
Internet security protocols



In this lecture:� SSH� Kerberos� SSL/TLS



SSH protocol is used to mutually authenticate the Client

and the Server and to establish a secure channel between

them.

It consists of� Transport Layer Protocol — unilaterally authenticates

the Server to the Client. Establishes a channel that the

Client deems secure.� User Authentication Protocol — authenticates the Client

to the Server.� Connection Protocol — multiplexes the secure channel

into several logical channels.



Transport layer protocol.

0. Client and Server establish connection.

1. Both sides send to each other the key exchange mes-

sages IC , IS containing� a nonce NC , NS;� the protocol and software versions;� lists of names of accepted key exchange protocols

and cryptographic primitives, in order of prefer-

ence. Primitives are

– asymmetric primitives

– symmetric encryption primitives

– MAC primitives



If D-H key exchange with the group hgi � Z�p, gq = 1

chosen, then

2. Client chooses x 2R Zq , sends e = gx mod p to Server.

3. Server� chooses y 2R Zq , computes f = gy mod p;� computes k = ey mod p;� computes H = h(IC ; IS; pk(KS); e; f; k);� sends (pk(KS); f; [fHg℄KS ) to Client.

4. Client� checks whether it recognizes pk(KS);� recomputes f; k;H, checks the signature.



The shared secret K and the hash H are used to derive

keys and initial vectors for the secure channel:� IV C ! S is h(k;H; “A” ; sid);� IV S ! C is h(k;H; “B” ; sid);� same for encryption keys and MAC keys (C ! S andS ! C).sid = H for H from the initial key exchange.

All further communication is encrypted and MAC-ed.

Both sides may initiate a new exchange of keys.



A payload M is encoded in a packet asP = (pa
ketlen ;paddinglen ;M;padding)

where pad is used to make the length of packet a multiple

of the cipher block length.

A packet is encoded as(fPgKenc
;MACKmac

(seqno; P )) :

where seqno 2 Z232 .
Encryption: actually the stream of packets P1kP2kP3k � � �

is encrypted, not each packet separately. Standard sug-

gests using some block cipher in the CBC-mode.

Exercise. What is the problem here with MACs? With

encrypting?



User authentication protocol.� Password-based:

– Client sends his name and password.

– Server checks that (name,password)-pair is valid.� Signature-based:

– Client sends his public key and a signature on var-

ious things:� including the session identifier.

– Server checks the knowledge of the key and the sig-

nature.



Connection protocol.

Not a security protocol.



Kerberos protocol suite provides a single sign-on to various

services offered on a “corporate” network.� corporate — there exists a single authority.

Each user U has a single password (shared key KU). It is

agreed out-of-band.



The intranet of a large corporation:� Several domains.

– in different geographic locations� Each domain contains several servers S.� Each domain has a ticket-granting server TGS .� There is a global authentication server AS .



To get a service from a server S, the client C on behalf of

the user U first connects the AS :

1. C �! AS : U;TGS ; T I1; N1

Here TI1 is the desired validity interval (start and end

times) of the ticket.

2. AS �! C : U; TC;TGS ; TGTC , where� TC;TGS = fU;C;TGS ;KC;TGS ; T I2gKAS ;TGS� TGTC = fTGS ;KC;TGS ; T I2; N1gKU
– TI2 is not intended as a security feature here.



C then contacts TGS in a similar manner:

3. C �! TGS : S; TI3; N2; TC;TGS ; fC; T
urrgKC;TGS� The last component (the authenticator) shows that

the client could decrypt TGTC .� They should be cached to make sure that they’re

not used twice.

4. TGS �! C : U; TC;S; TKTC , where� TC;S = fU;C; S;KC;S ; T I4gKTGS ;S� TKTC = fS;KC;S ; T I4; N2gKC;TGS



C and S then authenticate using the shared key KC;S:
5. C �! S : TC;S; fC; T
urrgKC;S
6. S �! C : fT
urrgKC;S

The key KC;S is also used to secure the channel between C

and S.



The exchanges 1-2 and 3-4 followed a common pattern:� A wants to talk to B.� X and S share a key KXS for X 2 fA;Bg.
1. A �! S : A;B;N
2. S �! A : fA;B;KAB;TI ; NgKAS ; fA;KAB;TI gKBS

3. A �! B : fA;KAB;TI gKBS ; fA; T
urr; : : :gKAB

4. B �! A : fT
urr; : : :gKAB



A

B

S1 S2 S3

Somewhat similar to hierarchical PKI. . .



Client

AS
TGS

Server

1−2

3−4

5−6

Source of the name “Kerberos”.



TLS consists of� Handshake protocol

– Typical public-key protocol

– Client sends server a secret value encrypted with

server’s public encryption key.

– The keys are derived from this secret value.

– The public keys are found from certificates.� Record protocol



Record protocol encapsulates the payloads. A payloadM is translated to(IV; fM;MACKma
(seqno;M);padgKen
)

where pad is used to make the length of the argument of

the encryption a multiple of block length.� Let l be the length of pad in bytes. Then 1 6 l 6 256

and the bytes in pad are all equal to l� 1.Ken
 and Kma
, as well as encryption and tagging algo-

rithms have been agreed in the handshake protocol.



If a party receives an encrypted packet from the other

party, then he� Decrypts the packet.� Checks that the padding is correct (at least l last bytes

have the value l� 1 for l > 1).� If the check fails, then sends an error message, other-

wise. . .� Checks the MAC.� If the check fails then sends an error message.� Otherwise proceeds.



This party may be implementing an oracle that tells whether

the padding was correct.

Error message due to incorrect padding and error message

due to incorrect MAC may take different amount of time

to compute.

Access to such an oracle allows us to decrypt.

Hence the implementation must make sure to insert delays

as appropriate.



CBC-mode:
1 = Ek(IV � p1) 
i = Ek(
i�1 � pi)

Let us be interested in the value of pi = 
i�1 �Dk(
i).
Let r be a random block. Send rk
i to the oracle.

If it answers “padding OK” then most probablylsb8(r �Dk(
i)) = 0116 :

Exercise. How many tries? How to verify that equation?

We have found lsb8(
i). This tells us lsb8(pi).
Let r0 = r � 0316. Then lsb8(r0 �Dk(
i)) = 0216.
Vary r0 (except last 8 bits), until the second last byte ofr0 �Dk(
i) equals 0216.
Etc. Third, fourth, etc. byte. . .


