
So far, we have only considered passive adversaries.

They keep their ears open and mouth shut.

For example, if� A wants to send a secret message to B, and� B thus sends his public key to A,

then the adversary does not attempt to replace that public

key while in transit.

An active adversary might replace that public key by its

own, then he can read what A has encrypted.



Digital signatures are a basic means to verify the source of

a message.

A digital signature scheme is a tuple (P;A;K; S;V), where� P is the set of possible messages;� A is the set of possible signatures;� K is the set of possible pairs of signature and verifica-

tion keys (or “secret” and “public” keys);� S contains a signature generation algorithm sigK for

each signature key;� V contains a signature verification algorithm verK for

each verification key.



For each (Ks;Kv) 2 K:� sigKs : P �! A;� verKv : P�A �! ftrue; falseg.� For each message m 2 P:verKv(m; sigKs(m)) = true :

The algorithms in S and V must be efficient.

Given m and Kv, it should be infeasible to generate suchs, that verKv(m; s) = true.

A signature scheme is with appendix (lisaga) if verKv(m; s)

actually uses m. Otherwise it is with message recovery

(s~onumit taastav).



RSA signature scheme.

Generate large primes p, q. Let n = pq. Let e 2 Z�'(n). Letd = e�1 (mod '(n)).
Signature key: (n; d). Verification key: (n; e). P = A = Zn.sig (n;d)(m) = md mod nver (n;e)(m; s) = �se � m (mod n)�



Attacks:

Signatures to random messages The advesary may ta-

ke an s 2 A and compute m = se mod n. Thenver (n;e)(m; s) = true.

Existential forgery.

Homomorphic properties If ver (n;e)(m1; s1) = true andver (n;e)(m2; s2) = true then alsover (n;e)(m1m2 mod n; s1s2 mod n) = true :

Both attacks can be thwarted by adding redundancy to

messages.



How to sign arbitrary messages?

Use collision-resistant hash functions.

A hash function is a mapping h : f0; 1g� �! f0; 1gn for

some small n (typically 160 6 n 6 512). It is� one-way if given y 2 f0; 1gn it is infeasible to find anyx, such that h(x) = y;� 2nd preimage resistant if given x it is infeasible to find

any x0 6= x, such that h(x) = h(x0);� collision-resistant if it is infeasible to find any (x; x0),x 6= x0, such that h(x) = h(x0).
Note that we said “resistant” (kindel), not “free”.



There exist hash functions which are (were) believed to be

collision-resistant.

Collision-resistant hash functions can be constructed from

secure symmetric encryption systems.� Security requirements are stronger than usual.

There exist hash functions which are collision-resistant un-

der standard number-theoretic complexity assumptions.

A collision-resistant hash function is also one-way.



Fix a collision-resistant hash function h whose output length

is smaller than the length of the RSA modulus.

RSA signature generation is thensig (n;d)(m) = h(m)d mod n

and verification isver (n;e)(m; s) = �se � h(m) (mod n)� :

The attacks described before would require inverting h to

find a suitable message to go with the generated signature.



ElGamal signature scheme.

Fix a group G with hard discrete logarithm problem, m =jGj, g is a generator of G. We need a collision-resistant

hash function h : f0; 1g� �! Zm.

P = f0; 1g�. A = G� Zm.

Key generation: randomly generate � 2 Zm. � is the sig-

nature key and � = g� is the verification key.

To sign, generate a random r 2 Z�m.sig�(m) = let � = gr in (�; (h(m)� �h(� ))r�1 mod m)ver�(m; (�; s)) = ��h(�) � � s = gh(m)�



Signature verification works:

ver�(m; (gr; (h(m)� �h(gr))r�1)) =h�h(gr) � (gr)h(m)��h(gr))r�1 = gh(m)i

and� �h(gr) = g�h(gr);� (gr)h(m)��h(gr))r�1 = gh(m)=g�h(gr).



The ElGamal signing thus� Generates a secret r and commits to it: publishes � =gr.� Somehow combines h(m), h(� ), � and r. Publishes the

result s.
– We have h(m) = � � h(� ) + rs.� The equation involving h(m), h(� ), �, r and s must

be verifiable using only public data.

