
Multiparty Computation

Principle

2 / 34

■ There is a (randomized) function f : ({0, 1}ℓ)n −→ ({0, 1}ℓ)n.
■ There are n parties, P1, . . . , Pn.

◆ Some of them may be adversarial.
◆ Two forms of adversarial behaviour:

■ Semi-honest — will follow the protocol as prescribed, but
tries to deduce extra information from what it sees.

■ Malicious — will not necessarily follow the protocol.

■ Party Pi has the bit-string xi ∈ {0, 1}
ℓ.

■ Party Pi wants to learn yi, where

(y1, . . . , yn) = f(x1, . . . , xn) .

■ No party Pi may learn anything beyond xi and yi.

Examples

3 / 34

■ Two millionaires want to determine who is richer.

◆ Revealing one’s net worth to the other party means losing one’s
face if the other party turns out to be much richer.

■ Alice and Bob are considering to start dating each other.

◆ Revealing that one is interesting in dating means losing one’s
face if the other party is not interested.

■ Three cryptographers are dining in a restaurant. The waiter informs
them that the bill has already been payed. The cryptographers want
to know whether the payer was one of them (who wants to remain
anonymous) or the NSA.

■ Everything else. . .

Pieces

4 / 34

■ The number of parties n.

◆ n = 2
◆ n ≥ 3

■ A function f , represented as a Boolean circuit.

◆ Deterministic or randomized.
◆ Common output or separate outputs.

■ A n-party protocol Π. Two main techniques:

◆ “Garbled circuits”
◆ Secret-sharing the values on wires.

■ The adversary (a coalition of parties)

◆ maximum size
◆ semi-honest or malicious
◆ non-adaptive or adaptive

Security definition

5 / 34

■ Consider the deterministic two-party, semi-honest case.
■ A protocol Π securely evaluates the function f(x1, x2) if there exist

PPT simulators S1 and S2, such that for all x1 and x2:

◆ The distribution of S1(x1, f1(x1, x2)) is indistinguishable from
the view of the first party in the execution of Π(x1, x2).

◆ The distribution of S2(x2, f2(x1, x2)) is indistinguishable from
the view of the second party in the execution of Π(x1, x2).

Security definition

6 / 34

■ Consider the randomized two-party, semi-honest case.
■ A protocol Π securely evaluates the randomized function f(x1, x2) if

there exist PPT simulators S1 and S2, such that for all x1 and x2:
The following two distributions are indistinguishable (for i ∈ {1, 2}):

1. First distribution:

◆ sample (y1, y2)← f(x1, x2);
◆ run z ← Si(xi, yi); consider the pair (z, y3−i).

2. Second distribution:

◆ sample tr ← Π(x1, x2);
◆ take (Viewi(tr),Result3−i(tr)).

Exercise. Why is the simulation output combined with the output of
the other party? Compared to deterministic case, what else is there to
protect?

Exercises

7 / 34

■ Show that the secure evaluation of a randomized f is reducible to
the secure evaluation of some deterministic f ′.

■ Show that the secure evaluation of some f with separate outputs for
all parties is reducible to the secure evaluation of some f with
common output.

Example functionality

8 / 34

f(x, y) = (x
?
= y, x

?
< y) (common output).

For one-bit x and y:

x y

∼ &

Example functionality

9 / 34

For 2k-bit x and y:

∨

k-bit k-bit

& &

y1...kx1...k xk+1...2k yk+1...2k

Example functionality

10 / 34

For 4-bit x and y:

&∼ &∼ &∼

&

&

∨

&

&

∨

&

&

∨

&∼

x1 y1 x2 y2 x3 y3 x4 y4

Evaluating a circuit

11 / 34

■ Each internal gate g is determined by the function it computes:

0 0 g(00)
0 1 g(01)
1 0 g(10)
1 1 g(11)

■ The values of input gates are the bits of x and y.
■ The value of an internal gate is found from its inputs.

◆ Computed from top to bottom.

■ The value of an output gate is its input.

Garbling a circuit

12 / 34

■ For each input and internal gate g, generate two (symmetric)
encryption keys k0

g and k1
g .

■ Let g be an internal gate. Let g1 and g2 provide the two inputs to g.
Compute

{{kg(00)
g }r2

k0
g2

}r1

k0
g1

, {{kg(01)
g }r4

k1
g2

}r3

k0
g1

, {{kg(10)
g }r6

k0
g2

}r5

k1
g1

, {{kg(11)
g }r8

k1
g2

}r7

k1
g1

■ The encoding of an internal gate g is a random permutation of these
four values.

