Let G be a finite cyclic group and g € GG one of its genera-
tors. Let |G| = m.

Let h € G. Then there exists a unique z € {0,...,m — 1},
such that g = h.

This z is the (discrete) logarithm of A to the base g. Denote
z = log, h.

If g 1s clear from the context then we do not mention it:
log h 1s the discrete logarithm of A.

We can also define log, if g is not a generator of G, but
then log, is a partial function.



A particular instance: G = Z; for p € IP.
e Operation — multiplication.
Supposedly discrete logarithm is hard for this instance.
e if p 1s a randomly generated prime of sufficient length.

In the following, if we speak about a group G, we assume
that multiplication, taking inverses and finding the unit

element are simple operations.



Example: Z7;. A generator of 1t is 2.

1 01 2 3 4 5 6 7 8 9 10 11

2»mod13|1 2 4 8 3 6 12 11 9 5 10 7

Inverting this table gives us

h |1 2 3 4 5 6 7 8 9 10 11 12| € Zi,

log,h |0 1 4 2 9 5 11 3 8 10 7 6| €4



On the other hand, 3 is not a generator of Zj;.

1 0 1 2 3 4 5 6 7 8 9 10 11
Fmod13|1 3 9 1 3 9 1 3 9 1 3 9

Hence log; 1 = 0, log; 3 = 1 and log; 9 = 2. The function

log, 1s undefined for other values.

Exercise. Give an example of a (family of) cyclic group(s)
where finding the discrete logarithms is an easy problem.



Hybrid usage of asymmetric and symmetric cryptosystems

to encrypt a plaintext z:

Let a symmetric cryptosystem be fixed. It may be a block

cipher with a fixed mode of operation.
1. Generate a new key k; of the symmetric cryptosystem.
2. Let y = B ().
3. Let k' = Ezzymm(ks).

4. The cryptotext is (k', y).



In a bit more general terms:

If A wants to send a message z to B then

e A and B somehow agree on the key k, for the symmet-

ric cryptosystem.

— The eavesdropper must not learn k;.

o A sends to B the message E," (z).



Using an asymmetric cryptosystem, the agreement on k;

1s achieved with the following steps:

e B generates a new asymmetric keypair (Kpup, Ksec) and

sends kpy, to A.

o A generates k, and sends k' = E. " ""(k,) to B.

kpu

e B decrypts k; = D "7 (k').



Diffie-Hellman key agreement protocol:

e Let a cyclic group GG and its generator g be fixed. Let
|G| = m.
— They may be fixed globally, or be chosen at each

run of the protocol.

e A randomly chooses a € {0,...,m — 1}. B randomly
chooses b € {0,...,m — 1}.

e A sends g to B. B sends ¢° to A.

e Both A and B compute ky; = g%.

— A computes (g°)*. B computes (g%)°.

e A hash of ky 1s taken as the key k.

— ko 1s distributed differently than the keys for typical
symmetric cryptosystems.



The adversary sees (the description of) G, g, g* and ¢°.
The adversary wants to compute g.

This problem is the Diffie-Hellman problem.

It 1s no harder than discrete logarithm.

It 1s also presumed to be hard for Z.



Example: let G = Z3;. Let g = 2.
Let A generate a = 7. Let B generate b = 4.

Then A sends to B g* = 2" = 11 (mod 13). And B sends
to A g® = 2* =3 (mod 13).
A computes 3" = 729 = 3 (mod 13). And B computes
114 = 14641 = 3 (mod 13).

The adversary only sees 11 and 4 and has to solve the

Diffie-Hellman problem.



ElGamal public key cryptosystem:
Let a cyclic group G, |G| = m and its generator g be fixed.

e Key generation: randomly choose a € {0,...,m — 1}.
Let h = g°.

— Public key: h. Secret key: a.

x If G and g are not global, then they are part of
the public (and secret) key.

e Set of possible plaintexts: G.
e Encryption of z € G: randomly generate r € {0,...,m — 1}.

En(z,7) = (9", 2 - h')

e Decryption:
Dy(c1,c0) =c¢c3- ¢



Decryption works:

We had Ey(z,r) =(9",z-h") and g* = h.

