Cryptographically sound
formal verification of security
protocols



Two views of cryptography

Formal (“Dolev-Yao”) view

m  Messages — elements of a term algebra.
Possible operations on messages are enumerated.
Choices in semantics — non-deterministic.

[0 Protocol and the adversary are easily represented in some
process calculus.

Computational view

m  Messages — bit strings.
m Possible operations on messages — everything in PPT.
m  Choices in semantics — probabilistic.

[0 Protocol and adversary — a set of probabilistic interactive
Turing machines.
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Two views of cryptography

Formal (“Dolev-Yao”) view

m  Messages — elements of a term algebra.
Possible operations on messages are enumerated.
Choices in semantics — non-deterministic.

[0 Protocol and the adversary are easily represented in some
process calculus.

m  Simpler to analyse.
Computational view

m  Messages — bit strings.
m Possible operations on messages — everything in PPT.
m  Choices in semantics — probabilistic.

[0 Protocol and adversary — a set of probabilistic interactive
Turing machines.

m Closer to the real world.
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In this lecture we’ll. ..

take a look at cryptographic protocols using “classical” primitives

[0 symmetric / asymmetric encryption, signatures, nonces, hash
functions;

see, what it takes to specify them

[0 programming language, semantics and execution environment,
interacting with the adversary;
[0 semantics — probabilistic, works with bit-strings;

look at the methods to deal with the computational semantics

[0 assuming we can handle perfect cryptography.
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Table of Contents

m [he Abadi-Rogaway result on the indistinguishability of
computational interpretations of formal messages.
m [ranslating protocol traces between formal and computational world.
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A simple language for messages

The atomic building blocks:

m Formal keys k, ki, ko, K/ K", ... € Keys

m Formal coins r,ry,re, 1", 7", ... € Coins
m Bitsbe{0,1}
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A simple language for messages

The atomic building blocks:

m Formal keys k, ki, ko, K/ K", ... € Keys

m Formal coins r,ry,re, 1, 7", ... € Coins
m Bitsbe{0,1}

A formal expression e € Exp is

e = k
b
(617 62)

11

If {e}} and {e’}}, both occur in an expression then &k =k’ and e = ¢’

m e is similar to Dolev-Yao messages.
m  We can also interpret it as a program for computing a message.

5/ 45



Semantics — building blocks

m Let (-,-): ({0,1}*)* — {0, 1}* be easily computable and invertible
injective function.
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Semantics — building blocks

Let (-,-) : ({0,1}*)* — {0, 1}* be easily computable and invertible
injective function.
A symmetric encryption scheme (X, &, D):

0 X (17) — generates keys;
0 &€ (1", k,x) — encrypts x with k;
0 D(1" k,y) — decrypts y with k.

K and €& — probabilistic, D — deterministic.
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Semantics — building blocks

m Let (-,-): ({0,1}*)* — {0, 1}* be easily computable and invertible
injective function.
m A symmetric encryption scheme (X, &, D):

0  XK*(1"7) — generates keys from random coins r;
0  E7(1" k,x) — encrypts x with k using the random coins r;
0 D(1" k,y) — decrypts y with k.

K and & — probabilistic, D — deterministic.

Correctness:
k= XK*(1")
;Y =& (1 &, x)
VT = D17,k )
(x =x)?
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Semantics of a formal expression

m Foreach k € Keys let s, «+— K(17)
m Foreach r € Coins let s, € {0,1}~.

Define

[k],; = sk

[(e1, e2)]5 = (lewly [e2])
H{EJ}Z:HZZ Esr(lnvskvﬂemn)
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Semantics of a formal expression

m Foreach k € Keys let s, «+— K(17)
m Foreach r € Coins let s, € {0,1}~.

Define

[E]y = sk

[6], = b

[(e1, e2)], = (lely, le2]y)
[{e'}eln = €5 (17, s, [€]5)

[-] assigns to each formal expression a family of probability distributions
over bit-strings

7 /45



Computational indistinguishability

We are looking for sufficient conditions in terms of e; and ey for

le1] ~ [e2] -
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Computational indistinguishability

We are looking for sufficient conditions in terms of e; and ey for

le1] ~ [e2] -

Two families of probability distributions over bit-strings D" = {Dg}neN
and D' = {D/},cn are computationally indistinguishable if for all PPT
algorithms A:

Prib=0"|ber {0,1}, 2 — D2, b* — A(1",2)] = 1/2+&(n)

for some negligible function «.
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Computational indistinguishability

