Cryptographically sound formal verification of security protocols

Two views of cryptography

Formal ("Dolev-Yao") view

- Messages elements of a term algebra.
- Possible operations on messages are enumerated.
- Choices in semantics non-deterministic.
 - Protocol and the adversary are easily represented in some process calculus.

Computational view

- Messages bit strings.
- Possible operations on messages everything in PPT.
- Choices in semantics probabilistic.
 - Protocol and adversary a set of probabilistic interactive Turing machines.

Two views of cryptography

Formal ("Dolev-Yao") view

- Messages elements of a term algebra.
- Possible operations on messages are enumerated.
- Choices in semantics non-deterministic.
 - Protocol and the adversary are easily represented in some process calculus.
- Simpler to analyse.

Computational view

- Messages bit strings.
- Possible operations on messages everything in PPT.
- Choices in semantics probabilistic.
 - Protocol and adversary a set of probabilistic interactive Turing machines.
- Closer to the real world.

In this lecture we'll...

- take a look at cryptographic protocols using "classical" primitives
 - symmetric / asymmetric encryption, signatures, nonces, hash functions;
- see, what it takes to specify them
 - programming language, semantics and execution environment, interacting with the adversary;
 - semantics probabilistic, works with bit-strings;
- look at the methods to deal with the computational semantics
 - assuming we can handle perfect cryptography.

Table of Contents

- The Abadi-Rogaway result on the indistinguishability of computational interpretations of formal messages.
- Translating protocol traces between formal and computational world.

The atomic building blocks:

- Formal keys $k, k_1, k_2, k', k'', \ldots \in \mathbf{Keys}$
- Formal coins $r, r_1, r_2, r', r'', \ldots \in \mathbf{Coins}$
- Bits $b \in \{0, 1\}$

The atomic building blocks:

- Formal keys $k, k_1, k_2, k', k'', \ldots \in \mathbf{Keys}$
- Formal coins $r, r_1, r_2, r', r'', \ldots \in \mathbf{Coins}$
- Bits $b \in \{0, 1\}$

A formal expression $e \in \mathbf{Exp}$ is

$$e ::= k$$
 $| b$
 $| (e_1, e_2)$
 $| \{e'\}_k^r$

If $\{e\}_k^r$ and $\{e'\}_{k'}^r$ both occur in an expression then k=k' and e=e'.

The atomic building blocks:

- Formal keys $k, k_1, k_2, k', k'', \ldots \in \mathbf{Keys}$
- Formal coins $r, r_1, r_2, r', r'', \ldots \in \mathbf{Coins}$
- Bits $b \in \{0, 1\}$

A formal expression $e \in \mathbf{Exp}$ is

$$e ::= k$$
 $| b$
 $| (e_1, e_2)$
 $| \{e'\}_k^r$

If $\{e\}_k^r$ and $\{e'\}_{k'}^r$ both occur in an expression then k=k' and e=e'.

lacksquare is similar to Dolev-Yao messages.

The atomic building blocks:

- Formal keys $k, k_1, k_2, k', k'', \ldots \in \mathbf{Keys}$
- Formal coins $r, r_1, r_2, r', r'', \ldots \in \mathbf{Coins}$
- Bits $b \in \{0, 1\}$

A formal expression $e \in \mathbf{Exp}$ is

$$\begin{array}{cccc}
e & ::= & k \\
& | & b \\
& | & (e_1, e_2) \\
& | & \{e'\}_k^r
\end{array}$$

If $\{e\}_k^r$ and $\{e'\}_{k'}^r$ both occur in an expression then k=k' and e=e'.

- \blacksquare e is similar to Dolev-Yao messages.
- We can also interpret it as a program for computing a message.

■ Let $\langle \cdot, \cdot \rangle : (\{0, 1\}^*)^2 \to \{0, 1\}^*$ be easily computable and invertible injective function.

- Let $\langle \cdot, \cdot \rangle : (\{0, 1\}^*)^2 \to \{0, 1\}^*$ be easily computable and invertible injective function.
- \blacksquare A symmetric encryption scheme $(\mathcal{K}, \mathcal{E}, \mathcal{D})$:
 - lacktriangle \mathcal{K} (1 $^{\eta}$) generates keys;
 - $\mathcal{E}(1^{\eta}, k, x)$ encrypts x with k;
 - $\mathcal{D}(1^{\eta}, k, y)$ decrypts y with k.

 $\mathcal K$ and $\mathcal E$ — probabilistic, $\mathcal D$ — deterministic.

- Let $\langle \cdot, \cdot \rangle : (\{0, 1\}^*)^2 \to \{0, 1\}^*$ be easily computable and invertible injective function.
- \blacksquare A symmetric encryption scheme $(\mathcal{K}, \mathcal{E}, \mathcal{D})$:
 - $\mathcal{K}^{\mathbf{r}}(1^{\eta})$ generates keys from random coins \mathbf{r} ;
 - $\mathcal{E}^{\mathbf{r}}(1^{\eta}, \mathbf{k}, \mathbf{x})$ encrypts \mathbf{x} with \mathbf{k} using the random coins \mathbf{r} ;
 - $\mathcal{D}(1^{\eta}, k, y)$ decrypts y with k.

 $\mathfrak K$ and $\mathcal E$ — probabilistic, $\mathfrak D$ — deterministic.

- Let $\langle \cdot, \cdot \rangle : (\{0, 1\}^*)^2 \to \{0, 1\}^*$ be easily computable and invertible injective function.
- \blacksquare A symmetric encryption scheme $(\mathcal{K}, \mathcal{E}, \mathcal{D})$:
 - $\mathcal{K}^{\mathbf{r}}(1^{\eta})$ generates keys from random coins \mathbf{r} ;
 - $\mathcal{E}^{\mathbf{r}}(1^{\eta}, \mathbf{k}, \mathbf{x})$ encrypts \mathbf{x} with \mathbf{k} using the random coins \mathbf{r} ;
 - $\mathcal{D}(1^{\eta}, k, y)$ decrypts y with k.

 $\mathcal K$ and $\mathcal E$ — probabilistic, $\mathcal D$ — deterministic.

Correctness:

$$\begin{array}{l} \mathtt{k} := \mathcal{K}^{\mathtt{r}}(1^{\eta}) \\ \forall \eta, \mathtt{x}, \mathtt{r}, \mathtt{r}' : \begin{array}{l} \mathtt{y} := \mathcal{E}^{\mathtt{r}'}(1^{\eta}, \mathtt{k}, \mathtt{x}) \\ \mathtt{x}' := \mathcal{D}(1^{\eta}, \mathtt{k}, \mathtt{y}) \\ (\mathtt{x} = \mathtt{x}')? \end{array}$$

Semantics of a formal expression

- For each $k \in \mathbf{Keys}$ let $\mathbf{s}_k \leftarrow \mathcal{K}(\mathbf{1}^{\eta})$
- For each $r \in \mathbf{Coins}$ let $\mathbf{s}_r \in_R \{0, 1\}^{\omega}$.

