

 Intelligent Tutoring System For Proof Building Exercises

Rein Prank, Tauno Õunapuu

Institute of Computer Science

 Tartu University

 Liivi Str 2, EE2400 Tartu, Estonia

 prank@cs.ut.ee, tauno@cs.ut.ee

We describe the program PROOF EDITOR designed and implemented at the Faculty of Mathematics of Tartu University for proof construction exercises in Propositional and Predicate Calculus. The main principle of the work of the student is stepwise solution of the tasks under checking the correctness of any step by the program. The EDITOR has Domain Expert facilities (checking the correctness of the student’s steps, Expert Hints) for quite hard problem area. The program is used on IBM PC computers since 1991 with 80-100 students yearly.

Introduction

 This paper describes the program PROOF EDITOR designed and implemented at the Faculty of Mathematics of Tartu University for proof construction exercises in Propositional and Predicate Calculus. First of the authors has taught Mathematical Logic in Tartu University since 1973 and was the initiator of the CAL project for Logic since 1987. The second author designed and implemented the prover and its interface in 1992-94.

 The curriculum of our Mathematics and Computer Science students contains a compulsory course 'Elements of Mathematical Logic' at second term of the studies, as usually in former Soviet Union. During 16 weeks the students have two hours of lectures and two hours of classroom exercises. Traditionally the blackboard exercises are carried out in the groups of 20-25 students. The course consists of four small chapters: Propositional Logic, Predicate Logic, Axiomatic Theories, Turing Machines.

 The course has been not easy for the students with comparatively little mathematical experience. The most hard themes for blackboard teaching have been Turing Machines and formal proofs. The use of Gentzen Type (sequential) axiomatic systems instead of Hilbert Type improved the situation a little but not very much. Often the average and weaker students were not able to build formal proofs and even to understand what sequence of the steps is the proof in given system and what is not. Main reason was that they mixed formal and informal steps in the proof and frequently they did not understand what means 'to use only the rules'. When they are given a task of construction of the formal proof they write some 'freestyle' reasoning of the result. The instructors were not able to give 'on-line' feedback. It is clear that the issues as the proof of completeness are simply a nonsense in such a situation. In many cases the teachers hide this nonsense teaching the axiomatic theories 'at high theoretical level', e.g. practically without exercises and giving only some formal knowledge about the theorems. The appearance of the logic-based programming languages as PROLOG made this way of teaching completely worthless, especially for the Computer Science students. The first author had already many years the hope to use the computers with appropriate software for the support of teaching but we did not have adequate hardware.

 In 1987 we got first IBM PC computers and first computer laboratory with eight XT computers for the students' use has been installed. We decided to solve the problem of teaching software by ourselves and a CAL project for Mathematical Logic was started. We designed and implemented four programs for different types of the exercises:

 1. TURING MACHINE (exploited from spring 1988). Turing Machine programming environment.

 2. ALGEBRAIC MANIPULATION ASSISTANT (autumn 1988).

 3. PROOF EDITOR for the proofs in Gentzen Type Systems (spring 1989 Propositional Calculus, spring 1991 Predicate Calculus). The first versions did not contain the prover.

 4. TRUTH-TABLE CHECKER (autumn 1989).

Some general description of the package is given in (Prank, 1991). During some first years the programs were used quite occasionally because of the lack of computer time. We had no possibility to give homework exercises. Nevertheless already the first experience with Turing Machine Interpreter in spring 1988 demonstrated that at least for some items the use of computers can essentially improve the student's understanding and give them more real skills.

 At the begin of 1991 the Estonian community in Canada presented to our university 100 IBM PC computers and from this year the programs are in real use. The yearly enrolment is about 80-100 students. The teacher introduces each of the programs in computer classroom. Some tasks are solved after that under supervision of the teacher but most of the problems are solved as homework. For example the students have to master more than 40 proofs in Propositional Calculus and about 40 in Predicate Calculus.

 2. The User Interface of PROOF EDITOR

 PROOF EDITOR is a tool for building on the screen the proofs in Gentzen Type Propositional or Predicate Calculus with the axioms of form

 (,A,((A

and with following inference rules

((A; ((B (,A,B(C ((A ((B (,A (C; (,B(C (,A(B

-------------- ------------- --------- ---------- ---------------------- ---------

 ((A&B (,A&B(C ((AvB ((AvB (,AvB(C ((A(B

((A; ((A(B (,A(B; (,A((B ((((A ((A (,(,A(B

------------------ ------------------------ ----------- -------- ------------

 ((B (((A ((A (,B(A (,A,((B

 ((A[x] (,A[t] (B ((A[t] (,A[x] (B

------------ (*) ---------------- ------------ --------------- (*),

(((xA[x] (,(xA[x](B (((xA[x] (,(xA[x] (B

where the letters A, B, C denote the formulas of Propositional (Predicate) Calculus, (and (are for finite (possible empty) sequences of formulas and (*) means the restriction that the variable x cannot have free occurences in (and B. Such Gentzen Type system (Kolmogorov & Dragalin, 1982) seems to be a reasonable compromise between the simplicity of finding the proofs and the simplicity of the objects considered. The calculus in well-known textbook of Jershov and Paljutin (Jershov & Paljutin, 1979) is based on very similar set of the rules. In Gentzen's original sequential system the proofs in Propositional Calculus can be found by a very simple algorithm. But the sequents with more than one formula in the right side are objects without clear semantics for first-year students.

