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Sissejuhatus

Nii firmade kui ka tavainimeste elus méngivad suurt rolli ajas toimuvad ning teatud ju-
huslikkuse komponenti sisaldavad siindmused, mille efekt on sageli véiljendatav erinevatele
ajahetkedele vastavate numbrite jadadena ehk aegridadena. Néitena voib tuua sissetulekud
ja valjaminekud, toodete ldbimiiligi maht, paevaste ja kuiste sademete hulk jms. Sellistes
valdkondades juhuslikkus toob kaasa riske, mille haldamiseks on viga téhtis osata juhus-
likkuse iseloomu kindlaks teha, mineviku andmete pohjal voimalikkult tédpseid prognoose
leida ning moningatel juhtudel ka ebasoovitavate tendentside ilmnemisel digeaegselt sek-
kuda. Koike seda voimaldab aegridade teooria.

Ajalooliselt on praktikute poolt kasutusele voetud mitmeid meetodeid aegridadega seo-
tud iilesannete (nt. trendi leidmine, tulevikuvéértuste prognoosimine jms) lahendamiseks.
Meetodi all moistame siin kursuses arvutuseeskirja, mille rakendamine peaks andma soo-
vitud tulemuse. Meetodid tuginevad enamasti nn tervel moistusel ja intuitsioonil ning neid
voib rakendada suvalisele ajas jérjestatud andmete kogumile, kuid lahtiseks jéaab kiisimus
tulemuste tegelikkusele vastavuse ja usaldusvéérsuse osas.

Selleks, et olla (piisavalt) kindel selles, et arvutatud tulemused kajastavad reaalsust ning
on kasutatavad ka tuleviku prognoosimisel, tuleb ldhtuda aegrea matemaatilistest mude-
litest. Mudel on matemaatiline kirjeldus selle kohta, kuidas juhuslikkus mojutab aegreale
vastavate andmete tekkimist. Mudelist ldhtuvalt on voimalik kontrollida selle sobivust
konkreetse aegrea kirjeldamiseks ning tuletada teoreetiliselt pohjendatud arvutuseeskir-
jad vaadeldavale mudelile vastava aegrea erinevate komponentide leidmiseks ning tuleviku
prognoosimiseks koos konkreetsete usalduspiiridega leitavate hinnangute jaoks. Aegridade
teooria seisneb mudelite kirjeldamises ja nendele vastavate arvutuseeskirjade ning veahin-
nangute tuletamises.

Teooria rakendamine koosneb mitmetest etappidest, milleks on

1. Sobiva matemaatilise mudeli valik. Nagu me kursuse jooksul ndeme, on voimalike
mudelite hulk véiga lai ning &armiselt tdhtis on leida voimalikult lihtne mudel, mis
voimaldaks tegelikkust adekvaatselt kirjeldada.

2. Leitud mudeli kalibreerimine olemasolevate andmetega ning saadud konkreetse mu-
deli kirjeldusvoime kontroll. Kui selgub, et kirjeldusvéime on liiga madal, siis tuleb
minna tagasi mudeli valiku juurde.

3. Kalibreeritud mudeli kasutamine tuleviku ennustamiseks, ennustuste veapiiride kind-
lakstegemine, vajadusel sobivate juhtimismehhanismide valik soovitud tulemusest
tekkinud korvalekallete vihendamiseks.

Ko6iki neid kiisimusi (vélja arvatud juhtimismehhanismide valik) vaadeldakse kiesoleva kur-
suse raames. Samas tuleb silmas pidada, et tegemist on sissejuhatava kursusega aegridade
teooriast ning kiillalt palju olulisi mudeleid ning tehnilisi vahendeid jaab selle kursuse raa-
mes kisitlemata. Aegridade teooria aktuaalsusest annab aga tunnistust niiteks see fakt, et
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Peatukk 1

Tahistused ja moisted. Aegrea
komponendid

Mitteformaalselt on aegrida mingi ajas muutuva ja juhuslikest teguritest soltuva suuruse
erinevatele jarjestatud ajavahemikele vastavate vadrtuste kogum. Selleks voib olla naiteks
teatud ajavahemike tagant moodetud konkreetse inimese kaal, aktsiahind, firma aasta-
ne kasum, kindlustusfirmale lackuvate kahjunouete kogusumma péaevade kaupa vms. Kui
mootmised toimuvad pidevalt, siis on tegemist pideva ajaga aegreaga, vastasel korral oel-
dakse, et aegrida on diskreetse ajaga. Kéesolevas kursuses kasitleme ainult selliseid disk-
reetseid aegridasid, kus védrtused vastavad vordsete ajavahemike tagant tehtud mootmis-
tele. Olgu selle ajavahemiku pikkus h, seega eeldame, et huvipakkuva suuruse Z vaartusi
mooddetakse ajamomentidel 7; = 79 + i h, kus ¢ € N voi ¢ € Z. Selleks, et hoida tdhistusi
voimalikult lihtsana ning olla kooskolas aegridade alase kirjanduse tavadega, tdhistame
ajamomendile 73 vastavat juhuslikku suurust Z kujul Z; ning selle teadaolevat vaartust
kujul z;, kus ¢ on taisarvuline (voi naturaalarvuline) indeks.

1.1 Aegrea komponendid

Aegreaga kirjedatud juhusliku suuruse muutumisel ajas voib olla mitmeid erinevaid pohju-
seid:

e Umbritseva (majandus)keskkonna, firma juhtimiskultuuri vms tegurite pikaajaline
moju, mida nimetatakse trendiks.

o Kellaajast, nadalapaevast, kalendrikuust vims soltuvad kindla perioodiga muutused.
Kui perioodiks on aasta, siis nimetatakse selliseid muutusi sesoonseteks muutus-
teks.

e Jooksva aasta kalendrist soltuvad muutused. Osade vaadeldavate suuruste vaartused
soltuvad néiteks t66- voi kalendripdevade arvust kuus voi kvartalis.

e Ebaregulaarsed, lithikeste ajavahemike jarel toimuvad muutused.

Majandusest ragkides eristatakse sageli veel pikaajalist kindla suunaga muutumist ning
nn majandustsiiklist soltuvaid ebaregulaarse pikkusega kiillaltki pikaajalisi touse ja lan-
gusi, kuid andmete pohjal on neid muutumise tiiiipe praktiliselt voimatu eristada. Aegrea
osadeks jaotamisel nimetatakse seetottu sageli suhteliselt aeglaselt toimuvat muutumist
trend-tsiikliks (inglise keeles trend-cycle).



Vaatlema néidetena kahte kuude kaupa defineeritud Eesti Statistikaameti veebilehelt alla-
laaditud aegrida - tarbijahinna indeksit ning majutatud turistide arvu. Tarbijahinna indeks
on kujutatud joonisel 1.1. Joonise pohjal paistab, et tarbijahinna indeksil on selgelt kas-
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Joonis 1.1: Tarbijahinna indeks 01.1998-07.2011(Statistikaameti andmed [1])

vav trend ning silmaga néhtavaid sesoonseid muutuseid ei paista. Samas aga majutatud
turistide arvu aegreal paistab olema nii kasvav trend kui ka selge sesoonne komponent
(vt. joonis 1.2. Jargnevalt vaatleme pogusalt moningaid voimalusi, kuidas aegrida jaotada
erinevat tiiiipi osadeks.

1.1.1 Trendi leidmise meetodid

Trendi puhul eristatakse nn globaalset, ajas muutumatu iseloomuga trendi ja lokaalset
trendi, mis voib ajas pikkaméoda muutuda.

Globaalse trendi eraldamine

Monikord on otstarbekas eeldada, et vaadeldava juhusliku suuruse pikaajalist kditumist
ajas iseloomustab mingi kiillalt lihtsal kujul olev funktsioon (lineaarne, ruutfutnktsioon,
trigonomeetriline funktsioon, eksponentfuntsioon), mille iimber toimub vonkumine ebare-
gulaarsete héirituste ning perioodilise mojutegurite tottu. Vaatleme lihtsuse mottes ainult
juhtu, kus perioodilist komponenti ei ole; sel juhul tehakse sageli oletus, et aegrea andmed
on kujul

Zt :f(ﬁ,t)'i_’l)t,

kus f on mingi teadaolev parameetritest S = (B,...,5p)" soltuv funktsioon ning v; on
juhuslik korvalekalle. Sageli kasutatavaks meetodiks parameetrite 5 leidmiseks on vahim-
ruutude meetod, mille korral leitakse 8 avaldise

D (F(B 1) = 2)?,

minimiseerimise teel. Summeerimine toimub siinjuures {ile koikide teadaolevate andmete.
Sageli loetakse heaks suvalist funktsiooni f, mille korral saavutatakse vaadeldava summa
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Joonis 1.2: Majutatud turistide arv kuude loikes 01.1996-07.2011 (Statistikaameti andmed

[2])

piisavalt véike vidrtus ning kasutatakse seda funktsiooni (trendi) tuleviku ennustamiseks.
Selline ldhenemine on aga sageli pohjendamatu, sest eriti aegridade puhul ei pruugi mi-
neviku andmetega hésti sobiv funktsioon tuleviku ennustamiseks iildse sobida. Selleks, et
veendunud olla vaadeldava meetodi sobivuses konkreetse andmestiku jaoks, tuleb ldhtuda
aegrea mudelist, mille korral vastav meetod annab md&istliku tulemuse. Selliseks mudeliks
on

Zt:f(ﬁ>t)+€t7

kus &; on soltumatud sama jaotusega juhuslikud suurused (tegelikult piisab ka mittekor-
releeritusest ja konstantsest dispersioonist). Juhul, kui funktsioon f soltub kordajatest 3
lineaarselt, nimetatakse sellist lahememist statistikas ka lineaarseks regressiooniks; mit-
telinaarse soltuvuse korral on tegemist mittelineaarse regressiooniga. Seega voime lugeda
tulemusi usaldatavateks siis, kui parast parameetrite leidmist jargi jadvad vead voib lugeda
soltumatute juhuslike suuruste vaiartustele vastavaks; aegridade puhul juhtub seda harva.

Vaatleme néitena lineaarse, ruut- ja kuupfunktsiooni sobitamist eelnevalt vaadeldud tar-
bijahinna indeksi andmetele. Néiteks lineaarse trendi sobitamise korral on funktsiooni f
kujuks

f(ﬁvt) = f1+ B2t

ning vihimruutude metodil saame parimaks lineaarseks lahendiks
F(B,t) = 100,6 + 0, 48491,

kus t on véljendatud kuudes alates 1998-nda aasta algusest (st 1998 jaanuar vastab véar-
tusele t = 1). Joonisel 1.3 ndeme tarbijahinna indeksi vaértuseid koos lineaarsele, ruut -ja
kuuptrendile vastavate koveratega. Kasutades nende koverate sobitamiseks mingit statisti-
katarkvara, voib kogenematul statistika rakendajal jadda mulje, et nad koik on viga head
tarbijahinna indeksi kditumise kirjeldamiseks (koikidel juhtudel on kéik mudeli kordajad
olulised véga madala olulisusnivoo korral ja determinatsioonikordajad on véigagi laheda-
sed tihele). Samas on aga selge, et iildine majanduskeskkond on muutuv ning seetottu on
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Joonis 1.3: Tarbijahinna indeksi globaalse trendi hinnangud

globaalse trendi olemasolu vigagi kaheldav; konkreetsel juhul ei rahulda vaadeldud juhtu-
del andmed regressioonanaliiiisi eelduseid (jadkide soltumatus!) ja seetottu tarkvara poolt
valjastatud head sobivusnéitajad ei oma motet. Kokkuvotteks: globaalse trendi olemas-
olu eeldus on praktilises andmeanaliilisis vaga harva oigustatud ning lihtsa regressiooni
abil sobitatud trendikoverate kasutamisel tuleviku ennustamiseks tuleb olla viga ettevaat-
lik. Konkreetseid meetodeid selle kindlakstegemiseks, et vaadeldud trendimudelid ei sobi
kéesoleval juhul tuleviku ennustamiseks, vaatleme hilisemates alapunktides.

Lokaalse trendi eraldamine

Kuna globaalse trendi olemasolu on viga harva pohjendatav, siis moistetakse trendikovera
all enamasti aegrea suhteliselt aeglaselt muutuvat, "siledat” osa. Kahjuks ei ole aga olemas
iildiselt aktsepteeritavat lokaalse trendi definitsiooni, mistottu ei ole tegemist matemaa-
tilise moistega ning seetottu on trendist radkides vaja alati tédpsustada, mida konkreetsel
juhul selle all moistetakse.

Lokaalse trendi leidmiseks tuleb aegreast eemaldada juhuslikest héiritustest tekitatud mi-
ra, seda protsessi nimetatakse silumiseks voi filtreerimiseks. Viga sageli seisneb silumine
uue aegrea tekitamises nn silutud keskmise leidmise abil.