Exercise. Consider various ways of computing s. Judge

the security of the system.



Security considerations:

The adversary cannot forge the signature by generating a

random r and computing � = gr.
Indeed, the adversary must then computes = (h(m)� �h(� ))r�1 mod m

and if he succeeds, he can also find �. This is equivalent

to finding the discrete logarithm logg �.



Security considerations:

The random r must be kept secret. Otherwise the secret

key � will be found froms = (h(m)� �h(� ))r�1 mod m

Here m is the message and (�; s) is the signature.� = (h(m)� rs)h(� )�1 (mod m)



Security considerations:

Different signatures must use different random r-s. Indeed,

if m1 and m2 have signatures (�; s1) and (�; s2), where � =gr and s1 = (h(m1)� �h(� ))r�1s2 = (h(m2)� �h(� ))r�1

then we have a simple system of equations with two equa-

tions and two unknowns (r and �).

We get r = (h(m1)�h(m2)) �(s1�s2)�1 (mod m) and find� as in the previous slide.



If G = Z�p (and then m = p� 1) then h(� ) is usually taken

to be � . (or � mod (p� 1)). In this casesig�(m) = let � = gr in (�; (h(m)� �� )r�1 mod (p� 1))ver�(m; (�; s)) = ��� � � s � gh(m) (mod p)� ^ �1 6 � 6 p� 1�



Security considerations:

The check 1 6 � 6 p� 1 is necessary. Otherwise. . .

Suppose that the adversary knows the signature (�; s) for

the message m. It wants to sign the message m0. Let� u = h(m0) � (h(m))�1 (mod p� 1);� s0 = su mod (p� 1);� � 0 2 Zp(p�1) satisfies (use CRT to find it)8<: � 0 � �u (mod p� 1)� 0 � � (mod p)
Then (� 0; s0) will be accepted as a signature of m0.



Indeed,

�� 0 � � 0s0 � ��u � � su =(�� � � s)u � (gh(m))h(m0)h(m) = gh(m0) (mod p)

If 1 6 � 0 6 p � 1 then � = �u, hence u = 1 and h(m) =h(m0). If m 6= m0 then we have a collision.



Security considerations: If P = Z�p and h(m) = m then

existential forgeries are possible.

The adversary has to generate (m; �; s), such that�� � � s � gm (mod p) :

It generates u 2 Z , v 2 Z�p�1 and defines � = gu�v,s = ��v�1 (mod p� 1) and m = su mod (p� 1). Then�� � � s = �� (gu�v)��v�1 = ��g�u�v�1��v�v�1 = g�u�v�1

and �u�v�1 = us � m (mod p� 1).



Efficiency considerations. The signing with ElGamal is fast

(requires just a couple of multiplications).� � = gr can be precomputed.

To verify, we must compute �h(�), � s and gh(m) — three

exponentiations.

Fortunately, computing ae11 � � � aekk (product of powers) can

be done faster than k exponentiations.

We can then compute �h(�) � � s � (g�1)h(m) and compare it

to 1 2 G.



We want to compute ae11 � � � aekk .

Let ei =Pnj=0 eij2j, where eij 2 f0; 1g and n > maxi log2 ei.
Define bn+1 = 1 andbr = b2r+1 � Y16i6keir=1 ai :

Then br = kYi=1 a
nPj=r eij2j�ri :

And b0 is the product that we are looking for.



We precompute all products

Qi2X ai for X � f1; : : : ; kg.
This requires 2k � k � 1 multiplications.

Computing br from br+1 requires two multiplications (so-

metimes one). Computing b0 requires � 2n multiplications

(without precomputation).

A usual exponentiation requires n to 2n multiplications.

If k is small, such that also 2k is small then the simulta-

neous exponentiation is almost as fast as a simple expo-

nentiation.



Exercise. Consider ElGamal signature scheme in the groupZ�p where p and q = p�12 are prime numbers. Show that if

the adversary can choose the generator g of Z�p then it can

also forge signatures.