Define

Semantics of a formal expression

- For each $k \in \mathbf{Keys}$ let $\mathbf{s}_k \leftarrow \mathcal{K}(\mathbf{1}^{\eta})$
- For each $r \in \mathbf{Coins}$ let $\mathbf{s}_r \in_R \{0, 1\}^{\omega}$.

Define

[] assigns to each formal expression a family of probability distributions over bit-strings

Computational indistinguishability

We are looking for sufficient conditions in terms of e_1 and e_2 for

$$\llbracket e_1 \rrbracket \approx \llbracket e_2 \rrbracket .$$

Computational indistinguishability

We are looking for sufficient conditions in terms of e_1 and e_2 for

$$\llbracket e_1 \rrbracket \approx \llbracket e_2 \rrbracket$$
.

Two families of probability distributions over bit-strings $D^0 = \{D^0_\eta\}_{\eta \in \mathbb{N}}$ and $D^1 = \{D^1_\eta\}_{\eta \in \mathbb{N}}$ are computationally indistinguishable if for all PPT algorithms \mathcal{A} :

$$\Pr[b = b^* \mid b \in_R \{0, 1\}, x \leftarrow D_n^b, b^* \leftarrow \mathcal{A}(\mathbf{1}^{\eta}, x)] = 1/2 + \varepsilon(\eta)$$

for some negligible function ε .

Computational indistinguishability

We are looking for sufficient conditions in terms of e_1 and e_2 for

$$\llbracket e_1 \rrbracket \approx \llbracket e_2 \rrbracket$$
 .

Two families of probability distributions over bit-strings $D^0 = \{D^0_\eta\}_{\eta \in \mathbb{N}}$ and $D^1 = \{D^1_\eta\}_{\eta \in \mathbb{N}}$ are computationally indistinguishable if for all PPT algorithms \mathcal{A} :

$$\Pr[b = b^* \mid b \in_R \{0, 1\}, x \leftarrow D_{\eta}^b, b^* \leftarrow \mathcal{A}(\mathbf{1}^{\eta}, x)] = 1/2 + \varepsilon(\eta)$$

for some negligible function ε .

A function ε is negligible if

$$\lim_{\eta \to \infty} \varepsilon(\eta) \cdot p(\eta) = 0$$

for all polynomials p.

$$e_1 \vdash e_2$$

The value of e_1 tells us the value of e_2

$$e_1 \vdash e_2$$

The value of e_1 tells us the value of e_2

$$e \vdash e$$

$$e \vdash (e_1, e_2) \Rightarrow e \vdash e_1 \land e \vdash e_2$$

$$e \vdash \{e'\}_k^r \land e \vdash k \Rightarrow e \vdash e'$$

$$e_1 \vdash e_2$$

The value of e_1 tells us the value of e_2

$$e \vdash e$$

$$e \vdash (e_1, e_2) \Rightarrow e \vdash e_1 \land e \vdash e_2$$

$$e \vdash \{e'\}_k^r \land e \vdash k \Rightarrow e \vdash e'$$

Examples:

$$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, k_2) \vdash 1011$$

$$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_3}^{r''}) \not\vdash 1011$$

$$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_1}^{r''}) \not\vdash 1011$$

$$e_1 \vdash e_2$$

The value of e_1 tells us the value of e_2

$$e \vdash e$$

$$e \vdash (e_1, e_2) \Rightarrow e \vdash e_1 \land e \vdash e_2$$

$$e \vdash \{e'\}_k^r \land e \vdash k \Rightarrow e \vdash e'$$

Examples:

$$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, k_2) \vdash 1011$$

$$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_3}^{r''}) \not\vdash 1011$$

$$(\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_1}^{r''}) \not\vdash 1011$$

Let $openkeys(e) = \{k \in \mathbf{Keys} \mid e \vdash k\}.$

The pattern of a formal expression

- Enlarge the set \mathbf{Exp} : $e := \dots | \Box^r$.
- For a set $K \subseteq \mathbf{Keys}$ define

$$pat(k, K) = k$$

$$pat(b, K) = b$$

$$pat((e_1, e_2), K) = (pat(e_1, K), pat(e_2, K))$$

$$pat(\{e\}_k^r, K) = \begin{cases} \{pat(e, K)\}_k^r, & \text{if } k \in K \\ \Box^r, & \text{if } k \notin K \end{cases}$$

 \blacksquare Let pattern(e) = pat(e, openkeys(e)).

The pattern of a formal expression

- Enlarge the set \mathbf{Exp} : $e := \dots | \Box^r$.
- For a set $K \subseteq \mathbf{Keys}$ define

$$pat(k, K) = k$$

$$pat(b, K) = b$$

$$pat((e_1, e_2), K) = (pat(e_1, K), pat(e_2, K))$$

$$pat(\{e\}_k^r, K) = \begin{cases} \{pat(e, K)\}_k^r, & \text{if } k \in K \\ \Box^r, & \text{if } k \notin K \end{cases}$$

- \blacksquare Let pattern(e) = pat(e, openkeys(e)).
- Define $e_1 \cong e_2$ if $pattern(e_1) = pattern(e_2)\sigma_K\sigma_R$ for some
 - lacktriangledown σ_K a permutation of the keys **Keys**;
 - \bullet σ_R a permutation of the random coins Coins.

Examples

$$pattern((\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, k_2)) = (\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, k_2)$$

$$pattern((\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_3}^{r''})) = (\square^r, \square^{r'}, \square^{r''})$$

$$pattern((\{1011\}_{k_1}^r, \{k_1\}_{k_2}^{r'}, \{k_2\}_{k_1}^{r''})) = (\square^r, \square^{r'}, \square^{r''})$$

$$pattern((\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\square^{r_1}, \square^{r_2}, \{\square^{r_4}\}_{k_1}^{r_3}, k_1)$$

$$pattern((\{k_4, 0\}_{k_3}^{r_1}, \{k_3\}_{k_2}^{r_2}, \{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\square^{r_1}, \square^{r_2}, \{\square^{r_4}\}_{k_1}^{r_3}, k_1)$$

IND-CPA-security of an encryption scheme

■ Encrypting oracle $O_1^{\text{IND-CPA}}$:

```
\begin{array}{ll} \text{Initialization:} & \textbf{method} \ \text{encrypt}(x) \\ \mathtt{k} \leftarrow \mathcal{K}(\mathbf{1}^{\eta}) & \mathtt{y} \leftarrow \mathcal{E}(\mathtt{k}, \mathtt{x}) \\ & \textbf{return} \ \mathtt{y} \end{array}
```

Constant-encrypting oracle $\mathcal{O}_0^{\mathrm{IND-CPA}}$:

```
Initialization: \mathbf{method} \; \mathsf{encrypt}(\mathbf{x}) k \leftarrow \mathcal{K}(\mathbf{1}^{\eta}) l := length(\mathbf{x}) \mathbf{y} \leftarrow \mathcal{E}(\mathbf{k}, \mathbf{0}^l) return \mathbf{y}
```

 $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is IND-CPA-secure if for all PPT algorithms \mathcal{A} exists a negligible ε , such that

$$\Pr[b = b^* \mid b \in_R \{0, 1\}, b^* \leftarrow \mathcal{A}^{\mathcal{O}_b^{\text{IND-CPA}}}(\mathbf{1}^{\eta})] = 1/2 + \varepsilon(\eta)$$

