Cryptographically sound formal verification of security protocols #### Two views of cryptography #### Formal ("Dolev-Yao") view - Messages elements of a term algebra. - Possible operations on messages are enumerated. - Choices in semantics non-deterministic. - Protocol and the adversary are easily represented in some process calculus. #### **Computational view** - Messages bit strings. - Possible operations on messages everything in PPT. - Choices in semantics probabilistic. - Protocol and adversary a set of probabilistic interactive Turing machines. #### Two views of cryptography #### Formal ("Dolev-Yao") view - Messages elements of a term algebra. - Possible operations on messages are enumerated. - Choices in semantics non-deterministic. - Protocol and the adversary are easily represented in some process calculus. - Simpler to analyse. #### **Computational view** - Messages bit strings. - Possible operations on messages everything in PPT. - Choices in semantics probabilistic. - Protocol and adversary a set of probabilistic interactive Turing machines. - Closer to the real world. #### In this lecture we'll... - take a look at cryptographic protocols using "classical" primitives - symmetric / asymmetric encryption, signatures, nonces, hash functions; - see, what it takes to specify them - programming language, semantics and execution environment, interacting with the adversary; - semantics probabilistic, works with bit-strings; - look at the methods to deal with the computational semantics - assuming we can handle perfect cryptography. #### **Table of Contents** - The Abadi-Rogaway result on the indistinguishability of computational interpretations of formal messages. - Translating protocol traces between formal and computational world. #### The atomic building blocks: - Formal keys $k, k_1, k_2, k', k'', \ldots \in \mathbf{Keys}$ - Formal coins $r, r_1, r_2, r', r'', \ldots \in \mathbf{Coins}$ - Bits $b \in \{0, 1\}$ #### The atomic building blocks: - Formal keys $k, k_1, k_2, k', k'', \ldots \in \mathbf{Keys}$ - Formal coins $r, r_1, r_2, r', r'', \ldots \in \mathbf{Coins}$ - Bits $b \in \{0, 1\}$ A formal expression $e \in \mathbf{Exp}$ is $$e ::= k$$ $| b$ $| (e_1, e_2)$ $| \{e'\}_k^r$ If $\{e\}_k^r$ and $\{e'\}_{k'}^r$ both occur in an expression then k=k' and e=e'. #### The atomic building blocks: - Formal keys $k, k_1, k_2, k', k'', \ldots \in \mathbf{Keys}$ - Formal coins $r, r_1, r_2, r', r'', \ldots \in \mathbf{Coins}$ - Bits $b \in \{0, 1\}$ A formal expression $e \in \mathbf{Exp}$ is $$e ::= k$$ $| b$ $| (e_1, e_2)$ $| \{e'\}_k^r$ If $\{e\}_k^r$ and $\{e'\}_{k'}^r$ both occur in an expression then k=k' and e=e'. lacksquare is similar to Dolev-Yao messages. #### The atomic building blocks: - Formal keys $k, k_1, k_2, k', k'', \ldots \in \mathbf{Keys}$ - Formal coins $r, r_1, r_2, r', r'', \ldots \in \mathbf{Coins}$ - Bits $b \in \{0, 1\}$ A formal expression $e \in \mathbf{Exp}$ is $$\begin{array}{cccc} e & ::= & k \\ & | & b \\ & | & (e_1, e_2) \\ & | & \{e'\}_k^r \end{array}$$ If $\{e\}_k^r$ and $\{e'\}_{k'}^r$ both occur in an expression then k=k' and e=e'. - \blacksquare e is similar to Dolev-Yao messages. - We can also interpret it as a program for computing a message. ■ Let $\langle \cdot, \cdot \rangle : (\{0, 1\}^*)^2 \to \{0, 1\}^*$ be easily computable and invertible injective function. - Let $\langle \cdot, \cdot \rangle : (\{0, 1\}^*)^2 \to \{0, 1\}^*$ be easily computable and invertible injective function. - \blacksquare A symmetric encryption scheme $(\mathcal{K}, \mathcal{E}, \mathcal{D})$: - lacktriangle \mathcal{K} (1 $^{\eta}$) generates keys; - $\mathcal{E}(1^{\eta}, k, x)$ encrypts x with k; - $\mathcal{D}(1^{\eta}, k, y)$ decrypts y with k. $\mathcal K$ and $\mathcal E$ — probabilistic, $\mathcal D$ — deterministic. - Let $\langle \cdot, \cdot \rangle : (\{0, 1\}^*)^2 \to \{0, 1\}^*$ be easily computable and invertible injective function. - \blacksquare A symmetric encryption scheme $(\mathcal{K}, \mathcal{E}, \mathcal{D})$: - $\mathcal{K}^{\mathbf{r}}(1^{\eta})$ generates keys from random coins \mathbf{r} ; - $\mathcal{E}^{\mathbf{r}}(1^{\eta}, \mathbf{k}, \mathbf{x})$ encrypts \mathbf{x} with \mathbf{k} using the random coins \mathbf{r} ; - $\mathcal{D}(1^{\eta}, k, y)$ decrypts y with k. $\mathfrak K$ and $\mathcal E$ — probabilistic, $\mathfrak D$ — deterministic. - Let $\langle \cdot, \cdot \rangle : (\{0, 1\}^*)^2 \to \{0, 1\}^*$ be easily computable and invertible injective function. - \blacksquare A symmetric encryption scheme $(\mathcal{K}, \mathcal{E}, \mathcal{D})$: - $\mathcal{K}^{\mathbf{r}}(1^{\eta})$ generates keys from random coins \mathbf{r} ; - $\mathcal{E}^{\mathbf{r}}(1^{\eta}, \mathbf{k}, \mathbf{x})$ encrypts \mathbf{x} with \mathbf{k} using the random coins \mathbf{r} ; - $\mathcal{D}(1^{\eta}, k, y)$ decrypts y with k. $\mathcal K$ and $\mathcal E$ — probabilistic, $\mathcal D$ — deterministic. #### Correctness: $$\begin{array}{l} \mathtt{k} := \mathcal{K}^{\mathtt{r}}(1^{\eta}) \\ \forall \eta, \mathtt{x}, \mathtt{r}, \mathtt{r}' : \begin{array}{l} \mathtt{y} := \mathcal{E}^{\mathtt{r}'}(1^{\eta}, \mathtt{k}, \mathtt{x}) \\ \mathtt{x}' := \mathcal{D}(1^{\eta}, \mathtt{k}, \mathtt{y}) \\ (\mathtt{x} = \mathtt{x}')? \end{array}$$ ## Semantics of a formal expression - For each $k \in \mathbf{Keys}$ let $\mathbf{s}_k \leftarrow \mathcal{K}(\mathbf{1}^{\eta})$ - For each $r \in \mathbf{Coins}$ let $\mathbf{s}_r \in_R \{0, 1\}^{\omega}$. Define #### Semantics of a formal expression - For each $k \in \mathbf{Keys}$ let $\mathbf{s}_k \leftarrow \mathcal{K}(\mathbf{1}^{\eta})$ - For each $r \in \mathbf{Coins}$ let $\mathbf{s}_r \in_R \{0, 1\}^{\omega}$. Define [] assigns to each formal expression a family of probability distributions over bit-strings ## **Computational indistinguishability** We are looking for sufficient conditions in terms of e_1 and e_2 for $$\llbracket e_1 \rrbracket \approx \llbracket e_2 \rrbracket .