■ Let g provide the input to some output gate. The encoding of this
output gate is ({0}k0

g
, {1}k1

g
) or ({1}k1

g
, {0}k0

g
).

■ The encoding of a circuit maps each internal and output gate to its
encoding.

Evaluating a garbled circuit

13 / 34

■ Let the input gates be g1, . . . , gℓ. Let the input be b1 · · · bℓ.
■ Somehow obtain kb1

g1
, . . . , kbℓ

gℓ
. Do not obtain k¬b1

g1
, . . . , k¬bℓ

gℓ
.

■ Let g be an internal gate.

◆ Let (m1,m2,m3,m4) be its encoding.
◆ Let g′ and g′′ provide the inputs to g.
◆ Let us know a key k′ corresponding to g′.
◆ Let us know a key k′′ corresponding to g′′.
◆ Try to decrypt: compute Dk′′(Dk′(mi)) for 1 ≤ i ≤ 4.
◆ Let k be the result of successful decryption. This key

corresponds to g.

■ At an output gate we can decrypt one of the ciphertexts, giving us
either the bit 0 or the bit 1.

The protocol Π

14 / 34

■ Both parties have agreed on the circuit that computes f .
■ Party P1 prepares the garbled circuit and sends it to P2.
■ P1 sends to P2 the keys kx1

1 , . . . , kxℓ

ℓ corresponding to its input x
going into the input gates g1, . . . , gℓ.

■ Party P1 and P2 run a protocol, resulting in

◆ P2 learning the keys ky1

ℓ+1, . . . , k
yℓ

2ℓ corresponding to its input y
going into the input gates gℓ+1, . . . , g2ℓ;

◆ P1 not learning anything new at all.

■ P2 evaluates the garbled circuit, eventually learning f(x, y).
■ P2 sends f(x, y) back to P1.

Oblivious transfer

15 / 34

■ A special case of two-party computation.
■ P1 (sender) has ℓ-bit strings m1, . . . ,mn.
■ P2 (receiver) has an integer i ∈ {1, . . . , n}.
■ P2 should learn mi and nothing else. P1 should learn nothing.

Oblivious transfer

15 / 34

■ A special case of two-party computation.
■ P1 (sender) has ℓ-bit strings m1, . . . ,mn.
■ P2 (receiver) has an integer i ∈ {1, . . . , n}.
■ P2 should learn mi and nothing else. P1 should learn nothing.
■ Let E be a trapdoor permutation of some set X including {0, 1}ℓ.

◆ for example RSA.

■ Let (ke, kd) be the public and secret key of P1.
■ P2 randomly chooses r1, . . . , rn ∈ X. He defines

zj :=

{

rj, if j 6= i

Eke
(rj), if j = i

and sends (z1, . . . , zn) to P1.
■ P1 computes wj := mj ⊞ E−1

kd
(zj) and sends (w1, . . . , wn) to P2.

◆ ⊞ — a group operation on X

■ P2 finds mi as wi ⊞ r−1
i .

Exercise

16 / 34

Show that the preceeding protocol securely performs oblivious transfer in
the presence of semi-honest adversaries. I.e. construct the simulators.

Exercise

16 / 34

Show that the preceeding protocol securely performs oblivious transfer in
the presence of semi-honest adversaries. I.e. construct the simulators.

■ This simulation is not quite correct, though.
■ Eke

(r) reveals some information about r.
■ But each trapdoor permutation has a hardcore bit B.
■ If m1, . . . ,mn are just 1 bit long, then the sender may define

wj := mj ⊕B(E−1
kd

(zj)). The receiver recovers mi as wi ⊕B(ri).

Correctness of the protocol Π

17 / 34

■ Trace of the first party:

◆ Random coins for all the keys and encryptions.
◆ Traces of the OT-protocol as the sender.
◆ The final result.

■ Trace of the second party:

◆ A garbled circuit and the keys corresponding to the input bits.
◆ Traces of the OT-protocol as the receiver.

Exercise. Construct a simulator for the first party.