Da(g’",:z:-h"")::z:-h’"-(g’")_“::c-h’"-(g“)_’":a:-hoza:



Example. Let G = Z], and g = 2.
Let the secret key be 13. The public key 1s then 3.

Let the message be 8. To encrypt, we generate r € {0,...,17}.
Let r be 10.

The cryptotext is (9", zh") = (2'°,8 - 31%) = (17, 14).

To decrypt we compute ¢? = 17'° = 16. We invert it and
obtain ¢; * = 6. The plaintext is ¢y - c;* =14 -6 = 8.



If we can solve the Diffie-Hellman problem then we can

break ElGamal cryptosystem.

Let cyclic G, m = |G| and generator g be fixed. Let h € G
be an ElGamal public key.

We are given a ciphertext (c1,c2) = (g",z-h") where r and

z are unknown. We want to find z.

We solve the DH problem instance (G, g,c1, h). Here ¢; =
g" and h = g®. We obtain y = g¢*" = h".

Wefindz =zh"-h™ " =cy -y .



If we can break ElGamal cryptosystem then we can solve
the Diffie-Hellman problem.

Let the problem instance (G, g, ¢’, g") need solving, where

g’ = g% and ¢" = ¢° but a and b are unknown to us.
Let ElGamal cryptosystem use the same G and g.

Let the public key be (¢”) ' and the message be (g',1). We
break the system and find the plaintext z satisfying

(9',1) =(g%z-(97°)*) =(¢%z-9g° %)

hence z = ¢®° is the solution to the Diffie-Hellman problem.



Assume that ElGamal cryptosystem is used to create se-

veral different ciphertexts using the same key.
What do we have to keep in mind when choosing r?
Can we reuse a random 77

Given (g",z;h") and (g", z2h") we can find z,/z,. Hence a

r should not be reused.



Property E1Gamal RSA

Encryption two modular expo- | one modular ex-

complexity nentiations ponentiation (with
small modulus)

Decryption one modular expo- | one modular expo-

complexity nentiation nentiation

Randomized? yes no

Message expan- | twice none (i.e. once)

sion

Genericity applicable to any | usable in a single

cyclic group

structure



Given a cyclic G with m = |G|, how do we verify that

g € G i1s a generator?

Assume that we can factor m: m = p7' - - - p.*.
e If we cannot, pick some other G.

e To generate p € P, such that we can factor |Z;| = p—1,

we can let p be a strong prime.



The order of g must divide m.

If the order of g 1s not m then it must divide one of the

numbers m/p;, where ¢ € {1,...,k}.
We verify whether ¢g™/?# = 1 for some 1 € {1,...,k}. If

not, then g is a generator.



Given a cyclic G with m = |G| and a generator g € G, how

do we compute log, h for some h € G?

Simplest method — enumeration. Compute ¢°, ¢, ¢4, ...

until g" = h for some n. Then log, h = n.

Time complexity: O(m). Space complexity: O(1).



Shanks’ baby-step giant-step algorithm (“meet-in-the-middle”):

Let | = [\/m]. Then log, h = ql + r for some

qe{0,...,l—1}and r € {0,...,1 — 1}. Let
S={(hg",r)[0<r <1}

be organized as a hash table with hg™" as the key.
If (1,7) € S then log, h = .

Otherwise compute g%, g%, g%, ... until (g%, r) € S for some
g and 7. Then log, h = ql + .

Time complexity: O(y/m). Space complexity: O(y/m).
Still infeasible if |G| > 21°°.



Birthday paradox: let there be 23 random people in the
same room. The probability that two of them have the
same birthday is more than 50%.

In general, let X be a set, | X| = n. Let z,...,zx be mu-
tually independent uniformly distributed random variables
over X. The probability that z,...,z; are all different 1s

k k—1

n+1—1 n—i o 7 1tege
1_[ - — H - — ﬂ(l o ﬁ) <Vm€R 1+z<e

k—1 kz—l Y
[Je/m=e =7 = e kkn/en)
1=1

If K > 2(1+ +/1+ 8nln2) then this probability is at most
1/2.