$$ ## **Computational indistinguishability** We are looking for sufficient conditions in terms of e_1 and e_2 for $$\llbracket e_1 \rrbracket \approx \llbracket e_2 \rrbracket$$. Two families of probability distributions over bit-strings $D^0 = \{D^0_\eta\}_{\eta \in \mathbb{N}}$ and $D^1 = \{D^1_\eta\}_{\eta \in \mathbb{N}}$ are computationally indistinguishable if for all PPT algorithms \mathcal{A} : $$\Pr[b = b^* \mid b \in_R \{0, 1\}, x \leftarrow D_n^b, b^* \leftarrow \mathcal{A}(\mathbf{1}^{\eta}, x)] = 1/2 + \varepsilon(\eta)$$ for some negligible function ε . ## **Computational indistinguishability** We are looking for sufficient conditions in terms of e_1 and e_2 for $$\llbracket e_1 \rrbracket \approx \llbracket e_2 \rrbracket$$. Two families of probability distributions over bit-strings $D^0 = \{D^0_\eta\}_{\eta \in \mathbb{N}}$ and $D^1 = \{D^1_\eta\}_{\eta \in \mathbb{N}}$ are computationally indistinguishable if for all PPT algorithms \mathcal{A} : $$\Pr[b = b^* \mid b \in_R \{0, 1\}, x \leftarrow D_{\eta}^b, b^* \leftarrow \mathcal{A}(\mathbf{1}^{\eta}, x)] = 1/2 + \varepsilon(\eta)$$ for some negligible function ε . A function ε is negligible if $$\lim_{\eta \to \infty} \varepsilon(\eta) \cdot p(\eta) = 0$$ for all polynomials p. $$e_1 \vdash e_2$$ The value of e_1 tells us the value of e_2 $$e_1 \vdash e_2$$ The value of e_1 tells us the value of e_2 $$e \vdash e$$ $$e \vdash (e_1, e_2) \Rightarrow e \vdash e_1 \land e \vdash e_2$$ $$e \vdash \{e'\}_k^r \land e \vdash k \Rightarrow e \vdash e'$$ $$e_1 \vdash e_2$$ The value of e_1 tells us the value of e_2 $$e \vdash e$$ $$e \vdash (e_1, e_2) \Rightarrow e \vdash e_1 \land e \vdash e_2$$ $$e \vdash \{e'\}_k^r \land e \vdash k \Rightarrow e \vdash e'$$ Examples: $$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, k_2) \vdash 1011$$ $$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_3}^{r''}) \not\vdash 1011$$ $$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_1}^{r''}) \not\vdash 1011$$ $$e_1 \vdash e_2$$ The value of e_1 tells us the value of e_2 $$e \vdash e$$ $$e \vdash (e_1, e_2) \Rightarrow e \vdash e_1 \land e \vdash e_2$$ $$e \vdash \{e'\}_k^r \land e \vdash k \Rightarrow e \vdash e'$$ Examples: $$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, k_2) \vdash 1011$$ $$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_3}^{r''}) \not\vdash 1011$$ $$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_1}^{r''}) \not\vdash 1011$$ Let $openkeys(e) = \{k \in \mathbf{Keys} \mid e \vdash k\}.$ ## The pattern of a formal expression - Enlarge the set \mathbf{Exp} : $e := \dots | \Box^r$. - For a set $K \subseteq \mathbf{Keys}$ define $$pat(k, K) = k$$ $$pat(b, K) = b$$ $$pat((e_1, e_2), K) = (pat(e_1, K), pat(e_2, K))$$ $$pat(\{e\}_k^r, K) = \begin{cases} \{pat(e, K)\}_k^r, & \text{if } k \in K \\ \Box^r, & \text{if } k \notin K \end{cases}$$ \blacksquare Let pattern(e) = pat(e, openkeys(e)). #### The pattern of a formal expression - Enlarge the set \mathbf{Exp} : $e := \dots | \Box^r$. - For a set $K \subseteq \mathbf{Keys}$ define $$pat(k, K) = k$$ $$pat(b, K) = b$$ $$pat((e_1, e_2), K) = (pat(e_1, K), pat(e_2, K))$$ $$pat(\{e\}_k^r, K) = \begin{cases} \{pat(e, K)\}_k^r, & \text{if } k \in K \\ \Box^r, & \text{if } k \notin K \end{cases}$$ - \blacksquare Let pattern(e) = pat(e, openkeys(e)). - Define $e_1 \cong e_2$ if $pattern(e_1) = pattern(e_2)\sigma_K\sigma_R$ for some - lacktriangledown σ_K a permutation of the keys **Keys**; - \bullet σ_R a permutation of the random coins Coins. #### **Examples** $$pattern((\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, k_2)) = (\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, k_2)$$ $$pattern((\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_3}^{r''})) = (\square^r, \square^{r'}, \square^{r''})$$ $$pattern((\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_1}^{r''})) = (\square^r, \square^{r'}, \square^{r''})$$ $$pattern((\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\square^{r_1}, \square^{r_2}, \{\square^{r_4}\}_{k_1}^{r_3}, k_1)$$ $$pattern((\{k_4, 0\}_{k_3}^{r_1}, \{k_3\}_{k_2}^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\square^{r_1}, \square^{r_2}, \{\square^{r_4}\}_{k_1}^{r_3}, k_1)$$ ## IND-CPA-security of an encryption scheme ■ Encrypting oracle $O_1^{\text{IND-CPA}}$: ``` \begin{array}{ll} \text{Initialization:} & \textbf{method} \ \text{encrypt}(x) \\ \mathtt{k} \leftarrow \mathcal{K}(\mathbf{1}^{\eta}) & \mathtt{y} \leftarrow \mathcal{E}(\mathtt{k}, \mathtt{x}) \\ & \textbf{return} \ \mathtt{y} \end{array} ``` Constant-encrypting oracle $\mathcal{O}_0^{\mathrm{IND-CPA}}$: ``` Initialization: \mathbf{method} \; \mathsf{encrypt}(\mathbf{x}) k \leftarrow \mathcal{K}(\mathbf{1}^{\eta}) l := length(\mathbf{x}) \mathbf{y} \leftarrow \mathcal{E}(\mathbf{k}, \mathbf{0}^l) return \mathbf{y} ``` $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is IND-CPA-secure if for all PPT algorithms \mathcal{A} exists a negligible ε , such that $$\Pr[b = b^* \mid b \in_R \{0, 1\}, b^* \leftarrow \mathcal{A}^{\mathcal{O}_b^{\text{IND-CPA}}}(\mathbf{1}^{\eta})] = 1/2 + \varepsilon(\eta)$$ #### IND-CPA-security of an encryption scheme ■ Encrypting oracle $O_1^{\text{IND-CPA}}$: ``` \begin{array}{ll} \text{Initialization:} & \textbf{method} \ \text{encrypt}(x) \\ \textbf{k} \leftarrow \mathcal{K}(\textbf{1}^{\eta}) & \textbf{y} \leftarrow \mathcal{E}(\textbf{k}, \textbf{x}) \\ & \textbf{return} \ \textbf{y} \end{array} ``` Constant-encrypting oracle $\mathcal{O}_0^{\mathrm{IND-CPA}}$: ``` Initialization: \mathbf{method} \; \mathsf{encrypt}(\mathbf{x}) k \leftarrow \mathcal{K}(\mathbf{1}^{\eta}) l := length(\mathbf{x}) \mathbf{y} \leftarrow \mathcal{E}(\mathbf{k}, \mathbf{0}^l) return \mathbf{y} ``` $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is IND-CPA-secure if for all PPT algorithms \mathcal{A} exists a negligible ε , such that $$\Pr[b = b^* \mid b \in_R \{0, 1\}, b^* \leftarrow \mathcal{A}^{\mathcal{O}_b^{\text{IND-CPA}}}(\mathbf{1}^{\eta})] = 1/2 + \varepsilon(\eta)$$ In other words: $O_1^{\text{IND-CPA}} \approx O_0^{\text{IND-CPA}}$. ## Hiding the identities of keys • Oracle with two keys $O_1^{\text{hide-key}}$: ``` Initialization: method encrypt1(x) k_1 \leftarrow \mathcal{K}(1^{\eta}) y \leftarrow \mathcal{E}(k_1, x) k_2 \leftarrow \mathcal{K}(1^{\eta}) return y ``` $\label{eq:method} \begin{aligned} & \text{method } \text{encrypt2}(x) \\ & y \leftarrow \mathcal{E}(k_2, x) \\ & \text{return } y \end{aligned}$ Oracle with one key $\mathcal{O}_0^{\text{hide-key}}$: ``` Initialization: method encrypt1(x) k \leftarrow \mathcal{K}(1^{\eta}) y \leftarrow \mathcal{E}(k, x) return y ``` $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ hides the identities of keys / is which-key concealing if $\mathcal{O}_1^{\text{hide-key}} \approx \mathcal{O}_0^{\text{hide-key}}$. ## Hiding the identities of keys Oracle with two keys $O_1^{\text{hide-key}}$: $$\begin{array}{ll} \text{Initialization:} & \textbf{method} \; \text{encrypt1}(x) & \textbf{method} \; \text{encrypt2}(x) \\ k_1 \leftarrow \mathcal{K}(1^{\eta}) & \text{y} \leftarrow \mathcal{E}(k_1, x) & \text{y} \leftarrow \mathcal{E}(k_2, x) \\ k_2 \leftarrow \mathcal{K}(1^{\eta}) & \textbf{return} \; \text{y} & \textbf{return} \; \text{y} \end{array}$$ Oracle with one key $\mathcal{O}_0^{\text{hide-key}}$: $$\begin{array}{ll} \text{Initialization:} & \textbf{method} \ \text{encrypt1}(x) & \textbf{method} \ \text{encrypt2}(x) \\ \textbf{k} \leftarrow \mathcal{K}(\textbf{1}^{\eta}) & \textbf{y} \leftarrow \mathcal{E}(\textbf{k}, \textbf{x}) & \textbf{y} \leftarrow \mathcal{E}(\textbf{k}, \textbf{x}) \\ & \textbf{return} \ \textbf{y} & \textbf{return} \ \textbf{y} \end{array}$$ $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ hides the identities of keys / is which-key concealing if $\mathcal{O}_1^{\mathrm{hide-key}} \approx \mathcal{O}_0^{\mathrm{hide-key}}$. IND-CPA-secure which-key concealing encryption schemes are easily constructed (CCA- or CTR-mode of operation of block ciphers). #### Hiding the length of the plaintext - An encryption scheme is length-concealing if the length of the plaintext cannot be determined from the ciphertext. - Achievable by padding the plaintexts. - Questionable for nested encryptions... - For simplicity, we will assume that our encryption scheme is length-concealing. - ◆ And also which-key concealing and IND-CPA-secure. - Otherwise we'd need to define lengths of formal expressions. ## IND-CPA, which-key and length-concealing: Let 0 be a fixed bit-string. $$lacksquare$$ Oracle $\mathbb{O}_1^{\mathrm{type}-0}$: Initialization: $$k_1 \leftarrow \mathcal{K}(1^{\eta})$$ $k_2 \leftarrow \mathcal{K}(1^{\eta})$ method encrypt1(x) $$y \leftarrow \mathcal{E}(k_1, x)$$ **method** encrypt $$2(x)$$ $$\mathbf{y} \leftarrow \mathcal{E}(\mathbf{k_2}, \mathbf{x})$$ return \mathbf{y} $$\blacksquare$$ Oracle $O_0^{\text{type}-0}$: $$\mathtt{k} \leftarrow \mathfrak{K}(\mathtt{1}^{\eta})$$ **method** encrypt1(x) $$y \leftarrow \mathcal{E}(k, 0)$$ return y **method** encrypt2(x) $$y \leftarrow \mathcal{E}(k, 0)$$ return y $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ has all three listed properties if $\mathcal{O}_1^{\mathrm{type}-0} \approx \mathcal{O}_0^{\mathrm{type}-0}$. ## Theorem of equivalence **Theorem.** Let $e_1, e_2 \in \mathbf{Exp}$. If $e_1 \cong e_2$ then* $\llbracket e_1 \rrbracket \approx \llbracket e_2 \rrbracket$. #### Interlude: Hybrid argument - Let $D^0=\{D^0_{\eta}\}_{\eta\in\mathbb{N}}$ and $D^1=\{D^1_{\eta}\}_{\eta\in\mathbb{N}}$ be two families of probability distributions. - \blacksquare Let p be a positive polynomial. - Let \vec{D}_{η}^{b} be a probability distribution over tuples $$(x_1, x_2, \dots, x_{p(\eta)}) \in (\{0, 1\}^*)^{p(\eta)}$$ #### such that - lacktriangle each x_i is distributed according to D_{η}^b ; - lack each x_i is is independent of all other x-s. #### Interlude: Hybrid argument - Let $D^0=\{D^0_{\eta}\}_{\eta\in\mathbb{N}}$ and $D^1=\{D^1_{\eta}\}_{\eta\in\mathbb{N}}$ be two families of probability distributions. - \blacksquare Let p be a positive polynomial. - lacktriangle Let $ec{D}_{\eta}^{b}$ be a probability distribution over tuples $$(x_1, x_2, \dots, x_{p(\eta)}) \in (\{0, 1\}^*)^{p(\eta)}$$ #### such that - lack each x_i is distributed according to D_{η}^b ; - lack each x_i is is independent of all other x-s. - To sample \vec{D}_{η}^b , sample D_{η}^b $p(\eta)$ times and construct the tuple of sampled values. # \vec{D} -s indistinguishable $\Rightarrow D$ -s indistinguishable **Theorem.** If $\vec{D}^0 \approx \vec{D}^1$ then $D^0 \approx D^1$. ## \vec{D} -s indistinguishable $\Rightarrow D$ -s indistinguishable ``` Theorem. If \vec{D}^0 \approx \vec{D}^1 then D^0 \approx D^1. If \bullet \bullet \bullet \approx \bullet \bullet \bullet then \bullet \approx \bullet. ``` Contrapositive: if $\bullet \not\approx \bullet$ then $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ **Theorem.** If $\vec{D}^0 \approx \vec{D}^1$ then $D^0 \approx D^1$. If $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ then $\bullet \approx \bullet$. Contrapositive: if $\bullet \not\approx \bullet$ then $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ If $\bullet \not\approx \bullet$ then there exists a PPT distinguisher \mathcal{A} : $$\Pr[b = b^* \mid b \in_R \{0, 1\}, x \leftarrow D_{\eta}^b, b^* \leftarrow \mathcal{A}(\eta, x)] \ge 1/2 + 1/q(\eta)$$ **Theorem.