonian graph.



Let e = (u,w) € V x V be an edge not present in G'. The
graph G' U {e} has a Hamiltonian cycle

’U,:'Uo—’lll—'llg—“'—'l}n_lzwiu .
Grph G’ has a Hamiltonian walk

P:u=v9g—vy— VU — " —VUp 1 =W .

This walk has n — 1 edges.



Let
e F, be the set of edges (v;,v;;1) where (u,v;,1) € E.
e F, be the set of edges (v;, v; 1) where (v;,w) € E.

Using the assumption of the theorem, we get |E,|+ |Ey| >
n. Thus, there is an edge (v;, v;11) in the intersection E, N
E.,. Besides, 1 # 0 and 7 # n — 2, since (u,w) ¢ E.
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We have found a Hamiltonian cycle in G'. []



Theorem (Bondy and Chvatal, 1976). Consider a sim-
ple graph G = (V, E) and let u,v € V be non-neighbouring
vertices such that deg(u)+deg(v) > |V|. Then G is Hamil-
tonian iff GU {(u,v)} is Hamiltonian.

Proof. The direction “G Hamiltonian = G U {(u,v)}
Hamiltonian” 1s obvious. Proof of the other direction was
given 1n the proof of Ore’s theorem. []



Graph G = (V, E) is called Ore-closed if for any two dif-
ferent vertices u,v € V the implication

deg(u) +deg(v) > |V| = (u,v) € E

holds.

Graph G' = (V,E') is called Ore closure of graph G =
(V, E') and denoted as O(G) if the following holds:

e (G’ is Ore-closed;
o I/ C E';

e F' is the least possible set with the above properties.



Lemma. Let G; = (V, E;) and G, = (V, E,) be Ore-closed
graphs. Then G = (V, By N E3) is Ore-closed.

Proof. Let u,v € V and degs(u) + degs(v) > |V|. Then
we have

degq, (u) +degg, (v) > |V| and degg,(u)+degg,(v) > |V,

since deg_ (u) > deggo(u) and degg (v) > degg(v).

As G; and G, are Ore-closed, we get (u,v) € E; and
(u,v) € E,, implying (u,v) € By N Es. O

The Lemmma implies that all graphs have Ore closures.



Algorithm (for finding Ore closure). Consider a simple
graph G = (V, E).

1. Find u,v € V such that deg(u) + deg(v) > |V| and
(u,v) € V. If there are no such vertices, output G and
stop.

2. Add the edge (u,v) to E and return to step 1.

Proposition. The result of the algorithm does not depend
on the choice of vertices u, v on step 1.



Proof. Assume we can get two different outcomes G; =
(V,EU E,) and G, = (V, EU E,) starting from graph G =
(V, E) (so that E; # E,). W.l.o.g. assume E;\E, # 0.

Elements of the set F;\F, are added to the graph G; in
some order as the algorithm proceeds. Let (u,v) be the
first one in this order. Let E; C E; be thet set of all edges
added before the edge (u,v).

We have EF; C E,. Thus, in the graph G, the condition
deg(u) + deg(v) > |V| holds. A contradiction with the
assumption (u,v) ¢ Es. ]



Theorem. The algorithm finds Ore closure of graph G.

Proof. The proof follows from these four claims:

1. Bidge set of the output graph of the algorithm is a
superset of the edge set of the input graph.

2. The algorithm is monotone, i.e. if G; = (V, F;) and
G, = (V,E;), where E; C E,, the algorithm turns
them into graphs G} = (V,E;) and G, = (V, E)),
where E; C E,. The proof is similar to the proof
of the previous proposition.

3. The output graph of the algorithm is Ore-closed.

4. If the input of the algorith is an Ore-closed graph, the
algorithm will output it.

[]



Corollary. A graph is Hamiltonian iff its Ore closure 1s
Hmiltonian.

Proof. This is a consequence of the closure finding algo-
rithm and Bondy-Chvatal theorem. []

Corollary. Let G = (V, E) be a simple graph with |V| =
n > 3. If O(G) = K, then G is Hamiltonian.

Proof. K, is Hamiltonian. N



Theorem. Let G = (V, E) be a non-Hamiltonian graph
on n vertices. Then there exists £ < 7 such that G has
k vertices with degree at most k£ and n — k vertices with

degree at most n — k — 1.

Proof. Let O(G) = (V, E'). Since O(G) # K,, there exist
vertices © and w such that (u,w) ¢ E'. Take u and w so
that the sum degg/(u) + degg (w) is maximal.

We have degg (u) + degg(w) < n — 1, since otherwise
(u,w) € E' (according to the definition of Ore closure).
Let

U={u|u #u,(u,u)¢E}
wW={vw|v #w,(wv,w)¢EY} .

W.l.o.g. assume degg(u) < degg(w). Let k = degg (u).



1. degg/(u) + degg(w) <n — 1.

degp (u) + degg (w) is the maximal possible.
k = degp/(u) < degp (w).

1. and 3. give k < ”T_l < 7.

ook

2. gives degp (w') < degp/(u) for any w’' € W. Besides,
degg (u') < degg/(w) for any v’ € U.

6. |[U =n—1—degg(u) and [W| =n —1— degg(w).
This 1s proven by a simple counting argument.

7. 1. and 6. give [W| > k.

8. 5. gives degg(w') < degg (w') < degg/(u) = k for any
w' eW.

We have k vertices with degree < k.



1. degg/(u) + degg(w) <n — 1.

4. k<2<l

5. degg/(u') < degg (w) for any v’ € U.

6. |Ul =n—1—degg(u).

9. 6. gives |[U| =n—k — 1. Thus |[UU{u}|=n—k.
10. For each u' € U we get from 5. and 1. that

degp(u') < degp (u') < degp(w) <n—-1-k .

11. 4. gives degg(u) < degm(u) =k <22 <n—-1—k.

We have n — k vertices with degree <n — k — 1.



Corollary. Consider a graph G = (V,E) on n vertices
such that for each k < 7 the graph has less than & vertices
with degree at most k£ or less than n—k& vertices with degree
at most n — k — 1. Then G 1s Hamiltonian.

Proof. From the previous theorem: (A = B) & (-B =
-A). O

The same claim for degree sequences:

Corollary. Consider a graph G = (V, E) with degree se-
quence (ai,...,a,). If for each k < % we have (ar < k) =
> (ap_x > n — k) then G is Hamiltonian.



Call the degree sequence (ay,...,a,) Hamiltonian if each
graph G with degree sequence (by,...,b,) where b; > a;
(1 <2 <n)is Hamiltonian.

Theorem. Degree sequence (ai,...,a,) is Hamiltonian iff
for each k < 7 we have (ar < k) = (an—x > n — k).

Proof. <= is proven in the previous slide

= Assume that (a,...,a,) does not satisfy the required
condition. We will construct a graph with degree sequence
> (ay,...,a,) that is not Hamitlonian.

If the condition i1s not satisfied, we must have a k£ such that
ar < kanda,_ <n—k— 1.



For a given k the largest such degree sequence is

(k,...,k,n—k—-1,....n—k—-1,n—-1,...,n—1) .
N— ~ - ~ ~
k n—2k k

A non-Hamiltonian graph with such a degree sequence:
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