Pollards p-algorithm: partition the group G into three parts
G, G4, G3, such that membership tests for all parts are
easy. Let 1 ¢ Gs.

Define f : G — G by

gr, =€ Gy
flz)=4¢z2% =ze€G,
khiE, fBEGg

Define f°(z) = z and f*(z) = f(f*!(x)).



Let z € {0,...,m—1} be randomly chosen. Let z; = f*(g?).
There exist a; and 3;, such that z; = g*h”, where oy = 2,
,60 — 0 and

(o + 1, =z, € Gy r,Bz', z; € Gy
Qi1 =1 2a, z; € Gy Biv1 = 4 26, z; € G
|, T; € Gs Gi+1, z; € G3

(all computations are modulo m).



Suppose that we have found such 2 and 7, where 1 # 7 but
T, = ¢;. Then
gaz’h,@i _ gaj h,Bj

meaning that

hﬁj—ﬁz‘ _ gai—aj
Hence
a; — O,
log, h = 7 (mod m) .
B; — B

If (B, — B;)~' (mod m) does not exist then we try again
with a different z.

Or. . .there definitely exists such k that k(G; —3;) = o, —
(take k = log, h). If there are not too many such k-s then
we can try them all out.



Consider the values {z; };cn. If the values z; were mutually
independent uniformly distributed random variables then
two equal values exist among O(+/m) first ones with high
probability.

They are not independent, but for the purpose of our

analysis, we do not care.

To find log, h: compute zo, z4, ..., g, 1, ... and Bo, B, - - -

until z; = z; for + # 7. Then proceed as in the previous
slide.

Time complexity: O(1/m). Space complexity: O(y/m). (both
expected)



This gives the name p

Note: z; = z; implies ;.1 = T4

Length of tail: O(4/m). Length of cycle: O(y/m).



Floyd’s cycle-finding algorithm: compute the sextuples

(wi)aiaﬂi):CZi)aZiuB%)
(here 2 =0,1,2,...) until z; = z,;.

Here (337;+1, i1, Bit1, L2(i41), 042(1+1),,52(z'+1)) can be compu-
ted from (z;, a;, B, T2, A2i, B2i), Which can then be discar-
ded.

T, = To; 1s reached while z; 1s making the first round on
the cycle. Hence 1 = O(4/m) at that moment.

Discrete logarithm’s algorithm’s time complexity: O(1/m)
(expected). Space complexity: O(1).



Example: let G = Z3y,. Let g = 2. Then g is a generator.
Indeed, m = |G| = 196 = 22 - 7°. We have

196

2% =_1land 27 =104 (mod 197) .

Let us find log, 133 in Zi,,.

Partition: G; = {1,...,65}, G, = {66,...,131}, G3 =
{132,...,196}.

Randomly pick z = 20. Then zy = 66, ay = 20, Gy = 0.



1 T; | o | Bi || Tai | Qo | o
01 142 | 20| O 142 | 20 0
1171120 | 1 38 | 20 2
2 88 |20 | 2| 122 | 41 4
3 61 |40 | 4 61 | 164 | 16
Hence 40 — 164
log, 133 = T (mod 196)

127! (mod 196) does not exist. We have to consider all k-s
satisfying the following congruence as possible values for
log, 133:

12k = —124 (mod 196) .



Dividing everything by gcd(12,196) = 4 gives us
3k = —-31=18 (mod 49)

[.e. Kk =6 (mod 49). The possible values for £ modulo 196
are 6, 55, 104 and 153. We try all of them:

2° =64 (mod 197) 2'* =133 (mod 197)
2°° =89 (mod 197) 2™ =108 (mod 197) .

Hence log, 133 = 104 1n Ziy,.



Suppose that we know the factorization of |G| = m: let
m = p;'---p.r. Pohlig-Hellman algorithm lets us to re-
duce the computation of discrete logarithms in G to the
computation of discrete logarithms in groups of order p;.

Let g be a generator of & and let us look for log, h.
For each 7 € {1,...,k} define




g; generates of subgroup of G of order p;* and h; belongs
to that subgroup.

