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Exercise 1. Find the maximum flow and the minimum cut in the following
network:

Just use Ford-Fulkerson’s algorithm. ..

Exercise 2. Let X be the set of all subsets of {1,...,n}. Let &, C X
contain all subsets of {1,...,n} with exactly k elements.

Let kK < mn/2. The sets X} and &,,_; have the same number of elements.
Indeed, (Z) = (nﬁk) Does there exist a bijection from X}, to X,_, such that
each X € &) is mapped to one of its supersets?

Answer: yes. Consider the following bipartite graph. Let X} and &), _; be the
two parts and let there be an edge between some X € &}, and Y € X, iff
XCY.

By symmetry, all vertices in Xj have the same degree di. Also by sym-
metry, all vertices in X,,_; have the same degree d,,_r. The total number
of edges in the graph is |Xy| - dx which is also equal to |X, |- d,—x. As
| Xk| = |X_k|, we also have dy, = d,,_.

Hence we have constructed a regular bipartite graph. By one of the
corollaries of Hall’s theorem, it has a perfect matching M. This matching
M associates a (n — k)-element set Y to each k-element set X, such that X
and Y are connected by an edge, i.e. X C Y. The edges of M define the
bijection we're looking for.

Exercise 3. Show that a tree cannot have two different perfect matchings.
Proof. Let M and M* be two perfect matchings of the tree T'. L.e. deg,,(v) =
deg,«(v) = 1 for any vertex v € V(T'). Consider the symmetric difference

M A M*. For some v € V(T'), the value of deg,;,+(v) can be one of the
following:



e (, if the edge incident to v in M is the same as the edge incident to v
in M*;

e 2 if the edge incident to v in M is different from the edge incident to
vin M*.

Consider the subgraph 7" of T containing all vertices, but only edges in
M A M*. As the vertex degrees in 7" are in {0, 2}, the connected components
of T" are either isolated vertices or cycles. But 7" cannot contain cycles,
otherwise its supergraph, the tree T" would also contain cycles. Hence all

connected components of 7" are isolated vertices, thus 7" has no edges, thus
M A M* =), thus M = M*.

Exercise 4. We say that a graph is uniquely k-edge colorable, if its edges
can be colored with k colors in exactly one way (modulo renaming of colors).
In other words, all colorings with k colors give the same partition of edges
into matchings.

Show that uniquely 3-edge colorable 3-regular graphs are Hamiltonian.

Proof. Let G = (V, E) be a uniquely 3-edge colorable 3-regular graph. Let
E = Ey, U Ey U E3, where {E}, Fy, E3} is the partition of F induced by any
3-coloring of the edges of G. Note that each one of F;, F5 and Ej3 is a perfect
matching, because each vertex must have an edge of each color incident to it
(the number of colors equals the degree of all vertices).

Consider the graph G’ = (V| E; U E,). In this graph, the degree of all
vertices is 2 (because degp, (v) = degg,(v) = 1 and Ey N Ey; = (). Hence
the connected components of G’ are cycles. Let C1,Cs, ... C Ey U E; be the
cycles of G'. We can consider a new coloring of G, by swapping the colors 1
and 2 in just the cycle C. This defines us a new partitioning of edges:

o B = (E\C)) U (C,NEy);
o E) = (Ex)\Cp)U(CLNEY);
[ J Eé - Eg.

If ¢ contains all edges of F; U Fs, then this is the same partition as before
(we have E] = Ey and El, = E}). Otherwise we get a different partition. But
according to our premises, no other partitions are possible. Hence the graph
G’ is made of a single cycle C. This cycle passes all vertices of G’ (and G)
i.e. it is a Hamiltonian cycle.