Hint: The adversary chooses some t 2 Z�p�1 and fixesg = qt mod p (if q does not generate Z�p then the attack

is unsuccessful). In a forged signature (�; s), the adversary

sets � = q.



Digital signature algorithm.

Proposed by the U.S. National Institute of Standards and

Technology.

A simple variant of ElGamal signature scheme in a sub-

group of Z�p.
Let q be a 160-bit prime number and p a 512-(or 768-, or

1024-)bit prime number, such that q j (p� 1).
I.e. we consider only numbers of the form 2tq + 1 for sui-

tably sized t when doing the prime number generation forp.



Let g 2 Z�p have the order q. Let G be generated by g.
I.e. raise a generator of Z�p to the power p�1q .

Exercise. What if we do not know a generator of Z�p?
The group G should have hard-to-compute discrete loga-

rithms.

Indeed, it is too large to use generic algorithms, and p is

too large to use algorithms specifically for Z�p.
The quantities q, p and g may global, or may be chosen for

each key separately.

Key generation: randomly generate � 2 Zq . � is the signa-

ture key and � = g� 2 Z�p is the verification key.



To sign m, choose a random r 2 Z�q .� Let � = (gr mod p) mod q 2 Zq .� Let s = r�1(h(m) + �� ) mod q 2 Zq .� Return (�; s).
To verify that (�; s) is a signature of m,� Verify that 0 < �; s < q.� Let u1 = s�1h(m) mod q and u2 = �s�1 mod q.� Verify that � = (gu1�u2 mod p) mod q.
Exercise. Verify that signature verification works, unless� = 0 or s = 0, which should occur extremely rarely.



Exercise. Consider the following signature scheme: Let p

be a prime and g a generator of Z�p (both public). Let h be

a collision-resistant hash function from f0; 1g� to Z�p�1.
Secret key is some � 2 Zp�1. The public key is � = g� modp.
To sign a message m, compute z 2 Zp�1 so, that z �h(m) �=� (mod p � 1). The signature s of m is gz. To verify the

signature s of m, check that sh(m) = �.

Show that the scheme works.

Is that scheme secure?



A hash function is a function h : f0; 1g� ! f0; 1gn for some

fixed n, such that h is easy to compute.

A compression function is a function h : f0; 1gm ! f0; 1gn

for some fixed m and n, such that m > n and h is easy to

compute.

Before we listed the properties “one-wayness”, “2nd prei-

mage resistance” and “collision-resistance”.



Theorem. If a hash or compression function h : X ! Z

(here jXj > 2jZj) is not one-way (in certain sense), then it

is not collision-resistant.

Proof. Let A be an algorithm, such that A(y) returns somex 2 h�1(y).
I.e. for any y 2 Z, the probability Pr[h(A(y)) = y℄ is sig-

nificant.

To generate a collision,� pick a random x 2 X.� Let x0 = A(h(x)).� If x 6= x0 then output (x; x0), else fail.

The probability of failure is jZj=jXj 6 1=2.



We required from A that for all y 2 Z, the probabilityPr[h(x) = y jx A(y)℄

is significant.

Alternatively, we might have required that justPr[h(x) = y j y 2R Z; x A(y)℄

is significant.

The non-existence of such A is a more reasonable definition

of one-wayness. . .

But then the theorem on previous slide no longer holds.



Indeed, let h : f0; 1g� ! f0; 1gn be a collision-resistant

hash function.

Define h0 : f0; 1g� ! f0; 1gn+1 by

h0(x) = 8<:1 jj x; if jxj = n0 jj h(x); otherwise :

then h0 is collision-resistant, but for half of the values y 2f0; 1gn+1, it is very easy to find an element of h0�1(y).
Exercise. Show that if a hash function is not 2nd preimage

resistant, then it is not collision-resistant.



A generic way to find a collision of a hash function h is to

compute the values h(x) for random x-s until a collision is

found.

If the values h(x) are n bits long then O(2n=2) attempts

are necessary, by the birthday paradox.

This attack is called the birthday attack.

That’s why the output of modern hash functions (MD5,

SHA-1, etc.) are at least 128, and preferably 160 bits long.