Let z; = log, h;. Then z = log, h satisfies the system of
congruences

{z==z; (mod p;)}iis

which has a unique solution modulo m (use chinese re-
mainder theorem to find it).



Indeed, for all 7z € {1,...,k},
—T 1 \m; m;\—T 3, m; — —( SZ‘HC% —T;
(g h) z:(g z) h™ =g, hi:gz’(p )hz:gz h, =1

for some [ € Z.

Hence the order of g *h divides m,; for all 2. Then i1t also
divides gcd(m,,...,mg) = 1. Hence the order of g~ *h is 1,
i.e. g7*h =1 and g* = h.

We have reduced the finding of discrete logarithms in G
to the finding of discrete logarithms in the subgroups of G

whose orders are prime powers.



Assume now that |G| = p° for some p € P. We want to find

log, h in G where g is a generator of G.

e—1

Denote z = log, h. Then T = zo+z1p+Top°+- - +Te_1p
for some zg,...,z.1 € {0,...,p — 1}. Our task is to find
these z;.

1 e—1

We are going to have ¢g° = h. Then also g % = h? . But

e e—1

p° 'z = p* o +p (T +pTat. . 4D T 1) = P 'Ty  (mod pf)

e—1

—1
Zo — hP°" . Hence

o can be found be solving a discrete logarithm in the

As gF" = 1, the value zo must satisfy g?

subgroup generated by gpe_l. Its order 1s p.



Assume that we have already found zo,...,z;_;. To find
z, we note that we must have

mjp].'..'.me_lpe_l — hg_wo_mlp__mj_lpj_l

g

Denote the right hand side by h;. Then we must also have

:vjpe_l—I—:vj+1pe—|—...—|—:ve_1p2e_j_2 __1.b
g — hj

Here the left hand side equals g’”ﬂ'pe_l. We find z, from the
equation (g7 )% = h?e_J_l



Example: let G = Z¢,,5;. Then |G| = 64152 = 2% - 3° - 11.
Let g = 5. Then g i1s a generator of G. Indeed,

64152

» = 64152 (mod 64153)

64152

5
55 = 58563 (mod 64153)
5

64152

it = 57412 (mod 64153)

Let us find log, 43210 in G.



Reduce finding that discrete logarithm to finding discrete

logarithms modulo prime powers:

64152 64152

64152
_ ms = ——— = 5832
36 11

my, = E = 8019 m, =

g, = 5°" = 6899 ¢, = 5% = 45332 g3 = 5°°%% = 57412
h, = 43210°%°'° = 5325  h, = 43210% = 60946
hs = 43210°%%% = 37326
(all powers modulo 64153).



We must find z; = log, h; = loggggg 5325 in G. We know
that this logarithm must belong to {0,...,7}. By trying
all possibilities we find that z; = 6.

We must find z3 = log,, h3 = loggy,,, 37326. We know that
this logarithm must belong to {0,...,10}. By trying all
possibilities we find that z3 = 9.

We must find z, = log,, hy = logys33, 60946. We know that
this logarithm must belong to {0,...,3° — 1}. We reduce
finding this logarithm to finding logarithms in the group
of three elements.



We have

To = Yo + 3y1 + Yo + 27ys + 81y, + 243ys,

where y, € {0, 1, 2}.

We find yo from gi % = h2%. Ie.
58563Y° = (45332°%)%° = (g5*%)% = h2* = 60946°*° = 5589

By trying all three possibilities we find y, = 2.
In the following we need g, = 453327! = 29774 (mod 64153).



As next, we have gz 7 = (h,g, %)%, Le.
58563Y" = 45332°*°¥1 — (60946 - 453327 %)% = 5589

and Y1 = 2.

Then we have g2**%* = (h,g, “T°?)?7. Le.
58563Y> = (60946 - 453327 °)?" = 58563

and Yo = 1.

Then we have g% = (hygy >7>279)9. Le.
58563% = (60946 - 453327 '7)° = 5589

and Y3 = 2.



Then we have g2*%¥ = (hyg, 221912728 T,

58563Y* = (60946 - 45332~ )% = 58563

and y, = 1.