Definitsioon 1 Rea (z;) teisendust kujul

T
Yt = Z Wi Zt—i, (1.1)

i=—q

kus w; > 0 ja Zfzfq w; = 1, memetatakse libiseva keskmise leidmiseks. Juhul kui g = 1 ja
w_; = w;, 1 < q, nimetatakse sellist teisendust simmeetriliseks libisevaks keskmiseks

ning kut kotk kaalud w; on vordsed, on tegemist lihtsa libiseva keskmisega.

Moningad néited:



e Lihtne siimmeetriline libisev keskmine:

1 q
Yt = 2+ 1 izq Z—i-

e Paarisarvulise perioodiga perioodilise komponendi olemasolu korral kasutatav lihtsa
stiimmeetrilise keskmistamise modifikatsioon:

qg—1

1 [1
Yt = 27] 5(2711 + z4) + ' Z Zt—i | (1.2)
i=—q+1

kus perioodi pikkuseks on 2gq.

e Eksponentsiaalne silumine:
oo
Yt = QZ(l —a)'z—i,
i=0

kus o € (0, 1) on mingi positiivne number. Praktilistes arvutustes kasutatakse eks-
ponetsilumise omadust
ye = az + (1 — o)y,

mis voimaldab lihtsalt siluda 16plikku aegrida. Kui « ldheneb {ihele, siis silumist
praktiliselt ei toimu ning mida véiksem on «, seda tugevam on silumine.

rl
180 — ///
4
Pt
g ’
/
) /
P 160 - —— indeks //,
g LLK(4) S
< - - EXP(0,2) S S
£ 140 4 e
k=3 P
re) T,
pe r/,
[o] g
~ P
//;/,
120 77
s
Dl
Vg

I I I I I I I
1998 2000 2002 2004 2006 2008 2010 2012

aasta

Joonis 1.4: Lihtsa 9-kuulise libiseva keskmise ning eksponentsiaalse silumise (o = 0, 2) abil
teisendatud tarbijahinna indeks



Joonisel 1.4 on toodud niited tarbijahinna indeksi silumisel saadud koveratest.

[gasugune silumine peaks vihendama miira (eriti kuna miira kohta eeldame, et see on kesk-
miselt null). Samuti voib argumenteerida, et perioodilise komponendi puudumisel peaks
silutud rida olema ldhedane trendile, kuna miira on vihenenud ja aeglaselt muutuva trendi
korral on selle viartuste keskmine (vihemalt juhul, kui keskmist arvutatakse tile suhteliselt
lithikese perioodi) lahedane tema hetkeviirtusega. Ideaalne oleks aga juht, kus vihemalt
lihtsamate trendide korral saaksime miira puudumisel trendikovera tapselt leida. Osutub,
et see on voimalik.

Harjutus 1 Ndidata, et kui aegrea vidrtused on antud lineaarse funtktsiooni f(t) = a+bt
poolt (st zy = f(t)), siis simmeetrilise libiseva keskmise kasutamisel kehtib y, = f(t).

Stimmeetrilist keskmistamist ei ole aga alati voimalik rakendada. Néiteks aegrea 1opu-
osas puuduvad meil vajalikud tulevikuvdartused ning seetottu on tuleviku prognoosimisel
voimalik kasutada ainult iihepoolseid keskmisi, néiteks eksponentsiaalset keskmistamist.
Sel juhul aga ei pruugi keskmistamisel leitud trendikéver isegi miira puudumisel langeda
kokku 6ige trendiga.

Harjutus 2 Olgu aegrea vddrtused on antud lineaarse funtktsiooni f(t) = a + bt poolt
(st zy = f(t)). Naidata, et sel juhul eksponentsiaalsel keskmistamisel saadav funktsioon on
samuti lineaarne, leida selle kordajad. (Ndapundide: tekkiva lopmatu summa leidmisel on
voimalik kasutada geomeetrilise jaotusega juhusliku suuruse keskvdidrtuse valemit)

Mittelineaarsete trendikoverate olemasolul ei anna ka siimmeetriline keskmistamine tépset
tulemust, kuid on kiillalt lihtne néidata, et juhul, kui andmeid on moodetud véikese inter-
valliga (ehk, ekvivalentselt, kui trendikover muutub piisavalt aeglaselt), on siimmeetrilise
keskmistamise tulemus miira puudumisel vihemalt piisavalt viikese ajaintervalli korral
viaga lahedane tegelikule trenddikoverale.

Harjutus 3 (%) (lisapunktide saamiseks esitamise tihtaeg 26.09.2011) Olgu y; = Z;n:_q Wi Z4—j
selline libiseva keskmise valem, mis jatab koik lineaarsed funktsioonid paika (st linaarsele
funktsiooni vastava rea z; korral yy = z; Vt) ning millel on vihemalt kaks nullist erinevat
kaalu. Ndiidata, et sel juhul y; # 2z Vt iga ruutfunktsiooniga antud rea z; = a+b-t+c-12, c #

0 korral.

Kui perioodilist komponenti sisaldava (sesoonse) rea trendi soovitakse silumise teel eral-
dada, siis peab silmas pidama, et keskmistamisel on sel juhul kaks eesmérki - juhuslike
héirituste eemaldamine ning perioodiliste muutuste eemaldamine. Selleks on voimalik ka-
sutada perioodi pikkusega kooskolas oleva silumisaknaga keskmistamist, kuna iile terve
perioodi summeerimisel peaks perioodiliste muutuste summa null olema. Néaitena vaatle-
me majutatud turistide arvu lihtsat silumist. Kuna periood on antud juhul paarisarvuline
(12 kuud), siis kasutame valemit 1.2. Tulemus on toodud joonisel 1.5. Nagu néha, eemal-
dab antud juhul lihtne keskmistamine aegreast perioodilised vonkumised ning tulemust
voime lugeda trendikoveraks.

Niiteme ka matemaatiliselt, et perioodilist komponenti sisaldava rea silumine eelmainitud
tiitipi keskmistamise korral aitab killalt hésti trendi eraldada. Selleks néitame, et kui
andmed on kujul

z=a+bt+g(t),

kus ¢ on perioodiga 2¢ funktsioon (st g(t+2q) = g(t) Vt), siis valemiga (1.2) saadud silutud
rida langeb kokku trendiga. Selleks, et lahutus trendiks ja perioodiliseks osaks oleks iiheselt

10



350
300
250
200 —

150
100

majutatud turiste (tuh)

50

I I
2000 2005 2010

aasta

Joonis 1.5: Paarisarvulisele perioodile vastava lihtsa siimmeetrilise kesmistamise modifi-
katsiooni abil silutud majutatud turistide arv ajas

maaratud, nouame taiendavalt, et 2311 g(t—1i) = 0 Vt. Seega on meie eesméargiks naidata,
et y: = a+ bt. Arvutame:

1 !

1
Y = 27(1 i(z_q +2z4) + i;ﬂ i
q—1
:1q %(a+b(t+q)+g(t+q))+ S (a+b(t—i)+g(t—1))

i=—q+1

Fylatble—0) +gt—0)

—1
1 [a+bt % a+bt
= bt
% 5 +‘Z (a+bt)+
i=—q+1
1 [ bq ! bq
talz - 2 -5
i=—q+1

q—1
_|_i g<t2+q)+ Z g(t—i)—l—g(t_Q)

2(] i=—q+1 2
1L [gt+a) | (t—q)
—atbt+0+ o [FL Y ogt -0+ T
e i=—q+1

11



Niitid kasutame g perioodilisust:

q—1
g@;®+ 239“—”+g@_®

. 2
1=—q+1
0 q—1
_g(t—q) , N9t —q)
=" +'Z g(t—z—2q)+Zg(t—z)+ 5
i=—q+1 i=1
2q q—1
=Y glt—i)+> glt—i)+g(t—q)
i=q+1 i=1
2q
=> g(t—i)=0.
i=1
Sellega oleme néidanud, et y, = a + bt.
Q]
—
© ]
-
<
—
N (:i — ' L]
T
—
«Q _]
o
Q4 .
o
| | | | |
1 2 3 4 5

Index

Joonis 1.6: Lokaalse regressiooni abil aegrea silumine

Uheks kiillaltki populaarseks meetodiks aegridade silumisel on ka nn loess voi lowess (ing-
lise keeles locally weighted scatterplot smoothing) meetod, mis silutud kovera véaértuse leid-
miseks mingis punktis sobitab kaalutud vahimruutude meetodil madala astme poliinoomi
ldbi antud punktile ldhedastele ajamomentidele vastavate aegrea vaidrtuste ning arvutades
silutud kovera vaartuse selle poliinoomi abil. Idee tutvustamiseks vaatleme juhtu, kus meil
on antud aegrida

z=(1,0.6,1.8,1.2,0.7).

Koige lihtsamal kujul lokaalse regressiooni puhul tuleb otsustada poliinoomi aste ning ka-
sutatavate naabrite arv. Vaatleme lineaarset poliinoomi (ehk sirget) ning kasutame silutud
rea leidmisel kolme ldhimat véértust (st jooksvale ajahetkele vastavat vadrtust ja veel ka-
hele ldhimale ajahetkele vastavaid vaatluseid). Silumise protsess on kujutatud joonisel 1.6,
kus esialgse aegrea vadrtused on kujutatud mustade punktidena. Silutud rea esimese vaar-
tuse leidmiseks leiame vahimruutude meetodil sirge, mis ldhendab esimest kolme vaatlust
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voimalikult hésti (joonisel sinine sirge). Selle sirge véaédrtus ajal ¢ = 1 ongi silutud rea
esimeseks vadrtuseks (joonisel punane punkt). Silutud rea teise viédrtuse leidmine toimub
sama sirge abil, kuna kasutusele tulevad samad z vi#rtused. Kolmanda punkti leidmisel
tuleb sobitada sirge 1dbi teise, kolmanda ja neljanda z vddrtuse (joonisel roheline) ning
viimased kaks véértust leitakse ldbi viimase kolme z véértuse sobitatud sirge abil (joonisel
pruun).

Praktilisel kasutamisel antakse poliinoomi sobitamisel igale kasutatavale z vaartusele veel
kaal soltuvalt selle kaugusest arvutatavast viartusest. Téapsemalt voib nende meetodite
kohta lugeda néiteks Wikipedia artiklist [3].

1.1.2 Dekompositsioonimeetodid. Sesoonne kohandamine.

Aegridade kiitumisest arusaamine ja nende tolgendamine on majanduses vaga suure taht-
susega, seetottu on loodud mitmeid meetodeid ja téovahendeid, mis voimaldavad neid
osadeks lahutada. Ennem moningate enim tunnustatud vahendite tutvustamist aga selgi-
tame kasutatavaid moisteid.

Aegrea osadeks lahutamisel tuleb koigepealt otsustada, mismoodi need osad tervikus si-
salduvad. Valdavalt vaadeldakse kahte juhtu: aditiivhe dekompositsioon, mille korral
eeldatakse, et vaadeldav juhuslik suurus avaldub kujul

Zy =Ty + S¢ + I,

kus 7" on trend (voi trend-tsiikkel), S on perioodiline (sesoonne) komponent ja I on eba-
regulaarne (juhuslik) komponent ehk miira; ning multiplikatiivne dekompositsioon,
mille korral eeldatakse kditumist

Zt = ,‘TtStIt-

Molemal juhul eeldatakse, et T sisaldab kogu informatsiooni keskmise taseme kohta ning S
ja I kirjeldavad koikumist keskmise timber, st aditiivse lahutuse korral on S ja I keskmiselt
nullid ning multiplikatiivsel juhul viiljendavad nad suhet kesmisse védrtusesse (st on ise
keskmiselt vordsed iithega). Multiplikatiivset juhtu on voimalik taandada aditiivsele juhule
esialgse aegrea logaritmimise teel.

Sageli pakub suurt huvi eriti sesoonse komponendi eemaldamine, mida nimetatakse se-
soonseks kohandamiseks (seasonal adjustment). Sesoonne kohandamine voimaldab pare-
mini vorrelda aegrea jéarjestikuseid vadrtuseid (néiteks uurida, kas majandus on tousuteel,
kui teise kvartali tulemus on parem esimese kvartali tulemusest).

Aegrea komponentide eraldamine on sageli iteratiivne protsess: enamasti leitakse koi-
gepealt ligikaudselt trend (néiteks sobiva siimmeetrilise libiseva keskmise abil), seejérel
eemaldatakse reast trend ja seejérel leitakse perioodiline komponent (néiteks perioodile
vastavaid alamridasid keskmistades), seejirel eemaldatakse esialgsest reast leitud sesoon-
ne komponent ja rakendatakse saadud mitteperioodilisele reale jille mingit keskmistamise
meetodit trendi leidmiseks jne. Kuna trendi ja perioodilise komponendi moisted ei ole
matemaatiliselt tdpselt formuleeritud, siis on aegridade osadeks lahutamine tegevus, mis
eeldab mitmesuguseid kasutajapoolseid valikuid ning seega ei ole tulemus ilma téiendavate
kokkulepeteta iiheselt méaratud.