Simulator for P2

18 / 34

■ For each input or internal gate g, generate two keys kg, k̃g.
■ The simulated encoding of the gate g ← g1, g2 is

{{kg}
r2

kg2

}r1

kg1

, {{kg}
r4

k̃g2

}r3

kg1

, {{kg}
r6

kg2

}r5

k̃g1

, {{kg}
r8

k̃g2

}r7

k̃g1

■ The simulated encoding of an output gate ← g is ({z}r1

kg
, {z}r2

k̃g
),

where z is the output bit corresponding to this gate.
■ The simulated trace consists of

◆ simulated garbled circuit;
◆ the keys k1, . . . , kℓ;
◆ Simulated traces of the OT-protocol as the receiver, resulting in

the keys kℓ+1, . . . , k2ℓ.

Example — comparing one bit

19 / 34

Let x0 = 0, y0 = 1. Then the output bits are (0, 1). The real view is

k0
1, k

1
2 ,{{{k

1
3}

r2

k0
2

}r1

k0
1

, {{k0
3}

r4

k1
2

}r3

k0
1

, {{k0
3}

r6

k0
2

}r5

k1
1

, {{k1
3}

r8

k1
2

}r7

k1
1

},

{{{k0
4}

r10

k0
2

}r9

k0
1

, {{k1
4}

r12

k1
2

}r11

k0
1

, {{k0
4}

r14

k0
2

}r13

k1
1

, {{k0
4}

r16

k1
2

}r15

k1
1

},

{{0}r17

k0
3

, {1}r18

k1
3

},{{0}r19

k0
4

, {1}r20

k1
4

}

The simulated view is

k1, k2,{{{k3}
r2

k2
}r1

k1
, {{k3}

r4

k̃2

}r3

k1
, {{k3}

r6

k2
}r5

k̃1

, {{k3}
r8

k̃2

}r7

k̃1

},

{{{k4}
r10

k2
}r9

k1
, {{k4}

r12

k̃2

}r11

k1
, {{k4}

r14

k2
}r13

k̃1

, {{k4}
r16

k̃2

}r15

k̃1

},

{{0}r17

k3
, {0}r18

k̃3

},{{1}r19

k4
, {1}r20

k̃4

}

The real pattern

20 / 34

The real view is

k0
1, k

1
2 ,{{{k

1
3}

r2

k0
2

}r1

k0
1

, {{k0
3}

r4

k1
2

}r3

k0
1

, {{k0
3}

r6

k0
2

}r5

k1
1

, {{k1
3}

r8

k1
2

}r7

k1
1

},

{{{k0
4}

r10

k0
2

}r9

k0
1

, {{k1
4}

r12

k1
2

}r11

k0
1

, {{k0
4}

r14

k0
2

}r13

k1
1

, {{k0
4}

r16

k1
2

}r15

k1
1

},

{{0}r17

k0
3

, {1}r18

k1
3

},{{0}r19

k0
4

, {1}r20

k1
4

}

Its pattern is

k0
1, k

1
2 ,{{2

r2}r1

k0
1

, {{k0
3}

r4

k1
2

}r3

k0
1

,2r5 ,2r7},

{{2r10}r9

k0
1

, {{k1
4}

r12

k1
2

}r11

k0
1

,2r13 ,2r15},

{{0}r17

k0
3

,2r18},{2
r19, {1}r20

k1
4

}

The simulated pattern

21 / 34

The simulated view is

k1, k2,{{{k3}
r2

k2
}r1

k1
, {{k3}

r4

k̃2

}r3

k1
, {{k3}

r6

k2
}r5

k̃1

, {{k3}
r8

k̃2

}r7

k̃1

},

{{{k4}
r10

k2
}r9

k1
, {{k4}

r12

k̃2

}r11

k1
, {{k4}

r14

k2
}r13

k̃1

, {{k4}
r16

k̃2

}r15

k̃1

},

{{0}r17

k3
, {0}r18

k̃3

},{{1}r19

k4
, {1}r20

k̃4

}

Its pattern is

k1, k2,{{{k3}
r2

k2
}r1

k1
, {2r4}r3

k1
,2r5,2r7},

{{{k4}
r10

k2
}r9

k1
, {2r12}r11

k1
,2r13 ,2r15},

{{0}r17

k3
,2r18},{{1}r19

k4
,2r20}

Compare the patterns

22 / 34

The real pattern

k0
1, k

1
2 ,{{2

r2}r1

k0
1

, {{k0
3}

r4

k1
2

}r3

k0
1

,2r5 ,2r7},

{{2r10}r9

k0
1

, {{k1
4}

r12

k1
2

}r11

k0
1

,2r13 ,2r15},{{0}r17

k0
3

,2r18},{2
r19, {1}r20

k1
4

}

The simulated pattern

k1, k2,{{{k3}
r2

k2
}r1

k1
, {2r4}r3

k1
,2r5,2r7},

{{{k4}
r10

k2
}r9

k1
, {2r12}r11

k1
,2r13 ,2r15},{{0}r17

k3
,2r18},{{1}r19

k4
,2r20}

They are equal up to renaming.