** If $\vec{D}^0 \approx \vec{D}^1$ then $D^0 \approx D^1$. If $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ then $\bullet \approx \bullet \bullet$. Contrapositive: if $\bullet \not\approx \bullet$ then $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ If $\bullet \not\approx \bullet$ then there exists a PPT distinguisher \mathcal{A} : $$\Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{1}] \ge 2/q(\eta)$$ **Theorem.** If $\vec{D}^0 \approx \vec{D}^1$ then $D^0 \approx D^1$. If $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ then $\bullet \approx \bullet$. Contrapositive: if $\bullet \not\approx \bullet$ then $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ If $\bullet \not\approx \bullet$ then there exists a PPT distinguisher \mathcal{A} : $$\Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{1}] \ge 1/q(\eta)$$ **Theorem.** If $\vec{D}^0 \approx \vec{D}^1$ then $D^0 \approx D^1$. If $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ then $\bullet \approx \bullet$. Contrapositive: if $\bullet \not\approx \bullet$ then $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ If $\bullet \not\approx \bullet$ then there exists a PPT distinguisher \mathcal{A} : $$\Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{1}] \ge 1/q(\eta)$$ for some polynomial q and infinitely many η . Let $$\mathcal{B}(\eta,(x_1,\ldots,x_{p(\eta)}))=\mathcal{A}(\eta,x_1).$$ Then \mathcal{B} distinguishes ••• and •••. **Theorem.** If $\vec{D}^0 \approx \vec{D}^1$ then $D^0 \approx D^1$. If $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ then $\bullet \approx \bullet$. Contrapositive: if $\bullet \not\approx \bullet$ then $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ If • $\not\approx$ • then there exists a PPT distinguisher \mathcal{A} : $$\Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{1}] \ge 1/q(\eta)$$ for some polynomial q and infinitely many η . Let $$\mathcal{B}(\eta,(x_1,\ldots,x_{p(\eta)}))=\mathcal{A}(\eta,x_1).$$ Then \mathcal{B} distinguishes ••• and •••. I.e. we can distinguish ••• from ••• by just considering the first elements of the tuples. (Interesting) theorem. If $D^0 \approx D^1$ and there exist polynomial-time algorithms \mathcal{D}^0 and \mathcal{D}^1 , such that the output distribution of $\mathcal{D}^b(\eta)$ is equal to D^b_n , then $\vec{D}^0 \approx \vec{D}^1$. (Interesting) theorem. If $D^0 \approx D^1$ and there exist polynomial-time algorithms \mathcal{D}^0 and \mathcal{D}^1 , such that the output distribution of $\mathcal{D}^b(\eta)$ is equal to D^b_{η} , then $\vec{D}^0 \approx \vec{D}^1$. If $\bullet \approx \bullet$ then $\bullet \bullet \bullet \approx \bullet \bullet \bullet \bullet$ Contrapositive: if $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ then $\bullet \not\approx \bullet$. (Interesting) theorem. If $D^0 \approx D^1$ and there exist polynomial-time algorithms \mathcal{D}^0 and \mathcal{D}^1 , such that the output distribution of $\mathcal{D}^b(\eta)$ is equal to D^b_n , then $\vec{D}^0 \approx \vec{D}^1$. If $\bullet \approx \bullet$ then $\bullet \bullet \bullet \approx \bullet \bullet \bullet$. Contrapositive: if $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ then $\bullet \not\approx \bullet$. If ••• $\not\approx$ ••• then there exists a PPT distinguisher \mathcal{A} : $$\Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{D}_{\eta}^{1}] \ge 1/q(\eta)$$ (Interesting) theorem. If $D^0 \approx D^1$ and there exist polynomial-time algorithms \mathcal{D}^0 and \mathcal{D}^1 , such that the output distribution of $\mathcal{D}^b(\eta)$ is equal to D^b_n , then $\vec{D}^0 \approx \vec{D}^1$. If $\bullet \approx \bullet$ then $\bullet \bullet \bullet \approx \bullet \bullet \bullet$. Contrapositive: if $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ then $\bullet \not\approx \bullet$. If ••• $\not\approx$ ••• then there exists a PPT distinguisher \mathcal{A} : $$\Pr[\mathcal{A}(\eta, \vec{x}) = 0 \mid \vec{x} \leftarrow \vec{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \mid \vec{x} \leftarrow \vec{D}_{\eta}^{1}] \ge 1/q(\eta)$$ for some polynomial q and infinitely many η . Assume for now that the polynomial p is a constant. I.e. the length of the vector \vec{x} does not depend on the security parameter η . Let p be the common value of $p(\eta)$ for all η . ### **Hybrid distributions** If ••• $\not\approx$ ••• then $$(\bullet \bullet \bullet \not\approx \bullet \bullet \bullet) \lor (\bullet \bullet \bullet \not\approx \bullet \bullet \bullet) \lor (\bullet \bullet \bullet \not\approx \bullet \bullet \bullet)$$ #### **Hybrid distributions** If ••• $\not\approx$ ••• then $$(\bullet \bullet \bullet \not\approx \bullet \bullet \bullet) \lor (\bullet \bullet \bullet \not\approx \bullet \bullet \bullet) \lor (\bullet \bullet \bullet \not\approx \bullet \bullet \bullet)$$ Let \vec{E}_{η}^k , where $0 \le k \le p$, be a probability distribution over tuples (x_1, \ldots, x_p) , where - \blacksquare each x_i is independent of all other x-s; - \blacksquare x_1,\ldots,x_k are distributed according to D_{η}^0 ; - \blacksquare x_{k+1},\ldots,x_p are distributed according to D^1_{η} . Thus $\vec{E}_{\eta}^0 = \vec{D}_{\eta}^1$ and $\vec{E}_{\eta}^p = \vec{D}_{\eta}^0$. Define $P_{\eta}^k = \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^k]$. Then for infinitely many η : $$1/q(\eta) \le P_{\eta}^p - P_{\eta}^0 = \sum_{i=1}^p (P_{\eta}^i - P_{\eta}^{i-1}) .