Trees



A graph that has no cycles is called a forest.

A forest with one connected component is caleld a tree.

N

A tree vertex with degree 1 is called a leaf.

Proposition. All trees are bipartite.

Proof. Start dividing the vertices alternatively into two
sets starting from some vertex and moving along the edges.

We can not get a contradiction, since there are no cycles.
[]



Proposition. Let G be a graph with n vertices, m edges
and k connected components. Then n — k < m.

Proof. Induction over m.

If m = 0, then each vertex of G i1s a separate connected
component, i.e. K = n. The inequality holds.

Let m > 0. Removing an edge from graph (G, we obtain a
graph with m — 1 edges. There are two possibilities:

e The number of connected components did not increase.
Induction hypothesis gives n—k < m—1. Thusn—k <
m as well.

e The number of connected components increased by
one. Induction hypothesis gives n — (kK +1) < m — 1.
Thus we also have n — k < m. []



Theorem. Let T' = (V,E) be a graph with n vertices.
Any two of the following claims imply the third.

(i). T is connected.
(i1). T has no cycles.
(iii). T has n — 1 edges.

This theorem gives two alternative definitions of a tree.



Proof.
(i) & (ii) = (iii). Induction over n.

If T' has one vertex, then all the edges of T are loops. But
loops are cycles, which are prohibited by (ii). Thus T" must
have 0 = 1 — 1 edges.

Let T have n vertices.

T has no cycles — T has a vertex v with degree 0 or 1.
Theorem. Graph with all vertex degrees > 2 has a cycle.

T 1s connected — the defree of v 1s not O.

The subgraph 7" induced by V\{v} is connected and has
no loops, hence by the induction hypothesis it has n — 2
edges.

It remains to note that 7" has one more edge than T".



(ii) & (iii) = (i). Assume that T is not connected.

Let T7,...,T; be the connected components of graph T.
They are all connected and cycle-free, thus according to
the proof (i) & (ii) = (iii) the number of edges is one less
than the number of vertices in all of them.

Alltogether, graph T' has n — k edges. Since T has n — 1
edges by (iii), we must have k = 1, hence T is connected.

(i) & (iii)) = (ii). Assume T has a cycle. Removing one
edge form the cycle, we get a connected graph with n ver-
tices and n — 2 edges, contradiction with the proposition

proven earlier. []



Intermezzo: mathematical induction



Theorem. Graph T is a tree iff it is connected and all of

1ts edges are bridges.

Proof. = Let T have n vertices and n — 1 edges. Consider
an edge. If we remove 1t, we are left with a graph having
n vertices and n — 2 edges, thus it can not be connected
according to the first proposition. Thus this edge was a

bridge.

< If T had a cycle, then all of the edges of this cycle
would be non-bridges. Thus T' can not have cycles and,

being connected, it 1s a tree. []



Teoreem. Let T be a graph with n vertices. The following

claims are equivalent.
1. T 1s a tree.

2. Between any two vertices of T' there is exactly one
path.

3. T has no cycles, but adding an edge between any two
vertices creates a cycle.

Proof. 1 = 2. Between any two vertices there is at least
one path — otherwise T' would not be connected. If there
were two different paths between two vertices, we would
get a cycle and T would not be a tree.



2 = 3. T has no cycles, since otherwise we would get
two different paths bewteen any two vertices on the cycle.
Adding a new edge e between the vertices u and v, we

. e
obtain a cycle u ~» v — w.

3 = 1. Suppose T’ 1s not connected. When adding an edge
between the vertices in different connected components we
get no cycles, a contradiction with the assumption. []



Spanning tree (aluspuu) of the connected graph G =
(V, E) is a such a subgraph T of G that their vertex sets

coincide.

For a non-connected graph we can define the spanning
forest (alusmets) which is the union of the spanning trees

of ots connected components.

AVAVAYSWAYAY




Let G = (V, E) be a graph with n vertices and let us have
a weight w(e) defined for each of its edges e € E.

If G = (V',E') is a subgraph of G, then define w(G') =
2, w(e).

ecE’

Algorithm (for finding the minimal weight spanning
tree of G).

Select the edges eq,...,e,_1 so that

e ¢; differs from the edges eq,...,e;_1;
e e, does not form a cycle together with eq,...,e;_1;

e ¢; has the minimal weight among the edges satisfying
the two conditions above.

Output T'= (V,{e1,...,en_1}).
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Theorem. The presented algorithm is correct.

Proof. T is a (spanning) tree — it has no cycles, but does
have n vertices and n — 1 edges.

Assume that w(T') is not minimal possible. Let T" be some
minimal spanning tree of G. Let T" be such that is has the
maximal possible number of edges in common with T

Let k € {1,...,n — 1} be the least number such that e; ¢
E(T").

Let S =T'U{er}. The graph S has a cycle C.

Since T and T" have no cycles, we must have e; € C and
there exists an edge e € E(T")\E(T) such that e € C.

The graph T" = S\{e} is connected and has n — 1 edges,
1.e. 1t 1s a spanning tree.



Edge €

e is different from eq,...,ex_1,

e does not form a cycle together with eq,...,ex_; (since
€1,...,6k_1 € E(T,))

The edge e, has minimal weight among the edges such that

e are different from eq,...,ex_1,

e do not form a cycle together with e, ..., ex_1.
Thus w(ex) < w(e).
We obtain w(T") = w(T") —w(e) + w(eg) < w(T"), i.e. T”
1s a minimal weight spanning tree.

The tree T" has more edges in common with 7" than 7"
does. A contradiction with the choice of T". []