A generalization of the birthday paradox: let X be a set,jXj = n. Let x1; : : : ; xk and y1; : : : ; yl be mutually indepen-

dent uniformly distributed random variables over X. The

probability that there exist such i and j, that xi = yj, is

about

1� kYi=1
lYj=1 n� 1n = 1� (1� 1n)kl > 1� e� kln > 12

if e� kln 6 12 , i.e. kl > n ln 2 = O(n).



Let x and x0 be two meaningful documents. The attacker

may choose n=2 “places” in both of them where it may

or may not make a modification that does not change the

meaning of the document.

We get 2n=2 variants of the document x and 2n=2 variants of

the document x0. With significant probability, h(�x) = h( �x0)

for some variant �x of x and �x0 of x0.
(Yuval’s attack.)



Assume that h : f0; 1gm ! f0; 1gn is a collision-resistant

compression function. Let r = m� n. We can construct a

collision-resistant hash function h� : f0; 1g� ! f0; 1gn as

follows.

Let � : f0; 1g� ! (f0; 1gr)� be an encoding function that

is� easily computable and easily invertible;� suffix-free — if x 6= x0 then neither of �(x) and �(x0)

is a suffix of the other.

Exercise. Construct such �. Try to keep the increase in

length as small as possible.



Let x 2 f0; 1g� and let (x1; : : : ; xt) = �(x), wherex1; : : : ; xt 2 f0; 1gr.
Let H0 be the string of n bits 0. Construct H1; : : : ; Ht as

follows: Hi = h(Hi�1 jj xi) :
We define h�(x) = Ht.
This is called the Merkle-Damgård construction.



Theorem. If h is a collision-resistant compression function

then h� is a collision-resistant hash function.

Proof. We show how to efficiently construct a collision ofh from a collision of h�.
Let x = x0 but h�(x) = h�(x0). Let (x1; : : : ; xt) = �(x) and(x01; : : : ; x0t0) = �(x0). Assume w.l.o.g. that t 6 t0.
Compute H0; : : : ; Ht (from �(x)) andH 00; : : : ; H 0t0 (from �(x0)).
We have Ht = H 0t0. There are two cases:

1. There exists an i 2 f1; : : : ; tg, such that Ht�i 6= H 0t0�i.
Let i be the smallest with such property.

2. Ht = H 0t0, Ht�1 = H 0t0�1,. . . , H0 = H 0t0�t.



In the first case we have� Ht�i jj xt�i+1 6= H 0t0�i jj x0t0�i+1;� h(Ht�ijjxt�i+1) = Ht�i+1 = H 0t0�i+1 = h(H 0t0�ijjx0t0�i+1).
a collision for h.

In the second case there are again two cases:

1. There exists an i 2 f0; : : : ; t�1g, such that xt�i 6= x0t0�i.
Let i be the smallest with such property.

2. xt = x0t0, xt�1 = x0t0�1,. . . , x1 = x0t0�t+1.



In the first case we have� Ht�i�1 jj xt�i 6= H 0t0�i�1 jj x0t0�i;� h(Ht�i�1 jj xt�i) = Ht�i = H 0t0�i = h(H 0t0�i�1 jj x0t0�i).
a collision for h.

In the second case �(x) is a suffix of �(x0). This is impos-

sible by the construction of �.



Exercise. Let h : f0; 1g2n ! f0; 1gn be a collision-resistant

compression function. Show that h0 : f0; 1g4n ! f0; 1gn,
where h0(x1kx2kx3kx4) = h(h(x1kx2)kh(x3kx4))

for x1; x2; x3; x4 2 f0; 1gn, is collision-resistant, too.



Exercise. Let T be a binary tree with k leaves (and no

vertices with exactly one child). Let h : f0; 1g2n ! f0; 1gn

be collision-resistant. Define hT : f0; 1gkn ! f0; 1gn byh�(x) = xhTL!� TR(x1k � � � kxk) = h(hTL(x1k � � � kxkL)khTR(xkL+1k � � � kxk)) :

Show that hT : f0; 1gkn ! f0; 1gn is collision-resistant.