Mainime tuntud meetoditest kahte. Esiteks, STL (Seasonal-Trend decomposition based on
LOESS) voimaldab jaotada aegrida aditiivseteks komponentideks, on kasutatav ka puu-
duvate vadrtuste korral ning on realiseeritud néiteks tarkvarapaketis R. Teiseks, Ameerika
Uhendriikide statistikaameti (U. S. Census Bureau) poolt kasutatavad dekompositsiooni
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ja sesoonse kohandamise meetodid on realiseeritud nende poolt hallatavas ning tasuta al-
lalaaditavas tarkvarapaketis X-12-ARIMA, mis véimaldab aegreast korvaldada erindeid,
votta arvesse t006- ja puhkepéevade efekte, jaotada aegrida nii aditiivseteks kui ka multip-
likatiivseteks osadeks ning arvutada ka mitmesugustel meetoditel pohinevaid prognoose
ja sooritada diagnostilisi teste. Vastav protseduur on olemas tarkvarapaketis SAS; tasuta
versioonid mitmesuguste operatsioonisiisteemide jaoks on saadaval internetis aadressil [5].

seasonal data
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Joonis 1.7: STL meetodil saadud majutatud turistide aegrea komponendid

Niitena aegrea osadeks jaotamisel saadavatest tulemustes on joonisel 1.7. STL kasutamise
korral saab valida mitmesuguseid parameetreid trendi ja perioodilise osa leidmise konk-
retiseerimiseks. Naiteks joonisel toodud juhul on lubatud perioodilisel komponendil ajas
kiillalt kiiresti muutuda ning seetottu on tulemus oluliselt erinev sellest, mille saaksime
muutumatut perioodilist komponenti eeldades.
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Peatukk 2

Keskmistamisel pohinevad
prognoosimeetodid. Prognoosimudeli
headuse moodikud

2.1 Silumisel pohinevad lihtsamad prognoosivotted perioo-
dilist komponenti mittesisaldavate ridade jaoks

Olgu meil antud teatud kogus aegrea vaartusi z;, t = 1,2,...,T. Sageli pakub huvi tu-
levikuvdartuste voimalikult tdpne ennustamine, kusjuures on selge, et me saame selleks
kasutada ainult teadaolevaid vadrtuseid. Tdhistame kujul Z;,|; prognoosi aja t; jaoks, mis
on saadud, kasutades teadaolevaid vairtuseid ajani kuni ajani ¢ ning kui t; = ¢t + 1, siis
kasutame prognoosi jaoks lihtsustatud tahist 2.

2.1.1 Ilma trendita aegrea prognoosimine

Kui aegrea vaartused tunduvad kdituvat téiesti juhuslikult voi kui trendist pohjustatud
muutlikuse osa on viga viike, siis on tuleviku jaoks kiillaltki moistlikuks ennustuseks eel-
nevate vaatluste keskmine (kuna soltumatute sama jaotusega juhuslike suuruste korral on
parimaks ennustuseks keskvadrtus). Kui on alust arvata, et vaatlused on téiesti juhuslikud
(st vastavad soltumatute sama jaotusega juhuslike suuruste vadrtustele), siis voib kasutada
koigi teadaolevate vaatluste keskmist:

1 t
Zt+p|t = E E Zi-
i=1

Harjutus 4 Hinnata juhul, kui Z; on séltumatud, sama jaotusega ning dispersiooniga
o2 juhuslikud suurused, téendosust, et eelneva valemiga ennustatud tulemus erineb Zjiq
tegelikust vadrtusest rohkem kui €, st leida hinnang toendosusele

t
1
P(|Zuy1 = - Zziy > ).
=1
Kui aga keskmine on ajas siiski muutuv, on parem kasutada selliseid keskmise valemeid,
mis koige varskematele vaatlustele annavad suurema kaalu, néiteks lihtsat libisevat kesk-

mist
qg—1

. 1
Zttplt = 6 Z Zt—i

=0
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voi siis eksponentsiaalset keskmistamist
Zeiplt = 241 = aze + (1 — )z,

kusjuures tavaliselt voetakse sellisel juhul 2; = z;

2.1.2 Trendiga aegrea prognoosimine. Holti meetod

Trendiga aegridade korral on viagagi loomulik néuda, et prognoosimudel annaks tépse en-
nustuse vihemalt sellistel juhtudel, kui aegrida vastab tédpselt lineaarsele funktsioonile.
Libiseva keskmise kasutamisel tekib aga prognoosiviga: kui z; = a + bt, siis libiseva kesk-
misega arvutatud prognoosi korral saame (arvestades, et kaalud summeeruvad iiheks)

q—1 q—1
ZA’t_;,_l =Y = Zwizt_i = Zw,(a +bt— bZ)
1=0 1=0

q—1
:a+bt—b2wiz’.
i=0

Vea parandamise iiheks voimaluseks on parandada prognoosi kahekordse keskmistamise
(st kasutades prognoosimisel ka keskmistatud suuruste y; keskmist) abil. Nimelt kui me
arvutame eelneval juhul

q—1 q—1
Y = Zwiyt_i =a+bt— 2waZ~i,
i=0 i=0
siis saame avaldada B
Yt — Yt
Zq 0 Wil

ning seega saame soovitud omadusega prognoosimeetodi kujul

atb-t=2y—y, b=

— Yt

Zigplt = 2yt — yt+2 o
1=0 il

Harjutus 5 Lihtsustage eelnevat avaldist lihtsa libiseva keskmise y; = % . Olzt i korral.

Uheks kiillalt populaarseks meetodiks tendiga aegridade prognoosimiseks on Holti mee-
tod, mis tugineb eksponentsiaalsel keskmistamisel. Holti meetodi korral prognoosid vas-
tavad lineaarsele funktsioonile:

Ziqplt = at + by p,

kus a; arvustamisel kasutatakse z; vaartust ning eelnevate andmete pohjal tehtud prog-
noosi:
ar=az+(l-—a)zr=az+ (1 —a)(a—1+b—1)

ning b; arvutamisel kasutatakse eelmise véddrtuse ning a muutuse keskmist:
by = B (ay —ag—1) + (1 — B)bs1.

Meetodi kasutamiseks tuleb valida voi andmete pohjal hinnata véartused aq, b1, «, 8. Sageli
valitakse a; = z1, by = 0 vo0i siis kasutada nendeks teatud arvu esimeste z vaartuste jaoks
leitud lineaarse regressioonikovera vastavaid vadrtusi. Parameetrite « ja 8 valikul voib
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kasutada naiteks mingi prognoosivea moodiku miniseerimist, naiteks voib minimiseerida
nende parameetrite jargi ennustusvigade ruutude summat

n

Z(ﬁt — Zt)Q.

t=2

Harjutus 6 Ndidata, et Holti meetod on sobivalt valitud a1 ja by korral tdapne juhul, kui
aegrida vastab lineaarsele funktsioonile.

Meetodi t6otamisega tutvumiseks vaatleme varasemast tuttavat néidet, kus aegrea vaar-
tusteks on
z=(1,0.6,1.8,1.2,0.7).

Vaatleme prognoosimise protsessi juhul a = f = 0.5 ning valime algvairtusteks a; =

o |
N
L]
To]
- V/;/e
a=0.125b=0.175* .
N S. n L a— |
a=1,b=0_
..__W:—O.l
L]
L]
Te]
0 _
o
=

Joonis 2.1: Lokaalse regressiooni abil aegrea silumine

1,b1 = 0. Olgu meie eesmergiks prognoosida Holti meetodiga jargmised 4 vaartust zg, 27, 28, 29.
Selleks peame leidma as ja bs, milleks tuleb alustada valitud a; ja by vaartustest ning litku-
da mooda aegrida kuni ajani ¢ = 5, arvutades iga ajamomendi jaoks vastavad taseme a ja
tousu b vaartused. Protsessi on graafiliselt kujutatud joonisel 2.1. Koigepealt 1ahtume ajale
t = 1 vastavast trendijoonest (sirge punktist (1,a) tousuga b), millele vastavaks prognoo-
siks 29 on 1 (joonisel kujutatud ringikesena). Ajale ¢t = 2 vastava taseme vadrtuse leiame
niitid prognoosi ja tegeliku vadrtuse keskmisena (kuna a = 0.5, siis leiame aritmeetilise
keskmise), mis on joonisel kujutatud kolmnurgaga. Uue trendi leidmiseks votame keskmise
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kaaluga /3 prognoosi leidmisel kasutatud tousust (praegu 0) ja taseme a vadrtuste muudust;
leitud uus tousukordaja by vastab sirgele, mis ldheb eelmise trendijoone ja punktiirina ku-
jutatud a véértusi ihendava sirge vahelt. Pérast as ja bo arvutamist kordame varasemat
proteduuri: leiame prognoosi 23 vastavalt trendijoonele, seejarel ag vaartuse prognoosi ja
tegeliku vaartuse keskmisena ning lopuks uue tousukordaja bz jne. Ajamomendiks ¢ = 5
oleme leidnud

as = 1.065625, b5 = —0.0640625

ning seega huvipakkuvad prognoosid leiame vastavalt sirgele, mis labib punkti (5, as) tou-
suga bs.

2.2 Holt-Wintersi meetod sesoonse aegrea prognoosimiseks

Jargnevalt eeldame, et aegreal on perioodiline komponent perioodiga s. Holt-Wintersi
meetodil on kaks versiooni soltuvalt sellest, kas me eeldame, et perioodiline komponent on
korrutatud trendiga (multiplikatiivne mudel) voi liidetud trendile (aditiivne mudel). Mole-
mal juhul hinnatakse ennustamiseks jooksvat taset a, trendikovera tousu b ning sesoonset
(perioodilist) komponenti S ning lisaks algvidrtustele tuleb valida kolm silumistegurit «, 8

ja .

2.2.1 Multiplikatiivne Holt-Wintersi meetod

Ennustusvalemiks on sel juhul

ét—l-p‘t = (CLt +pbt)5t+p—sa b= 17 RN

kus
2t
at:ozS + (1 —a)(at—1 + bi—1),
t—s
b = Blar — ar—1) + (1 — B)b—1,
z
S = ’)/l + (1 — V)Stfs-
at
Meetodi kasutamiseks alates ajamomendist t = s+ 1 tuleb ette anda ag, bs, S1, ..., Ss ning

médrata sobivad kordajad «, 3, ~. Kui kasutada erinevates tarkvarapakettides realiseeritud
Holt-Wintersi meetodit samade andmete ja automaatse parameetrivaliku korral, siis voivad
prognoosivead vihemalt alguses olla kiillaltki erinevad, kuna etteantavate parameetrite
automaatne valik on realiseeritud neis erinevalt.

2.2.2 Aditiivne Holt-Wintersi meetod
Ennustusvalemiks on sel juhul

Zpplt = (@t +pbe) + Seyp-s, p=1,...,5,
kus

ar = a(zg — Si—s) + (1 — a)(ap—1 + be—1),
by = Blar — ar—1) + (1 — B)be—1,
Se=(2 — ar) + (1 = 7)St—s-
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2.3 Prognoosimudeli headuse moodikud

Selleks, et vorrelda konkreetse andmestiku korral omavahel erinevaid prognoosimeetodeid,
arvutatakse sageli mingit tuiipi keskmist prognoosiviga tihesammuliste prognooside jaoks.
Moned tuntumatest on

e Keskmine absoluutne viga (mean absolute deviation):
1 n
MAD = E,Z |2 — 24
i=1
e Keskmine ruut viga (mean square error):

n

1
E_—* i—AZ‘Q
MS nlgl(z Zi)

e Ruutkeskmine viga:

n

1
= — L 22 =
RMSE - E (zi — %) VMSE

=1

e Keskmine suhteline viga (mean absolute presentage error):

n

1 ‘Zz — ZA:Z|
MAPE = — ; -

Moningaid tdiendavaid headuse moodikuid vaatleme hiljem. Vaadeldud néitajad annavad
aimu sellest, kui hésti vaadeldav aegrida mingi meetodi korral prognoositav voib olla. Sa-
mas tuleb aga suhtuda arvutatud nédidikutesse ettevaatusega, seda eriti juhul, kui meetodis
kasutatavad parameetrid on leitud sama andmestiku pohjal, mille korral néidikuid arvuta-
takse (parameetrite valikuga voib saavutada hea kooskola selleks kasutatava andmestikuga,
kuid see kooskola ei pruugi edasi kanduda uute andmete peale, nn. iilesobitamise efekt).
Samuti tuleb uurida eenustusvigade juhuslikkust, sest kui ennustusvead ei ole omavahel
soltumatud, siis ei ole mingit garantiid, et mineviku pohjal arvutatud néaitajad tuleviku
kohta midagi iitlevad ning kindlasti on sel juhul véimalik prognoose avastatud soltuvust
kasutades parandada. Teisalt, kui prognoosivead on soéltumatud nullkeskmisega juhusli-
kud suurused, siis mudel on vihemalt ruutkeskmise vea suhtes parim voimalik. Kahjuks
ei ole soltumatust 1opliku aegrea baasil voimalik kindlaks teha, kuid see-eest on mitmeid
teste, mis voimaldavad soltuvust kindlaks teha. Nii et praktikas ennustusmeetodi valikul
tuleb alati kontrollida, kas prognoosijaagid on soltumatud. Kui tuleb vélja, et ei ole, siis
on (vihemalt teoreetiliselt) kindlasti voimalik leida parem prognoosimeetod. Aegridade
analiilisimisel on iiheks tdhtsamaks soltuvuse tiilibiks ajaline soltuvus, mille kindlakstege-
misest tuleb juttu jargnevas peatiikis.