IND-CPA-security of an encryption scheme

■ Encrypting oracle $O_1^{\text{IND-CPA}}$:

```
\begin{array}{ll} \text{Initialization:} & \textbf{method} \ \text{encrypt}(x) \\ \textbf{k} \leftarrow \mathcal{K}(\textbf{1}^{\eta}) & \textbf{y} \leftarrow \mathcal{E}(\textbf{k}, \textbf{x}) \\ & \textbf{return} \ \textbf{y} \end{array}
```

Constant-encrypting oracle $\mathcal{O}_0^{\mathrm{IND-CPA}}$:

```
Initialization: \mathbf{method} \; \mathsf{encrypt}(\mathbf{x}) k \leftarrow \mathcal{K}(\mathbf{1}^{\eta}) l := length(\mathbf{x}) \mathbf{y} \leftarrow \mathcal{E}(\mathbf{k}, \mathbf{0}^l) return \mathbf{y}
```

 $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ is IND-CPA-secure if for all PPT algorithms \mathcal{A} exists a negligible ε , such that

$$\Pr[b = b^* \mid b \in_R \{0, 1\}, b^* \leftarrow \mathcal{A}^{\mathcal{O}_b^{\text{IND-CPA}}}(\mathbf{1}^{\eta})] = 1/2 + \varepsilon(\eta)$$

In other words: $O_1^{\text{IND-CPA}} \approx O_0^{\text{IND-CPA}}$.

Hiding the identities of keys

• Oracle with two keys $O_1^{\text{hide-key}}$:

```
Initialization: method encrypt1(x) k_1 \leftarrow \mathcal{K}(1^{\eta}) y \leftarrow \mathcal{E}(k_1, x) k_2 \leftarrow \mathcal{K}(1^{\eta}) return y
```

 $\label{eq:method} \begin{aligned} & \text{method } \text{encrypt2}(x) \\ & y \leftarrow \mathcal{E}(k_2, x) \\ & \text{return } y \end{aligned}$

Oracle with one key $\mathcal{O}_0^{\text{hide-key}}$:

```
Initialization: method encrypt1(x) k \leftarrow \mathcal{K}(1^{\eta}) y \leftarrow \mathcal{E}(k, x) return y
```

 $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ hides the identities of keys / is which-key concealing if $\mathcal{O}_1^{\text{hide-key}} \approx \mathcal{O}_0^{\text{hide-key}}$.

Hiding the identities of keys

Oracle with two keys $O_1^{\text{hide-key}}$:

$$\begin{array}{ll} \text{Initialization:} & \textbf{method} \; \text{encrypt1}(x) & \textbf{method} \; \text{encrypt2}(x) \\ k_1 \leftarrow \mathcal{K}(1^{\eta}) & \text{y} \leftarrow \mathcal{E}(k_1, x) & \text{y} \leftarrow \mathcal{E}(k_2, x) \\ k_2 \leftarrow \mathcal{K}(1^{\eta}) & \textbf{return} \; \text{y} & \textbf{return} \; \text{y} \end{array}$$

Oracle with one key $\mathcal{O}_0^{\text{hide-key}}$:

$$\begin{array}{ll} \text{Initialization:} & \textbf{method} \ \text{encrypt1}(x) & \textbf{method} \ \text{encrypt2}(x) \\ \textbf{k} \leftarrow \mathcal{K}(\textbf{1}^{\eta}) & \textbf{y} \leftarrow \mathcal{E}(\textbf{k}, \textbf{x}) & \textbf{y} \leftarrow \mathcal{E}(\textbf{k}, \textbf{x}) \\ & \textbf{return} \ \textbf{y} & \textbf{return} \ \textbf{y} \end{array}$$

 $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ hides the identities of keys / is which-key concealing if $\mathcal{O}_1^{\mathrm{hide-key}} \approx \mathcal{O}_0^{\mathrm{hide-key}}$.

IND-CPA-secure which-key concealing encryption schemes are easily constructed (CCA- or CTR-mode of operation of block ciphers).

Hiding the length of the plaintext

- An encryption scheme is length-concealing if the length of the plaintext cannot be determined from the ciphertext.
- Achievable by padding the plaintexts.
 - Questionable for nested encryptions...
- For simplicity, we will assume that our encryption scheme is length-concealing.
 - ◆ And also which-key concealing and IND-CPA-secure.
- Otherwise we'd need to define lengths of formal expressions.

IND-CPA, which-key and length-concealing:

Let 0 be a fixed bit-string.

$$lacksquare$$
 Oracle $\mathbb{O}_1^{\mathrm{type}-0}$:

Initialization:
$$k_1 \leftarrow \mathcal{K}(1^{\eta})$$
 $k_2 \leftarrow \mathcal{K}(1^{\eta})$

method encrypt1(x)
$$y \leftarrow \mathcal{E}(k_1, x)$$

method encrypt
$$2(x)$$

$$\mathbf{y} \leftarrow \mathcal{E}(\mathbf{k_2}, \mathbf{x})$$
 return \mathbf{y}

$$\blacksquare$$
 Oracle $O_0^{\text{type}-0}$:

$$\mathtt{k} \leftarrow \mathfrak{K}(\mathtt{1}^{\eta})$$

method encrypt1(x)

$$y \leftarrow \mathcal{E}(k, 0)$$

return y

method encrypt2(x)

$$y \leftarrow \mathcal{E}(k, 0)$$

return y

 $(\mathcal{K}, \mathcal{E}, \mathcal{D})$ has all three listed properties if $\mathcal{O}_1^{\mathrm{type}-0} \approx \mathcal{O}_0^{\mathrm{type}-0}$.

Theorem of equivalence

Theorem. Let $e_1, e_2 \in \mathbf{Exp}$. If $e_1 \cong e_2$ then* $\llbracket e_1 \rrbracket \approx \llbracket e_2 \rrbracket$.

Interlude: Hybrid argument

- Let $D^0=\{D^0_{\eta}\}_{\eta\in\mathbb{N}}$ and $D^1=\{D^1_{\eta}\}_{\eta\in\mathbb{N}}$ be two families of probability distributions.
- \blacksquare Let p be a positive polynomial.
- Let \vec{D}_{η}^{b} be a probability distribution over tuples

$$(x_1, x_2, \dots, x_{p(\eta)}) \in (\{0, 1\}^*)^{p(\eta)}$$

such that

- lacktriangle each x_i is distributed according to D_{η}^b ;
- lack each x_i is is independent of all other x-s.

Interlude: Hybrid argument

- Let $D^0=\{D^0_{\eta}\}_{\eta\in\mathbb{N}}$ and $D^1=\{D^1_{\eta}\}_{\eta\in\mathbb{N}}$ be two families of probability distributions.
- \blacksquare Let p be a positive polynomial.
- lacktriangle Let $ec{D}_{\eta}^{b}$ be a probability distribution over tuples

$$(x_1, x_2, \dots, x_{p(\eta)}) \in (\{0, 1\}^*)^{p(\eta)}$$

such that

- lack each x_i is distributed according to D_{η}^b ;
- lack each x_i is is independent of all other x-s.
- To sample \vec{D}_{η}^b , sample D_{η}^b $p(\eta)$ times and construct the tuple of sampled values.