We are looking for sufficient conditions in terms of e; and ey for

le1] ~ [e2] -

Two families of probability distributions over bit-strings D" = {Dg}neN
and D' = {D/},cn are computationally indistinguishable if for all PPT
algorithms A:

Prib=0"|ber {0,1}, 2 — D2, b* — A(1",2)] = 1/2+&(n)

for some negligible function «.
A function ¢ is negligible if

lim e(n) - p(n) =0

n—0o0

for all polynomials p.
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Decomposing a formal expression

61"62

The value of ey tells us the value of e,
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Decomposing a formal expression

€1 - €9
The value of ey tells us the value of e,
ek e

ek (e1,e9) =ebe N ele
e-{e'}, Nebk=ebe
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Decomposing a formal expression

61|_62

The value of e; tells us the value of e,

eke
ek (e1,e9) =ebe N ele
e-{e'}, Nebk=ebe

Examples:

({1011}, {kn Yo, k2) F 1011
({ro11}y  {ki}p, {k2}7,) I/ 1011
({1011} {ki}y , {ko}5 ) I 1011
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Decomposing a formal expression

61|_62

The value of e; tells us the value of e,

eke
ek (e1,e9) =ebe N ele
e-{e'}, Nebk=ebe

Examples:

({1011}, {kn Yo, k2) F 1011
({ro11}y  {ki}p, {k2}7,) I/ 1011
({1011} {ki}y , {ko}5 ) I 1011

Let openkeys(e) = {k € Keys |e F k}.
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The pattern of a formal expression

m Enlarge the set Exp: ex=...|O"
m For aset K C Keys define
pat(k, K) =k
pat(b, K) =b
pat((e1,es), K) = (pat(er, K), pat(es, K))

at(e, K)}., fkekK
pat({e}Z’K){{;“ te, K) b ikaK

m Let pattern(e) = pat(e, openkeys(e)).
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The pattern of a formal expression

m Enlarge the set Exp: ex=...|O"
m For aset K C Keys define

pat(k, K) =k
pat(b, K) =b
pat((e1,es), K) = (pat(er, K), pat(es, K))

at(e, K)}., fkekK
pat({e}Z,K){l{j]Z te, K) b ifk;K

m Let pattern(e) = pat(e, openkeys(e)).
m  Define e; & ey if pattern(e;) = pattern(es)oxor for some

[0 ox — a permutation of the keys Keys:;
0 opr — a permutation of the random coins Coins.
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Examples

pattern(({1011}} , {k1}},, k2)) = ({1011}, {ki}t,, k2)
pattern(({1011};  {ki}5 . {k2}7.)) = (O, 0", 0")
pattern(({1011}; | {kl}Z;a {kg}};’l’)) = (o",0",0")
pattern(({1}y), {katis, {0} bio k1)) = (O™, 07, {0}, k1)
pattern(({ks, 0}y, {kstis. {{11}5 b k1)) = (O, 07, {0}, k)
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IND-CPA-security of an encryption scheme

m  Encrypting oracle QINP=CPA.
Initialization: method encrypt(x)
k «— K(17) y «— E(k,x)
return y
m (Constant-encrypting oracle OéND_CPA:
Initialization: method encrypt(x)
k «— K(17) | := length(x)
y «— E(k, Ol)
return y

(K, E,D) is IND-CPA-secure if for all PPT algorithms A exists a
negligible ¢, such that

OIND—CPA

Prib =0"|b€g {0,1},0" «— A™» (1M] =1/24¢e(n)
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IND-CPA-security of an encryption scheme

m  Encrypting oracle QINP=CPA.
Initialization: method encrypt(x)
k «— K(17) y «— E(k,x)
return y
m (Constant-encrypting oracle OéND_CPA:
Initialization: method encrypt(x)
k «— K(17) | := length(x)
y «— E(k, Ol)
return y

(K, E,D) is IND-CPA-secure if for all PPT algorithms A exists a
negligible ¢, such that

OIND—CPA

Prib =0"|b€g {0,1},0" «— A™» (1M] =1/24¢e(n)

In other words: O}~ ~ @IND—CFA,
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Hiding the identities of keys

s Oracle with two keys O}9¢7.
Initialization: method encryptl(x) method encrypt2(x)
ky «— K(17) y «— E(ky, X) y «— E(ky, X)
ky — X(17) return y return y
= Oracle with one key Of9°™*;
Initialization: method encryptl(x) method encrypt2(x)
k «— K(17) y «— E(k,x) y «— E(k,x)
return y return y