Exercise. Define a function h� : (f0; 1gn)� ! BTree �f0; 1gn as follows:� On input x1k � � � kxk, pick a binary tree T with k ver-

tices.� Return (T; hT (x1k � � � kxk)).
Show that h� is not collision-resistant.



Exercise. For each k 2 N , let T(k) be some binary tree

with k leaves. Let h� : (f0; 1gn)� ! f0; 1gn be defined byh�(x1k � � � kxk) = hT(k)(x1k � � � kxk) :

Show that h� is collision-resistant.



Chaum - van Heijst - Pfitzmann compression function is

defined as follows:

Let p 2 P be a strong prime (i.e. q = p�12 is also a prime).

Let g be a generator of Z�p and let � be a random element

of Z�p.
Define h : Zq � Zq ! Z�p byh(x; y) = gx�y mod p :



Theorem. If the discrete logarithm problem is hard in Z�p

then h is collision-resistant.

Proof. Assume that we know a collision for h. Then we can

find z = logg � as follows.

Let h(x1; y1) = h(x2; y2), but (x1; y1) 6= (x2; y2). We havegx1�x2 � �y2�y1 (mod p)

or x1 � x2 � z(y2 � y1) (mod p� 1)

We solve this congruence for z (it must have at least one

solution) and try out all possible solutions (raise g to that

power and compare the result to �).



The procedure on the previous slide fails if the congruencex1 � x2 � z(y2 � y1) (mod p� 1)

has too many solutions.

It has g
d(y2 � y1; p � 1) = g
d(y2 � y1; 2q) solutions. Asy1; y2 < q, then also jy2�y1j < q and this gcd can be either1 or 2.
Unfortunately, the Chaum - van Heijst - Pfitzmann comp-

ression function is slow.



Exercise. Suppose that a group of principals wants to use

the Chaum - van Heijst - Pfitzmann compression function

among each other. They choose a strong prime p and a

generator g of Z�p. How can they pick �, such that none of

them knows logg �?

Exercise. Let n be an RSA-modulus (with unknown fac-

torization). Let g 2 Z�n be of maximum order. Let h :f1; : : : ; n2g ! Z�n be defined by h(x) = gx mod n. Show

that h is a collision-resistant hash function.



Compression functions may be constructed from block ci-

phers.

Let a block cipher be given, with P = K = C = f0; 1gn for

some n. Then we can constructh : f0; 1gn � f0; 1gn ! f0; 1gn as follows. h(x1; x2) is

Ekey

plaintext

x1x2x1 � x2

const.

I.e. there are 64 possibilities. Most of them are not collision-

resistant.



Among those 64 functions, there are� 12 collision-resistant functions;� 8 functions, which are not collision resistant, but a

hash function, constructed from it using the Merkle-

Damgård construction, is secure;� 44 “useless functions”.



The security proof assumes that E is a randomly chosen

block cipher.

Let E be the set of all functions E of typef0; 1gn � f0; 1gn ! f0; 1gn

such that E(k; �) is a permutation of f0; 1gn for each k 2f0; 1gn.
The security proof assumes that E is uniformly randomly

chosen from E.

This is a strong assumption.



That also means that the attacker may not “look inside”E. It only has oracle access to E and D (decryption).

Collision-resistance of a construction means that� for any efficient algorithm A

– which may call E and D, but has no further desc-

ription of them;� for a randomly chosen E
– which also determines D� the probability that AE;D outputs a collision of h is

negligible.



These 12 collision-resistant compression functions areE(x1; x2)� x2 E(x1 � x2; x2)� x2E(x1; x1 � x2)� x2 E(x1; x2)� x1 � x2E(x1 � x2; x2)� x1 E(x1; x1 � x2)� x1 � x2

and six others, where we swap x1 and x2.
Exercise. Show that other 52 compression functions are

not collision-resistant.



These 8 non-collision-resistant compression functions gi-

ving collision-resistant hash functions areE(x1 � x2; x2)� 
 E(x1 � x2; x2)� x1 � x2E(x2; x1)� 
 E(x1 � x2; x1)� 
E(x2; x1)� x2 E(x1 � x2; x1)� x1 � x2E(x2; x1 � x2)� 
 E(x2; x1 � x2)� x2 .