\vec{D} -s indistinguishable $\Rightarrow D$ -s indistinguishable

Theorem. If $\vec{D}^0 \approx \vec{D}^1$ then $D^0 \approx D^1$.

\vec{D} -s indistinguishable $\Rightarrow D$ -s indistinguishable

```
Theorem. If \vec{D}^0 \approx \vec{D}^1 then D^0 \approx D^1. If \bullet \bullet \bullet \approx \bullet \bullet \bullet then \bullet \approx \bullet.
```

Contrapositive: if $\bullet \not\approx \bullet$ then $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$

Theorem. If $\vec{D}^0 \approx \vec{D}^1$ then $D^0 \approx D^1$. If $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ then $\bullet \approx \bullet$.

Contrapositive: if $\bullet \not\approx \bullet$ then $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$

If $\bullet \not\approx \bullet$ then there exists a PPT distinguisher \mathcal{A} :

$$\Pr[b = b^* \mid b \in_R \{0, 1\}, x \leftarrow D_{\eta}^b, b^* \leftarrow \mathcal{A}(\eta, x)] \ge 1/2 + 1/q(\eta)$$

Theorem. If $\vec{D}^0 \approx \vec{D}^1$ then $D^0 \approx D^1$. If $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ then $\bullet \approx \bullet \bullet$.

Contrapositive: if $\bullet \not\approx \bullet$ then $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$

If $\bullet \not\approx \bullet$ then there exists a PPT distinguisher \mathcal{A} :

$$\Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{1}] \ge 2/q(\eta)$$

Theorem. If $\vec{D}^0 \approx \vec{D}^1$ then $D^0 \approx D^1$. If $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ then $\bullet \approx \bullet$.

Contrapositive: if $\bullet \not\approx \bullet$ then $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$

If $\bullet \not\approx \bullet$ then there exists a PPT distinguisher \mathcal{A} :

$$\Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{1}] \ge 1/q(\eta)$$

Theorem. If $\vec{D}^0 \approx \vec{D}^1$ then $D^0 \approx D^1$. If $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ then $\bullet \approx \bullet$.

Contrapositive: if $\bullet \not\approx \bullet$ then $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$

If $\bullet \not\approx \bullet$ then there exists a PPT distinguisher \mathcal{A} :

$$\Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{1}] \ge 1/q(\eta)$$

for some polynomial q and infinitely many η .

Let
$$\mathcal{B}(\eta,(x_1,\ldots,x_{p(\eta)}))=\mathcal{A}(\eta,x_1).$$

Then \mathcal{B} distinguishes ••• and •••.

Theorem. If $\vec{D}^0 \approx \vec{D}^1$ then $D^0 \approx D^1$. If $\bullet \bullet \bullet \approx \bullet \bullet \bullet$ then $\bullet \approx \bullet$.

Contrapositive: if $\bullet \not\approx \bullet$ then $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$

If • $\not\approx$ • then there exists a PPT distinguisher \mathcal{A} :

$$\Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, x) = 0 \mid x \leftarrow \mathcal{D}_{\eta}^{1}] \ge 1/q(\eta)$$

for some polynomial q and infinitely many η .

Let
$$\mathcal{B}(\eta,(x_1,\ldots,x_{p(\eta)}))=\mathcal{A}(\eta,x_1).$$

Then \mathcal{B} distinguishes ••• and •••.

I.e. we can distinguish ••• from ••• by just considering the first elements of the tuples.

(Interesting) theorem. If $D^0 \approx D^1$ and there exist polynomial-time algorithms \mathcal{D}^0 and \mathcal{D}^1 , such that the output distribution of $\mathcal{D}^b(\eta)$ is equal to D^b_n , then $\vec{D}^0 \approx \vec{D}^1$.

(Interesting) theorem. If $D^0 \approx D^1$ and there exist polynomial-time algorithms \mathcal{D}^0 and \mathcal{D}^1 , such that the output distribution of $\mathcal{D}^b(\eta)$ is equal to D^b_{η} , then $\vec{D}^0 \approx \vec{D}^1$. If $\bullet \approx \bullet$ then $\bullet \bullet \bullet \approx \bullet \bullet \bullet \bullet$

Contrapositive: if $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ then $\bullet \not\approx \bullet$.

(Interesting) theorem. If $D^0 \approx D^1$ and there exist polynomial-time algorithms \mathcal{D}^0 and \mathcal{D}^1 , such that the output distribution of $\mathcal{D}^b(\eta)$ is equal to D^b_n , then $\vec{D}^0 \approx \vec{D}^1$.

If $\bullet \approx \bullet$ then $\bullet \bullet \bullet \approx \bullet \bullet \bullet$.

Contrapositive: if $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ then $\bullet \not\approx \bullet$.

If ••• $\not\approx$ ••• then there exists a PPT distinguisher \mathcal{A} :

$$\Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{D}_{\eta}^{1}] \ge 1/q(\eta)$$

(Interesting) theorem. If $D^0 \approx D^1$ and there exist polynomial-time algorithms \mathcal{D}^0 and \mathcal{D}^1 , such that the output distribution of $\mathcal{D}^b(\eta)$ is equal to D^b_n , then $\vec{D}^0 \approx \vec{D}^1$.

If $\bullet \approx \bullet$ then $\bullet \bullet \bullet \approx \bullet \bullet \bullet$.

Contrapositive: if $\bullet \bullet \bullet \not\approx \bullet \bullet \bullet$ then $\bullet \not\approx \bullet$.

If ••• $\not\approx$ ••• then there exists a PPT distinguisher \mathcal{A} :

$$\Pr[\mathcal{A}(\eta, \vec{x}) = 0 \mid \vec{x} \leftarrow \vec{D}_{\eta}^{0}] - \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \mid \vec{x} \leftarrow \vec{D}_{\eta}^{1}] \ge 1/q(\eta)$$

for some polynomial q and infinitely many η .

Assume for now that the polynomial p is a constant. I.e. the length of the vector \vec{x} does not depend on the security parameter η . Let p be the common value of $p(\eta)$ for all η .

Hybrid distributions

If ••• $\not\approx$ ••• then

$$(\bullet \bullet \bullet \not\approx \bullet \bullet \bullet) \lor (\bullet \bullet \bullet \not\approx \bullet \bullet \bullet) \lor (\bullet \bullet \bullet \not\approx \bullet \bullet \bullet)$$

Hybrid distributions

If ••• $\not\approx$ ••• then

$$(\bullet \bullet \bullet \not\approx \bullet \bullet \bullet) \lor (\bullet \bullet \bullet \not\approx \bullet \bullet \bullet) \lor (\bullet \bullet \bullet \not\approx \bullet \bullet \bullet)$$

Let \vec{E}_{η}^k , where $0 \le k \le p$, be a probability distribution over tuples (x_1, \ldots, x_p) , where

- \blacksquare each x_i is independent of all other x-s;
- \blacksquare x_1,\ldots,x_k are distributed according to D_{η}^0 ;
- \blacksquare x_{k+1},\ldots,x_p are distributed according to D^1_{η} .