(K, €,D) hides the identities of keys / is which-key concealing if

Olilide—key ~ O lgide—key .
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Hiding the identities of keys

s Oracle with two keys O}9¢7.
Initialization: method encryptl(x) method encrypt2(x)
ky «— K(17) y «— E(ky, X) y «— E(ky, X)
ky — X(17) return y return y
= Oracle with one key Of9°™*;
Initialization: method encryptl(x) method encrypt2(x)
k «— K(17) y «— E(k,x) y «— E(k,x)
return y return y

(K, €,D) hides the identities of keys / is which-key concealing if

Olilide—key ~ O lgide—key .

IND-CPA-secure which-key concealing encryption schemes are easily
constructed (CCA- or CTR-mode of operation of block ciphers).
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Hiding the length of the plaintext

An encryption scheme is length-concealing if the length of the
plaintext cannot be determined from the ciphertext.
Achievable by padding the plaintexts.

[0 Questionable for nested encryptions. . .

For simplicity, we will assume that our encryption scheme is
length-concealing.

0 And also which-key concealing and IND-CPA-secure.

Otherwise we'd need to define lengths of formal expressions.
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IND-CPA, which-key and length-concealing:

Let O be a fixed bit-string.

type—0
m  Oracle O

Initialization: method encryptl(x) method encrypt2(x)
ky — K(17) y «— E(ky, x) y < E(kg, x)
ko — K(1") return y return y
m  Oracle O
Initialization: method encryptl(x) method encrypt2(x)
k «— XK(17) y «— E(k,0) y «— E(k,0)
return y return y

(%, &, D) has all three listed properties if O¥P¢™" ~ QP
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Theorem of equivalence

Theorem. Let €1,€E9 € EXp |f €1 = €9 then™ [[61]] ~ [[62]].
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Interlude: Hybrid argument

Let D" = {D)},cn and D" = {D, },cn be two families of probability
distributions.

Let p be a positive polynomial.

Let 52 be a probability distribution over tuples

(1,22, ..., Zpm)) € ({0, 1}*)19(?7)

such that

0 each z; is distributed according to D?:
[0 each x; is is independent of all other x-s.
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Interlude: Hybrid argument

Let D" = {D)},cn and D" = {D, },cn be two families of probability
distributions.

Let p be a positive polynomial.

Let 52 be a probability distribution over tuples

(1,22, ..., Zpm)) € ({0, 1}*)19(?7)

such that

0 each z; is distributed according to D?:
[0 each x; is is independent of all other x-s.

To sample 52 sample D) p(n) times and construct the tuple of
sampled values.
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D-s indistinguishable = D-s indistinguishable

Theorem. If D ~ D! then D° ~ D!,
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D-s indistinguishable = D-s indistinguishable

Theorem. If D ~ D! then D° ~ D!,

|f e0® ~ eoe@ then o =~ eo.

Contrapositive: if ® % @ then eee X eoe
If @ %5 @ then there exists a PPT distinguisher A:

Prib=0"|ber {0,1}, 2 — D), b* — A(n,z)] > 1/2+ 1/q(n)

for some polynomial ¢ and infinitely many 7.
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If @ %5 @ then there exists a PPT distinguisher A:
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for some polynomial ¢ and infinitely many 7.
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D-s indistinguishable = D-s indistinguishable

Theorem. If D ~ D! then D° ~ D!,

|f e0® ~ eoe@ then o =~ eo.

Contrapositive: if ® % @ then eee X eoe
If @ %5 @ then there exists a PPT distinguisher A:

PrlA(n,z) = 0|z «— D)] = PrlA(n,z) = 0|z < D,] > 1/q(n)

for some polynomial ¢ and infinitely many 7.

Let 3(777 (:Ela - 733}9(77))) — ‘A(na :Cl)'
Then B distinguishes eee and eee.

|.e. we can distinguish eee from eee by just considering the first
elements of the tuples.
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D-s indistinguishable = D-s indistinguishable

(Interesting) theorem. If D' ~ D' and there exist polynomial-time
algorithms D° and D1, such that the output distribution of D’(n) is

equal to Df;, then D° ~ D!,
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D-s indistinguishable = D-s indistinguishable

(Interesting) theorem. If D' =~ D' and there exist polynomial-time
algorithms D° and D1, such that the output distribution of D’(n) is

equal to D?, then D° ~ D!