$$ And for some j_{η} , $P_{\eta}^{j_{\eta}} - P_{\eta}^{j_{\eta}-1} \ge 1/(p \cdot q(\eta))$. ### ${\cal A}$ distinguishes hybrids There exists j, such that $j=j_{\eta}$ for infinitely many η . Thus $$\Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^{j}] - \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^{j-1}] \ge 1/q(\eta)$$ for infinitely many η . We have $\vec{E}^{j-1} \not\approx \vec{E}^j$. #### A distinguishes hybrids There exists j, such that $j=j_{\eta}$ for infinitely many η . Thus $$\Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^{j}] - \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^{j-1}] \ge 1/q(\eta)$$ for infinitely many η . We have $\vec{E}^{j-1} \not\approx \vec{E}^j$. If we can distinguish $$\vec{E}^j = \underbrace{\cdots}_{j-1} \underbrace{\cdots}_{p-j}$$ from $$\vec{E}^{j-1} = \underbrace{\cdots}_{j-1} \underbrace{\cdots}_{p-j}$$ using A, then how do we distinguish • and •? ## **Distinguisher for** D^0 and D^1 ``` On input (\eta, x): ``` - 1. Let $x_1 := \mathcal{D}^0(\eta), \dots, x_{j-1} := \mathcal{D}^0(\eta)$. - 2. Let $x_i := x$ - 3. Let $x_{j+1} := \mathcal{D}^1(\eta), \dots, x_p := \mathcal{D}^1(\eta)$ - 4. Let $\vec{x} = (x_1, \dots, x_p)$. - 5. Call $b^* := \mathcal{A}(\eta, \vec{x})$ and return b^* . The advantage of this distinguisher is at least $1/(p \cdot q(\eta))$. ## **Distinguisher for** D^0 and D^1 ``` On input (\eta, x): ``` - 1. Let $x_1 := \mathcal{D}^0(\eta), \dots, x_{j-1} := \mathcal{D}^0(\eta)$. - 2. Let $x_i := x$ - 3. Let $x_{j+1} := \mathcal{D}^1(\eta), \dots, x_p := \mathcal{D}^1(\eta)$ - 4. Let $\vec{x} = (x_1, \dots, x_p)$. - 5. Call $b^* := \mathcal{A}(\eta, \vec{x})$ and return b^* . The advantage of this distinguisher is at least $1/(p \cdot q(\eta))$. Unfortunately, the above construction was not constructive. ### Being constructive For infinitely many η we had $$1/q(\eta) \le P_{\eta}^p - P_{\eta}^0 = \sum_{i=1}^p (P_{\eta}^i - P_{\eta}^{i-1}) .$$ Hence the <u>average</u> value of $P^j_{\eta} - P^{j-1}_{\eta}$ is $\geq 1/(p \cdot q(\eta))$. #### Being constructive For infinitely many η we had $$1/q(\eta) \le P_{\eta}^p - P_{\eta}^0 = \sum_{i=1}^p (P_{\eta}^i - P_{\eta}^{i-1}) .$$ Hence the <u>average</u> value of $P^j_{\eta} - P^{j-1}_{\eta}$ is $\geq 1/(p \cdot q(\eta))$. Consider the following distinguisher $\mathcal{B}(\eta, x)$: - 1. Let $j \in_R \{1, \dots, p\}$. - 2. Let $x_1 := \mathcal{D}^0(\eta), \dots, x_{j-1} := \mathcal{D}^0(\eta)$. - 3. Let $x_i := x$ - 4. Let $x_{j+1} := \mathcal{D}^1(\eta), \dots, x_p := \mathcal{D}^1(\eta)$ - 5. Let $\vec{x} = (x_1, \dots, x_p)$. - 6. Call $b^* := \mathcal{A}(\eta, \vec{x})$ and return b^* . #### What \mathcal{B} does If (for example) p = 5, then \mathcal{B} tries to distinguish and •••• with probability $$1/5$$ •••• and •••• with probability $1/5$ •••• and ••• with probability $1/5$ ••• and ••• with probability $1/5$ ••• and ••• with probability $1/5$ The advantage of \mathcal{B} is 1/p times the sum of \mathcal{A} 's advantages of distinguishing these pairs of distributions. The advantage of ${\mathfrak B}$ is $$\frac{1}{p} \sum_{j=1}^{p} P_{\eta}^{j} - P_{\eta}^{j-1} = \frac{1}{p} (P_{\eta}^{p} - P_{\eta}^{0}) \ge \frac{1}{p \cdot q(\eta)}.$$ #### If p depends on η ``` \mathfrak{B}(\eta,x) is: ``` - 1. Let $j \in_R \{1, \dots, p(\eta)\}$. - 2. Let $x_1 := \mathcal{D}^0(\eta), \dots, x_{j-1} := \mathcal{D}^0(\eta)$. - 3. Let $x_i := x$ - 4. Let $x_{j+1} := \mathcal{D}^1(\eta), \dots, x_{p(\eta)} := \mathcal{D}^1(\eta)$ - 5. Let $\vec{x} = (x_1, \dots, x_{p(\eta)})$. - 6. Call $b^* := \mathcal{A}(\eta, \vec{x})$ and return b^* . The advantage of \mathcal{B} is at least $1/(p(\eta) \cdot q(\eta))$. #### **Semantics of patterns** - For each $k \in \mathbf{Keys}$ let $\mathbf{s}_k \leftarrow \mathcal{K}(\mathbf{1}^{\eta})$ - For each $r \in \mathbf{Coins}$ let $\mathbf{s}_r \in_R \{0,1\}^{\omega}$ - Let $k_{\square} \leftarrow \mathcal{K}(1^{\eta})$. Define $$\begin{aligned} [k]_{\eta} &= \mathbf{s}_{k} \\ [b]_{\eta} &= b \\ [(e_{1}, e_{2})]_{\eta} &= \langle [e_{1}]_{\eta}, [e_{2}]_{\eta} \rangle \\ [\{e'\}_{k}^{r}]_{\eta} &= \mathcal{E}^{\mathbf{s}_{r}}(1^{\eta}, \mathbf{s}_{k}, [e']_{\eta}) \\ [\Box^{r}]_{\eta} &= \mathcal{E}^{\mathbf{s}_{r}}(1^{\eta}, \mathbf{k}_{\square}, \mathbf{0}) \end{aligned}$$ ### Replacing one key lacktriangle For a key $\overline{k} \in \mathbf{Keys}$ define $$replacekey(k, \overline{k}) = k$$ $$replacekey(b, \overline{k}) = b$$ $$replacekey((e_1, e_2), \overline{k}) = (replacekey(e_1, \overline{k}), replacekey(e_2, \overline{k}))$$ $$replacekey(\{e\}_k^r, \overline{k}) = \begin{cases} \Box^r, & \text{if } k = \overline{k} \\ \{replacekey(e, \overline{k})\}_k^r, & \text{if } k \neq \overline{k} \end{cases}$$ $$replacekey(\Box^r, \overline{k}) = \Box^r$$ ■ Lemma. Let $e \in \mathbf{Exp}$. Let key \overline{k} occur in e only as encryption key. Then $\llbracket e \rrbracket \approx \llbracket replacekey(e, \overline{k}) \rrbracket$. #### **Proof of the lemma** Assume that \mathcal{B} distinguishes $\llbracket e \rrbracket$ from $\llbracket replacekey(e, \overline{k}) \rrbracket$. Let $\mathcal{A}^{\mathcal{O}}(1^{\eta})$ work as follows: - Let $\mathbf{s}_k \leftarrow \mathcal{K}(1^{\eta})$ for all keys k occurring in e, except \overline{k} . - Let $\mathbf{s}_r \in_R \{0,1\}^{\omega}$ for all r occurring in e, except as $\{\ldots\}^{r}_{\overline{k}}$. - Let $k_{\square} \leftarrow \mathcal{K}(1^{\eta})$. - \blacksquare Let $L = \{\}$ (empty mapping). - \blacksquare Compute the "semantics" v of e as follows by invoking $Sem^{\mathfrak{O}}(e)$ - Sem $^{\mathcal{O}}(e) = \llbracket e \rrbracket$ if $\mathcal{O} = \mathcal{O}_1^{\text{type}-0}$. - Sem $^{\mathfrak{O}}(e) = \llbracket replacekey(e, \overline{k}) \rrbracket$ if $\mathfrak{O} = \mathfrak{O}_0^{\text{type}-0}$. - return $\mathfrak{B}(1^{\eta},v)$. \mathcal{A} can distinguish $\mathcal{O}_1^{\mathrm{type-0}}$ and $\mathcal{O}_0^{\mathrm{type-0}}$ as well as \mathcal{B} can distinguish $[\![e]\!]$ and $[\![replacekey(e,\overline{k})]\!]