Thus $\vec{E}_{\eta}^0 = \vec{D}_{\eta}^1$ and $\vec{E}_{\eta}^p = \vec{D}_{\eta}^0$. Define $P_{\eta}^k = \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^k]$. Then for infinitely many η :

$$1/q(\eta) \le P_{\eta}^p - P_{\eta}^0 = \sum_{i=1}^p (P_{\eta}^i - P_{\eta}^{i-1}) .$$

And for some j_{η} , $P_{\eta}^{j_{\eta}} - P_{\eta}^{j_{\eta}-1} \ge 1/(p \cdot q(\eta))$.

${\cal A}$ distinguishes hybrids

There exists j, such that $j=j_{\eta}$ for infinitely many η . Thus

$$\Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^{j}] - \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^{j-1}] \ge 1/q(\eta)$$

for infinitely many η . We have $\vec{E}^{j-1} \not\approx \vec{E}^j$.

A distinguishes hybrids

There exists j, such that $j=j_{\eta}$ for infinitely many η . Thus

$$\Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^{j}] - \Pr[\mathcal{A}(\eta, \vec{x}) = 0 \,|\, \vec{x} \leftarrow \vec{E}_{\eta}^{j-1}] \ge 1/q(\eta)$$

for infinitely many η . We have $\vec{E}^{j-1} \not\approx \vec{E}^j$.

If we can distinguish

$$\vec{E}^j = \underbrace{\cdots}_{j-1} \underbrace{\cdots}_{p-j}$$

from

$$\vec{E}^{j-1} = \underbrace{\cdots}_{j-1} \underbrace{\cdots}_{p-j}$$

using A, then how do we distinguish • and •?

Distinguisher for D^0 and D^1

```
On input (\eta, x):
```

- 1. Let $x_1 := \mathcal{D}^0(\eta), \dots, x_{j-1} := \mathcal{D}^0(\eta)$.
- 2. Let $x_i := x$
- 3. Let $x_{j+1} := \mathcal{D}^1(\eta), \dots, x_p := \mathcal{D}^1(\eta)$
- 4. Let $\vec{x} = (x_1, \dots, x_p)$.
- 5. Call $b^* := \mathcal{A}(\eta, \vec{x})$ and return b^* .

The advantage of this distinguisher is at least $1/(p \cdot q(\eta))$.

Distinguisher for D^0 and D^1

```
On input (\eta, x):
```

- 1. Let $x_1 := \mathcal{D}^0(\eta), \dots, x_{j-1} := \mathcal{D}^0(\eta)$.
- 2. Let $x_i := x$
- 3. Let $x_{j+1} := \mathcal{D}^1(\eta), \dots, x_p := \mathcal{D}^1(\eta)$
- 4. Let $\vec{x} = (x_1, \dots, x_p)$.
- 5. Call $b^* := \mathcal{A}(\eta, \vec{x})$ and return b^* .

The advantage of this distinguisher is at least $1/(p \cdot q(\eta))$.

Unfortunately, the above construction was not constructive.

Being constructive

For infinitely many η we had

$$1/q(\eta) \le P_{\eta}^p - P_{\eta}^0 = \sum_{i=1}^p (P_{\eta}^i - P_{\eta}^{i-1}) .$$

Hence the <u>average</u> value of $P^j_{\eta} - P^{j-1}_{\eta}$ is $\geq 1/(p \cdot q(\eta))$.

Being constructive

For infinitely many η we had

$$1/q(\eta) \le P_{\eta}^p - P_{\eta}^0 = \sum_{i=1}^p (P_{\eta}^i - P_{\eta}^{i-1}) .$$

Hence the <u>average</u> value of $P^j_{\eta} - P^{j-1}_{\eta}$ is $\geq 1/(p \cdot q(\eta))$.

Consider the following distinguisher $\mathcal{B}(\eta, x)$:

- 1. Let $j \in_R \{1, \dots, p\}$.
- 2. Let $x_1 := \mathcal{D}^0(\eta), \dots, x_{j-1} := \mathcal{D}^0(\eta)$.
- 3. Let $x_i := x$
- 4. Let $x_{j+1} := \mathcal{D}^1(\eta), \dots, x_p := \mathcal{D}^1(\eta)$
- 5. Let $\vec{x} = (x_1, \dots, x_p)$.
- 6. Call $b^* := \mathcal{A}(\eta, \vec{x})$ and return b^* .

What \mathcal{B} does

If (for example) p = 5, then \mathcal{B} tries to distinguish

and •••• with probability
$$1/5$$
•••• and •••• with probability $1/5$
•••• and ••• with probability $1/5$
••• and ••• with probability $1/5$
••• and ••• with probability $1/5$

The advantage of \mathcal{B} is 1/p times the sum of \mathcal{A} 's advantages of distinguishing these pairs of distributions.

The advantage of ${\mathfrak B}$ is

$$\frac{1}{p} \sum_{j=1}^{p} P_{\eta}^{j} - P_{\eta}^{j-1} = \frac{1}{p} (P_{\eta}^{p} - P_{\eta}^{0}) \ge \frac{1}{p \cdot q(\eta)}.$$

If p depends on η

```
\mathfrak{B}(\eta,x) is:
```

- 1. Let $j \in_R \{1, \dots, p(\eta)\}$.
- 2. Let $x_1 := \mathcal{D}^0(\eta), \dots, x_{j-1} := \mathcal{D}^0(\eta)$.
- 3. Let $x_i := x$
- 4. Let $x_{j+1} := \mathcal{D}^1(\eta), \dots, x_{p(\eta)} := \mathcal{D}^1(\eta)$
- 5. Let $\vec{x} = (x_1, \dots, x_{p(\eta)})$.
- 6. Call $b^* := \mathcal{A}(\eta, \vec{x})$ and return b^* .

The advantage of \mathcal{B} is at least $1/(p(\eta) \cdot q(\eta))$.

Semantics of patterns

- For each $k \in \mathbf{Keys}$ let $\mathbf{s}_k \leftarrow \mathcal{K}(\mathbf{1}^{\eta})$
- For each $r \in \mathbf{Coins}$ let $\mathbf{s}_r \in_R \{0,1\}^{\omega}$
- Let $k_{\square} \leftarrow \mathcal{K}(1^{\eta})$.

