
Symmetric encryption:

Sender Receiver

Key generator

Attacker

Cryptotext ek(x)Plaintextx Plaintext

k k
dk(ek(x)) = x

The rules for encoding and decoding are both given using

the same secret k.



Asymmetric encryption:

Sender Receiver

Key generator

Attacker

Cryptotext eke(x)Plaintextx Plaintext

ke kd
dkd(eke(x)) = x

The rules for encoding and decoding are given by different

bit-strings. The bit-string ke giving the encoding rule is

not sensitive.

Finding kd from ke should be infeasible.



A function f : f0; 1g� ! f0; 1g� is one-way if� computing f(x) from x is easy (for almost all x);� given y, finding an x such that f(x) = y, is infeasible

on average.

A family of functions ffigi2I is one-way if� computing fi(x) from x is easy for almost all i and x;� given y and i, finding an x such that fi(x) = y, is

infeasible (averaged over y and i).
The encoding function must be a one-way family (para-

metrized by the public keys) of functions.



If e is one way, then how does one decode?

A family of functions ffigi2I is trapdoor (tagauksega) one-

way if� ffigi2I is one-way;� for each i exists it, such that given y, i and it, it is

easy to find an x, such that fi(x) = y.� Pairs (i; it) are easily generated together.i is the public key. The trapdoor it is (a part of) the secret

key.



A hard (NP-complete) problem: SUBSET-SUM.

Given: a vector of integers (a1; : : : ; an) and s 2 Z .

Determine whether there exist such x1; : : : ; xn, that xi 2f0; 1g and

Pni=1 xiai = s.
Computational version: find those xi, if they exist.

The vector (a1; : : : ; an) is called the knapsack.



Consider the knapsacka = (143; 125; 67; 85; 201; 98; 46; 176; 128; 54; 83) :

Then� a; 646 has a solution because646 = 125 + 201 + 98 + 46 + 176.� a; 589 has no solutions.� a; 833 has two solutions:833 = 125 + 67 + 85 + 201 + 98 + 46 + 128 + 83 =143 + 85 + 201 + 46 + 176 + 128 + 54.



To solve the instance (a1; : : : ; an), s of SUBSET-SUM:

Generate all possible vectors (x1; : : : ; xn) 2 f0; 1gn and

check whether

Pni=1 xiai = s.
Time complexity: O(2n). Space complexity: O(n).



A faster, “meet-in-the-middle” algorithm:

Let n = 2m. Define the setsS1 = f mXi=1 xiai j (x1; : : : ; xm) 2 f0; 1gmg

S2 = fs� nXi=m+1xiai j (xm+1; : : : ; xn) 2 f0; 1gmg

Sort both S1 and S2 and check whether some value occurs

in both sets.

Time complexity: O(n2n=2). Space complexity: O(2n=2).
Fastest known algorithm for solving general instances of

SUBSET-SUM.



Suppose that (a1; : : : ; an) are such, that all 2n possible

sums are different.

We can define an encoding functione(a1;:::;an) : f0; 1gn ! Z

e(a1;:::;an)(x1 � � � xn) = nXi=1 xiai :

The function family e might be one-way. . .

Where is the trapdoor?



A knapsack (a1; : : : ; an) is superincreasing if ai >Pi�1j=1 aj

for all i 2 f1; : : : ; ng.
Instances of SUBSET-SUM, where the knapsack is super-

increasing, can be easily solved with a greedy algorithm.

In Merkle-Hellman singly-iterated knapsack cryptosystem,

the main part of the secret key is a superincreasing knap-

sack (b1; : : : ; bn).
The public key is a transformed version of that knapsack,

such that it “looks like a general instance of a knapsack”.



Transformation: pick M 2 N such, that M >Pni=1 bi. Also

pick W 2 Z�M .