$. # Computing $\llbracket e \rrbracket$ or $\llbracket replacekey(e, \overline{k}) \rrbracket$ $Sem^{O}(e)$ is: case e of - \blacksquare k: return s_k (note that $k \neq \overline{k}$) - \blacksquare b: return b - lacksquare (e_1,e_2) : let $v_i=\mathrm{Sem}^{\mathfrak{O}}(e_i)$; return $\langle v_1,v_2 \rangle$ - \blacksquare \square^r : return $\emptyset.\text{encrypt2}(\mathbf{0})$ - $\blacksquare \quad \{e\}_k^r \colon \text{let } v = \text{Sem}^{\mathfrak{O}}(e);$ - If $k \neq \overline{k}$ then **return** $\mathcal{E}^{s_r}(1^{\eta}, s_k, v)$ - If $k = \overline{k}$ and L(r) is not defined then - let L(r) = 0.encrypt1(v); - \blacksquare return L(r) - If $k = \overline{k}$ and L(r) is defined then **return** L(r) #### Proof of the theorem - 1. $replacekey(replacekey(\cdots replacekey(e, k_1), k_2) \cdots, k_n) = pattern(e)$ if $\{k_1, \ldots, k_n\}$ are all keys in e that the adversary cannot obtain. Denote this set of keys by hidkeys(e). - 2. Apply the **lemma** sequentially to each key in hidkeys(e), thereby establishing $$\llbracket e \rrbracket \approx \llbracket pattern(e) \rrbracket.$$ - * In general, not all orders of keys in hidkeys(e) are suitable. - 3. Permuting the formal keys and coins does not change the generated probability distribution over bit-strings. If $$e_1 \cong e_2$$ then* $[e_1] \approx [pattern(e_1)] = [pattern(e_2)] = [e_2].$ $$[(\{k_4,0\}_{k_3}^{r_1},\{k_3\}_{k_2}^{r_2},\{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3},k_1)]]$$ $$[(\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$ $$[(\{k_4,0\}_{k_3}^{r_1},\{k_3\}_{k_2}^{r_2},\{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3},k_1)]]$$ $$[[(\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$ $$[(\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$ $$[(\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$ $$[[(\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$ $$[(\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$ $$[[(\{1\}_{k_2}^{r_1}, \{k_2\}_{\frac{k_3}{3}}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$ $$pattern((\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\square^{r_1}, \square^{r_2}, \{\square^{r_4}\}_{k_1}^{r_3}, k_1)$$ $$pattern((\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\square^{r_1}, \square^{r_2}, \{\square^{r_4}\}_{k_1}^{r_3}, k_1)$$ $$[(\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)]$$ $$pattern((\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\Box^{r_1}, \Box^{r_2}, \{\Box^{r_4}\}_{k_1}^{r_3}, k_1)$$ $$[(\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$ $$\langle \text{cannot apply the lemma} \rangle$$ ### **Encryption cycles** - \blacksquare Let e be a formal expression. - \blacksquare Consider the following directed graph G = (V, E): - \bullet V = hidkeys(e) - $(k_i \rightarrow k_i) \in E$ if e has a subexpression of the form $$\{\cdots k_j \cdots\}_{k_i}^r$$ (we say that k_i encrypts k_j) lacksquare has no encryption cycles if G does not contain directed cycles. ## **Encryption cycles** - \blacksquare Let e be a formal expression. - Consider the following directed graph G = (V, E): - \bullet V = hidkeys(e) - $(k_i \rightarrow k_j) \in E$ if e has a subexpression of the form $$\{\cdots k_j \cdots\}_{k_i}^r$$ (we say that k_i encrypts k_j) \blacksquare e has no encryption cycles if G does not contain directed cycles. **Theorem.** If e contains no encryption cycles then $[e] \approx [pattern(e)]$. ## **Encryption cycles** - \blacksquare Let e be a formal expression. - Consider the following directed graph G = (V, E): - lack V = hidkeys(e) - $(k_i \rightarrow k_j) \in E$ if e has a subexpression of the form $$\{\cdots k_j \cdots\}_{k_i}^r$$ (we say that k_i encrypts k_j) lacksquare has no encryption cycles if G does not contain directed cycles. **Theorem.** If e contains no encryption cycles then $[e] \approx [pattern(e)]$. "No encryption cycles" is sufficient, but not necessary condition for the sequential applicability of our lemma. Example: $$(\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3})$$ is OK. ### **Table of Contents** - The Abadi-Rogaway result on the indistinguishability of computational interpretations of formal messages. - Translating protocol traces between formal and computational world. # **Public-key primitives** - Extend the construction of the set of formal messages by - lacktriangle keypairs $kp \in \mathbf{EKeys}$ for encryption and $kp \in \mathbf{SKeys}$ for signing; - $lack operations kp^+$ and kp^- to take the public and secret components of keys; - lacktriangle public-key encryptions $\{[e]\}_{kp^+}^r$ and signatures $\{[e]\}_{kp^-}^r$. - Fix a public-key encryption scheme $(\mathcal{K}_p, \mathcal{E}_p, \mathcal{D}_p)$ and a signature scheme $(\mathcal{K}_s, \mathcal{S}_s, \mathcal{V}_s)$. - Use \mathcal{K}_p , \mathcal{E}_p , \mathcal{K}_s , \mathcal{K}_s to define the semantics of new constructs. - Similar results can be obtained with $\{[\cdot]\}$ in messages. - ◆ If secret keys are not part of messages then encryption cycles are not an issue. # **Specifying the protocols** - A set \mathcal{P} of principals (some of them possibly corrupted). Each one with fixed keypairs for signing and encryption. - lacktriangle There are keys $\operatorname{ek}(P)$, $\operatorname{dk}(P)$, $\operatorname{sk}(P)$, $\operatorname{vk}(P)$ for each principal P. - A set of roles. - ◆ A list of pairs of incoming and outgoing messages. - May contain nonces. - Also may contain message variables and principal variables. ## **Example roles** Needham-Schroeder-Lowe public-key protocol: $$A \longrightarrow B : \{[N_A, A]\}_{ek(B)}$$ $B \longrightarrow A : \{[N_A, N_B, B]\}_{ek(A)}$ $A \longrightarrow B : \{[N_B]\}_{ek(B)}$ Initiator role: $$(Start, \{[N_A, X_{\text{Init}}]\}_{\text{ek}(X_{\text{Resp}})})$$ $$(\{[N_A, X_N, X_{\text{Resp}}]\}_{\text{ek}(X_{\text{Init}})}, \{[X_N]\}_{\text{ek}(X_{\text{Resp}})})$$ ■ Responder