Define

$$\begin{aligned}
[k]_{\eta} &= \mathbf{s}_{k} \\
[b]_{\eta} &= b \\
[(e_{1}, e_{2})]_{\eta} &= \langle [e_{1}]_{\eta}, [e_{2}]_{\eta} \rangle \\
[\{e'\}_{k}^{r}]_{\eta} &= \mathcal{E}^{\mathbf{s}_{r}}(1^{\eta}, \mathbf{s}_{k}, [e']_{\eta}) \\
[\Box^{r}]_{\eta} &= \mathcal{E}^{\mathbf{s}_{r}}(1^{\eta}, \mathbf{k}_{\square}, \mathbf{0})
\end{aligned}$$

Replacing one key

lacktriangle For a key $\overline{k} \in \mathbf{Keys}$ define

$$replacekey(k, \overline{k}) = k$$

$$replacekey(b, \overline{k}) = b$$

$$replacekey((e_1, e_2), \overline{k}) = (replacekey(e_1, \overline{k}), replacekey(e_2, \overline{k}))$$

$$replacekey(\{e\}_k^r, \overline{k}) = \begin{cases} \Box^r, & \text{if } k = \overline{k} \\ \{replacekey(e, \overline{k})\}_k^r, & \text{if } k \neq \overline{k} \end{cases}$$

$$replacekey(\Box^r, \overline{k}) = \Box^r$$

■ Lemma. Let $e \in \mathbf{Exp}$. Let key \overline{k} occur in e only as encryption key. Then $\llbracket e \rrbracket \approx \llbracket replacekey(e, \overline{k}) \rrbracket$.

Proof of the lemma

Assume that \mathcal{B} distinguishes $\llbracket e \rrbracket$ from $\llbracket replacekey(e, \overline{k}) \rrbracket$. Let $\mathcal{A}^{\mathcal{O}}(1^{\eta})$ work as follows:

- Let $\mathbf{s}_k \leftarrow \mathcal{K}(1^{\eta})$ for all keys k occurring in e, except \overline{k} .
- Let $\mathbf{s}_r \in_R \{0,1\}^{\omega}$ for all r occurring in e, except as $\{\ldots\}^{r}_{\overline{k}}$.
- Let $k_{\square} \leftarrow \mathcal{K}(1^{\eta})$.
- \blacksquare Let $L = \{\}$ (empty mapping).
- \blacksquare Compute the "semantics" v of e as follows by invoking $Sem^{\mathfrak{O}}(e)$
 - Sem $^{\mathcal{O}}(e) = \llbracket e \rrbracket$ if $\mathcal{O} = \mathcal{O}_1^{\text{type}-0}$.
 - Sem $^{\mathfrak{O}}(e) = \llbracket replacekey(e, \overline{k}) \rrbracket$ if $\mathfrak{O} = \mathfrak{O}_0^{\text{type}-0}$.
- return $\mathfrak{B}(1^{\eta},v)$.

 \mathcal{A} can distinguish $\mathcal{O}_1^{\mathrm{type-0}}$ and $\mathcal{O}_0^{\mathrm{type-0}}$ as well as \mathcal{B} can distinguish $[\![e]\!]$ and $[\![replacekey(e,\overline{k})]\!]$.

Computing $\llbracket e \rrbracket$ or $\llbracket replacekey(e, \overline{k}) \rrbracket$

 $Sem^{O}(e)$ is: case e of

- \blacksquare k: return s_k (note that $k \neq \overline{k}$)
- \blacksquare b: return b
- lacksquare (e_1,e_2) : let $v_i=\mathrm{Sem}^{\mathfrak{O}}(e_i)$; return $\langle v_1,v_2 \rangle$
- \blacksquare \square^r : return $\emptyset.\text{encrypt2}(\mathbf{0})$
- $\blacksquare \quad \{e\}_k^r \colon \text{let } v = \text{Sem}^{\mathfrak{O}}(e);$
 - If $k \neq \overline{k}$ then **return** $\mathcal{E}^{s_r}(1^{\eta}, s_k, v)$
 - If $k = \overline{k}$ and L(r) is not defined then
 - let L(r) = 0.encrypt1(v);
 - \blacksquare return L(r)
 - If $k = \overline{k}$ and L(r) is defined then **return** L(r)

Proof of the theorem

- 1. $replacekey(replacekey(\cdots replacekey(e, k_1), k_2) \cdots, k_n) = pattern(e)$ if $\{k_1, \ldots, k_n\}$ are all keys in e that the adversary cannot obtain. Denote this set of keys by hidkeys(e).
- 2. Apply the **lemma** sequentially to each key in hidkeys(e), thereby establishing

$$\llbracket e \rrbracket \approx \llbracket pattern(e) \rrbracket.$$

- * In general, not all orders of keys in hidkeys(e) are suitable.
- 3. Permuting the formal keys and coins does not change the generated probability distribution over bit-strings.

If
$$e_1 \cong e_2$$
 then* $[e_1] \approx [pattern(e_1)] = [pattern(e_2)] = [e_2].$

$$[(\{k_4,0\}_{k_3}^{r_1},\{k_3\}_{k_2}^{r_2},\{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3},k_1)]]$$

$$[(\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$

$$[(\{k_4,0\}_{k_3}^{r_1},\{k_3\}_{k_2}^{r_2},\{\{11\}_{k_4}^{r_4}\}_{k_1}^{r_3},k_1)]]$$

$$[[(\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$

$$[(\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$

$$[(\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$

$$[[(\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$

$$[(\{1\}_{k_2}^{r_1}, \{k_2\}_{k_3}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$

$$[[(\{1\}_{k_2}^{r_1}, \{k_2\}_{\frac{k_3}{3}}^{r_2}, \{\{0\}_{k_2}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$

$$pattern((\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\square^{r_1}, \square^{r_2}, \{\square^{r_4}\}_{k_1}^{r_3}, k_1)$$

$$pattern((\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\square^{r_1}, \square^{r_2}, \{\square^{r_4}\}_{k_1}^{r_3}, k_1)$$
$$[(\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)]$$

$$pattern((\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)) = (\Box^{r_1}, \Box^{r_2}, \{\Box^{r_4}\}_{k_1}^{r_3}, k_1)$$

$$[(\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3}, k_1)]]$$

$$\langle \text{cannot apply the lemma} \rangle$$

Encryption cycles

- \blacksquare Let e be a formal expression.
- \blacksquare Consider the following directed graph G = (V, E):
 - \bullet V = hidkeys(e)
 - $(k_i \rightarrow k_i) \in E$ if e has a subexpression of the form

$$\{\cdots k_j \cdots\}_{k_i}^r$$

(we say that k_i encrypts k_j)

lacksquare has no encryption cycles if G does not contain directed cycles.

Encryption cycles

- \blacksquare Let e be a formal expression.
- Consider the following directed graph G = (V, E):
 - \bullet V = hidkeys(e)
 - $(k_i \rightarrow k_j) \in E$ if e has a subexpression of the form

$$\{\cdots k_j \cdots\}_{k_i}^r$$

(we say that k_i encrypts k_j)

 \blacksquare e has no encryption cycles if G does not contain directed cycles.

Theorem. If e contains no encryption cycles then $[e] \approx [pattern(e)]$.

Encryption cycles

- \blacksquare Let e be a formal expression.
- Consider the following directed graph G = (V, E):
 - lack V = hidkeys(e)
 - $(k_i \rightarrow k_j) \in E$ if e has a subexpression of the form

$$\{\cdots k_j \cdots\}_{k_i}^r$$

(we say that k_i encrypts k_j)

lacksquare has no encryption cycles if G does not contain directed cycles.

Theorem. If e contains no encryption cycles then $[e] \approx [pattern(e)]$.

"No encryption cycles" is sufficient, but not necessary condition for the sequential applicability of our lemma.