2.4 Aegridade mudelid

Selleks, et oleks voimalik leida veapiire arvutatud prognoosidele veapiire ning tuletada
prognoosimeetodite sobivuse kindlakstegemiseks ja omavaheliseks vordlemiseks matemaa-
tiliselt pohjendatud protseduure, tuleb teha eeldused selle kohta, kuidas juhuslikkus mo-
jutab vaadeldava aegrea vidrtuseid, st tuleb kirjeldada aegrea mudel. Selleks, et mine-
vikuvaartuste pohjal oleks voimalik midagi 6elda ka tulevikus tekkivate juhuslike héiri-
tuste kohta, peab neil héiritustel olema korduv iseloom (ideaalis on nad séltumatud ja
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sama jaotusega juhuslikud suurused). Jiargnevas eeldame, et juhuslikkus aegrea vidrtus-
te z1,..., 2z, tekkimisel on tulenenud (enamasti sdltumatute ja sama jaotusega) juhuslike
suuruste Aq, ..., A, vidrtustest a1, ..., a,. Seega me eeldame, et andmete tekkimise taga
on juhuslik protess (Z;), kus Z; voib soltuda varasematest Z;, i < t vidrtustest ning kuni
ajani t tekkivatest juhuslikest suurustest A;, i < t; meie ndeme andmetena selle protsessi
iihte voimalikku kditumist, mis vastab juhuslike suuruste A; viartustele a;.

Definitsioon 2 Aegrea mudelit nimetatakse olekuruumi mudeliks, kui protsess Zy esitub
kujul

Zt = w(Xt_l) + T(Xt_l)At,
Xi = f(Xi—1) + 9(Xi—1) Ay,

kus (A¢) in soltumatud, sama jaotusega ja tsentreeritud juhuslikud suurused ning X; =
(X1ts..., Ximt) on olekuvektor. Olekuruumi mudelit nimetatakse lineaarseks, kui funkt-
sionid w() ja f() on lineaarsed funktsioonid, g() on konstantne vektor ja r(Xi—1) = 1.

Markus 3 Felenvalt defineeritud olekuruumimudel on tuntud kui dhe veaallikaga mudel
(Single Source of Error model). Laialdaselt on kasutatav ka mitme veaallikaga mudel (Mul-
tiple Source of Error model), mille korral igal ajasammul maojutab nii olekuruumi kui ka
jargmist vaatlust mitmemaootmelise juhusliku vektori A wvddrtus, g() ja r() on sel juhul
sobivate mootmetega maatriksid.

Harjutus 7 Leida Holti meetodi esitus olekuruumsi mudelina eeldusel, et tihesammulise
Prognoosi viga on Ay:
Zt = at—1 + bt—l + At.

Definitsioon 4 Aegrea mudelit nimetatakse ARIMA tiipi mudeliks, kui Z; avaldub [op-
likw arvu varasemate Z;, v < t ja lopliku arvu soltumatute sama jaotusega hdirituste
A;, 1 <t lineaarkombinatsioonina kujul

p q
Zi=do+ > ¢iZii+ A+ Y A

=1 =1

Harjutus 8 Ndidata, et ARIMA tidipi mudel esitub lineaarse olekuruumi mudelina.

Osutub aga, et lineaarne olekuruumi mudel esitub samuti ARIMA tiilipi mudeli kujul.
Kaesolevas kursuses keskendume pohiliselt lineaarsetele mudelitele ning lahtume peamiselt
ARIMA tiitipi esitlusest.
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Peatukk 3

Statsionaarsed aegread

3.1 Statsionaarsuse moiste. Autokorrelatsioonifunktsioon

Selleks, et teadaolevate aegrea vaartuste pohjal saaks tulevikku ennustada ja ka prog-
noosivigu arvutada, peab tegema mingid eeldused, mis garanteerivad tulevikukiitumise ja
tulevikus tekkivate juhuslikke héiritusi iseloomustava info sisalduvuse mineviku andmetes.
Uheks aegridade teoorias sagili kasutatavaks eelduseks on nn statsionaarsuse noue.

Definitsioon 5 Juhuslikku protsessi (Zi)icm nimetatakse (tugevalt) statsionaarseks, kui
iga taisarvude komplektity, .. ., t,, ja iga tdisarvu p korral on juhuslikud vektorid (Zy,, ..., Z,,)
ning (Zg,4ps - - - > Zt,y+p) Sama jaotusega. Kui iga tdisarvude komplektity, ..., ty, ja iga tdis-
arvu p korral on juhuslike vektorite (Zy,, ..., Zy,,) ning (Zg4ps-- - Zi+p) KOtk kuni k
jarku momendid vordsed, siis nimetatakse protsessi Zy k-jirku morgalt statsionaarseks.

Statsionaarse protsessi niiteks on protsess, mis koosneb soltumatutest sama jaotusega
juhuslikest suurustest. Olgu meil tegemist teist jirku norgalt statsionaarse protsessiga,
siis juhul m =1 jareldub definitsioonist, et

E(Z;) = p, DZy = o* Vt

mingite konstantide p ja o korral. Samuti jéreldub, et suuruste Z; ja Z;, kovariatsioon
ja korrelatsioon (tdpsemalt autokorrelatsioon ja autokorrelatsioon, kuna tegemist on sama
protsessi eri ajamomentidele vastavate juhuslike suuruste kovaratsiooni ja korrelatsiooniga)
soltub ainult ajamomentide vahest p, vaartuste hulkasid

7,
Yo = €oV(Zy, Ziyp), pp = cor(Zy, Ziyp) = 0%37 pEZL

nimetatakse vastavalt protsessiZ; autokovariatsioonifunktsiooniks ja autokorrelatsiooni-
funktsiooniks.

Harjutus 9 Ndidata, et soltumatute sama jaotusega juhuslike suuruste €; abil defineeritud
protsess
Zi=¢€1;, Ly =L 1+¢&, t>1

et ole statsionaarne.

Harjutus 10 (* lisapunktide saamiseks esitada 17.10.2011) Ndiidata, et soltumatute stan-

dardse normaaljaotusega juhuslike suuruste e abil defineeritud protsess
1 1
Zy = ¢t + 161

on statsionaarne.
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Kui meil on teada statsionaarsele protsessile vastavad aegrea vadrtused ajamomentidel
t=1,2,..., N, siis arvutatakse empiiriliste autokovariatsiooni ja autokorrelatsioonifunkt-
siooni vaartused tavaliselt valemitega

=

I
=]~
M) =

Zt,
t=1
1 P
o= 2~ m)z4p —p), p=0,1,...,N -1,
t=1
_%
Ty = .

Harjutus 11 (¥ lisapunktide saamiseks esitada 17.10.2011) Ndiidata, et kui statsionaarse
protsessi korral kehtib limy, ,~ |y,| = 0, stis

P(lp—plze) — 0

N—o0

tga € > 0 korral.

Téahtis on aru saada, et empiirilisi autokorrelatsioone ja autokovaratsioone saame me ar-
vutada suvaliste andmeridade pohjal, kuid mittestatsionaarse rea korral ei iseloomusta
saadavad numbrid mingite konkreetsete juhslike suuruste korrelatsioone ja kovaratsioone,
seega nende moistlik télgendamine on véga raske.

Kui meil on tegemist scltumatutest sama jaotusega juhuslikest suurustest koosneva prot-
sessiga, siis koik teoreetilised korrelatsioonid p,, p > 0 on vordsed nulliga, kuid protsessile
vastava lopliku pikkusega aegrea pohjal arvutatud hinnangud 7,, p > 1 on iildiselt nul-
list erinevad. Seetottu on véiga oluline teada mingeid kriteeriume, mille pohjal otsustada
konkreetse aegrea empiirilise autokorrelatsioonifunktsiooni abil, kas aegrida voib vastata
téiesti juhuslikule protsessile. Selleks tutvume kahe tulemusega.

Esiteks, on teada (vt [6]), et soltumatutele sama jaotusega juhuslikele suurustele vasta-
va aegrea korral on suurused r,, p > 1 astimptootiliselt (vaatluste arvu N kasvades)
normaaljaotusega, kusjuures keskviirtus laheneb suurusele % ja standardhélve suurusele
ﬁ. Seega piisavalt suure N korral peaks iga konkreetse p > 0 korral jadma toendosusega

. 1 2 1 2 . .. ee x1s
0.95 vahemikku [§ — TN N T ﬁ] Tavaliselt statistikatarkvaras on empiirilise autokor-
relatsioonifunktsiooni graafilisel esitamisel vastavad piirid ka joonisel vélja toodud.
Eelnev tulemus kehtib iga iiksiku autokorrelatsioonikordaja suhtes. Samas arvutatakse
neid kordajaid tavaliselt mitu ning naiteks 20 kordaja arvutamisel on loomulik, et keskmi-
selt iihe kordaja viartus satub véljapoole 95% veapiire. Naiteks joonisel 3.1 on kujutatud
soltumatute juhuslike suuruste vaartuste rea pohjal arvutatud autokorrelatsioonikordajad
ning nendest ry vaidrtus on valjaspool 95% veapiire. Seetottu oleks hea teada, kas terve vél-
jaarvutatud autokorrelatsioonikordajate komplekt voib vastata soltumatutele juhuslikele
suurustele. Selleks sobib néiteks Ljung-Box test, mis pohineb suurusel
m 7,2
= N(N +2 P
Q=N(N+2)) —F 5

p=1

kus m néitab, kui mitmest esinevast autokorrelatsioonist koosnevat rithma testitakse. On
teada, et see statistik on astimptootiliselt m vabadusastmega x? jaotusega ning selle poh-
jals saab hinnata toenéosust, et vaadeldavad kordajad vastavad soltumatutele juhuslikele
suurustele.
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-0.2 0.2 06 1.0

Joonis 3.1: Saja soltumatu normaaljaotusega juhusliku suuruse vaédrtuste pohjal arvutatud
autokorrelatsioonid

3.2 Periodogramm ja spekter

Signaaliteoorias on tavaks esitada signaale erinevate sagedustega siinuste ja koosinuste
(nn harmoonikute) summana. Eeldame jargnevalt lihtsuse mottes, et vaatluste arv N on
paaris, siis me saame aegrea vaartused z; esitada kujul

N

zr = ap + 22: (a cos(—th) +b sin(2mt))
t = ao i i )
P N N

kus kordajad on arvutatud jargmiselt:

1 N
aOZN;zh

N . N .
a; = ;;ztcos(%i;t), b; = ;;ztsin(%]\;t), 1= 1,...,% -1,
anjy = %Z(—l)tzt, bys2 = 0.
Periodogrammi vaartusteks on sel juhul
I(i/N) = E(a? +02),i=1,..., g —1, I(l) = Nay/s.

2 2

Kui a; ja b; definitsioonis asendada suurus ﬁ arvuga f, 0 < f < %, siis aegrea spektriks
nimetatakse suurust

I(f) = g(a%b}).

Spektri suur vadrtus mingi f korral niitab, et andmestikus on oluliselt esindatud perioo-
diline komponent parioodiga % Samas, kui andmed vastavad soltumatutele juhuslikele
suurustele, siis on tegemist nn valge miiraga ning spektris peaks koik sagedused olema
isna vordselt esitatud. Nende omaduste baasil on loodud mitmeid teste perioodilise kom-

ponendi olemasolu kindlakstegemiseks ning samuti juhuslikkuse kindlakstegemiseks.

Vaatleme néitena joonisel 3.2 toodud aegrida. Visuaalselt on selle kditumise kohta raske
midagi 6elda. Leides aga periodogrammi viartused ning kujutades neid graafiliselt, saame
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Joonis 3.2: Aegrida spektri kasutamise néite jaoks

300
|

spekter

0 100
| |
——

I I I I I I
0.0 0.1 0.2 0.3 0.4 0.5

sagedus

Joonis 3.3: Néiteaegrea spekter

joonisel 3.3 kujutatud graafiku. Siit paistab, et andmetes on olulisel mééral esindatud kaks
sagedust (iiks alla 0.1 ja teine umbes 0.33). Kui uurida andmeid tédpsemalt, siis vastavad
sagedused on % ja % Kui tegemist on néiteks igakuiste andmetega, siis see vastab aastasele
perioodile ja kvartaalsele (kolmekuulisele) perioodile. Tegelikkuses oli aga vastav aegrida

genereeritud kujul
27t

12
kus a; vastasid standardse normaaljaotusega juhuslike suuruste vdartustele. Seega voib
Oelda, et spektri uurimisega oli voimalik tuvastada andmetes peituva signaali omadusi.