 Designing the screen and the dialog of PROOF EDITOR we had several goals. As most general goal we wanted to design a tool for building the proofs quicker than with paper and pencil, for having the possibility to experiment with different tactics and ideas, and for mastering really sufficient number of exercises. We tried to pass to the computer the routine work on endless rewriting the formulas when only minor changes are made at each step. We wanted to provide feedback about misunderstanding the rules and the strategies. More subject-oriented goals were to visualise the proper (tree) structure of the proofs, to make really easy the use of trivial (splitting) rules and to make clear what information must be added in the case of nontrivial rules. We wanted also to design a program that is easy to use with the students. The EDITOR has the Help facilities but our point of view is that mainly the ease of the use of tutoring programs is determined by the didactic and mathematical adequacy of the dialog. Our students use the EDITOR after five minutes of demonstration by the teacher.

 The main principle of the design of the dialog is that all the decisions and choices are to be made by the student. The program checks the admissibility (but usually not the efficiency) of the step and writes the result on the screen or gives the error message. In the first version the program did not contain the prover and had not the facilities of hints what to do at next step.

 The PROOF EDITOR works in text mode. The main screen (see Figure 1)consists of the line of student's score (row 1), the Rule Window (rows 2-8), the Menu bar (row 9), message and instructions' line (row 10) and the Proof Window (rows 11-25). Because of the available hardware the screen was originally designed for Hercules monitor.

� EMBED PBrush ���

 Figure 1. The Main Screen of PROOF EDITOR

The proof is built stepwise in the Proof Window in the form of the tree from the root upwards (from the sequent to be proved to the axioms). If the tree is higher or wider than the window the goal sequent still on the row 25 but the remaining part of the tree is scrolled so that the active sequent is completely on the screen. Every step in the work corresponds to the application of some inference rule. The student selects an active sequent in the Proof Window (it must be a leaf of the current tree; by default - the left upper sequent of the last step) and an inference rule from the Rule Window. The program checks if the

Active sequent can be received as the result of application of the selected rule. If not, the corresponding message is given, for example 'Using selected rule, main operation of last left-side formula must be &'. Otherwise the new upper sequent(s) is (are) formed and added to the tree. If the upper part of the rule contains a formula or term missing in lower sequent, it is also asked from the student. The program checks the syntax of the entered objects and the admissibility of them (the constraints (*), free substitutions, etc.). In the case of error the student can correct the input or cancel the selected rule.

 Some other choices in the Main Menu are important. For accepting the proof by the program the student has to select 'Axiom' for any axiom in the proof tree. The choice 'Del' deletes the sequents above the active node giving the possibility to try another idea of the proof.

 All the described features represent only some 'local' intelligence of the program and are dealing with the use of one rule but not with the whole tree. Any time when an axiom is accepted the program checks also whether the proof is completed already and gives then the corresponding message. For the Propositional Calculus we implemented an additional feature of 'global' character. Applying some of the rules it is possible to get unprovable upper sequents although the lower sequent is provable and the application of the rule itself is correct. For example, the sequence AvB(BvA is provable but applying the Disjunction Introduction rule we can get unprovable upper sequent AvB(A. If the student does not understand the situation, he can waste a lot of time with the hopeless task. By the use of such noninvertible rules the program checks (using the truth-table) whether the upper sequents are valid. If not, the message is not given immediately (the student has the possibility to delete the sequents created at the step). But if the student starts the next step, the message 'The tree contains unprovable sequent(s)' is given and one point of penalty is counted in the score of the student. We saw that the students learned quite quickly to check the propositional validity themselves. But unfortunately (by the well-known undecidability theorem) we cannot check the validity in Predicate case where the students have much more problems.