In Merkle-Damgård construction, x1 is the accumulated

value and x2 the next message block.



Proof of the collision-resistance of E(x1; x2)� x2:
Consider the execution of AE;D where we record all queries

and answers to the oracles E and D.� Assume: A checks whether it really found a collision.

Let the plaintexts, keys and ciphertexts be (xi; ki; yi), 1 6 i 6 q.
Assume that all these triples are different.

A bad event happens if xi � yi = xj � yj for some i < j.
At j-th query, xj or yj was randomly chosen from a set of

size at least 2n � (j � 1).
The probability that it equals xi � yi � yj or xi � yi � xj

is at most 12n�j+1 .
The sum (over i and j) of these probabilities is O(q2=2n).



Existing dedicated hash functions (MD5, SHA-1, RIPEMD,

their longer versions) are also constructed by Merkle-Damgård

construction. One has to specify� the encoding (or padding) function �;� the compression function.



Exercise. Let h1 and h2 be two hash functions. Let h(x) =h1(h2(x)). Judge the 2nd preimage resistance of h if� both h1 and h2 are second preimage resistant;� only h1 is second preimage resistant;� only h2 is second preimage resistant.



In the symmetric setting we have seen encryption.

In the asymmetric setting we have seen encryption and

signing.

What is the analogue to digital signatures in the symmetric

setting?

Message authentication codes (MACs).� Two parties share a secret key.� One party can use that key to prove to the other one

that the message was not modified during transit.� This is hopefully more efficient than signing the mes-

sage.



A MAC has the following components� Plaintext space P;� Authentication code space A;� Key space K;� tagging algorithm sig : K� P! A;� verification algorithm ver : K� P�A! ftrue; falseg.verK(m; sigK(m)) = true

must hold.

If sig is deterministic then ver is already specified, too.



Security:� Let the adversary A have oracle access to sig .

– k 2 K is fixed (unknown to A);

– A can submit plaintextsm to sigk(�), learn sigk(m).� The adversary runs and eventually outputs (m; s).� The adversary has won, if

– ver k(m; s) = true;

– the adversary did not submit m to sigk(�).
A message authentication code is (t; ")-existentially unfor-

geable under chosen message attacks if no adversary wor-

king in time at most t can win with probability more than".



Exercise. Show that a random function is a secure MAC.� K = f0; 1g� ! f0; 1gn
– Distribution: uniform.� A = f0; 1g�, P = f0; 1gn.� sigk(m) = k(m) (deterministic).



CBC-MAC: Let a block cipher E be given. Let l be the

block size.

K of MAC is K of the block cipher.

P = (f0; 1gl)�. A = f0; 1gl. Let xi 2 f0; 1gl.
EK EK EK

x3
EK

x2x1 xn
sig(x1k � � � kxn)

Exercise. Break it.



The attack used the fact that when computing the MAC of

a message, we sort of also compute the MACs of its suffixes.

The construction would have been secure if the length of

messages had been fixed.

For variable-length messages x, we may start by computingx0 = �(x)
where � is a suffix-free function, and then apply the CBC-

MAC construction to x0.
Does it yield a secure MAC?

That depends on �.



It is not sufficient to define�(x1 � � � xn) = (x1; : : : ; xn; n)

where x1; : : : ; xn 2 f0; 1gl.



Let b; b0; 
 2 f0; 1g�. ThensigK(b) = EK(1�EK(b))sigK(b0) = EK(1�EK(b0))

sigK(bk1k
) = EK(3� EK(
� EK(1�EK(b)))) =EK(3�EK(
� sigK(b))) =EK(3� EK(
� sigK(b)� sigK(b0)� sigK(b0))) =EK(3� EK(
� sigK(b)� sigK(b0)� EK(1� EK(b0)))) =sigK(b0k1k
� sigK(b)� sigK(b0))



If sig denotes the ordinary CBC-MAC (without �) then

the following variants are also secure wrt. variable-length

messages:� sigK(nkx1k � � � kxn);� sig sigK(n)(x1k � � � kxn);� sigK0(sigK(x1k � � � kxn)).
The last one is attractive in that we do not have to know

the length n of the message in advance.