In general, the real and simulated garbled circuits will be
indistinguishable.

Sharing the contents of wires

23 / 34

■ Assume that the only operations of circuits are ⊕ and &.

◆ These are the addition and multiplication in the field Z2.
◆ They, together with the constant 1, are sufficient to express any

functionality.

■ Let there be an extra 1-gate that takes no inputs.

■ During the protocol, the parties compute for all gates g the values a1
g

and a2
g, such that

◆ the real value computed by g is a1
g + a2

g;
◆ P1 knows a1

g and P2 knows a2
g.

■ The protocol is well-suited for functionalities with separate outputs.
■ At the end of the protocol, P1 will send to P2 the values a1

g

corresponding to the output gates g of P2.
■ P2 behaves similarly.

The protocol

24 / 34

■ Sharing the inputs

◆ For Pi’s input b at the input gate g generate a random bit r and
send (g, r) to the other party. Let ai

g = b + r.
◆ For the 1-gate g let P1 generate a random bit r and send (g, r)

to P2. Let a1
g = r + 1.

◆ When Pi receives (g, r) from the other party, set ai
g = r.

■ Evaluating an addition gate Let g = g1 + g2. Define
ai

g = ai
g1

+ ai
g2

.
■ Communicating the outputs If g is an output gate for Pi, then

the other party Pj will send (g, aj
g) to Pi once he has it. Pi outputs

ai
g + aj

g as the output of that gate.

Evaluating a multiplication gate

25 / 34

■ Let g = g1 · g2 = (a1
g1

+ a2
g1

) · (a1
g2

+ a2
g2

).
■ We’ll define a protocol for finding a1

g and a2
g, such that

◆ Pi does not learn anything besides ai
g;

◆ ai
g is uniformly distributed;

◆ a1
g + a2

g = ag.

Evaluating a multiplication gate

25 / 34

■ Let g = g1 · g2 = (a1
g1

+ a2
g1

) · (a1
g2

+ a2
g2

).
■ We’ll define a protocol for finding a1

g and a2
g, such that

◆ Pi does not learn anything besides ai
g;

◆ ai
g is uniformly distributed;

◆ a1
g + a2

g = ag.

■ a1
g is picked uniformly from {0, 1}.

■ P1 defines

m1 = a1
g + a1

g1
a1

g2
m3 = a1

g + (a1
g1

+ 1)a1
g2

m2 = a1
g + a1

g1
(a1

g2
+ 1) m4 = a1

g + (a1
g1

+ 1)(a1
g2

+ 1)

■ P2 defines a2
g = m2a2

g1
+a2

g2
+1.

◆ Use oblivious transfer to transmit that m to P2.

Exercise. Correctness and security?

Exercise

26 / 34

How can one party simulate the computation of this protocol?

Multi-party semi-honest case

27 / 34

■ A protocol Π securely evaluates the function
(y1, . . . , yn) = f(x1, . . . , xn) if

◆ there exists a PPT simulator S, such that
◆ for each I = {i1, . . . , im} ⊆ {1, . . . , n}
◆ for all x1, . . . , xn

◆ the distribution S(I, (xi1, . . . , xim), (yi1 , . . . , yim)) equals
◆ the joint view of the parties Pi1, . . . , Pim in the execution of

Π(x1, . . . , xn).

The protocol

28 / 34

■ Most steps of the two-party case easily generalize to the multi-party
case.

■ How about multiplication?

The protocol

28 / 34

■ Most steps of the two-party case easily generalize to the multi-party
case.

■ How about multiplication?
■ We have a1

g1
, . . . , an

g1
, a1

g2
, . . . , an

g2
with

∑

j aj
gi

= agi
.

■ We want a1
g, . . . , a

n
g that sum up to ag1

· ag2
.