If e =~ @ then eee ~ eeeo.

Contrapositive: if eee % eee then o X o.
If eee 5% eee then there exists a PPT distinguisher A:

Pr[A(n, ) = 0| « D°] — Pr[A(n, &) = 0| % < D}] > 1/q(n)

for some polynomial ¢ and infinitely many 7.

Assume for now that the polynomial p is a constant. l.e. the length of
the vector ¥ does not depend on the security parameter 7.
Let p be the common value of p(n) for all 7.
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Hybrid distributions

If eee £ @00 then

(000 £ 000) \/ (000 £ e0e) \/ (000 £ oo0)
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Hybrid distributions

If eee 5 eee then
(000 £ 000) \/ (000 £ e0e) \/ (000 £ oo0)

et E];’ where 0 < k < p, be a probability distribution over tuples
(1,...,2,), where

m each z; is independent of all other x-s;
" 2),...,7; are distributed according to D));
" Tpy1,...,T, are distributed according to D}T

0 _ Pl p )0 - k N 0|7 ik
Thus £y = D, and E? = D,. Define P’ = Pr|A(n,Z) = 0|7 « ET].

Then for infinitely many n: ,

a(n) < PL— P =3 "(PL— 7).

1=1

And for some j,, P — P > 1/(p-qn)).
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A distinguishes hybrids

There exists j, such that j = j, for infinitely many n. Thus
Pr[A(n, ) = 0| & — EJ] — PriA(n, &) = 0| & — £} > 1/q(n)

for infinitely many 1. We have EV—1 s EJ.
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A distinguishes hybrids

There exists j, such that j = j, for infinitely many n. Thus
Pr[A(n, ) = 0| & — EJ] — PriA(n, &) = 0| & — £} > 1/q(n)

for infinitely many 1. We have EV—1 s EJ.

If we can distinguish

F/ —e0---0000---0
A\ ~ 4 A\ V.J
J—1 pP—J
from
Fi'7l —ge---0000---0
N ~ 4 N ~ 4
Jj—1 p—J

using A, then how do we distinguish e and e?
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Distinguisher for D" and D'

On input (n, x):

1. Letxzy:=D°%n),...,z;—1 :=D%n).
2. Letz;, ==

3. Letxjq:=D(n),...,x,:=D(n)
4. Let ¥ = (x1,...,xp).

5. Call b* := A(n, ) and return b*.

The advantage of this distinguisher is at least 1/(p - q(n)).
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Distinguisher for D" and D'

On input (n, x):

1. Letxzy:=D°%n),...,z;—1 :=D%n).
2. Letz;, ==

3. Letxjq:=D(n),...,x,:=D(n)
4. Let ¥ = (x1,...,xp).

5. Call b* := A(n, ) and return b*.

The advantage of this distinguisher is at least 1/(p - q(n)).

Unfortunately, the above construction was not constructive.
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Being constructive

For infinitely many 1 we had

p

q() < PL— P =3 (Py— Pi7Y)

1=1

Hence the average value of P} — P)~'is > 1/(p- q(n)).
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Being constructive

For infinitely many 1 we had

p

a(n) < PY— P =3 "(Pi= 7).

1=1

Hence the average value of P} — P)~'is > 1/(p- q(n)).

Consider the following distinguisher B(n, x):

1. Letjeg{l,....p}

2. Letxy:=D%n),...,x;_1 :=Dn).
3. Letz;, ==

4. Let x;11 : =D (n),...,x, :=Dn)
5. Let &= (x1,...,x,).

6.

Call b* := A(n, Z) and return b*.
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What B does

If (for example) p = 5, then B tries to distinguish

eeeee and eeeee with probability 1/5
eeeee and eeeee with probability 1/5
eeeee and eeeee with probability 1/5
eeeee and eeeee with probability 1/5
eeeee and eeeee with probability 1/5

The advantage of B is 1/p times the sum of A's advantages of
distinguishing these pairs of distributions.

The advantage of B is
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If » depends on 7

B(n,x) is:

1. Letjer{l,...,p(n)}.

2. Let X1 = Do(n), ey i1 = 'Do(n)
3. Letz;:=ux

4. Let zji1 :=D'(n), ..., xpu := D' (n)
5. Letz = (a:l,...,a:p(n)).

6. Call b* := A(n,Z) and return b*.

The advantage of B is at least 1/(p(n) - ¢(n)).
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Semantics of patterns

m Foreach k € Keys let s, «+— K(17)
m For each r € Coins let s, € {0,1}
m Let kg «— K(17).