Birthday attack (for CBC-MAC with message length n � l)
Let a1; : : : ; am 2 f0; 1gl be distinct. Let r1; : : : ; rm 2 f0; 1gl

be independent, uniformly distributed random variables.

If m � 2l=2 then with significant probability there exist i

and j, such that i 6= j and EK(ai)� ri = EK(aj)� rj.
ThensigK(aik(ri�
)kx3k � � � kxn) = sigK(ajk(rj�
)kx3k � � � kxn)

for any 
; x3; : : : ; xn 2 f0; 1gl. These two messages differ

because ai 6= aj.



How to verify that EK(ai)� ri = EK(aj)� rj?
Check that sigK(aikrik0(n�2)l) = sigK(ajkrjk0(n�2)l).
(Our adversary is active)



XOR-MAC:� Split the message into blocks� (do something with each block)� Encrypt the blocks� XOR the result together.

Simplest version:sigK(x1k � � � kxn) = EK(x1)� � � � �EK(xn)

Exercise. Break it.



Next version:

Let m < l where l was the block size. Let i denote the

representation of the integer i as a m-bit string.

Split the message x to (l�m)-bit blocks x1; : : : ; xn.sigK(x1k � � � kxn) = EK(1kx1)�EK(2kx2)�� � ��EK(nkxn)

Exercise. Break it.



A secure version:� Split the message x to (l�m�1)-bit blocks x1; : : : ; xn.� Generate a random r 2 f0; 1gl�1.
– Actually, r only has to be fresh.� Let� = EK(0kr)�EK(1k1kx1)�EK(1k2kx2)�� � ��EK(1knkxn) :

� sigK(x) = (r; � ).
Exercise. How does the verification algorithm look like?

Obviously we may not reuse a generated r.



A universal one-way hash function (universaalne ühesuu-

naline paiskfunktsioon) is a finite family H of functionsh : D �! R (for certain sets D and R), such that� for every x; x0 2 D, where x 6= x0� for a uniformly randomly chosen h from H� Pr[h(x) = h(x0)℄ 6 1=jRj.
Usually, there are keys to refer to the elements of H.

H = fhK jK 2 KHg



Let EK : f0; 1gl ! f0; 1gl be a block cipher, let the set of

keys be KE.

Let H be a universal one-way hash function from f0; 1gn

to f0; 1gl (n > l).
The following is a secure MAC:� P = f0; 1gn;� A = f0; 1gl;� K = KH�KE;� sigK1;K2(x) = EK2(hK1(x)).



Example of a universal one-way hash function from D toR:� Let D be a finite field.

– If D = f0; 1gn, then consider D as the set of poly-

nomials of degree less than n over Z2, modulo some

irreducible n-th degree polynomial.� Let g : D ! R be a mapping, such that the sets g�1(r)

for r 2 R all have the same size.

– If R = f0; 1gl, where l 6 n, then pick certain l bits

out of n.� Let K = D� �D.� Let ha;b(x) = g(ax+ b).



HMACk(x) = H(k � opad; H(k � ipad; x))

where� H is an iterated (MD) hash function;

– Let h be the underlying compression function.� k has the length of a block of H;

– Outer invocation of H invokes h just once.� opad = 3636 : : :16;� ipad = 5C5C : : :16.
It is secure if h is a secure� MAC and H is weakly collision-

resistant.



Encryption and MAC together are used to create secure

(confidential and authentic) channels.

Initially two parties exchange the encryption key Ke and

the MAC key Ka.
Then, to transmit x, one sends sigKa(EKe(x)).
Certain other ways, e.g. (EKe(x); sigKa(x)) and (EKe(sigKa(x))

are insecure in general, but secure for specific MACs.



There exist block ciphers’ modes of operation that provide

both confidentiality and authenticity.

Use a single key.

They need n + O(1) block cipher invocations to encrypt

and authenticate a n-block message.

See http://www.cs.ucdavis.edu/~rogaway/ocb

Also see signcryption for asymmetric primitives giving both

confidentiality and integrity.