(

n
∑

j=1

aj
g1

)

·

(

n
∑

j=1

aj
g2

)

=
n
∑

j=1

aj
g1

aj
g2

+
∑

1≤i<j≤n

(ai
g1

aj
g2

+ ai
g2

aj
g1

) =

(1− (n− 1))
n
∑

j=1

aj
g1

aj
g2

+
∑

1≤i<j≤n

(ai
g1

ai
g2

+ ai
g1

aj
g2

+ ai
g2

aj
g1

+ aj
g1

aj
g2

) =

n
n
∑

j=1

aj
g1

aj
g2

+
∑

1≤i<j≤n

(ai
g1

+ aj
g1

)(ai
g2

+ aj
g2

)

Multiplication protocol

29 / 34

■ Each party Pi engages in the two-party multiplication protocol with
all other parties Pj.

■ As result, party Pi learns the values ci,j, such that

ci,j + cj,i = (ai
g1

+ ai
g2

) · (aj
g1

+ aj
g2

)

■ Pi defines ai
g = n · ai

g1
ai

g2
+
∑

j 6=i c
i,j.

Exercise. Correctness, security? Uniformity of the values ai
g?

Oblivious transfer in the malicious model

30 / 34

■ Bellare-Micali construction (1-out-of-2 OT):
■ Let G be a group with hard Diffie-Hellman problem. Let g generate

G. Let p = |G|.
■ Sender randomly picks C ∈ G and sends it to the receiver.
■ Receiver chooses x ∈ Zp and defines hb = gx, h1−b = c/hb. Sends

h0, h1 to the sender.
■ Sender checks that h0h1 = C. Uses ElGamal encryption to encrypt

mi with hi. Sends

(gr0 ,m0 · h
r0

0), (gr1 ,m1 · h
r1

1)

to the receiver.
■ Receiver decrypts the ciphertext that he can decrypt and learns mb.

Exercise. Security?

Naor-Pinkas construction

31 / 34

Let G, g, p be as before.

■ Receiver picks s, t, c1−b ∈R Zp, defines cb = st mod p, x = gs,
y = gt, zi = gci . Sends x, y, z0, z1 to sender.

■ Sender checks that z0 6= z1. Picks random r0, r
′
0, r1, r

′
1 ∈ Z

∗
p and

returns to the receiver

((xgr0)r′
0,m0 · (z0y

r0)r′
0), ((xgr1)r′

1,m1 · (z1y
r1)r′

1)

■ The receiver. . .

Exercise. What is the receiver going to do with the values it got? What
about security?
Exercise. Generalize this construction to 1-out-of-n OT.

Even-Goldreich-Lempel construction

32 / 34

■ Consider a family of trapdoor permutations (e.g. RSA). Let P be the
set of plaintexts and ciphertexts.

◆ P must be equipped with a group operation ·.

■ Sender generates keypair (k+, k−) and picks two elements
x0, x1 ∈ P. Sends ke, x0, x1 to receiver.

■ Receiver picks a plaintext r ∈ P, sends y = Ek+(r) · xb to sender.
■ Sender sends Dk−(y/x0) ·m0 and Dk−(y/x1) ·m1 to receiver.

A different kind of OT

33 / 34

■ Sender has a message m. Receiver gets it with probability 50%.
Receiver knows whether he got it, sender will not know.

■ Rabin’s construction:

◆ Sender generates RSA modulus n and picks e ∈ Z
∗
ϕ(n). Sends

(n, e) to receiver.
◆ Receiver picks x ∈ Zn, sends y = x2 mod n to sender.
◆ Sender sends a square root of y (in Zn) to receiver. Also sends

me mod n to receiver.

Exercise. This OT and 1-out-of-2 OT can be constructed from each
other.

Securing the original OT

34 / 34

Exercise. The original OT-protocol can also be secured by letting the
receiver first commit to the randomness he’s going to use, and then
letting him prove in zero knowledge that he really used that randomness.
Work out the details for 1-out-of-2 OT.

	Principle
	Examples
	Pieces
	Security definition
	Security definition
	Exercises
	Example functionality
	Example functionality
	Example functionality
	Evaluating a circuit
	Garbling a circuit
	Evaluating a garbled circuit
	The protocol
	Oblivious transfer
	Exercise
	Correctness of the protocol
	Simulator for P2
	Example --- comparing one bit
	The real pattern
	The simulated pattern
	Compare the patterns
	Sharing the contents of wires
	The protocol
	Evaluating a multiplication gate
	Exercise
	Multi-party semi-honest case
	The protocol
	Multiplication protocol
	Oblivious transfer in the malicious model
	Naor-Pinkas construction
	Even-Goldreich-Lempel construction
	A different kind of OT
	Securing the original OT

