Expression Manipulation Environment for Exercises and Assessment

Rein Prank, Vahur Vaiksaar

 University of Tartu

prank@math.ut.ee, vax@math.ut.ee

The paper presents an expression manipulation environment for exercises in propositional and predicate logic. The dialog of each step consists of two substeps: subformula selection and subformula substitution. The paper discusses possible working modes for subformula selection, direct input and rule application modes for subformula substitution, error diagnostics and feedback, problem composition possibilities.

1. Introduction

Most of the software used for expression manipulation at universities and high schools do all the technical work for the student, and sometimes also take higher-level decisions. If we wish to provide the students with a fuller range of knowledge and skills in a particular domain as well as check their competence, we need to develop software that places the entire responsibility for decision-taking on the student and gives them an opportunity to make mistakes and get feedback. The instructors, in turn, need to have a possibility to vary the ratio of the student’s-to-computer’s work depending on the stage of study and the goals of teaching.

At the University of Tartu, computerisation of exercises for the basic course of mathematical logic was launched under the supervision of the first author of this article as early as in 1987. By 1991, we had developed a package that enabled problem solution in four fields:

1. Truth table exercises (filling in the table, tautology of formulas, equivalence, deduction, etc.).
2. Propositional formula conversion.
3. Proofs in propositional calculus, predicate calculus and predicate calculus with equality.
4. Turing machines.
The package enabled to transfer 70% of the course’s practice lessons to the computer class. Computers were also used in doing the respective homework as well as three tests out of four. A general description of the package and an overview of its usage are given in (Prank, 1991). The algebraic manipulation environment is described in more detail in (Prank & Viira, 1991) .

The applications of our initial package were written in Turbo Pascal 5.5 for DOS. They ran on the ASCII text screen and did not enable the use of the mouse. However, by virtue of their functionality and the quality of essential feedback to the student the applications have been used each year until now. We have already started work on a new generation of our software to exploit the opportunities offered by new programming environments and take account of the experience gleaned from using the package. This article describes our new environment for formula manipulation. The first version of the program was built this summer as the bachelor thesis of the second author.

The part of the article following the introduction provides an overview of the types of expression manipulation problems used in propositional and predicate logic and of their incorporation into the program. The third part describes the structure of the step-by-step manipulation dialogue. The forth part describes subformula selection for manipulation and the fifth subformula substitution in the different modes of operation. The sixth part deals with exercise sets compilation and with recordable statistics on solutions. The seventh and last part describes the plans for enhancing and improving the software.

In this research, the first author was supported by Estonian Science Foundation Grant No. 5272.

2. Types of Expression Manipulation Problems in Courses of Mathematical Logic
In expression manipulation problems, the expression is manipulated step-by-step, maintaining equivalence to the original formula. To this end, some basic equivalence known from theory is applied to a subformula at each step. In both our course and program, we have used the usual baseline of operations and quantifiers: {(, &, (, (, ~, (, (}. The basic equivalences introduced in the theoretical part of the course cover the properties and interrelations of the operators, enabling, among other things, expression of some operators through others and move unary operators (negation, quantifiers) into or remove them from binary propositional operators.

Regarding their goal, theory-illustrating problems taught in mathematical logic courses mostly fall into two big categories. They pursue the goal of converting a given expression into a special form expressed through either:

a) the set of signs and quantifiers permissible in the formula, or

b) the form of the formula.
Apart from that, a number of problems that are more original and less connected with the theory are resolved.

Many courses and textbooks contain problems in which a given formula is to be expressed through a given set of operations and quantifiers. In propositional logic, this gives rise to three general types of problems: expression through 1){(, &}, 2){(, (} or 3){(, (}. In predicate logic, this leads to six problem types, as determined by the existential quantifier or the general quantifier: expression through 4){(, &, (}, 5){(, &, (}, …, 9){(, (, (}. Normally, the courses establish no explicit rules for resolving such problems. To reach the goal, non-permissible signs simply need to be replaced step-by-step with permissible ones. In order to replace a conjunction, disjunction and implication with one another and with negation, it suffices to apply a suitable basic equivalence. The same is true for quantifiers. More steps are needed to replace an equivalence using other operations.

Secondly, normal forms of propositional calculus formulas are used both in theory and in exercises. The basic problem types in this respect are conversion into disjunctive normal form, into complete disjunctive normal form, into conjunctive normal form and into complete conjunctive normal form. So far, our course has not included normal form minimisation, which might also be regarded as a type of expression manipulation problems. There are 5-6-step algorithms for conversion into normal forms, which usually are also taught on the course. The steps of the algorithm (elimination of equivalences and implications, moving negations before variables, etc.) have to do with iterative application of a small number of basic equivalences.
The most common normal form in predicate logic is prenex form, in which the quantifiers need to be moved before the formula. The algorithm requires the elimination of equivalences and then the pushing of the quantifiers outside the propositional calculus operations. The situation is more complicated when minimisation of the number of quantifiers is required in the final result. As a sequel to conversion into prenex form, problems are resolved in which the formula is to be converted into Skolem normal form.

