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The paper describes computerised problem solving tests in the Basic Course of Mathematical Logic. At our faculty this course is compulsory for all students of Mathematics and Informatics specialties. The yearly enrollment has been between 70 and 100 students. The course consists of four chapters: Propositional Logic, Predicate Logic, Axiomatical Theories and Turing Machines. Each chapter is finished with a test on problem solving and the course is completed with a written examination. In 1987 we started computerisation of the course and since 1991 the exercises of three chapters are carried out in IBM PC classrooms. Our software supports solving of four groups of the exercises: 


Truth-table exercises: filling truth-tables, checking tautologicity, satisfability, equivalence or inference of the formulas, finding the formula for a given truth-table.


Propositional formula manipulation: expressibility of formulas in terms of {&,(}, {v,(} or {(,(} and normal forms.


Proof construction in Gentzen Type Propositional Calculus and Predicate Calculus.


Turing Machine programming.


The programs are designed as environments for stepwise solving of the problems. At any step the input of the student is checked and the programs give diagnostic feedback about the mistakes. The instructors have a possibility to control the working modes of the programs designing task files. The first overview of our programs was given in [1]. The papers [2] and [4] contain the description of the working modes and of diagnostics of the first two programs. PROOF EDITOR is described in [3].





1. Truth-Table Checker. The work of the student at the task consists normally of  two parts: filling the table and the answer motivation  dialog. But in the tests we have used only pure table-filling exercises for sorting out the totally incompetent participants. For filling the table the student has  to perform all the logical operations moving the cursor to the necessary position in the table and entering  t  or f. The working mode depends on the values of the following options:


ORDER (CHECKED / FREE / AUTOMAT),  OPERATIONS (STUDENT / AUTOMAT),


VALUES-CHECKING (RAPID/ BEFORE_ANSWER/ AT_END), LINEFILL (FULL / PARTIAL).


In the tests we use the combination  CHECKED + STUDENT + AT_END + FULL. The CHECKED order means that if the student enters the result of some operation before the operands are entered, then the program gives an error message and the student has to correct the mistake:
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The program diagnoses and counts two types of table-filling mistakes: order and truth-values. In VALUES-CHECKING=RAPID or BEFORE_ANSWER the student cannot continue the work until the the wrong values are not corrected. In the tests we do not want that the weak students repeat the correction  many times. By VALUES-CHECKING =AT_END   the mistakes are only counted but the student cannot correct them. Note that  if the order of operations is CHECKED then we know in what order the operations are made and we can count real mistakes in the table. 





2. Formula Manipulation Assistant. The formula manipulation exercises form a major part of the test after the first chapter. But the error diagnosis is based on the ideas similar to the first program. The student makes his transformations step  by step. Any step consists of two substeps: the student has to point out a subformula and then to define the transformation of this subformula. The location of subformula occurs in tests in LINEAR mode: shifting the ends of highlighted substring. The subformula replacing  modes are RULE (selected from  the  menu), INPUT_RULE and IMMEDIATE (input). The program diagnoses and counts the following mistakes: 


misunderstanding of the order (by subformula location or by direct input) ,


replacing formula is not equivalent to selected subformula (in INPUT_RULE or IMMEDIATE),


application of the selected rule is impossible,


syntax errors.


The marks for the first test are counted by the formula 


 sum(weights of the mastered tasks) - sum(number of mistakes* penalty for a mistake of this type)


In DNF tasks we take into account also the partial solutions.





3. Proof Editor. Our Proof Editor is designed for building the proofs in Gentzen Type Propositional and Predicate Calculus. The proofs are built in the form of the tree from the root upwards. The  screen of Proof Editor contains Score Line, Rule Window (the real window contains for propositional tasks eleven rules instead of  six represented here) , Menu Line and Proof Window: 
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At any step the student has to select a top sequent in the tree and an inference rule from the Rule Window. The program checks if  the application of this rule is possible. If not, the corresponding message is given. Otherwise the upper sequent(s) of the rule is (are) added to the tree. If the upper part of the rule contains a new formula, the student has to enter it. The program checks when the proof is ready (all the leaves are marked as axioms). 





The Proof Editor has in fact only one working mode. For the tests we switch off only the hints. Every task in the task file is given together with the number N of the nodes in a ‘reasonable’ proof tree. If the student masters the proof with N+M nodes then he gets N-M points. The only mistake that is punished with  -1 is creating propositional unprovable sequents (for instance, using ((). In  the above example the student has already solved the tasks 2 and 3 of the file with eight tasks and with the ‘normal’ score of 119. He has gained 26-2=24 points. In the task 4 (N=10) he has built 7 nodes. The score of the test is the ratio  of received points to the sum of  ‘reasonable’ points (more than 100 percents is possible). 





4. Turing Machines. Our  TM programming  environment consists  of  a special Editor for Turing Machine tables (as they are defined  in  "Introduction to Metamathematics") and an  Interpreter. The Interpreter allows to run the Machine with user given input data and to demonstrate the work on the tape stepwise, as well as in three more quicker modes. 





A typical test task is, for instance, computing   f(x,y) = 2x - 5 + [y/3]  where minus denotes the ‘nonnegative’ subtraction. The initial tape is in form  OI..IOI..I with  x and y  symbols I correspondingly. At the final stage a zero with  f(x,y)  strokes must be added to the right end and the head of TM must point to the zero of the result. 


For testing students’ Turing Machines we give a list of test data (usually 5-8 sets) before the end of the work and the students must run their TM with all of them. In Summary Table the program saves all  the executed tests together with the results of  execution (normal termination /syntax error /Stopped, value OK/different/arguments corrupted /wrong position of the head, …):
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       The teacher gets the material for grading from Summary and runs the student’s TM for additional information very seldom. Grading is based on the penalties fixed for the typical (but function-dependent) mistakes: fails by x=0, fails by  2x<5, fails by    (y mod 3)=1 etc.


�
Some general remarks. In truth-table and formula manipulation exercises the formulas are generated randomly. In the task file the teacher can fix the number of variables, the variables, the numbers of particular connections. So we must not care about collaborative work. In the tests on proofs and Turing Machines we use two different variants of the tasks every time.


The computerisation has increased the weight of some parts of the course which were poorly taught earlier (especially proofs and Turing Machines) and has made the course more practical. The same is true of the grading. The marks also depend now more on the practical skills. Another remarkable change is the mechanisation of the work of the instructors by checking the solutions.
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