2mt
zt:5+3sin(%)—2cos( ) + ay,

Kaéesolevas kursuses me aga spektri ja periodogrammi kasutamist aegrea mudelite sobivuse
kindlakstegemiseks ei kasuta.
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Peatukk 4

Lineaarsed mudelid uhemootmelise
aegrea jaoks

Kaesolevas peatiikis vaatleme selliseid aegrea mudeleid, kus aegrea hetkevaartus avaldub
lineaarse kombinatsioonina selle minevikuvéaartustest ning juhusliku héirituse hetkevaartu-
sest ja minevikuvéartustest. Selliseid mudeleid nimetatakse lineaarseteks mudeliteks. Kuna
1opliku hulga andmete pohjal on voimalik leida ainult 16plik arv mudeli parameetreid, siis
pakuvad erilist huvi sellised protsessid, mis on kirjeldatavad lopliku arvu parameetrite
abil.

4.1 TUldine lineaarne protsess, selle esitused, statsionaarsus
ja pooratavus

On kiillalt loomulik, et enamiku huvipakkuvate juhuslike protsesside korral hetkeviartus
soltuv vaga vahe selle protsessi kauge mineviku vaartustest ning seega voib 6elda, et hetke-
vaartus on sisuliselt maaratud ainult juhuslikest héiritustest, mis minevikus on toimunud.
Matemaatiliselt on koige lihtsam uurida selliseid protsesse, kus soltuvus héiritustest on
lineaarne. Anname sellele kirjeldusele matemaatiliselt korrektse definitsiooni.

Definitsioon 6 Uldiseks lineaarseks protsessiks nimetatakse protsesse, mis on esitatavad
kujul

[ee]
Zi=Zi—p=A+ Y Vil (4.1)
i=1
kus 1; on mingid reaalarvud, p on suuruste Z; keskvddrtus ning (A¢)iem, on vihemalt teist
Jdrku statsionaarne tsentreeritud ning mittekorreleeritud vadrtustega protsess.

Eelnevat definitsiooni motoveerib jargmine tulemus, mida nimetatakse Woldi lahutuseks.

Teoreem 7 (Woldi lahutus, vt. [7]) Iga statsionaarne protsess Z; on esitatav kugjul
o
Zy = Z ait—i + N,
=0

kus & on mittekorreleeritud protsess ming 1 on deterministlik protsess.

Nii et tildised lineaarsed protsessid on sellised statsionaarsed protsessid, mille Woldi lah-
tutuses on suurused & soltumatud (voi vihemalt teist jarku statsionaarsed) ja mille de-
terministlik osa on konstatne.
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Ké&esolevas peatiikis eeldame, et A; on soltumatud ja sama jaotusega juhuslikud suurused
keskvaartusega 0 ja standardhélbega 4. Selleks, et toodud 16pmatu summa defineeriks
korrektselt juhusliku suuruse, peavad kordajad ; rahuldama mingeid tingimusi. Tépse-
malt, selleks piisab (vt [7], Teoreem 7.6.1), kui kehtib

o
Z $7 < .
i=1

Harjutus 12 (¥ lisapunktide saamiseks esitada kuni 24.10.2011) Ndiidata, et kui protsess
Ay on nullkeskmisega (tsentreeritud), konstantse dispersiooniga ning mittekorreleeritud (st
E(A;Ai1p) = 0Vp #0), siis eelneva tingimuse tdidetuse korral on protsess Z; norgalt teist
jarku statsionaarne protsess.

Aegridade mudelite esitamisel ja uurimisel on kasulik tuua sisse moned téhistused. Esiteks,
defineerime tagasi- ja edasinihke operaatorid

BZ, = Zy_1, FZ, = Zy.1 VL.

Tehniline markus. Matemaatiliselt korrektne protseduur on jirgmine: vaatleme protsessi-
de ruumi (Z;)iez normiga ||(Zi)iez|| = supyey EZE. Operaator B teisendab siis iihe selle
ruumi elemendi (protsessi) teiseks (kusjuures tegelikut oleks oige kirjutada (BZ)y = Z—1,
st B teisendab protsessi Z uueks protsssiks, mille t-s element on esialgse protsessi vadrtus
kohal t — 1) ning ||B]| = 1.

Paneme téhele, et F = B! ning B/ Z;, = Z;—j. Seega iildine lineaarne protsess on esitatav
kujul

o
Zy =1+ ¢:B)A.
i=1
Edaspidises on meil kasulik defineerida funktsioonid operaatorist B.

Definitsioon 8 Olgu f mingi reaalarvuliste vddrtustega reaalmuutuja funktsioon, mis on
esitatav punkti 0 imbruses koonduva astmereana, st

[e.e]

fa) =3 cal, J2] <6

=0

mingi § > 0. Olgu M mingi pidev lineaarne operaator mingil Banachi ruumil Y . Siis f(M)
tahistab (formaalselt) operaatorit

FOM) = "eM.
=0

Lihtne on néidata, et kui ||M|| < 4, siis eelnevalt toodud formaalne definitsioon omab
motet, st see summa koondub mingiks ruumil Y tegutsevaks pidevaks lineaarseks operaa-
toriks.

Defineerime funktsiooni -
Y(w) =14y g,
i=1

siis eelneva definitsiooni kohaselt voime iildise lineaarse protsessi kirjutada kujul
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Siin tekib huvitav kiisimus: millal me saame protsessi Z véaértusi teades teha kindlaks,
millised héiritused A siisteemi on saabunud. Téapsemalt, defineerime mainitud omaduse
matemaatiliselt.

Definitsioon 9 Uldist lineaarset protsessi (4.1) nimetatakse pooratavaks, kui selle prot-
sesst saab esitada autoregressiivsel kujul

e.)
Zy = Zﬂ'iZt—i + As.
i=1
Osutub, et péoratavuse jaoks saab anda iisna lihtsa piisava tingimuse.

Lemma 10 Kui 1(x) astmerida koondub |z| < 1 korral ning funktsioon m(x) = on

1
Y(x)
esitatav astmereana, mis samuti koondub |x| < 1 korral, siis on dldine lineaarne protsess
(4.1) pooratav ning kehtib vordus

W(B)Zt = At,

kus Z; on protsess (4.1) .

Olgu funktsiooni m(x) astmereaks
o
m(x)=1-— mei,
i=1
siis pooratav iildine lineaarne protsess on esitatav ka kujul
oo
Zt = Zﬂ—iZt—i + At.

i=1
Naide 11 Vaatleme protsessi
Zy=Ar — h A,
kus |01| < 1. Sel juhul geomeetrilise rea summa valemsi kohaselt

[e.9]

1 o
= = 02", < .
7T($) 1_01:[; ; 1L |$| |01’
Seega kehtib vordus
oo
Zy=— Z 007 + Ay
i=1
Kui nditeks 61 = —0.2, siis kahanevad suure nihkega Z vddrtuste kordajad viga kiiresti

nulli ning seetottu on loplike andmemehtude juures praktika seisukohalt peaaegu véimatu
teha kindlaks, kas andmed vastavad mudelile

Zt = At + O.2At,1

vo1 hoopis mudelile
Zt == 0.2Zt,1 — O.O4Zt72 + At.

Sellises situatsioonis eelistame tulevikus kindlasti esimest mudelit, sest selle sobitamisel
andmetega tuleb leida ainult iks tundmatu parameeter (01) teise mudeli kahe parameetri
asemel.

Harjutus 13 Naiidata, et tldise lineaarse protsessi autokovaratsioonid on antud valemiga

o
=05 > itk

Jj=0
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4.1.1 Lopliku arvu parameetritega maaratud lineaarsete protsesside
klassid

Praktiliseks kasutamiseks on viiga oluline, et aegrea mudelis oleks 1oplik (ja voimalikult
vaike) arv parameetreid, mida andmete pohjal on vaja hinnata. Seetottu pakuvad erilist
huvi jargmised protsesside klassid.

Definitsioon 12 FEeldame, et juhuslikud suurused Ay, t € Z on tsentreeritud soltumatud
sama jaotusega juhuslikud suurused. Olgu p mingi reaalarv. Kasutame tihistust Zy = Zy —
w. Lopliku arvu kordajatega lineaarsete protsesside klassid on jdrgmised:

e Jirguga p autoregressiivseteks protsessideks ehk AR(p) protsessideks nimetatakse
protsesse kujul

P
Zy = Z GiZt—i + At
i=1
Kui defineerida funktsioon
p
$lw) = 1= ¢,
i=1
siis see protsess on esitatav kujul

d(B)Z; = Ay.

o Jirku q liitkuva keskmisega protsessideks ehk MA(q) protsessideks nimetatakse prot-
sesse kujul

q
7, = Ay — Z 0;Ay_;.
=1

Kui defineerida funktsioon

O(x)=1- ZQimz,
i=1
si1s see protsess on esitatav kujul
Z; = 0(B) Aq

o ARMA (p,q) protsessideks nimetatakse protsesse kujul
3 p 3 q
Z=) ¢iZii+ A=Y A
i=1 i=1

Eelnevaid tihiseid kasutades voib sellise protsessi kirja panna kujul

Saab niidata, et kui eelnevalt defineeritud protsessid on statsionaarsed, siis definitsioonis
kasutatud parameeter p on juhuslike suuruste Z; keskviartuseks.

Edaspidi uurime nende protsesside omadusi ldhemalt.
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4.1.2 QOsaautokorrelatsioonid

Lisaks autokorrelatsioonidele on etteantud aegreale sobiva mudeli valikul suureks abiks
osaautokorrelatsioonid. Defineerime selle moiste. Selleks aga on eelnevalt vaja veel iihte
moistet.

Definitsioon 13 Olgu X ning Y1,...,Y; ningid lopliku dispersiooniga juhuslikud suuru-
sed. Suuruse X projektsiooniks suurustega Y1, ..., Yy mddratud alamruumile nimetatakse
suurust kujul

mille korral BE((X — X)?) on minimaalne. Operaatorit P : X — X nimetatakse vihim-
ruutude projektoriks suurustega Y1, ..., Yy mddratud alamruumile.

Eelnev definitsioon kasutab Hilberti ruumide teooriast périnevat teadmist, et selline pro-
jektsioon on iiheselt defineeritud. Juhuslike suuruste kontekstis vastab eelnevalt definee-
ritud projektor juhusliku suuruse X parimale suuruste Y7,...,Y}: lineaarkombinatsiooni
kujul avalduvale prognoosile.

Harjutus 14 Ndidata, et kui X,Y1,...,Y: on keskvidrtusega 0 ja X on suuruse X vd-

himruutude projektsioon suurutega Yi,...,Yr mdadratud ruumile, sits E(X) = 0 ning

cov(X — X,Y;) = 0 Vi.

Paneme téhele, et eelneva harjutuse pohjal saab suuruse X projektsiooni leida kordajate
¢, t=1,...,k leidmise teel vorrandisiisteemist

k
chcov(YZ',Y}) =cov(Y;, X), i=1,... k.
j=1

Juhul, kui sellel siisteemil on mitu lahendit, siis voib votta suvalise nendest, kuna saab
néidata, et X = Zle ¢;Y; on sel juhul koikide lahendite korral sama.

Definitsioon 14 Juhuslike suuruste X1 ja Xo osakorrelatsiooniks parast suuruste Y1, ..., Yy
moju eemaldamist nimetatakse suuruste X1 — PX1 ja Xo — PXo wahelist korrelatsiooni,
kus P on vdhimruutude projektor suurustega Y1, ..., Yy mdadratud alamruumile.

Tuletame meelde, et statsionaarse protsessi Z korral tihistab Z vastavat tsentreeritud
protsessi, st Z, = Z; — EZ; = Z; — p.

Definitsioon 15 Statsionaarse protsessi Z k-ndat jirku osaautokorrelatsioonikordajaks
nimetatakse suuruste Zy ja Zy—y osakorrelatsioont parast suuruste Zi—1, ..., Zi_(x—1) MOju
eemaldamist.

Definitsioonis jareldub, et protsessi Z esimest jarku osaautokorrelatsioon on vordne suu-
rusega pi.

Harjutus 15 Leida statsionaarse protsessi teist jirku osakorrelatsiooni avaldis autokor-
relatsioonide kaudu.
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4.2 Autoregressiivsed protsessid

Uurime ldhemalt protsessi
~ p ~
Zi=Y ¢iZii+ A, teT (4.2)
i=1

omadusi. Nagu ndeme, on selle protsessi kditumine seutud poliinoomi
p .
olx)=1-— Zd)mz
i=1
nullkohtadega.