Define

[kl = sk
16y = b
[(e1, e2)]y = (lealy: [e2]y)
{e'teln = € (17, sy, [€])
O], = €7 (1", kg, 0)
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Replacing one key

For a key k € Keys define
)=k
b

replacekey(k, k
replacekey (b, k) =
), k

replacekey((eq, ea), k) = (replacekey (e, k), replacekey(ea, k))

{replacekey(e, k)}r, ik #k

T

r if b — 1.
replacekey({e}}, k) {D Tk ﬁ
[

replacekey(O", k) =

Lemma. Let e € Exp. Let key k occur in e only as encryption key.
Then [e] =~ [replacekey(e, k)].

27 / 45



Proof of the lemma

Assume that B distinguishes [e] from [replacekey(e, k)].
Let A9(17) work as follows:

Let s;, < K(17) for all keys k occurring in e, except k.

Let s €r {0,1}* for all 7 occurring in e, except as {...}T.

Let kg «— XK (17).

Let L = {} (empty mapping).

Compute the “semantics” v of e as follows by invoking SEM®(e)
0 SeEMO(e) = [e] if O = QP

0 SEM®(e) = [replacekey(e, k)] if © = QP

return B(1"7 v).

A can distinguish O_tlype_o and 05" as well as B can distinguish [e]
and [replacekey(e, k)].
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Computing |e| or |replacekey(e, k)]

SEMY(e) is: case e of

k: return s, (note that k # k)

b: return b

(e1,e2): let v; = SEM®(e;); return (v, vs)
0": return O.encrypt2(0)

{e}7: let v = SEM®(e);

0 If k # k then return % (17, s, v)
0 If K=k and L(r) is not defined then

« let L(r) = O.encryptl(v);
« return L(r)

0 If k=k and L(r) is defined then return L(r)
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Proof of the theorem

1. replacekey(replacekey(- - - replacekey(e, ki), ko) -+  kyp) =
pattern(e)
if {k1,...,k,} are all keys in e that the adversary cannot obtain.
Denote this set of keys by hidkeys(e).

2. Apply the lemma sequentially to each key in hidkeys(e), thereby
establishing

le] =~ [pattern(e)].

% In general, not all orders of keys in hidkeys(e) are suitable.

3. Permuting the formal keys and coins does not change the generated
probability distribution over bit-strings.

If e1 = ey then® [e1]| & [pattern(ei)] = [pattern(es)] = [es].
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Example 1

[(Uka; O3 s ks tiys UL 3 Fiy s R

[({L by Wh23iss 110 s 3iys M)
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Example 2

pattern(({ks}yy {katig, Ukt bl k1)) = (O™, 07, {0 1, k)
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Example 2

pattern(({ks}y, (ka}2 {{ka}p )0 b)) = (@7, 07 {D7 )2 )

[(Tka Ty ARty Wk by bry s F)]
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Example 2

pattern(({ks}yy {katig, Ukt bl k1)) = (O™, 07, {0 1, k)

(k3T WRabiss 1R2 Tk tey s F)]

(cannot apply the lemma)
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Encryption cycles

m |et e be a formal expression.
m  Consider the following directed graph G = (V, F):

0V = hidkeys(e)
0 (ki — k;) € E if e has a subexpression of the form

(kYo

(we say that k; encrypts k)

m e has no encryption cycles if G does not contain directed cycles.
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Encryption cycles

m |et e be a formal expression.
m  Consider the following directed graph G = (V, F):

0V = hidkeys(e)
0 (ki — k;) € E if e has a subexpression of the form

(kYo
(we say that k; encrypts k;)
m e has no encryption cycles if G does not contain directed cycles.

Theorem. If e contains no encryption cycles then [e] ~ [pattern(e)].

“No encryption cycles” is sufficient, but not necessary condition for the
sequential applicability of our lemma.

Example: ({ka}t, {ke}2, {{ka}ii }i2) is OK.
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The Abadi-Rogaway result on the indistinguishability of
computational interpretations of formal messages.
Translating protocol traces between formal and
computational world.
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Public-key primitives

Extend the construction of the set of formal messages by

0 keypairs kp € EKeys for encryption and kp € SKeys for
signing;

[ operations kp™ and kp~ to take the public and secret
components of keys;

0 public-key encryptions {[6]}7/;p+ and signatures [{e}]’,;p_.