3. The Organisation of the Working Sessions

 The tasks for the students’ work are saved in the Task Files. The task lines in this text file contain the following information: the number of the task, the goal sequent and the size of ‘normal’ proof (the number of the sequents). For example,

7. X&(YvZ)(X&YvX&Z /10

The student forms for any Task File his own Result File. We have used here some game-like approach. The Result File contains a copy of Task File, the name of the student, the number of the sequents in the solution of each of the solved tasks and the counter of the mistakes (a very elementary Student Model). The content of the Result File is presented at the row 1 of the screen. The first digits correspond to the 46 tasks in the file PROP.TSK. When the student solves a task the corresponding digit will be replaced by ‘+’. If the student solves the problem 7 having 12 sequents in the proof tree then the corresponding line will look like as

7. X&(YvZ)(X&YvX&Z 12 /10

The program adds to the student’s score 10-(12-10) = 8 points and replaces the digit 7 at the position 7 by ‘+’. When the student solves the same problem with smaller number of the steps, the result will be improved. In some cases the tasks have ‘clever’ solutions that are shorter than the number at the task line. The program finds the ratio of the student’s score to the sum of the numbers on the task lines. We assess the tests namely using this ratio.

4. The Propositional Prover

 During the years 1991-92 we worked with the program without Prover. For getting better information about the strong and weak sides of the program it was even interesting to watch for the work in the computer classroom and to give hints if needed. We had the same time quite strong challenge to minimise the guiding by the instructor and to have real Intelligent Domain Expert. On the other hand the number of guided hours was not sufficient for solving necessary number of the problems. Many students used the computers outside the university and had real need for the hints. In 1993 the Propositional Prover was implemented and added to the EDITOR.

 We use the prover for two purposes: for giving the hints and for evaluation of the completed proofs.

The student can ask for the expert hint at two stages:

 1) By the selection of the rule in Rule Window (after choosing Rule from Main Menu),

 2) By entering of the new formula missing in lower sequent (after selection the Implication Elimination

((-) or Negation Introduction ((() rule from Rule Window).

Both times the student can press 'F10' ("Teacher") to call out the automatic helper. In first case the program gives hint about the inference rule, in second case it recommends a formula or gives the message ‘Inefficient rule selection. Use the rule XX’. The proofs created by the students contain often many redundant steps. Sometimes the big number of the steps is caused by the bad strategy. For the evaluation of the completed proof the program creates its own solution and compares the number of the sequents with the proof of the student. If the proof of the student contains more steps the program proposes to rebuild the proof and points at the inefficient step in the proof.

 The use of the Automatic Theorem Prover as a part of the tutoring program creates some specific demands, first of all for proving strategy and for working speed. We cannot use here (at least directly) the Resolution Provers. The output of the Prover must be the proof in the same system that we teach and even more. If we consider also the size of the proofs and some desirable proving strategies then it means that the Prover must work in the same system of the rules. The working time of the Prover must be short enough, so that the student does not need to wait for the prover more than 10-15 seconds. On the other hand, the prover must not necessarily be able to give good and quick solutions for the special sophisticated examples used usually by evaluation of the Automatic Provers. The prover must solve successfully the tasks that are used in teaching. We did not hope to build the Predicate Prover for our hardware of that time (12 MHz IBM PC AT with 1 Mb memory) but the construction of the Propositional Prover was successful. The tasks from our usual Task Files are solved faster than for 1 sec. Finding the first inefficient step in the completed proof can last about 10 sec because here the Prover must try to re-solve several subtasks. The Prover discovered also some short proofs of our standard tasks that were not known to the teachers. We have also used the Help of the Prover by the construction of new task files for the tests.

 5. To Be or Not To Be (Intelligent)?

 After adding the Prover to the EDITOR we saw that some students did not try to solve the problems themselves but asked for the Hint almost at any step. As reaction we changed the program so that if the Hint facility is used then the ‘+’ is not put in the score line and the student has to solve the task second time. We are not sure that this renewal solves the problems.

 6. Conclusions

 Our project for the exercises on Mathematical Logic was started when the authors had no possibility to see the programs written in West for similar purposes and even to read the papers with the descriptions of the programs. The design of our programs was based mainly on some intuition of mathematical adequacy and the experience with several available general-purpose programs. The authors saw first examples of the similar programs from UK (St Andrews, Leeds, Oxford) only in 1990. The contacts demonstrated that the work of them and PROOF EDITOR is based on the same ideas and the programs differ each from other only by the power of the prover. We have now already five years exploited PROOF EDITOR. In the near future we try to bring the guided labs from the computer classroom back to the traditional setting and use the programs for independent homework exercises.

REFERENCES

Jershov, Yu.L. & Paljutin J.A. (1979). Mathematical Logic. Nauka (Moscow).

Kolmogorov, A.N. & Dragalin, A.G. (1982). Introduction to Mathematical Logic (Russian). Moscow

 University Press.

Prank, R. (1991). Using Computerised Exercises on Mathematical Logic. Informatik und Schule 1991.

 Informatik-Fachberichte, 292, 34-38. Springer-Verlag.