4.2.1 Autokorrelatsioonifunktsioon ja statsionaarsus

Oletame koigepealt, et protsess Z on statsionaarne. Korrutades vorrandi (4.2) molemaid
pooli suurusega Z;_j ning vottes keskvairtuse, saame

P
T = qumc—i, k>0
=1
kust pérast suurusega 7y ldbijagamist saame vorduse

p
Pk = Zdhﬂk—i, k> 0.
i=1

See tdhendab, et autokorrelatsioonikordajad rahuldavad p-ndat jarku lineaarset rekur-
rentset vorrandit. Selliste vorrandite kohta on teada, et mingite kordajate ¢;,i = 1,...,p

kehtib »
pr =Y cidik,
i=1

kus jaldad d;x, k = 1,2,... on defineeritud funktsiooni ¢(z) juurte abil jargmiselt: kui
x; on funktsiooni ¢ m-kordne nullkoht (komplekstasandil), siis m jadadest c;; on kujul
kefc;k , 0 < ¢ <m—1. Sellest esitusest jareldub, et AR(p) protsesside korral on 16pmatult
paljud suurustest p; nullist erinevad. Lisaks sellele, autokorrelatsioonikordajad p1, ..., pp
ei ole suvalised, vaid rahuldavad nn. Yule-Walker vorrandeid

p1= Q1+ P2p1 + ... + Pppp_1,
p2 = ¢1p1+ P2+ ...+ Pppp—2,

S Ot = W
= D = D

= e

(
(
(
Pp = P1pp—1+ P2pp—2+ ...+ Pp (

mistottu on kordajad ci,. .., ¢, liheselt madratud. Samas autokorrelatsioonikordajad pea-
vad definitsiooni kohaselt olema vahemikus [—1, 1], mistottu statsionaarsuse eeldus ei saa
olla tdidetud, kui moni poliinoomi ¢ nullkohtadest on mooduli poolest iihest viiksem ja
vastav kordaja autokorrelatsioonide esituses nullkohtade kaudu on nullist erinev. Kui aga
poliinoomi ¢ koik nullkohad komplekstasandil on mooduli poolest suuremad kui 1, siis on
P(x) = % esitatav ithikringis koonduva astmereana ning seega on ka operaator ¢(B)
pOoOratav ja vastav protsess statsionaarne. Selle véite kehtivuses voib veenduda mitmel
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moel. Uheks voimaluseks on kasutada kompleksmuutuja funktsioonide teooriat: Cauchy
valemi kohaselt kehtib
1 ¥(§)

2 figer €2

d¢, |z| <,

kus r on iihest suurem arv, mille korral koik ¢ nullkohad jadvad valjapoole kompleksta-
sandi ringri raadiusega r ning integreerimine toimub iile komplestasandi {ihikringi. Siit
valemist jireldub (kuidas ?), et [1/*(0)| < const. k!r %, mistottu vastav Taylory rida koon-
dub ringis raadiusega r, seega ka iihikringis. Teiseks voimaluseks on esitada v nullkohtade
abil médratud osamurdude summana:

k m;
_ Cij
i=1 j=1
kus z1,..., 2z on polinoomi ¢ nullkohad (komplekstasandil) ning my, ..., m; on nende

nullkohtade kordsused. Kuna

11 d 1
(2, —z)  (j—1)'dxi=t \z; — 2

B 1 d 1 B 1 d S
T (- Dldai (1 _ xglx) T (- Dldai1 (Z”’“i . )

(=0

—l—j
IR

> 0
_Z(j—l)!(ff—jﬂ)

=0

siis koikidele osamurdudele vastavad astmeread koonduvad iihikringis ning seega ka ()
astmerida (kui koonduvate astmeridade summa) koondub iihikringis.

Viimast ldhenemist saab kasutada ka autoregressiivsel kujul oleva protsessi esitamisel {ildi-
se lineaarse protsessina. Selleks

1. Leiame funktsiooni ¢ (x) = % esituse osamurdudena (st leiame vastavad kordajad

Cij-
2. Esitame iga liidetava astmerea kujul.

3. Leiame astmeridade summa. Selle summa 2 kordaja on v, vaadeldava rea esituses
iildise lineaarse protsessina.

Samas, kui meil ei ole vaja leida kordajate v, tildkuju, vaid ainult fikseeritud arvu esimeste
kordajate vadrtusi, siis voib leida need ka seosest

S)(1+ ) ') =1,
=1

kirjutades vilja vasaku poole erinevate x astmete kordajad ning vordsustedes parema pool
(st praegusel juhul konstantse poliinoomi 1) kordajatega. Néiteks  kordajast saame

_¢1 +¢1 == 07

22 kordajast saame
—¢2 — G191 + P2 =0

jne. Neid seoseid rakendades saab lihtsalt leida suvalise lopliku arvu kordajaid.
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Harjutus 16 Leida protsessi
Zy=1.2Z;1 —0.35Z;_0+ Ay

esitus tuldise lineaarse protsessi kugul (st, leida suurused 1;, 1 =1,2,...). Kontrollimiseks
leida esimesed neli kordajat ka alternatiivsel teel (korrutise ¢p(x)y(x) muutuja x astmete
abil saadud seoseid kasutades).

Juht, kus moni funktsiooni ¢ nullkohtadest on mooduli poolest vordne iihega, vajab eraldi
uurimist, kuid selle késitlemine on kéesoleva kursuse mahtu arvestades ebaotstarbekas.
Kaéesolevas kursuses kasutame teadmist, et statsionaaruse jaoks on tarvilik ja piisav, et
funktsiooni ¢ nullkohad on koik mooduli poolest iihest suuremad.

4.2.2 QOsaautokorrelatsioonid

AR(p) protsesside korral on sobiva mudeli kindlakstegemisel suur kasu jargmisest tulemu-
sest.

Lemma 16 Olgu Z statsionaarne AR(p) protsess. Siis tema osaautokorrelatsioonikorda-
jad on vordsed nulliga alates jdrgust p + 1.

Toestus. Olgu k > p. Olgu P vihimruutude projektor suurustega Zi_1,. .., Zy_p1 miira-
tud alamruumile. Kuna A; on soltumatu suurustest Z;_1,..., Z;_gy1, siis on lihtne veen-
duda, et Ay = Z; — PZ;. Selleks néitame, et

p
PZ = ¢itildeZ; ;.
=1

P definitsiooni kohaselt peame me selleks néitama, et

k1 P
E[(Z - Z ciZi—i)?] > E[(Z; — Z $iZi-i)*]
i—1

i=1
koikide kordajate c1,ca, ..., cp_1 korral.

Téahistame kirjapaneku lihtsusamise huvides

k—1 D
X= aZi), Y =) ¢:iZ
i—1 =1

siis kasutades suuruse A; tsentreeritust ning soltumatust suurustest X ja Y saame
E[(Z;—X)% = E[(A4~Y—X)? = E[A]]2E[A(X+Y)|+E[(X+Y)? = E[A}]+E[(X+Y)? > E[A].

Samas

E[(Z—Y)’] = E[A]],
seetottu on suurus Y téepoolest vordne suuruse Z; projektsiooniks vahimruutude mottes.

Kasutades jéllegi suuruse A; soltumatust varasematest protsessi Z vaartustest saame niitid
COVZt — PZt, thk — PZt,k) = COV(At, thk — PZt,k) = 0

Osaautokorrelatsioonikordaja definitsiooni kohaselt on seega protsessi Z k-ndat jarku osa-
autokorrelatsioonikordaja vordne nulliga.[]
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Osaautokorrelatsioonikordaja definitsioonist lahtuvalt on voimalik nédidata, et k-ndat jarku
osaautokorrelatsioonikordaja ¢y on teadaolevate autokorrelatsioonide pohjal leitav Yule-
Walkeri vorrandisiisteemi

Okl + p1Ok2 + ..+ Pr—1Pkk = P1,
P1Pk1 + P2 + ...+ pr_2@rr = p2,

Pk—1Pk1 + Pr—2Pk2 + ... + Pk = P,

lahendamise teel. Neid seoseid voib kasutada osaautokorrelatsioonide hindamiseks, asenda-
des vorrandites teoreetilised autokorrelatsioonid nende hinnangutega. Praktikas on samuti
kasulik teadmine (vt [8], valem 3.2.35), et AR(p) protsessi korral on osaautokorrelatsioo-
nikordajate hinnangud alates jargust k = p + 1 ligikaudu soltumatud, keskvaartusega 0
ning standardhélbega ﬁ

Harjutus 17 (* lisapunktide saamiseks esitada 13.11.2011) Ndidata osaautokorrelatsioo-
ni definitsioonist lihtudes, et k-ndat jarku osaautokorrelatsioon on avaldub suurusena ¢y
Yule- Walker vorrandites.

4.2.3 AR(1) tiilipi mudelid

Vaatleme mudeleid kujul . 5
Zy = 1211 + Ay

Kuna selle mudeli korral ¢(x) = 1 — ¢; 2, mille ainsaks nullkohaks on 1 = ﬁ, siis statsio-
naarsuse jaoks on vajalik tingimuse |¢1| < 1 tdidetus. Kuna autokorrelatsioonid rahuldavad
eelneva pohjal seost

Pk = ¢lpk—la k> 07
siis

=0, k=1,2,....
Seega kahanevad autokorrelatsoonide absoluutvaartused eksponentsiaalselt, kusjuures ju-
hul ¢; > 0 on nad sama méirgiga ning juhul ¢; < 0 vahelduvate mérkidega. Osaautokor-
relatsioonid on alates jargust 2 vordsed nulliga ning esimest jarku osaautokorrelatsioon
on (nagu alati) vordne p;-ga. Niited vastavate aegridade kditumisest koos empiiriliste

autokorrelatsioonide ja empiiriliste osaautokorrelatsioonidega juhul ¢1 = 0.8 ja ¢1 = —0.8
on toodud vastavalt joonistel 4.1 ja 4.2.

4.2.4 AR(2) tiitipi mudelid

Vaatleme mudeleid kujul ) ) 3
Zt = 01211+ $2 2o + Ay

Selleks, et funktsiooni ¢(z) = 1 — ¢12 — ¢2x? nullkohad oleks viljaspool komplekstasandi
ithikringi, peavad kordajad ¢ ja ¢o rahuldama geomeetriliselt kiillaltki lihtsalt kirjelda-
tavaid tingimusi.
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Joonis 4.1: AR(1) tiilipi aegrea 200 vaartust juhul ¢; = 0.8 ning autokorrelatsioonide ja
osaautokorrelatsioonide hinnangud

Harjutus 18 (¥ lisapunktide saamiseks esitada 13.11.2011) Ndidata, et statsionaarsuse
tingimus on samavaarne vorratustega

o1+ 92 <1,
P2 — 91 <1,
¢2>_17

st punkti (¢1, ¢2) peab paiknema tippudega (0,1), (-2,-1) ja (2,-1) mddratud kolmnurgas.
Autokorrelatsioonikordajad saab arvutada vastavalt rekurrentsele seosele

Pk = P1Ppk—1 + P2pk—2, k > 1,

lahtudes vaartustest pg = 1 ja p1 = 1;’5;2. Viimane tuleneb Yule-Walkeri esimesest vorran-
dist:
p1 = ¢1+ 2p1.
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Joonis 4.2: AR(1) tiilipi aegrea 200 véértust juhul ¢; = —0.8 ning autokorrelatsioonide ja
osaautokorrelatsioonide hinnangud

Lahendades Yule-Walkeri vorrandid ¢; ja ¢o suhtes, saame

o= PLA=p2) o pr i
1—p 7 1—p2’
mille abil on voimalik empiirilistest autokorrelatsioonidest 1 ja ro arvutada kordajate ¢
ja ¢2 hinnangud.

Teoreetilised osaautokorrelatsioonid on nullid alates jargust 3, esimest jarku osaautokorre-
latsion ¢1; on vordne pi-ga ning teist jarku osaautokorrelatsioon on vordne kordajaga ¢o
(miks?), seega on voimalik kordajaid hinnata ka oasautokorrelatsioonide hinnangute abil.
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4.3 Liikuva keskmise protsessid

Jargnevas vaatleme MA(q) protsesside
) q
Zi=A1 =) 0 A
i=1

omadusi. Varasemast teame, et sellised protsessid (soltumatute ja sama jaotusega juhuslike
suuruste A; korral) on alati statsionaarsed.
4.3.1 Autokorrelatsioonid ja pooratavuse tingimused
Arvestades, et iildise lineaarse protsessi korral

o0

=03 > itk

§=0

ning et MA(q) protsessi korral

saame, et MA(q) protsessi autokorrelatsioonikordajad avalduvad kujul

P —0y, + le‘:{c 0:0;+1
1+37 67

,k=1,...,q

ning pr = 0, £ > ¢. Nagu me ka hiljem ndeme, on M A(q) protsesside korral voima-
lik, et tépselt samad autokorrelatsioonid (ja seega ka osaautokorrelatsioonid) vastavad
erinevatele parameetritele 01, ...,60,. Osutub aga, et ainult iiks parameetrite  valik vas-
tab pooratavale protsessile ning aegrea vaatluste pohjal saame parima tuleviku prognoosi,
kasutades pooratavat mudelit.

Varasema pohjal teame, et poératavuseks on vajalik, et poliinoomi 6(z) = 1 — > 4_, 6,2
nullkohad oleks koik mooduli poolest {ihest suuremad, kuna sel juhul on funktsioon 7(x) =
ﬁ avaldatav astmereana, mis koondub |z| < 1 korral.

4.3.2 MA(1) protsessi omadused.

Vaatleme protsessi kujul 3
Zy= Ay — 014 1.