role: $$(\{[X_N, X_{\text{Init}}]\}_{\mathsf{ek}(X_{\text{Resp}})}, \{[X_N, N_B, X_{\text{Resp}}]\}_{\mathsf{ek}(X_{\text{Init}})})$$ $$(\{[N_B]\}_{\mathsf{ek}(X_{\text{Resp}})}, Ok)$$ - Adversary may start new runs by stating $\mathbf{new}(sid; P_1, \dots, P_n)$. - lacktriangle sid is the unique session identifier of the run. - P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n . - Adversary may start new runs by stating $\mathbf{new}(sid; P_1, \dots, P_n)$. - lacktriangle sid is the unique session identifier of the run. - P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n . - Adversary may send messages by stating $\mathbf{recv}(sid, R_i, m)$ where m is a message. - lacktriangle The role R_i in the run sid will receive the message m and process it. - Adversary may start new runs by stating $\mathbf{new}(sid; P_1, \dots, P_n)$. - lacktriangle sid is the unique session identifier of the run. - P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n . - Adversary may send messages by stating $\mathbf{recv}(sid, R_i, m)$ where m is a message. - lacktriangle The role R_i in the run sid will receive the message m and process it. - When a principal P_i running the role $R_i = (m_i, \mathbf{m_o}) :: R'_i$ in the run sid will receive a message m, then it will - lack match m with m_i ; - generate a new message m' by instantiating the outgoing message m_o and send it: $\mathbf{send}(sid, R_i, m')$; - Set R_i to R'_i (in sid only). - Decompose m according to m_i . - lack Use dk (P_i) to decrypt messages encrypted with ek (P_i) . - lacktriangle The keys for symmetric encryption are contained in m_i . - Verify the equality of instantiated parts of m_i to the corresponding parts of m'. Initialize the new variables in $m_{\rm i}$ with the corresponding parts of m'. \blacksquare Verify the signatures in m'. - When a principal P_i running the role $R_i = (m_i, m_o) :: R'_i$ in the run sid will receive a message m, then it will - lack match m with m_i ; - generate a new message m' by instantiating the outgoing message m_o and send it: $\mathbf{send}(sid, R_i, m')$; - Set R_i to R'_i (in sid only). re m - Adversary may start new runs by stating $\mathbf{new}(sid; P_1, \dots, P_n)$. - lacktriangle sid is the unique session identifier of the run. - P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n . - Adversary may send messages by stating $\mathbf{recv}(sid, R_i, m)$ where m is a message. - lacktriangle The role R_i in the run sid will receive the message m and process it. - When a principal P_i running the role $R_i = (m_i, \mathbf{m_o}) :: R'_i$ in the run sid will receive a message m, then it will - lack match m with m_i ; - generate a new message m' by instantiating the outgoing message m_o and send it: $\mathbf{send}(sid, R_i, m')$; - Set R_i to R'_i (in sid only). - Adversary may start new runs by stating $\mathbf{new}(sid; P_1, \dots, P_n)$. - lacktriangle sid is the unique session identifier of the run. - P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n . - \blacksquare Use the values of already known keys, nonces, variables, etc. $_{\rm re}$ $_m$ - Generate new values for keys and nonces that occur first time in m_0 . - When a principal P_i running the role $R_i = (m_i, m_o) :: R'_i$ in the run sid will receive a message m, then it will - lacktriangle match m with m_i ; - generate a new message m' by instantiating the outgoing message m_o and send it: $\mathbf{send}(sid, R_i, m')$; - Set R_i to R'_i (in sid only). ### **Execution traces** - An execution trace is a sequence of new-, recv- and send-statements. - We have traces in both models there are - ◆ formal traces sequences of terms over a message algebra with a countable number of atoms for keys, nonces, random coins; - ◆ computational traces sequences of bit-strings. - A formal trace is valid if each message in a recv-statement can be generated from messages in previous send- and recv-statements. # **Translating Formal** → **Computational** - lacktriangle A formal trace t^f is a sequence consisting of principal names and formal messages. - Formal messages are made up of formal nonces, formal keys, formal encryptions and decryptions using formal coins. - Fix a mapping c from formal constants, nonces, keys and coins to bit-strings. - \blacksquare Extend c to the entire trace, giving the computational trace $c(t^f)$. - Denote $t^f \leq t^c$ if the computational trace t^c can be obtained as a translation of the formal trace t^f . # **Translating Formal** → **Computational** - lacktriangle A formal trace t^f is a sequence consisting of principal names and formal messages. - Formal messages are made up of formal nonces, formal keys, formal encryptions and decryptions using formal coins. - Fix a mapping c from formal constants, nonces, keys and coins to bit-strings. - lacktriangle Extend c to the entire trace, giving the computational trace $c(t^f)$. - Denote $t^f \le t^c$ if the computational trace t^c can be obtained as a translation of the formal trace t^f . **Lemma.