The program incorporates all the above-described types but conversion into Skolem normal form. To pursue other conversion goals, the program also enables the FREE problem type that only checks up on syntactic correctness of conversion and equivalence of formulas.

3. The Structure of a Manipulation Step and Diagnosable Errors

To develop the first version of our software for propositional logic, we started with a simple mode of operation simulating the work done with paper and pencil. In it, the students entered a new expression on the next line at each manipulation step and completed it with “=” or semicolon, depending on whether they were going to continue the conversion or considered it done. The program checked:
1) the syntactic correctness of the formula entered,
2) its equivalence to the formula on the previous line,
3) the correspondence of the line end sign to the actual situation.
When in error, the student needed to correct the mistake immediately. The feedback provided by the program, along with the opportunity to use textbooks or lecture notes, was sufficient for the student in the event of a syntactic error or a mistake in applying some equivalence or completing the problem. Difficulties arose, however, when the order of operations was misunderstood and such a section of the formula that actually was not a subformula was selected for the application of equivalence. For instance, when the students tried to express the formula X&Y(Z through negation and disjunction and apply the equivalence A(B((A(B to the string Y(Z, they received an error message stating that the entered formula X&(Y(Z was not equivalent to the previous one. Quite a few students in the practice lesson protested that the program was not functioning correctly and explained what rule they applied to what “subformula”. Clearly, at such a point the message issued by the program should include a further description of the error. Considering the possibilities, we concluded that normally we would be unable to adequately diagnose the error when the student could arbitrarily convert any part of the formula, or even several parts parallelly. We decided to divide the dialogue for each manipulation step into two parts:
1) selection of the subformula to be converted,
2) definition of a new formula to replace the subformula.
The strings to the left and right of the selected subformula were automatically copied to the next line. The same general scheme is observed by the new version of the program, except that completion of the resolution is not effected by a symbol at the end of the formula but by a special button on the screen.

The program diagnoses errors made in subformula selection, subformula substitution and solution completion, and displays on the screen four counters to count:
1) syntax errors,
2) order of operations errors,
3) conversion errors (equivalence errors and the instances of applying an unsuitable rule),
4) solution completion errors.

4. Subformula Selection

The selected subformula is shown by different background color on the screen. The DOS-version of the program enabled subformula selection using arrow keys in two modes of operation:
1a) TREE – on the formula’s syntax tree jumping onto the next position on the left or right, onto the superformula or onto the left-hand subformula,
1b) LINEAR – shifting of the ends of the subformula.
The first mode is used in some computer algebra programs, the second is simply a counterpart to selecting a formula as part of text with the mouse available in the current user interfaces. From the didactic perspective, the computer takes decisions on the order of operations for the student and does not allow making mistakes in the first mode. In addition, we observed at the practice lessons that in the TREE mode students’ work was slower. We therefore decided to incorporate the LINEAR mode alone into the latest version.

In subformula selection the program diagnoses two types of direct errors and issues the respective error messages:
1) syntax error - the section selected is not a syntactically correct formula,
2) order of operations error – the section selected is a formula yet the selection ignores the correct order of operations in the original formula.
In case of a syntax error, subformula selection needs to be repeated, of course. Yet this kind of errors stems mainly from inattention and may be regarded as less significant. We have often disregarded them altogether. In contrast, errors against the order of operations are relevant in most cases, and their recurrence usually suggests that the particular student has not mastered the topic.

5. Subformula Substitution

The DOS-version incorporated three modes for subformula substitution, of which the first and the third have also been built into the new version:
2a) direct entering,
2b) entering of a conversion rule,
2c) application of a conversion rule selected from the menu.

Figure 1 depicts the screen at propositional calculus formula conversion in the mode of direct entering of a new subformula.

[image: image1.png]EX

Fail Abi

endar

rank-tyybiduus2705.std -0/ x|

Ulesanded | Teisendamine |

Sintvy 2 vy 0
[l Toeves 1 Vaswu 0
lesome: Avabdda mpiatsloonnetuse kauu

Tegewus: Koostada valem valitud osavalemi asendamiseks voi valida uus osavalem
Sintaktiliselt mittekorrektne valem!

~(B&(~(C-A)VCoB) =
~(B&(~{{[COARIASCIIVCIoB)) =
~(B&{~{~([CoARAC])=CoB))

~((CoAI~{ASC) [-Ta]v[o]~J2]e

~H &2 VP DF ~-f5

Figure 1. Direct entering. In a problem concerning expression through implication and negation the student has entered a new formula into the text box at the bottom of the dialogue. The upper part of the window displays error counters, the text of the problem, instructions for the operation in progress (“Enter a formula to replace the selected subformula …) and the error message received, “Syntactically incorrect formula!”

