Tutte theorem

Let G = (V, E) be a soimple graph. *Matching* in the graph G is a set of edges $M \subseteq E$ such that for each $v \in V$ we have $\deg_M(v) \leq 1$.

The matching M is *perfect*, if for every $v \in V$ we have $\deg_M(v) = 1$.

In this lecture we will give a necessary and sufficient condition for existence of a perfect matching.

Obviously, a graph has a perfect matching iff all its connected components do. Thus it is enough to consider only connected graphs.

There is a simple necessary condition – the humber of vertices must be even.

This graph has no complete matching

Let odd(G) denote the number of connected components in G having an odd number of vertices.

We showed that if G = (V, E) has a perfect matcing, then $odd(G \setminus S) \leq |S|$ for any $S \subseteq V$.

Theorem (Tutte). Graph G = (V, E) has a perfect matching iff for every $S \subseteq V$ the inequality $odd(G \setminus S) \leq |S|$ holds.

Proof. We showed necessity. Let's show sufficiency.

Assume to the contrary that there exists a graph G, such that for any $S \subseteq V$ the inequality $odd(G \setminus S) \leq |S|$ holds, but G has no perfect matching.

Note that $odd(G) = odd(G \setminus \emptyset) \leq 0$, thus G has an even number of vertices.

Add edges to G until we reach a graph G^* without a perfect matcing, but when any new edge is added, there will be a perfect matching.

Since K_{2n} has a perfect matching, such a G^* must occur. We will show that for every $S \subseteq V$ we have $odd(G^* \setminus S) \leq |S|$. It is enough to prove $odd(G^* \backslash S) \leq odd(G \backslash S).$

Graph $G^* \setminus S$ is obtained by adding edges to $G \setminus S$. How has $odd(\cdot)$ changed in the process?

Adding an edge may connect 2 vertices in

- the same connected component. $odd(\cdot)$ does not change.
- different connected components. Then two components become one.

- If both components had an odd number of vertices, then the new component is even. odd(·) does not change.
- If one of the components was even and the other one odd, then the new component is odd. odd(·) does not change.
- If both components were odd, the new component is even. odd(·) decreases by 2.

Thus, when edges are added, $odd(\cdot)$ can only decrease. Thus $odd(G^* \setminus S) \leq odd(G \setminus S) \leq |S|$. We have shown that the proof will follow, if we can get a contradiction from the following:

There is a graph $G^* = (V, E^*)$, such that

- it has no perfect matching;
- adding any edge will create a perfect matching;
- for any $S\subseteq V$ we have $odd(G^*\backslash S)\leq |S|.$

Let S be the set of all the vertices being connected to all the other vertices There are two options:

- 1. All the connected components of $G^* \backslash S$ are complete graphs.
- 2. There exists a connected component of $G^* \backslash S$ that is not complete

Perfect matching in G^* -s:

- in connected components K_{2n} of $G^* \setminus S$ within the components.
- in connected components K_{2n+1} of $G^* \setminus S$ within the components so that one vertex is left over.
- the left-over vertices of components K_{2n+1} will be matched with vertices of S.

There are no more components K_{2n+1} than |S|.

• the remaining vertices of S will be matched to each other. There is an even number of remaining vertices, since the number of vertices in G^{*} is even.

2nd option

H — component of $G^* \backslash S$ H is not complete

H' - H max. compl. subgraph

 $y \in V(H') ext{ and } z \in V(H) ackslash V(H') \ x \in V(H') \ w \in V ackslash S$

 $G_1 = (V, E^* \cup \{(x, z)\})$ $G_2 = (V, E^* \cup \{(y, w)\})$ Graphs G_1 and G_2 have perfect matchings

Let M_1 be a perfect matching in G_1 . Then $(x, z) \in M_1$, since otherwise M_1 would be a perfect matcing in G^* .

Let M_2 be a perfect matching in G_2 . Then $(y,w) \in M_2$. Let $G' = (V, (M_1 \backslash M_2) \cup (M_2 \backslash M_1)).$

Let $v \in V$. What are the possible values of $\deg_{G'}(v)$? There is exactly one $e_1 \in M_1$ and exactly one $e_2 \in M_2$ such that e_1 and e_2 are incident with v.

• If
$$e_1 = e_2$$
, then $\deg_{G'}(v) = 0$.

• If
$$e_1 \neq e_2$$
, then $\deg_{G'}(v) = 2$.

Thus the components of G' are isolated vertices and cycles. The cycles have an even length – the edges of M_1 and M_2 alternate. There are two cases:

- 1. The edges (x, z) and (y, w) belong to different components of G'.
- 2. The edges (x, z) and (y, w) belong to the same component of G'.

We will construct a perfect matching in G^* in both cases.

Perfect matching in G^* :

- M_1 in cycle C
- M_2 outside the cycle C

Perfect matching in G^* :

- blue edges in cycle C
- M_2 outside the cycle C

Corollary. In any 3-regular graph without bridges there is a perfect matching.

Proof. We will show that if G = (V, E) is such a graph, then for every $S \subseteq V$ we have $odd(G \setminus S) \leq |S|$.

Let G_1, \ldots, G_k be the connected components of graph $G \setminus S$.

Each G_i is connected to S with at least two edges, since there are no bridges.

If $|V(G_i)|$ is odd, then the number of edges with one end in G_i and another one somewhere else, is odd. (Since there is an even number of vertices with odd degree in any graph.)

All the degrees of vertices in G_i are odd, thus the number of edge ends outside G_i must be odd as well.

Thus a G_i with odd number of vertices is connected to S by at least three edges.

Let d_i be the number of edges with one end in S and another one in G_i .

Let $I \subseteq \{1, \ldots, k\}$ be the set of indices such that $i \in I$ iff $|V(G_i)|$ is odd. Then $|I| = odd(G \setminus S)$.

So we have

$$3 \cdot |S| = \sum_{v \in S} \deg(v) \geq \sum_{i=1}^k d_i \geq \sum_{i \in I} d_i \geq \sum_{i \in I} 3 = 3 \cdot odd(G ackslash S)$$

Thus $|S| \ge odd(G \setminus S)$ for any $S \subseteq V$. Tutte theorem implies the existence of a perfect matching.