Fix a public-key encryption scheme (X, €,,D,) and a signature
scheme (K, S, Vs).

0 Use X, &, XK, K to define the semantics of new constructs.
Similar results can be obtained with {|-]}. in messages.

[0 If secret keys are not part of messages then encryption cycles are
not an Issue.
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Specifying the protocols

A set P of principals (some of them possibly corrupted). Each one
with fixed keypairs for signing and encryption.

0 There are keys ek(P), dk(P), sk(F), vk(P) for each principal P.

A set of roles.

O A list of pairs of incoming and outgoing messages.
[0 May contain nonces.

[0 Also may contain message variables and principal variables.
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Example roles

Needham-Schroeder-Lowe public-

A—B :{
B—A : {
A—B :{

m [nitiator role:

key protocol:

Na, Al} ey
_NA7 NB? B]}ek(A)

:NB]}ek(B)

(Start, {{Na; Xinit]}ex(xpee))
(VA XN, XRespltek(ximie)r XN ek(Xpnee))

m  Responder role:

X Xt ]} ek(xpap) s UXN V35 XResplFek(x10)
(VB ek(xpeep)s OF)
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Execution

m  Adversary may start new runs by stating new(sid; Py, ..., P,).
[0 sid is the unique session identifier of the run.
O Py, ..., P, are names of principals that fulfill the roles
Ri,....R,.
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Ri,....R,.

Adversary may send messages by stating recv(sid, R;, m) where m
IS @ message.

[0 The role R; in the run sid will receive the message m and
process It.

When a principal P; running the role R; = (mj, m,) :: R; in the run
sid will receive a message m, then it will

O match m with m;;

[0 generate a new message m’ by instantiating the outgoing
message m,, and send it: send(sid, R;, m’);

0 Set R; to R (in sid only).
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Execution

m  Decompose m according to m;.

0 Use dk(P;) to decrypt messages encrypted with ek(F;).
[0 The keys for symmetric encryption are contained in m;.

m Verify the equality of instantiated parts of m; to the corre-
sponding parts of m/.

m [nitialize the new variables in m; with the corresponding parts
of m’.

m Verify the signatures in m/'.

m  When a principél P; running the role R; = (m;, m,) :: R} in the run
sid will recefve a message m, then it will

O match m with m;;

[0 generate a new message m’ by instantiating the outgoing
message m,, and send it: send(sid, R;, m’);

0 Set R; to R (in sid only).
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Execution

m  Adversary may start new runs by stating new(sid; Py, ..., P,).
[0 sid is the unique session identifier of the run.
O Py, ..., P, are names of principals that fulfill the roles
Ri,....R,.

g ® Use the values of already known keys, nonces, variables, etc.

m  (Generate new values for keys and nonces that occur first time
In 1m,.

m  When a principal P; running the rol R; = (m;, m,) :: R} in the run
sid will receive a message m, then it\yill

O match m with m;;

[0 generate a new message m’ by instantiating the outgoing
message m,, and send it: send(sid, R;, m’);
0 Set R; to R (in sid only).
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Execution traces

An execution trace is a sequence of new-, recv- and
send-statements.
We have traces in both models — there are

[0 formal traces — sequences of terms over a message algebra with
a countable number of atoms for keys, nonces, random coins;
[0 computational traces — sequences of bit-strings.

A formal trace is valid if each message in a recv-statement can be
generated from messages in previous send- and recv-statements.
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Translating Formal — Computational

A formal trace ¢/ is a sequence consisting of principal names and
formal messages.

Formal messages are made up of formal nonces, formal keys, formal
encryptions and decryptions using formal coins.

Fix a mapping c from formal constants, nonces, keys and coins to
bit-strings.

Extend c to the entire trace, giving the computational trace c(t/).
Denote ¢/ < t¢ if the computational trace t¢ can be obtained as a
translation of the formal trace ¢/
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Translating Formal — Computational

m A formal trace t/ is a sequence consisting of principal names and
formal messages.

m  Formal messages are made up of formal nonces, formal keys, formal
encryptions and decryptions using formal coins.

m  Fix a mapping c from formal constants, nonces, keys and coins to
bit-strings.
Extend c to the entire trace, giving the computational trace c(t/).
Denote ¢/ < t¢ if the computational trace t¢ can be obtained as a
translation of the formal trace ¢/

Lemma. If the used cryptographic primitives are secure then for any
computational adversary A, if t¢ is a computational trace of the protocol
running together with A then with overwhelming probability there exists
a valid formal trace t/, such that t/ < t¢.
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Security of primitives

m [he encryption systems must be IND-CCA secure.