Let ai = Wbi mod M . Public key: (a1; : : : ; an).
And the secret key was ((b1; : : : ; bn);M;U) where U = W�1(mod M).
Decoding: when we recieve s 2 Z then compute s0 = s �U mod M . Then solve the SUBSET-SUM instance ((b1; : : : ; bn); s0).
Theorem. If the SUBSET-SUM instance ((a1; : : : ; an); s)

has a solution then the instance ((b1; : : : ; bn); s �U mod M)

also has a unique solution. Moreover, these two solutions

are equal.



Example: let n = 10 and consider the superincreasing

knapsack (1; 2; 5; 9; 20; 39; 81; 159; 318; 643) :

Then M must be greater than 1277. Pick M = 1301 andW = 517. Then U = 765.
To construct the public knapsack, multiply the elements

of the secret knapsack by 517 (mod 1301), giving(517; 1034; 1284; 750; 1233; 648; 245; 240; 480; 676) :



Public key:(517; 1034; 1284; 750; 1233; 648; 245; 240; 480; 676)

To encode the bit-string 0110011010 compute

0 � 517 + 1 � 1034 + 1 � 1284 + 0 � 750 + 0 � 1233 + 1 � 648+ 1 � 245 + 0 � 240 + 1 � 480 + 0 � 676 = 3691 :

The cryptotext is 3691.



Secret key:(1; 2; 5; 9; 20; 39; 81; 159; 318; 643); 1301; 765

To decode 3691, compute 3691 �765 mod 1301 = 445. Solve

the superincreasing knapsack:445< 643 445� 0�643=445445> 318 445� 1�318=127127< 159 127� 0�159=127127> 81 127� 1� 81=4646> 39 46� 1� 39=7
7< 20 7� 0�20=77< 9 7� 0� 9=77> 5 7� 1� 5=22> 2 2� 1� 2=00< 1 0� 0� 1=0

The plaintext was 0110011010.



The cryptosystem is insecure because (a1; : : : ; an) does not

quite “look like a general instance of a knapsack”.

We are given (a1; : : : ; an). We want to find a superincrea-

sing (b1; : : : ; bn), U and M , such that bi = ai � U mod M

and the previous theorem holds.

For x; y 2 R , y > 0 we can define x mod y = x� y � bx=y
.
We also have (
x) mod (
y) = 
(x mod y) for all 
 > 0.
If (b1; : : : ; bn); U;M suits us, then (
b1; : : : ; 
bn); 
U; 
M suits

us as well.

We take M = 1. Now our task is to find a suitable (b1; : : : ; bn); U .



Consider the graph of b1 = a1 �U mod 1. It maps the value

of a1 to the value of b1, depending on the (unknown) U .

U

b1

1

1



b1 is the smallest of the knapsack elements (very small

compared to 1 = M > Pni=1 bi). Hence U must belong to

the marked region.

U

b1

1

1



Also, bi = ai � U mod 1 must be very small if i is small.

The correct U is close to the discontinuation points of botha1 � U mod 1 and ai � U mod 1.
The discontinuation points of a1 �U mod 1 are p=a1, where1 6 p 6 a1 � 1.
The discontinuation points of ai �U mod 1 are q=ai, where1 6 q 6 ai � 1.
We are looking for discontinuation points that are close to

each other.



�" < pa1 � qai < " 1 6 p 6 a1 � 1 1 6 q 6 ai � 1�Æ < pai � qa1 < Æ 1 6 p 6 a1 � 1 1 6 q 6 ai � 1

This system of equations gives us candidate p-s. We’ll test

their suitability.

[Adi Shamir, A poly.-time algo. for breaking the basic MH

cryptosystem, Proc. of 32nd Symp. on Foundations of CS,

1982] suggests that i 2 f2; 3; 4g and Æ �pa1=2.Æ may be adjusting depending on the number of candidate p-s.
The system above is solvable in polynomial time (if we

treat i as a constant).



Let p be fixed. Consider the interval [p=a1; (p+ 1)=a1).
pa1 p+1a1

b = aiU mod 1

The discontinuation points of bi = aiU mod 1 partition it

to sub-intervals [xj ; xj+1) for j 2 f0; : : : ;mg for some m.