Selle protsessi korral

01
P1 = —m
ning pr = 0, k > 1. Kuna me saame p; avaldise kirjutada (juhul p; # 0) ka kujul
1
P1 = _ﬁv

siis on selge, et tapselt samasugused autokorrelatsioonid on ka protsessil

= 1
Zt = At — EAt_l'
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Samas, kui |#;] > 1, siis voime defineerida suurused A; kujul

—_ w . o~
A = ZHfZZt—ia
i=0

mille korral kehtib 1
Zt = At — G*At—l-
1
Kuna suurused A; on tsentreeritud, mittekorreleeritud ning konstantse dispersiooniga (vt
jargnev harjutus), siis voime ilma iildsust kitsendamata eeldada, et vaadeldava protses-

si korral on kordaja 67 absoluutvaartuselt iihest viiksem ning et tegemist on pooratava
protsessiga.

Harjutus 19 Veenduda, et juhul |01| > 1 defineeritud juhuslikud suurused A; on mitte-
korreleeritud ning konstantse dispersiooniga (seega tegemist on vahemalt teist jarku norgalt
statsionaarse protsessiga).

Harjutus 20 Niidata, et juhul 01| # 1 kehtib vorratus [p1| < 3.

Osaautokorrelatsioonide leidmiseks paneme téhele, et vaadeldaval juhul tuleb Yule-Walker
vorrandisiisteemi kohaselt leida kolmediagonaalse vorrandisiisteemi

k1 + p1or2 = p1,
P1Pk1 + P2 + p1dr3 = 0,

P1Pk k2 + Pk -1 + P1Pkk = 0,
P19k k-1 + Pk =0
puhul suuruse ¢ vadrtus. Kui siit elimineerida teisest vorrandist esimese vorrandi abil

tundmatu ¢, kolmandast vorrandist saadud teise vorrandi abil ¢go jne, siis joame kahe-
diagonaalse siisteemini

b1dr1 + p1ow2 = f1,
badra + p1ox3 = fo,

bk—10kk—1 + P1OkEk = fr—1,
brdrk = [,
kus by =1, fi = p1 ning
P

br=1-P1 o = Py i—o kK
b, by

2

Arvestades, et |p1| < % saame b; > % Vi ning seega

|prr| = |“£:| < (2p1)F,

seega osaautokorrelatsioonikordajad on kiill koik nullist erinevad, kuid kahanevad ekspo-
nentsiaalselt.
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4.3.3 MA(2) protsessi omadused.

Vaatleme protsessi kujul .
Zy = Ay — 01 A1 — 0 A ».

Selle protsessi korral

01+ 016
Ty
P20 102

ning pr = 0, k£ > 2. Kiillalt lihtne on veenduda, et kui x1, s on poliinoomi

O(x)=1— 601z — Ooz?
nullkohad, siis tépselt samad autokorrelatsioonikordajad on kdikidel MA(2) protsessidel,
millele vastavate poliinoomide nullkohad on kujul z%,z3, kus 4,5 € {—1,1}. Samas ai-
nult {iks nendest protsessidest rahuldab pooratavuse tingimust ning jéllegi voime iildsust
kitsendamata eeldada, et meid huvitav protsess rahuldab péératavuse tingimust. Analoo-

giliselt AR(2) protsesside statsionaaruse tingimustega saame niiiid, et pooratava MA(2)
protsessi kordajad 61 ja 62 peavad rahuldama tingimusi

0 +601 <1, 8o —0; <1, 65 > —1.

4.4 ARMA(p,q) protsessid

Vaatleme protsesse kujul
) P . q
Zy = Z GiZy—i + Ay — Z 0; Ap—i.
i=1 i=1

See protsess on statsionaarne, kui poliilnoomi ¢(z) = 1-3"7_; ¢;z* nullkohad on viljaspool
komplekstasandi ithikringi ning péodratavuse tingimus on téidetud, kui poliinoomi 0(x) =
1->7, 6;2° nullkohad on viljaspool komplekstasandi iihikringi. Arvutates kovariatsiooni
Z; ja Z,_y, vahel juhul k > ¢, saame

p
Ve = Gikis
i=1

mistottu autokorrelatsioonikordajad py rahuldavad rekurrentset vorrandit

p
Pk =Y PiPk—i
i=1

alates k = ¢+ 1.

4.5 ARMA(1,1) protsessid

Vaatleme protsesse kujul . .
Zy = 91241+ Ay — 01 A1
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Leiame avaldised selle protsessi autokovariatsioonidele ja autokorrelatsioonidele. Koige-
pealt paneme téhele, et
cov(Zs, Ay) = 04.

Seejarel saame leida .
cov(Zs, As_1) = (o1 — 01)05.

Leides niiiid kovariatsiooni Z; avaldise parema poole ja Z; vahel, saame

Yo =171+ (1= 01(¢1 — 61))0%

ning kovariatsioon Z; avaldise parema poole ja Z;_; vahel annab

1 = 170 — 105

Siit saame
Lo = (L= 20161+ 61)o
0 1_ qb% )
_ (¢ —0)(1— 01¢1)0%
71 1_ ¢%
ja seega
P (1 —01)(1 — 0191)

1—201¢1 + 9%
Kuna alates k£ = 2 kehtib
Pk = P1Pk-1,

siis autokorrelatsioonid kahanevad eksponentsiaalselt alates jargust 2.

4.6 Lineaarsed mudelid mittestatsionaarsete aegridade jaoks.
Prognoosimine ja parameetrite hindamine

4.6.1 ARIMA mudelid

Sageli ei vasta aegrida statsionaarsuse nouetele, kuna keskmine on ajas muutuv, kuid selle
rea muudud v6i muutude muudud kéituvad kooskolas statsinaarsuse eeldustega. Jargnevas
vaatlemegi selliste protsesside mudeleid.

Kui Z;, t € R on mingi protsess, siis muutude protsessi Z; — Z;_1 voime kirjutada kujul
(1 — B)Z; ning muutude muutude protsessi kujul (1 — B)?Z;.

Definitsioon 17 ARIMA (p,d,q) protsessiks nimetatakse juhuslikku protsessi Z;, mille d-
ndat jirku muudud (ehk diferentsid) Wy = (1 — B)?Z, esituvad kugul

p q
W, = Z diWy—i + Ay — Z 0; As_s,
=1 i—1

kus Wt = Wy—E(Wy), juhuslikud squrused Ay on soltumatud, sama jaotusega, tsentreeritud
ning on soltumatud ka suurustest Wy_;, 0 =1,2,....
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Vaatleme juhtu Wy = (1 — B)Z, siis
¢
Ly =2 1AWy =Zt o+ Wi a1+ Wy =241 + Z Wi.
j=k+1

Summa on aga vaadeldav tiikiti konstantse funktsiooni integraalina. Uldisemalt, kui W; =
(1— B)dZt, siis tuleb Z leidmiseks protsessist W rakendada summeerimist d korda, mis on
samastatav d-kordse integraali leidmisega. Seetottu nimetataksegi ARIMA (p,d,q) protses-
se integreeritud ARMA protsessideks.

Harjutus 21 Olgu antud suurused c¢; = (1 — B)!Zy, i =0,...,d — 1 ning protsessi W; =
(1 — B)?Z; vidrtused wa, . . ., wy. Avaldada Z, vidrtus z, co,...,c4_1,Ws, ..., wy kaudu.

4.6.2 Aegridade prognoosimine ARIMA mudelite korral

Olgu meil antud aegrida zi, 29,...,2, ning oletame, et me teame, et see vastab ARI-

MA (p,d,q) tiiiipi protsessile teadaolevate parameetritega y (suuruse (1—B)?Z; keskvidrtus),¢q, . . .

jab1,...,04, kusjuures eeldame, et protsess on péératav ning et kaalud ¢;, i =1,...,pra-
huldavad statsionaarsuse tingimust. Esituse lihtuse mottes eeldame samuti, et (1 — B)?Z;
keskvaartus on null. Jargnevas uurime, kuidas sel juhul leida minimaalse ruutkeskmise
veaga prognoose suurusele Z,,.,, p > 1 ning prognoosivigade standardhalbeid.

Edasises kasutame oluliselt aegrea erinevaid esitusi. Pooratavusest jareldub, et me saame
vaadeldava ARIMA (p,d,q) protsessi esitada autoregressiivsel kujul

oo
Zy = Z%’th + Ay,
i=1

kus kaalud 7; on on maaratavad vordusest

S @)
1 ; ==

kus , .
dlx)=1-Y ¢ia’, O(x) =1- Oz’
i=1 =1

Samuti teame, et statsionaarse protsessi saab esitada iildise lineaarse protsessi kujul, seega
leidauvad kordajad );, mille korral

(1-B)z, = <f: WBZ‘) Ay
=0

Kolmandaks esituseks on protsessi definitsioonis olev kuju, mis sisaldab 16pliku arvu eel-
nevaid Z ja A vadrtuseid.

Harjutus 22 FEsitada ARIMA(0,1,1) protsess
1
Zy=Zi 1+ A — §At—1

autoregressitvsel kuju.
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Autoregressiivse kuju kordajaid saab leida ka samm-sammult, vordsustades seose

paremal ja vasakul pool z astmete ees olevaid kordajaid.
Harjutus 23 Leida protsessi
Zt = At — 0.5At71 + 0.3At,2

autoregressiivse esituse kordaja 4.

Ruutkeskmise vea mottes parima prognoosi leidmine

Kui juhusliku suuruse kohta ei ole mingit lisainformatsiooni, siis tema parimaks prognoo-
siks on keskvéaartus.

Harjutus 24 Olgu X [oplikku dispersiooni omav keskvddrtusega p juhuslik suurus ning
olgu a prognoos selle juhusliku suuruse vidrtuse jaoks. Ndidata, et ennustusviga E((X —
a)?) on minimaalne juhul, kui a = p.

Kui juhusliku suuruse ennustamisel on kasutada mingit lisainformatsiooni, siis saab néida-
ta, et parimaks ennustuseks selle informatsiooni pohjal on tinglik keskvéiartus. Kéesolevas
kursuses me tingliku keskvairtuse tildist definitsiooni sisse ei too, kiill aga kasutame tea-
daolevaid tulemusi selle omaduste kohta.

Lemma 18 Olgu I mingi loplik voi loenduv indeksite hulk ning olgu Z ja Y;, i € I ju-
huslikud suurused. Siis suuruse Z tinglik keskvddrtus tingimusel, et Y;, ¢ € I on teada on
Juhuslik suurus E(Z | Y;, i € I), mis rahuldab jargmisi omadusi:

1. Kui Z on soltumatu juhuslikest suurustest Y;, © € I, siis

E(Z|Y;, iel)=EZ.

2. Kui Z = aZy + 8275, siis

E(Z|Y;, i€l)=aE(Z|Y;, i€ 1)+ BE(Zy | Y;, i €1).

3. Kut Z =Y;, mingi ig € I korral, siis
E(Z|Y;, iel)=2Z.
Uldisemalt, kui Z = f(Y), kus Y = (Y;)ies, siis

E(Z|Yiiel)=2Z.

Tingliku keskvadrtuse korrektse definitsiooni ja omaduste toestused voib leida néiteks
raamatust [9]. Vastaku protsess Z ARIMA(p,d,q) mudelile, kusjuures jargnevas eeldame,
et B((1—B)%Z;) = 0 ning samuti eeldame mudeli protsessi W; = (1— B)?Z; statsionaarust
ja pooratavust. Tahistame

Zyw = E(Z¢ | Zj—iy i=0,1,2,...),

41



siis tingliku keskvéértuse omadustest jareldub
Zoyy = Zy kui £ < k.

Kasutades protsessi esitust autoregressiivsel kujul ning teadmist, et E(Apyj | Zp—s, © >
0) = 0, saame juhul ¢ > 1

[ee]
Zysalls = > TiZpyiifn
i=1

/-1 o9
= Z T g1 —ifk + Z i Lkt t—i-
i=1 i=t

Pikemate prognooside arvutamisel saab seda valemit kasutada samm-sammult: koigepealt
arvutame Zj 1), ajaks k teadaolevate Z vaartuste abil, seejdrel kasutame saadud tulemust

Zk 4ok arvutamiseks jne. Saadud tulemuse rakendamisel on aga kaks probleemi. Esiteks,
tegemist on lopmatu summaga, mille tdpne arvutamine on pohimotteliselt raskendatud
kui mitte lausa voimatu. Teiseks, praktikas on alati teada ainult loplik arv Z mineviku-
vaartusi, nii et lopmatu summa tuleb igal juhul asendada lopliku summaga ja see toob
kaasa moningase prognoosivea. Samas aga pooratava mudeli korral kahanevad kordajad m;
eksponentsiaalselt ning seda kiiremini, mida suurem on mooduli poolest vahim poliinoomi
6(x) nullkoht. Seega enamikel juhtudel lihenevad kordajad 7; kiiresti nullile ning 16pmatu
summa on véga hésti lahendatav kiillalt véikese arvu liidetavatega lopliku summaga.

