Solutions for the reattempt of the 1st test in

Graphs
January 8th, 2009

Exercise 1. How many different (up to isomorphism) 3-regular simple
graphs with six vertices are there?

Answer: 2. One of them is K33, the other one is depicted in Fig. 1.

Figure 1:

There are several equally valid ways to convince oneself that there are
no more possibilities. Maybe the following is the shortest argument: Two
simple graphs are isomorphic iff their complement graphs are isomorphic.
The complement of a three-regular graph with six vertices is a two-regular
graph with six vertices. Indeed, if the number of vertices is six, then the
degree of a vertex in a graph, plus the degree of this vertex in the complement
graph, add up to five. Hence our task is to count the two-regular graphs with
six vertices.

If the degree of each vertex in a graph is two, then this graph is a disjoint
union of cycles. As each cycle must have at least three vertices, there are
just two ways of distributing the six vertices in our graph: either we have
one cycle (Cg) or two (two times C3).

The complement of Cg is depicted in Fig. 1. The complement of “two
times (3" is K3 3.

Exercise 2. For any n € N define the simple graph G,, = (V,,, E,,) as follows:

e The elements of V,, are all subsets of the set {1,...,n}, except the
empty set.

e Two elements A, B € V,, are neighbours if and only if AN B # ().

For which values of n is (;,, Eulerian?

Answer: only for n = 1. Remark. As G consists of a single vertex and no
edges, the answer “there is no such n” was also considered correct.




If n > 2 then consider the vertex {1} € V,,. It is connected precisely to
all other vertices A € V,,, such that 1 € A. The number of such vertices A is
equal to the number of subsets of the set {2,...,n}, except the empty set.
Hence the number of such vertices A (neighbours of {1}) is equal to 2"~' —1,
which is odd. Thus G,, is not Eulerian.

Exercise 3. Let G be a connected simple graph. Show that if the three
graphs in Fig. 2 are not induced subgraphs of G, then G has a Hamiltonian

path.
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Figure 2:

Proof. Assume the opposite: there exists a connected simple graph G that
has no Hamiltonian path, and also no induced subgraphs from Fig. 2. Let P
be the longest path in G. By our assumption, it does not pass through all
vertices. Hence there exists a vertex not on P, and by the connectivity of G,
there exists a vertex v that is adjacent to some vertex ¢ on P but is itself not
on P. See Fig. 3.

Figure 3:

If ¢ is an end-vertex of P, then P is not the longest path in G — it can
be extended by v. Hence there are vertices b and d on P, neighbouring c.
See Fig. 4.

The edges (b, ¢), (d, ¢) and (v, ¢) form a subgraph isomorphic to the graph
in Fig. 2a. As it cannot be an induced subgraph, there must be more edges
with the end-vertices in {b, ¢,d,v}. If the edge (b,v) is present (see Fig. 5),
then we can lengthen the path P by replacing the edge b — ¢ with the path



Figure 4:

b — v — c¢. The path can be similarly extended if the edge (d,c) had been
present.

Figure 5:

Hence the edge (b, d) must be present in the graph, see Fig. 6. If b is an
end-vertex of P then P can be lengthened by replacing the subpath b —c¢—d
with the path v —c—b—d. Similar lengthening is possible if d is an end-vertex
of P. Thus there are vertices a and e on P, neighbouring respectively b and
d. See Fig. 7.

The edges (a,b), (b, c), (b,d), (¢,d) and (¢, v) form a subgraph isomorphic
to the graph in Fig. 2b. As it cannot be an induced subgraph, there must
exist more edges with the end-vertices in the set {a,b,c,d,v}. We have
already seen that the existence of either the edge (b,v) or the edge (d,v)
would violate the maximality of the length of the path P.

If the graph contains the edge (a,v) (see Fig. 8) then the path P can be
lengthened by replacing the subpath a —b—c—d with the path a—v—c—b—d.
If the graph contains the edge (a,c) (see Fig. 9) then the edges (a,c), (c,v)
and (¢, d) form a subgraph isomorphic to the graph in Fig. 2a. Hence there
must be more edges with the end-vertices in the set {a,c,d,v}. We have
already determined that the graph cannot contain the edges (a,v) or (d,v).
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But if the graph also contains the edge (a,d) then the subgraph induced by
the vertices a, b, ¢, d is K4, which is forbidden by Fig. 2c.
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Figure 8:

Thus the graph must contain the edge (a,d) (but not the edge (a,c)).
Symmetrically, if we consider the subgraph formed by edges (b,c¢), (b,d),
(¢,d), (c,v) and (c, €), we find that the graph must also contain the edge (e, b),
but not contain (e, v) or (¢, e), see Fig. 10. Consider now the subgraph formed
by edges (a, d), (¢,d) and (e, d). It is isomorphic to the graph in Fig. 2a, hence
the graph must contain more edges with end-vertices in {a, ¢, d, e}. We have



Figure 9:

already found that the edges (a,c¢) and (c,e) cannot be present. But if the
edge (a,e) is present then the subgraph induced by the vertices a, b, d, e is
isomorphic to K4, which is forbidden by Fig. 2c.
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Figure 10:

Exercise 4. Consider the graph G4 from the second exercise. For an edge e
connecting the vertices A and B define its weight w(e) as the sum of elements
of the set AN B. Find

e a maximum-weight spanning tree;
e a minimum-weight spanning tree

of the resulting graph with edge weights.

Sketch of the solution. Just use Kruskal’s algorithm.

One of the maximum-weight spanning trees is the star graph, with the
universal set {1,2,3,4} in the middle and every other vertex connected di-
rectly to it. Indeed, for any A € Vj, the edge connecting it to {1, 2, 3,4} has
the maximum weight among the edges incident to A. Hence, in a run of the

Kruskal algorithm, it can occur as the first considered edge that is incident
to A.




It is actually possible to also describe all maximum-weight spanning trees
of G,. They are those, where each vertex (except {1,...,n}) is connected to
exactly one of its supersets (and to any number of its subsets).

For the minimum-weight spanning tree, again imagine how Kruskal’s al-
gorithm works. First we get all edges of weight one, then all edges of weight
two, etc. Hence, the following is a possible minimum-weight spanning tree of

G,
e Each vertex A, where 1 € A, is connected to {1}.
e The vertex {2} is connected to {1,2}.
e Each vertex A, where 2 € A and 1 € A, is connected to {2}.
e The vertex {3} is connected to {1, 3}.
e Each vertex A, where 3 € A, and 1,2 ¢ A, is connected to {3}.
e The vertex {4} is connected to {1,4}.

e ctc. (actually, for the graph G4, we stop here)