Here x0 = p=a1 and xm = (p+ 1)=a1.
In each interval [xj ; xj+1) the graph of bi = aiU mod 1 is

just a straight line bi = aiU � 
ji .
The values xj and 
ji are straightforward to find.

The expected number of intervals is O(n).



Consider an interval [xj; xj+1). We are looking for some U

in that interval that would make (b1; : : : ; bn) superincrea-

sing. We have the linear inequalitiesxj < U < xj+1nXi=1 (aiU � 
ji) < 1

8k 2 f2; : : : ; ng : k�1Xi=1 aiU � 
ji < akU � 
jk

If these inequalities have a common solution then it is the

suitable U .



Example: public key is (141; 68; 136; 199; 106; 66; 54).
We have the following inequalities for p; q2; q3; q4:1 6 p 6 140 1 6 q2 6 67 1 6 q3 6 135 1 6 q4 6 198�Æ < 68p� 141q2 < Æ � Æ < 136p� 141q3 < Æ�Æ < 199p� 141q4 < Æ
Shamir suggests Æ � 8.



� �8 < 68p� 141q2 < 8 givesp 2 f2; 27; 29; 31; 54; 56; 58; 83; 85; 87; 110; 112; 114; 139g� �8 < 136p� 141q3 < 8 givesp 2 f1; 27; 28; 29; 55; 56; 57; 84; 85; 86; 112; 113; 114; 140g� �8 < 199p� 141q4 < 8 givesp 2 f17; 22; 34; 39; 51; 56; 68; 73; 85; 90; 102; 107; 119; 124g

Intersection: p 2 f56; 85g
See [H.W. Lenstra. Integer Programming with a Fixed Num-

ber of Variables. Mathematics of Operations Research 8(4):538–

548, 1983] for how these system can actually be solved.



Consider the interval I = [ 56141 ; 57141). If U 2 I then� a2U mod 1 has no discontinuation points.� a3U mod 1 has no discontinuation points.� a4U 2 Z if U = 80=199.� a5U mod 1 has no discontinuation points.� a6U mod 1 has no discontinuation points.� a7U mod 1 has no discontinuation points.

Hence x0 = 56141 , x1 = 80199 , x2 = 57141 .



In ( 56141 ; 80199) we haveb1 = 141U � 56 b2 = 68U � 27 b3 = 136U � 54b4 = 199U � 79 b5 = 106U � 42 b6 = 66U � 26b7 = 54U � 21
The inequality

Pni=1 bi < 1 gives 770U � 305 < 1 or U <153385 . The allowed interval for U reduces to ( 56141 ; 153385).
Consider the inequalities stating the superincreasing con-

dition.



Interval: ( 56141 ; 153385).
Condition: b1 < b2.141U � 56 < 68U � 27

U < 2973
Ordering: 56141 < 2973 < 153385 .
New interval: ( 56141 ; 2973).



Interval: ( 56141 ; 2973).
Condition: b1 + b2 < b3.141U � 56 + 68U � 27 < 136U � 54

U < 2973
New interval: ( 56141 ; 2973).



Interval: ( 56141 ; 2973).
Condition: b1 + b2 + b3 < b4.141U � 56 + 68U � 27 + 136U � 54 < 199U � 79

U < 2973
New interval: ( 56141 ; 2973).



Interval: ( 56141 ; 2973).
Condition: b1 + b2 + b3 + b4 < b5.141U�56+68U�27+136U�54+199U�79 < 106U�42

U < 2973
New interval: ( 56141 ; 2973).



Interval: ( 56141 ; 2973).
Condition: b1 + b2 + b3 + b4 + b5 < b6.141U � 56 + 68U � 27 + 136U � 54 + 199U � 79+106U � 42 < 66U � 26

U < 2973
New interval: ( 56141 ; 2973).



Interval: ( 56141 ; 2973).
Condition: b1 + b2 + b3 + b4 + b5 + b6 < b7.141U � 56 + 68U � 27 + 136U � 54 + 199U � 79+106U � 42 + 66U � 26 < 54U � 21

U < 263662
Ordering: 2973 < 263662 .
New interval: ( 56141 ; 2973).
Any element of this interval is a suitable U .