Finally, g3** = h,pg, *F32H9H272780 e,

58563Y5 — 60946 - 453327 1°% — 5589

and ys = 2.
Thus z, = >, 4;3" = 638.



We have the system of congruences

[ z=z, (mod p%) [ £=6 (mod 2°)
¢ z=z, (mod p5?) or { =638 (mod 3°)
| =173 (mod p3®) L z=9 (mod 11)

Using the chinese remainder theorem we find £ = 58958.
This 1s the discrete logarithm of 43210 to the base 5 in

*
Z64153 .



Let G = 7Z,, let g be a generator of G, let h € G. We are
looking for log, h.

In index calculus, first a factor base B = {p;,...,pr} of
small primes 1s chosen.

First step. Look for such elements ¢ € Z,_; that all prime
factors of g* mod p are in B. (Generate random z-s)

This gives us an equality

aB

9°=pi"---pg (mod p)
or
z=alog,p; +---+aplog,pg (mod p—1)

(we know z,a,...,ag).



Let us have a sufficient number of equalities of the form
T; = ay;log,p1 + - +apjlog,pg (mod p—1) .

Then we can find log, pi,...,log, pp from this system of

linear equations.

Second step. Look for an s € Z, ;, such that all prime
factors of hg® mod p are in B. (Generate random s-s)

hg® =ptt---p¥ (mod p)
or

log,h = by log,p; + -+ +bplog,pg —s (modp—1).



An elliptic curve B, over Z, 1s the set of pairs
{(,y) € Z, |y? = 2° + az + b} U {0}

where a,b € Z, and 4a° + 27b% # 0. O is an “extra point”.

We can define a binary operation + on the points of E,,

such that E,; becomes an Abelian group.
e O 1s the zero element;

e —(z,y) = (z,—y);

e addition is defined as follows. ..



Consider y? = z° 4+ az + b over R. ..

(see the blackboard)



e Two points P, Q) € F,;, determine a straight line.
— If P = (@ then consider the tangent of E,; at P.

e Let R be the third point where this line intersects E, ;.
— If the line is vertical then let R = O.

e Then P+ @ 1s defined as —R.



Let P = (21,v1),@ = (Z2,¥2) € Eup. If P = —Q then
P+ @Q =0, otherwise P + @ = (z3,y3) where

233:}\2—551—2}'2

Yz = >\(CC1 — 333) — Y1

)
Lw i P Q
>‘Z<§i§fé .
o 1f P=0Q)

The operation + turns out to make E,; into an Abelian
group.

Now use the same formulae for F,;, defined over Z,.



In general, (E, 3, +) is not a cyclic group.

We have to work in a large cyclic subgroup of E,;. We

need an element of F,; with a large prime order.
|E, »| must have a large prime factor.
Theorem. HEa,b\ — D — 1‘ < 24/p.

There exist efficient algorithms for computing |E, ;| in ge-

neral case (O(log’ p)).
Theorem. E = 7Z,, X Zn, with ny, | n; and ny | (p — 1).
Theorem. If p =5 (mod 6) then Egp = Zp. 1.

Theorem. If p =3 (mod 4) then E,2 mod po = Zpt1-



Given g € E,p with a large order, we can perform Diffie-
Hellman key exchange in (g).

ElGamal cryptosystem 1s not so suitable for using with
elliptic curves.

In ElGamal cryptosystem, the message has to be an ele-

ment of the group.

Defining a suitable mapping from bit-strings to the points
of the elliptic curve i1s not so trivial.



Menezes-Vanstone cryptosystem: Let E be an elliptic

curve over Z,. Let g € E have a large prime order.
o Secret key: k € Zjg.
e Public key: h = k- g (in the group (£, +)).
e Plaintext space: Z; X Z.

e Ciphertext space: £ X Z, X Z,.



To encrypt (z1, ), generate a random r € Zjg and com-
pute

® yo=r1-g, (c1,c2) =7 h (in E);
® Y1 = C1Z; mMod p; Yo = C2Z2 mod p;
the ciphertext is (yo, Y1, Y2)-

Exercise. How to decrypt? How 1s this similar to the El-
Gamal system?