0 Adversary may not be able to distinguish E(k, m1(-,)) and
E(k,mo(+,)) even with access to D(k, ).

[0 Results from the encryption oracle may not be submitted to the
decryption oracle.
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Security of primitives

The encryption systems must be IND-CCA secure.

0 Adversary may not be able to distinguish E(k, m1(-,)) and
E(k,mo(+,)) even with access to D(k, ).

[0 Results from the encryption oracle may not be submitted to the
decryption oracle.

The signature system must be EF-CMA secure.

[0 Adversary may not be able to produce a valid
(message,signature)-pair, even when interacting with a signing
oracle.

[0 Messages submitted to the oracle do not count.

The message must be recoverable from the signature (and the
verification key).
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Translating Computational — Formal

Consider
m 2 computational trace,

[0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.

Iterate:
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Translating Computational — Formal

Consider
m 2 computational trace,

[0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.

Iterate:
If some M € M looks like a pair (M, M3) then

m add Ml, M2 to M;
m for M, record that it is a pair (M, Ms).

42 / 45



Translating Computational — Formal

Consider
m 2 computational trace,

[0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.

lterate:
If some M € M looks like a symmetric key then

m add M to X,
m pick a new formal symmetric key K and associate it with M.

Concerning symmetric encryption, attention has to be paid to encryption
cycles.
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Translating Computational — Formal

Consider
m 2 computational trace,

[0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.

Iterate:
If some M € M looks like an encryption then try to decrypt it with all
keys in K. If My = D(My, M) for some M; € K, then

m add M, to M;
m for M, record that it is an encryption of M, with the formal key
corresponding to the encryption key of M.
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Translating Computational — Formal

Consider
m 2 computational trace,

[0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.

lterate:
If some M € M looks like a signature then try to verify it with all
verification keys in M. If V(My, M) is successful, then

m  add My = get_message(M) to M;
m for M, record that it is the signature of M, verifiable with the formal
key corresponding to M.
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Translating Computational — Formal

Consider
m 2 computational trace,

[0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.

Iterate:
etc. Try to decompose the messages in M as much as possible.
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Translating Computational — Formal

Consider
m 2 computational trace,

[0 Actually, the set M of messages appearing in it.
m the set X of secret decryption keys of participants.
In the end:

m for each uninterpreted message in M: associate it with a new formal
nonce.

m  Construct the formal trace using the structure of messages that we
recorded.

42 / 45



Invalid formal trace = broken primitive

If the trace is invalid, then the adversary did one of the following:

m forged a signature;
m guessed a nonce, symmetric key, or signature that it had only seen
encrypted.

We run the protocol while using the encryption / signing oracles to
encrypt / sign. We guess at which point the break happens.

We use the oracles for this particular key.

A forged signature promptly gives us a break of UF-CMA.

For guessed nonce, key or signature we generate two copies of it and
use the messages derived from these two copies as the inputs to the

oracle E(k, my(-,-)).

[0 After learning the nonce / key / signature, we learn b.
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Trace properties

m A trace property of P is a subset of the set of all formal traces.

m A protocol formally satisfies a trace property P if all its formal traces
belong to P.

m A protocol computationally satisfies a trace property P if for almost
all computational traces t¢ of the protocol there exists a trace
t! € P, such that t/ < t¢.

Theorem. If a protocol formally satisfies some trace property P, then it
also computationally satisfies P.
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Confidentiality of nonces

m In the formal setting, the confidentiality of a certain nonce N means
that NV will not be included in the knowledge set of the adversary.

m |n the computational setting, the confidentiality of a certain nonce N
means that no PPT adversary A can guess b from the following:

[0 Run the protocol normally, with A as the adversary, until. ..
0 A denotes one of the just started protocol sessions as “under
attack’ .

Generate a random bit b and two nonces Ny and V.

Use IV, in the attacked session in the place of V.

Continue executing the protocol until A stops it.
Give Ny and N; to A.

N I N O

Theorem. Formal confidentiality of a nonce implies its computational
confidentiality.
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