For example, pick U = 85214 .
I.e. pick U = 85 and M = 214.
Computing bi = aiU mod M gives us the secret knapsack(1; 2; 4; 9; 22; 46; 96) :

In the construction of this example I used U = 114 andM = 287. Their ratio also lies in this interval. They give

the knapsack (2; 3; 6; 13; 30; 62; 129) :



A variation of the MH knapsack system permutes the ele-

ments of the public knapsack (a1; : : : ; an). The permuta-

tion is part of the secret key.

We can no longer choose the components of a correspon-

ding to b1; : : : ; b4, but we can guess them.� We don’t really need four smallest bi-s. Four smallbi-s suffices.

When verifying the superincreasing condition, we do not

know the ordering of elements b1; : : : ; bn.
To overcome this, when we partition [p=a1; (p + 1)=a1) to

smaller intervals, we also consider the intersection points

of the graphs of some aiU mod 1 and ajU mod 1.
In all such intervals the ordering of b1; : : : ; bn is fixed.



The density of a knapsack (a1; : : : ; an) isR = ndlogmaxi aie

The densities of the knapsacks that we have seen:� (141; 68; 136; 199; 106; 66; 54): 78 ;� (1; 2; 4; 9; 22; 46; 96): 1;� (2; 3; 6; 13; 30; 62; 129): 78 .
The knapsacks with densities > 1 usually have multiple

decodings of messages.

The public key usually has density less than 1.
When using the parameters suggested by Merkle and Hell-

man, the public key has the density � 0:5.



Almost all instances of SUBSET-SUM, where the density

of the knapsack is less than 0:9408 : : :, are easily solvable.

Let b1; : : : ;bn be a basis of the vector space R n.

The integer lattice determined by this basis is the set of

vectors fm1b1 + : : :+mnbn jm1; : : : ;mn 2 Zg :

Shortest vector problem (SVP): given the basis, determine

the shortest non-zero vector (according to the Euclidean

norm) of the lattice thus defined.



There exist polynomial-time algorithms for approximating

the solution to the SVP.

The LLL-algorithm finds a vector in the lattice that is no

more than 2(n�1)=2 times longer than the shortest vector.

In practice, it often works even better.

The SVP in lattices may be easy on average.



Given a SUBSET-SUM instance (a1; : : : ; an); s, consider

the integer lattice with the basis

b1 = (1; 0; : : : ; 0; Na1)

b2 = (0; 1; : : : ; 0; Na2): : : : : : : : : : : :

bn = (0; 0; : : : ; 1; Nan)

bn+1 = (12 ; 12 ; : : : ; 12 ; Ns)
where N 2 Z , N > 12pn.

Let x1; : : : ; xn be the solution to the given instance. Then�Pni=1 xibi��bn+1 = (x1� 12 ; : : : ; xn� 12 ; 0) is a short vector

in that lattice. With high probability, it is a solution to the

SVP.



Algorithm for solving SUBSET-SUM instances (a1; : : : ; an); s:
1. Construct the basis b1; : : : ;bn+1;
2. Solve the SVP for the lattice determined by this basis.

Let e = (e1; : : : ; en+1) be the result.

3. Check that en+1 = 0 and e1; : : : ; en 2 f12 ;�12g. If not,

then fail.

4. Let xi = ei+12 . IfPni=1 xiai = s then return (x1; : : : ; xn).
5. Let xi = 12�ei. IfPni=1 xiai = s then return (x1; : : : ; xn).
6. Fail.



When creating the key for the knapsack cryptosystem, we

transform a knapsack (b1; : : : ; bn) to another one (a1; : : : ; an).
We could iterate this transformation multiple times.

Each time, we must save U = W�1 and M in the secret

key.

This gives rise to the multiply-iterated knapsack cryptosys-

tem.

In general, multiple iteration makes the elements of the

knapsack larger and thus reduces density.