Example:
$$(\{k_3\}_{k_2}^{r_1}, \{k_4\}_{k_3}^{r_2}, \{\{k_2\}_{k_4}^{r_4}\}_{k_1}^{r_3})$$
 is OK.

Table of Contents

- The Abadi-Rogaway result on the indistinguishability of computational interpretations of formal messages.
- Translating protocol traces between formal and computational world.

Public-key primitives

- Extend the construction of the set of formal messages by
 - lacktriangle keypairs $kp \in \mathbf{EKeys}$ for encryption and $kp \in \mathbf{SKeys}$ for signing;
 - $lack operations kp^+$ and kp^- to take the public and secret components of keys;
 - lacktriangle public-key encryptions $\{[e]\}_{kp^+}^r$ and signatures $\{[e]\}_{kp^-}^r$.
- Fix a public-key encryption scheme $(\mathcal{K}_p, \mathcal{E}_p, \mathcal{D}_p)$ and a signature scheme $(\mathcal{K}_s, \mathcal{S}_s, \mathcal{V}_s)$.
 - Use \mathcal{K}_p , \mathcal{E}_p , \mathcal{K}_s , \mathcal{K}_s to define the semantics of new constructs.
- Similar results can be obtained with $\{[\cdot]\}$ in messages.
 - ◆ If secret keys are not part of messages then encryption cycles are not an issue.

Specifying the protocols

- A set \mathcal{P} of principals (some of them possibly corrupted). Each one with fixed keypairs for signing and encryption.
 - lacktriangle There are keys $\operatorname{ek}(P)$, $\operatorname{dk}(P)$, $\operatorname{sk}(P)$, $\operatorname{vk}(P)$ for each principal P.
- A set of roles.
 - ◆ A list of pairs of incoming and outgoing messages.
 - May contain nonces.
 - Also may contain message variables and principal variables.

Example roles

Needham-Schroeder-Lowe public-key protocol:

$$A \longrightarrow B : \{[N_A, A]\}_{ek(B)}$$

 $B \longrightarrow A : \{[N_A, N_B, B]\}_{ek(A)}$
 $A \longrightarrow B : \{[N_B]\}_{ek(B)}$

Initiator role:

$$(Start, \{[N_A, X_{\text{Init}}]\}_{\text{ek}(X_{\text{Resp}})})$$
$$(\{[N_A, X_N, X_{\text{Resp}}]\}_{\text{ek}(X_{\text{Init}})}, \{[X_N]\}_{\text{ek}(X_{\text{Resp}})})$$

■ Responder role:

$$(\{[X_N, X_{\text{Init}}]\}_{\mathsf{ek}(X_{\text{Resp}})}, \{[X_N, N_B, X_{\text{Resp}}]\}_{\mathsf{ek}(X_{\text{Init}})})$$
$$(\{[N_B]\}_{\mathsf{ek}(X_{\text{Resp}})}, Ok)$$

- Adversary may start new runs by stating $\mathbf{new}(sid; P_1, \dots, P_n)$.
 - lacktriangle sid is the unique session identifier of the run.
 - P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n .

- Adversary may start new runs by stating $\mathbf{new}(sid; P_1, \dots, P_n)$.
 - lacktriangle sid is the unique session identifier of the run.
 - P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n .
- Adversary may send messages by stating $\mathbf{recv}(sid, R_i, m)$ where m is a message.
 - lacktriangle The role R_i in the run sid will receive the message m and process it.

- Adversary may start new runs by stating $\mathbf{new}(sid; P_1, \dots, P_n)$.
 - lacktriangle sid is the unique session identifier of the run.
 - P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n .
- Adversary may send messages by stating $\mathbf{recv}(sid, R_i, m)$ where m is a message.
 - lacktriangle The role R_i in the run sid will receive the message m and process it.
- When a principal P_i running the role $R_i = (m_i, \mathbf{m_o}) :: R'_i$ in the run sid will receive a message m, then it will
 - lack match m with m_i ;
 - generate a new message m' by instantiating the outgoing message m_o and send it: $\mathbf{send}(sid, R_i, m')$;
 - Set R_i to R'_i (in sid only).

- Decompose m according to m_i .
 - lack Use dk (P_i) to decrypt messages encrypted with ek (P_i) .
 - lacktriangle The keys for symmetric encryption are contained in m_i .
 - Verify the equality of instantiated parts of m_i to the corresponding parts of m'.

Initialize the new variables in $m_{\rm i}$ with the corresponding parts of m'.

 \blacksquare Verify the signatures in m'.

- When a principal P_i running the role $R_i = (m_i, m_o) :: R'_i$ in the run sid will receive a message m, then it will
 - lack match m with m_i ;
 - generate a new message m' by instantiating the outgoing message m_o and send it: $\mathbf{send}(sid, R_i, m')$;
 - Set R_i to R'_i (in sid only).

re m

- Adversary may start new runs by stating $\mathbf{new}(sid; P_1, \dots, P_n)$.
 - lacktriangle sid is the unique session identifier of the run.
 - P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n .
- Adversary may send messages by stating $\mathbf{recv}(sid, R_i, m)$ where m is a message.
 - lacktriangle The role R_i in the run sid will receive the message m and process it.
- When a principal P_i running the role $R_i = (m_i, \mathbf{m_o}) :: R'_i$ in the run sid will receive a message m, then it will
 - lack match m with m_i ;
 - generate a new message m' by instantiating the outgoing message m_o and send it: $\mathbf{send}(sid, R_i, m')$;
 - Set R_i to R'_i (in sid only).

- Adversary may start new runs by stating $\mathbf{new}(sid; P_1, \dots, P_n)$.
 - lacktriangle sid is the unique session identifier of the run.
 - P_1, \ldots, P_n are names of principals that fulfill the roles R_1, \ldots, R_n .
- \blacksquare Use the values of already known keys, nonces, variables, etc. $_{\rm re}$ $_m$
 - Generate new values for keys and nonces that occur first time in m_0 .
- When a principal P_i running the role $R_i = (m_i, m_o) :: R'_i$ in the run sid will receive a message m, then it will
 - lacktriangle match m with m_i ;
 - generate a new message m' by instantiating the outgoing message m_o and send it: $\mathbf{send}(sid, R_i, m')$;
 - Set R_i to R'_i (in sid only).

Execution traces

- An execution trace is a sequence of new-, recv- and send-statements.
- We have traces in both models there are
 - ◆ formal traces sequences of terms over a message algebra with a countable number of atoms for keys, nonces, random coins;
 - ◆ computational traces sequences of bit-strings.
- A formal trace is valid if each message in a recv-statement can be generated from messages in previous send- and recv-statements.

Translating Formal → **Computational**

- lacktriangle A formal trace t^f is a sequence consisting of principal names and formal messages.
- Formal messages are made up of formal nonces, formal keys, formal encryptions and decryptions using formal coins.
- Fix a mapping c from formal constants, nonces, keys and coins to bit-strings.
- \blacksquare Extend c to the entire trace, giving the computational trace $c(t^f)$.
- Denote $t^f \leq t^c$ if the computational trace t^c can be obtained as a translation of the formal trace t^f .