After entering a formula, a check on syntax is first performed, followed by one on the equivalence of the entered formula to the subformula to be replaced. Next, it is checked whether subformula substitution without adding the brackets is not in breach of the order of operations if the main operation of the subformula changes. For instance, the equivalence ((A&B) ((A((B is valid yet literal application of this rule to the formula ((X&Y)&Z results in (X((Y&Z, which is not equivalent to the original formula. To arrive at a correct result, the student has to enter the new formula in brackets: ((X((Y). If all the checks yield a positive result, the program will write the converted form of the formula obtained onto the next line in the window.

Figure 2 depicts conversion into prefix form of a predicate logic formula in the mode of menu-selectable conversion rules.

[image: image2.png]ol A
Ulesanded | Teisendamine |

Sintvigu 0 drkvigu 0
2] Toeves 3 Vaswu 0
o (errEre AT

Tegewus: Valida teisendamiseks osavalem ja rakendada reegiit sobivat reeglt
Teisendatav alamvalem pole reegli rakendamiseks vajalikul kujul

~=lolx|

¥xAyP[xyl~3yQly] =
(¥xAYPXy>IyQly])&(IyQlyloVXIyPIx v]) =
(VxAyPx ¥l vayQly))&(IyQlylovxayPlx,y])

x| |x x| | | e

x&v || ¢~ k0 [| | way
o0 [| | v xav| 2] €| wwr

v | D]] ona | en | B] oo

o[e]x ~own [¢ =exan axAlxI@QxEIx]

A'QxBIx]
QiAIxIoB
QixAlx]
Qxalx]

oo | | waoy x| €| xavumacy axayAlxy]

LRI RART =) 0= | €] wevuray
o0 [] | xary wv ||] oonaersn
wr ||] ar 00| | €] e

|| axareBien
|| axare
|| cutar=e)
BRI
|| ava

| | ayoxatxyl

Figure 2. Subformula conversion using menu-selectable rules. The bottom part of the window displays a conversion rule menu. In a problem of conversion into prenex form, the student has tried to apply the upper move-the-quantifier-to-the front rule to implication and received an error message.

After selecting a rule, it is checked if the rule is applicable to the selected subformula. If it is and there are no bracket-related problems, the resultant line will be added into the conversion window.

In the conversion rule entering mode, the syntax of the entered rule and the equivalence of the rule’s sides are first checked. The check that follows is the same as in the rule selection mode.

The modes of direct subformula entering and of conversion rule entering require formula equivalence checking after the entry. For predicate logic, this poses an algorithmically unsolvable problem. Therefore, we can apply modes 2a and 2b to propositional calculus problems alone. For predicate logic, the new program only has the rule selection mode.

Figure 2 shows a menu of rules for resolving predicate logic problems. The limited size of this article does not permit an explanation of the choice of rules or a justification for the manner of displaying the rules on the screen and for the methods of their application. The program applies a large number of rules as rewrite rules, but there are exceptions. The program treats conjunction and disjunction as n-ary operations, asking for further information for applying the rule if necessary. If a change in the order of the terms of long conjunctions and disjunctions is required, it can be directly entered in the dialogue, etc.

In addition to the three modes of subformula substitution described above, we plan to integrate into the new program a possibility of step-by-step execution of the entire resolution algorithm stage for a particular problem type. For instance, for the first stage of problems concerning conversion into normal form of propositional calculus formulas all the equivalences and implications will be expressed one by one.

6. Problem Composition and Statistics

Teachers can use a special program in the package to create problem sets. In a set, the following needs to be determined for each problem:

1) problem type;
2) problem text. By default, a standard text corresponding to each problem type is available, for instance, “Express through implication and negation”;
3) the original formula. The creator of the problem may enter the formula or prescribe that the formula be randomly generated by the program. Generation requires prescription of the number of the variables and all the operation symbols in propositional calculus and of the quantity of predicate symbols and operations having different numbers of arguments as well as the quantity of quantifiers in predicate logic;
4) subformula substitution mode;
5) the upper margins of resolution errors for all the four error counters.

To solve the problems contained in a set, the student creates a student file, to which the number of errors made for each round of resolution of each problem and the overall result are recorded.

7. Plans for Enhancing and Improving the Program

The current version of the program features the key functions required by the student, and it can already be used in practice classrooms. What has not yet been programmed is the rule-entering mode. A definite must is the addition of an advice-giving feature for taking the next step for each problem type and a maximally efficient feature for diagnosing the reasonability of the solution step made. Of theoretical interest is the use of the solvability of monadic predicate calculus for at least partial introduction into predicate logic problems of the direct entering and rule entering modes. In addition, some work should be directed towards improving formula readability on the screen.

References

 Prank,R. (1991). Using Computerised Exercises on Mathematical Logic. Informatik-Fachberichte, 292, 34-38.

Prank, R., Viira, H. (1991). Algebraic Manipulation Assistant for Propositional Logic. Computerised Logic Teaching Bulletin, 4, 13-18. St Andrews Univ.

1
8