** If the used cryptographic primitives are secure then for any computational adversary \mathcal{A} , if t^c is a computational trace of the protocol running together with \mathcal{A} then with overwhelming probability there exists a valid formal trace t^f , such that $t^f \leq t^c$. # **Security of primitives** - The encryption systems must be IND-CCA secure. - lacktriangle Adversary may not be able to distinguish $\mathcal{E}(k, \pi_1(\cdot, \cdot))$ and $\mathcal{E}(k, \pi_2(\cdot, \cdot))$ even with access to $\mathfrak{D}(k, \cdot)$. - Results from the encryption oracle may not be submitted to the decryption oracle. # **Security of primitives** - The encryption systems must be IND-CCA secure. - lacktriangle Adversary may not be able to distinguish $\mathcal{E}(k, \pi_1(\cdot, \cdot))$ and $\mathcal{E}(k, \pi_2(\cdot, \cdot))$ even with access to $\mathcal{D}(k, \cdot)$. - Results from the encryption oracle may not be submitted to the decryption oracle. - The signature system must be EF-CMA secure. - Adversary may not be able to produce a valid (message, signature)-pair, even when interacting with a signing oracle. - Messages submitted to the oracle do not count. # **Security of primitives** - The encryption systems must be IND-CCA secure. - igoplus Adversary may not be able to distinguish $\mathcal{E}(k, \pi_1(\cdot, \cdot))$ and $\mathcal{E}(k, \pi_2(\cdot, \cdot))$ even with access to $\mathfrak{D}(k, \cdot)$. - Results from the encryption oracle may not be submitted to the decryption oracle. - The signature system must be EF-CMA secure. - Adversary may not be able to produce a valid (message, signature)-pair, even when interacting with a signing oracle. - Messages submitted to the oracle do not count. - The message must be recoverable from the signature (and the verification key). ### Consider - a computational trace, - lack Actually, the set ${\mathcal M}$ of messages appearing in it. - \blacksquare the set $\mathcal K$ of secret decryption keys of participants. ### **Iterate:** ### Consider - a computational trace, - lacktriangle Actually, the set ${\mathcal M}$ of messages appearing in it. - lacktriangle the set $\mathcal K$ of secret decryption keys of participants. #### **Iterate:** If some $M \in \mathcal{M}$ looks like a pair $\langle M_1, M_2 \rangle$ then - \blacksquare add M_1, M_2 to \mathfrak{M} ; - lacksquare for M, record that it is a pair $\langle M_1, M_2 \rangle$. ### Consider - a computational trace, - lack Actually, the set ${\mathcal M}$ of messages appearing in it. - lacktriangle the set $\mathcal K$ of secret decryption keys of participants. #### **Iterate:** If some $M \in \mathcal{M}$ looks like a symmetric key then - \blacksquare add M to \mathfrak{K} ; - lacktriangle pick a new formal symmetric key K and associate it with M. Concerning symmetric encryption, attention has to be paid to encryption cycles. ### Consider - a computational trace, - lack Actually, the set ${\mathcal M}$ of messages appearing in it. - \blacksquare the set $\mathcal K$ of secret decryption keys of participants. #### **Iterate:** If some $M \in \mathcal{M}$ looks like an encryption then try to decrypt it with all keys in \mathcal{K} . If $M_0 = \mathcal{D}(M_k, M)$ for some $M_k \in \mathcal{K}$, then - \blacksquare add M_0 to \mathfrak{M} ; - for M, record that it is an encryption of M_0 with the formal key corresponding to the encryption key of M_k . ### Consider - a computational trace, - lack Actually, the set ${\mathcal M}$ of messages appearing in it. - \blacksquare the set $\mathcal K$ of secret decryption keys of participants. ### **Iterate:** If some $M \in \mathcal{M}$ looks like a signature then try to verify it with all verification keys in \mathcal{M} . If $\mathcal{V}(M_k, M)$ is successful, then - \blacksquare add $M_0 = get_message(M)$ to \mathfrak{M} ; - for M, record that it is the signature of M_0 verifiable with the formal key corresponding to M_k . ### Consider - a computational trace, - lack Actually, the set $\mathcal M$ of messages appearing in it. - \blacksquare the set $\mathcal K$ of secret decryption keys of participants. ### **Iterate:** etc. Try to decompose the messages in $\mathcal M$ as much as possible. ### Consider - a computational trace, - lack Actually, the set ${\mathcal M}$ of messages appearing in it. - \blacksquare the set $\mathcal K$ of secret decryption keys of participants. #### In the end: - for each uninterpreted message in \mathcal{M} : associate it with a new formal nonce. - Construct the formal trace using the structure of messages that we recorded. ### Invalid formal trace \Rightarrow broken primitive If the trace is invalid, then the adversary did one of the following: - forged a signature; - guessed a nonce, symmetric key, or signature that it had only seen encrypted. We run the protocol while using the encryption / signing oracles to encrypt / sign. We guess at which point the break happens. - We use the oracles for this particular key. - A forged signature promptly gives us a break of UF-CMA. - For guessed nonce, key or signature we generate two copies of it and use the messages derived from these two copies as the inputs to the oracle $\mathcal{E}(k, \pi_b(\cdot, \cdot))$. - lacktriangle After learning the nonce / key / signature, we learn b. ### **Trace properties** - \blacksquare A trace property of P is a subset of the set of all formal traces. - lacktriangle A protocol formally satisfies a trace property P if all its formal traces belong to P. - A protocol computationally satisfies a trace property P if for almost all computational traces t^c of the protocol there exists a trace $t^f \in P$, such that $t^f < t^c$. **Theorem.** If a protocol formally satisfies some trace property P, then it also computationally satisfies P. # **Confidentiality of nonces** - In the formal setting, the confidentiality of a certain nonce N means that N will not be included in the knowledge set of the adversary. - In the computational setting, the confidentiality of a certain nonce N means that no PPT adversary $\mathcal A$ can guess b from the following: - lacktriangle Run the protocol normally, with ${\mathcal A}$ as the adversary, until... - lacklack A denotes one of the just started protocol sessions as "under attack". - Generate a random bit b and two nonces N_0 and N_1 . - lacktriangle Use N_b in the attacked session in the place of N. - lacktriangle Continue executing the protocol until $\mathcal A$ stops it. - Give N_0 and N_1 to \mathcal{A} . **Theorem.** Formal confidentiality of a nonce implies its computational confidentiality.