Translating Formal → **Computational**

- lacktriangle A formal trace t^f is a sequence consisting of principal names and formal messages.
- Formal messages are made up of formal nonces, formal keys, formal encryptions and decryptions using formal coins.
- Fix a mapping c from formal constants, nonces, keys and coins to bit-strings.
- lacktriangle Extend c to the entire trace, giving the computational trace $c(t^f)$.
- Denote $t^f \le t^c$ if the computational trace t^c can be obtained as a translation of the formal trace t^f .

Lemma. If the used cryptographic primitives are secure then for any computational adversary \mathcal{A} , if t^c is a computational trace of the protocol running together with \mathcal{A} then with overwhelming probability there exists a valid formal trace t^f , such that $t^f \leq t^c$.

Security of primitives

- The encryption systems must be IND-CCA secure.
 - lacktriangle Adversary may not be able to distinguish $\mathcal{E}(k, \pi_1(\cdot, \cdot))$ and $\mathcal{E}(k, \pi_2(\cdot, \cdot))$ even with access to $\mathfrak{D}(k, \cdot)$.
 - Results from the encryption oracle may not be submitted to the decryption oracle.

Security of primitives

- The encryption systems must be IND-CCA secure.
 - lacktriangle Adversary may not be able to distinguish $\mathcal{E}(k, \pi_1(\cdot, \cdot))$ and $\mathcal{E}(k, \pi_2(\cdot, \cdot))$ even with access to $\mathcal{D}(k, \cdot)$.
 - Results from the encryption oracle may not be submitted to the decryption oracle.
- The signature system must be EF-CMA secure.
 - Adversary may not be able to produce a valid (message, signature)-pair, even when interacting with a signing oracle.
 - Messages submitted to the oracle do not count.

Security of primitives

- The encryption systems must be IND-CCA secure.
 - igoplus Adversary may not be able to distinguish $\mathcal{E}(k, \pi_1(\cdot, \cdot))$ and $\mathcal{E}(k, \pi_2(\cdot, \cdot))$ even with access to $\mathfrak{D}(k, \cdot)$.
 - Results from the encryption oracle may not be submitted to the decryption oracle.
- The signature system must be EF-CMA secure.
 - Adversary may not be able to produce a valid (message, signature)-pair, even when interacting with a signing oracle.
 - Messages submitted to the oracle do not count.
- The message must be recoverable from the signature (and the verification key).

Consider

- a computational trace,
 - lack Actually, the set ${\mathcal M}$ of messages appearing in it.
- \blacksquare the set $\mathcal K$ of secret decryption keys of participants.

Iterate:

Consider

- a computational trace,
 - lacktriangle Actually, the set ${\mathcal M}$ of messages appearing in it.
- lacktriangle the set $\mathcal K$ of secret decryption keys of participants.

Iterate:

If some $M \in \mathcal{M}$ looks like a pair $\langle M_1, M_2 \rangle$ then

- \blacksquare add M_1, M_2 to \mathfrak{M} ;
- lacksquare for M, record that it is a pair $\langle M_1, M_2 \rangle$.

Consider

- a computational trace,
 - lack Actually, the set ${\mathcal M}$ of messages appearing in it.
- lacktriangle the set $\mathcal K$ of secret decryption keys of participants.

Iterate:

If some $M \in \mathcal{M}$ looks like a symmetric key then

- \blacksquare add M to \mathfrak{K} ;
- lacktriangle pick a new formal symmetric key K and associate it with M.

Concerning symmetric encryption, attention has to be paid to encryption cycles.

Consider

- a computational trace,
 - lack Actually, the set ${\mathcal M}$ of messages appearing in it.
- \blacksquare the set $\mathcal K$ of secret decryption keys of participants.

Iterate:

If some $M \in \mathcal{M}$ looks like an encryption then try to decrypt it with all keys in \mathcal{K} . If $M_0 = \mathcal{D}(M_k, M)$ for some $M_k \in \mathcal{K}$, then

- \blacksquare add M_0 to \mathfrak{M} ;
- for M, record that it is an encryption of M_0 with the formal key corresponding to the encryption key of M_k .

Consider

- a computational trace,
 - lack Actually, the set ${\mathcal M}$ of messages appearing in it.
- \blacksquare the set $\mathcal K$ of secret decryption keys of participants.

Iterate:

If some $M \in \mathcal{M}$ looks like a signature then try to verify it with all verification keys in \mathcal{M} . If $\mathcal{V}(M_k, M)$ is successful, then

- \blacksquare add $M_0 = get_message(M)$ to \mathfrak{M} ;
- for M, record that it is the signature of M_0 verifiable with the formal key corresponding to M_k .

Consider

- a computational trace,
 - lack Actually, the set $\mathcal M$ of messages appearing in it.
- \blacksquare the set $\mathcal K$ of secret decryption keys of participants.

Iterate:

etc. Try to decompose the messages in $\mathcal M$ as much as possible.

Consider

- a computational trace,
 - lack Actually, the set ${\mathcal M}$ of messages appearing in it.
- \blacksquare the set $\mathcal K$ of secret decryption keys of participants.

In the end:

- for each uninterpreted message in \mathcal{M} : associate it with a new formal nonce.
- Construct the formal trace using the structure of messages that we recorded.

Invalid formal trace \Rightarrow broken primitive

If the trace is invalid, then the adversary did one of the following:

- forged a signature;
- guessed a nonce, symmetric key, or signature that it had only seen encrypted.

We run the protocol while using the encryption / signing oracles to encrypt / sign. We guess at which point the break happens.

- We use the oracles for this particular key.
- A forged signature promptly gives us a break of UF-CMA.
- For guessed nonce, key or signature we generate two copies of it and use the messages derived from these two copies as the inputs to the oracle $\mathcal{E}(k, \pi_b(\cdot, \cdot))$.
 - lacktriangle After learning the nonce / key / signature, we learn b.

Trace properties

- \blacksquare A trace property of P is a subset of the set of all formal traces.
- lacktriangle A protocol formally satisfies a trace property P if all its formal traces belong to P.
- A protocol computationally satisfies a trace property P if for almost all computational traces t^c of the protocol there exists a trace $t^f \in P$, such that $t^f < t^c$.

Theorem. If a protocol formally satisfies some trace property P, then it also computationally satisfies P.

Confidentiality of nonces

- In the formal setting, the confidentiality of a certain nonce N means that N will not be included in the knowledge set of the adversary.
- In the computational setting, the confidentiality of a certain nonce N means that no PPT adversary $\mathcal A$ can guess b from the following:
 - lacktriangle Run the protocol normally, with ${\mathcal A}$ as the adversary, until...
 - lacklack A denotes one of the just started protocol sessions as "under attack".
 - Generate a random bit b and two nonces N_0 and N_1 .
 - lacktriangle Use N_b in the attacked session in the place of N.
 - lacktriangle Continue executing the protocol until $\mathcal A$ stops it.
 - Give N_0 and N_1 to \mathcal{A} .

Theorem. Formal confidentiality of a nonce implies its computational confidentiality.