Alternatiivne moodus tulevikuvédirtuste ennustamiseks pohineb otseselt ARIMA(p,d,q)
mudeli kujul, mis sisaldab 16pliku arvu liidetavaid. Paneme téhele, et me voime selle mudeli
esitada kujul

¢(B)Zr = 0(B) A,

kus

¢(z) = ¢(z)(L —2)%, da) =1 =) dia’, O(z) =1 ',
=1 j

Olgu poliinoomi qz~5 esituseks
ptd

dlx) =1-) b,
i=1
siis voib vaadeldava mudeli kirjutada ka kujul

p+d q

Zi=Y 6iZi+ A — z; 0;Ai—;.
i=1 i=

Seega juhul ¢ < g korral kehtib

p+d q
Zystll = 0iZiro—ir — Y _ OiApio—i
i=1 =0

ning juhul ¢ > ¢ on prognoosid arvutatavad valemist

p+d

Zsolls = i Zpro—ifh-
i=1
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Nagu niha, maérab poliinoomiga ¢ misratud rekurrentne vorrand prognooside kiitumise
alates ¢ > q.

Eelneva prognoosivalemi kasutamine néuab A; viartuste teadmist kK — ¢ < t < k korral.
Teoreetiliselt ei valmista see probleeme, kuna pdoratava mudeli korral on A-d Z-de kaudu
leitavad, kuid praktiliselt on probleemiks see, et meil on teada ainult 1oplik arv Z;-de
vaartuseid ning isegi kui oleks teada kogu minevik, oleks lopmatute summade leidmine
tiilikas. Hadast paédstab aga meid jarnevas harjutuses toodud tulemus, mille kohaselt voime
piisavalt pika aegrea korral leida A; realiseerinud vadrtused vastavalt vorrandile

pt+d q
=2 — Y Gizi+ Y Oidyi, p+d<t<k, (4.7)
=1 =1
kus
=0, p+d—q+1<t<p+d. (4.8)

Harjutus 25 Olgu z;, 1 < t mingi ARIMA(p,d,q) tiipi protsessi vddrtused ning olgu
az, t > 1 nendele vidrtustele vastavad protsessi Ay vadrtused. Olgu a; vastavalt vorrandile
(4.7) ja algvadrtustele (4.8) arvutatud suurused. Ndidata, et

lim |a, — a,| = 0.
n—o0

Prognoosivea standardhéilbe leidmine
Defineerime 0; = 0, i > g, siis voime parima prognoosi kirjutada kujul

p+d

[e.@]
T =Y 0iZkre—i— Y OiAki i
=1 =L

Kasutades seda valemit ning ARIMA mudeli kuju (kus samuti késitluse lihtuse mottes
summeerime f-dega liikmeid kuni l6pmatuseni), saab matemaatilise indukstiooni abil kiil-
laltki lihtsalt naidata, et kehtib vordus

1
Lt = Lok = Zl/}iAk—i-Z—iy
=0
kus
min(k,p+d) B
Yo=1, Ye= D> Githhi— O k> 1.

i=1
Harjutus 26 (*) Téestada, et prognoosiveas esinevad kaalud 1y, avalduvad eelpool toodud
kugjul.
Seega on prognoosivea kaalud lihtsalt arvutatavad ning nende abil avaldub ¢-sammulise
prognoosi vea dispersioon kujul

{—1

D(Zkre = i) = 04 Y07
i=0
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Harjutus 27 Olgu Z protsess, mis vastab ARIMA mudelile
(1+0.1B+04B*(1—-B)Z; = (1+0.2B)A;,

kus B on tagasinihke operaator (BZy = Z;_1). Leidke sellel mudelil pohinevate parimate
1,2,8,4-sammuliste prognooside vigade standardhdlbed eeldusel, et D(Ay) = 1.

Eelnevas vigade standardhélbe arvutuses ldks tegelikult vaja ainult, et suurused A; on
mittekorreleeritud ja konstantse dispersiooniga. Tavaliselt viljastavad programmid ka usal-
dusintervalle, mis kehtivad juhul, kui suurused A; on normaaljaotusega ja soltumatud (sest
siis on ka prognoosivead normaaljaotusega).

4.6.3 ARIMA mudeli parameetrite hindamine

Parameetrite hindamisel on mitmeid voimalikke l&henemisi. Kuna tarkvara pakub sageli
voimalust nende vahel valida, siis oleks hea teada, mille poolest nad erinevad. Parameetreid
hindame protsessile W; = (1 — B)?Z; vastava aegrea andmete wy,ws, .. ., w, pohjal. Liht-
suse mottes eeldame ka, et E(WW;) = 0.

Tingimusliku ruutude summa minimiseerimine

Oletame, et meil on teada 29,2-1,...,21—p—q DiNg ag,a—1,...,a_, tegelikud vaartused;
siis saame fikseeritud parameetrite 6 ja ¢ korral arvutada a1 = 21 — 2109, a2 = 22 —
291y +++1Qn = Zn — Zp|p—1- Seega voime parameetreid valida néiteks nii, et minimiseerime
prognoosivigade ruutude summat

Sama valikukriteeriumini jouame ka siis, kui eeldame, et suurused A; on séltumatud ja
nomrmaaljaotusega ning leiame parameetrid 6 ja ¢ nii, et maksimiseerime aegrea z1, ..., 2,
toepara (ehk vektori (ay, ..., ay) toepara). Siin tuleb aga aru saada, et tegemist on tingliku
toeparaga; tingimuseks on see, et meil on teada loigu alguses toodud z ja a eelnevad
vidrtused. Seetottu nimetatakse seda parameetrite valiku reeglit tingliku ruutude summa
minimiseerimiseks ehk tinglikuks suurima toepéra meetodiks.

Praktikas kasutatakse mitmeid erinevaid varasemate viartuste fikseerimise mooduseid,
millest lihtsaim vastab koikide eelnevate 2z ja a vadrtuste vordustamisele nulliga. Kui vaat-
lusi on véga palju, siis selline lahenemine annab praktiliselt sama tulemuse, kui suurima
toepadra meetod; suhteliselt lithikeste aegridade korral voivad tulemused olla oluliselt eri-
nevad. Kéesolevas alapeatiikis eeldame, et juhuslikud suurused A; on soltumatud ning
normaaljaotusega.

Suurima toepira meetod

Kuna protsessi Wy vadrtused on esitatavad soltumatute normaaljaotusega juhuslike suu-

ruste A; lineaarkombinatsioonidena, siis on vektor Wy, ..., W, mitmemdootmelise normaal-

jaotusega. Mitmemootmelise tsentreeritud normaaljaotuse tihedusfunktsioon esitub kujul
1 1

- = exp(—== /2—1
P09 G T2
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kus x = (21, x2,...,2y), X on vastava juhusliku vektori kovariatsioonimaatriks ning |X|
tahistab maatriksi determinanti. Kui (Wy,..., W, ) vastab ARMA(p,q) protsessile, siis
saab kovariatsioonimaatriksi kirjutada kujul

¥ =039(,9),

kus 2 ei soltu juhuslike suuruste A; dispersioonist. Suurima téepéra meetodi korral mak-
simiseeritakse tavaliselt toepéra logaritmi, mis avaldub kujul

1
9.60,04) = =5 In(2m) = T Ino? — I |26, 0)] — 55 w6, 6) ' w.
A

Kuna o4 jirgi see funktsioon saavutab maksimumi kohal
1
o4 = —w'Q(0,0) 'w,
n

siis suurima toepéra hinnangud parameetritele ¢ = (¢1,...,¢p) ja 0 = (61,...,0,) leid-
miseks tuleb maksimiseerida (parast konstantse liidetava drajatmist) avaldist

D n(w6,6)w) ~ 1n |06, 0).

Tingimusteta ruutude summa meetod

Inglise keeles method of unconditional sum of squares. Selle meetodi puhul jaetakse suurima
toepdra avaldises vaatluse alt véilja determinandiga liige ning minimiseeritakse avaldist

wQ(p,0)  w.

Arvutuslikult on see veidi lihtsam, kuid ei oma mérkimisvéérseid eeliseid suurima toepéra
meetodi eest.

4.7 ARIMA tiiiipi mudelite valikust

Uldine lidhtekoht on see, et mida vihem on mudelis parameetreid, seda parem (muidugi
tingimusel, et mudel andmetega sobib). Mudeli sobivuse iile otsustatakse prognoosivigade
soltumatuse kontrolli pohjal; teoreetiliselt peaksid prognoosivead vastama soltumatutele
juhuslike suuruste vaartustele. Kuna taielikku soltumatust on véga raske kindlaks teha,
siis aegridade puhul keskendutakse autokorrelatsioonide uurimisele (mis peaks soltumatute
vigade puhul olema teoreetiliselt nullid).

Omaette kiisimus on see, kuidas teha valikut erinevate mudelite vahel, mis koik rahulda-
vad sobivuse kriteeriume, seda eriti juhul, kui parameetrite arvud on erinevad (v6i mudelid
kuuluvad erinevatesse klassidesse). Naiivseks lahenemiseks on see, et kui me sobitame mu-
deleid toepéara maksimiseerides, siis sobivaima mudeli korral peaks vaadeldava aegrea tek-
kimise toepéra olema suurim. Selle ldhenemise puuduseks on see, et lopliku arvu andmete
olemasolul saame me suurema parameetrite arvuga mudelit olemasolevate andmetega alati
paremini sobitada isegi juhul, kui tegelikkuses selline mudel sobiv ei ole (nn iilesobitami-
ne). Seetdttu tuleb sobivuse vordlemisel kindlasti arvestada ka parameetrite arvu. Uheks
selliseks sobivuse moodikuks, mis arvestab nii parameetrite arvu kui ka toepéra, on nn
Akaike informatsioonikriteerium, mis avaldub kujul

AIC =2k —2InL,

kus k£ on mudeli parameetrite arv ja L on aegrea toepéara sobitatud mudeli korral.
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4.8 Sesoonsed ARIMA mudelid

Sageli on andmetes mingi loomulik periood (néiteks aasta), mille korral aegrea jargne-
vat viartust mojutavad lisaks hiljutistele vaartustele ka perioodi voi isegi mitme perioodi
vorra minevikus olevad véirtused. Uheks voimaluseks sellise efekti modelleerimiseks on
lihtsalt lisada perioodile vastavate nihetega autoregressiivseid ja/voi litkuva keskmise liik-
meid tiildisesse mudelisse, kuid sageli on tulemusi lihtsam interpreteerida, kui perioodilist
kditumist kirjeldav mudel esitada sesoonsete ja mittesesoonsete tegurite korrutise teel.

Perioodiga s multiplikatiivseteks ARIMA (p,d,q)x(P,D,Q)s tiilipi mudeliteks nimetatakse

mudeleid kujul
B(B)B(B*)(1 — BY(1 - B)PZ — 6(B)O(B*) A,

kus

2
o(z)=1- Zqﬁixi, O(x)=1-— Z@ixi,
i=1

o

q
O(z)=1-— Z@ixi, O(r)=1- Z@lx’
i=1

=1

Siin tuleb tdhele panna, et tegemist on ARIMA tiiiipi mudelite alamklassiga. Saadava
mudeli puhul eeldatakse, et ¢(x) ja ®(x) rahuldavad statsionaaruse tingimusi ning et 6(x)
ja O(zx) rahuldavad pooratavuse tingimusi; sel juhul on vastavad tingimused tdidetud ka
vaadeldaval ARIMA tiilipi mudelil.

Lihtsalt moistetavaks multiplikatiivseks sesoonseks ARIMA tiitipi mudelite erijuhuks on
ARIMA (p,d,q)x(0,1,0)s tiitipi mudelid, kus s tahistab vaatluste arvu perioodis (tavaliselt
aasta), kuna sel juhul vastavad aastased muudud ARIMA tiitipi mudelile.

Mudelite identifitseerimiseks on kasulik teada moningatel lihtsamatel juhtudel aotokorre-
latsioonikordajate teoreetilist kiitumist. Vaatleme néitena ARIMA(0,0,1)x(0,0,1), auto-
korrelatsioonikordajate leidmist juhul s > 3. Olgu

Zy=(1—6;B)(1 — ©1B%)4,

ehk
Zy=A; — 01 A1 — 014 s + 010145 1.

Siit Ay, k € Z soltumatuse tottu saame
Yo = (1L + 67 + 67 + 6167)03.
Kuna Z;_1 avaldises
Zi1=A1—01A 20— 014451+ 0101445
on Z; avaldisega vorreldes samade indeksitega A; 1 ja A;_s_1, siis
1 =cov(Zs, Zi_1) = (=6, — 0,03)5%,
seega

o —601(1+ ©3%)
Y 1+67+67+61607

P1
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Seejarel on k > 2 korral Z;_ ja Z; avaldises samu liikmeid ainult siis, kui &k = s —
1, s, s 4+ 1; muudel juhtudel on koik litkmed erinevad ning vastavad autokovariatsioonid ja
autokorrelatsioonid vordsed nulliga. Juhul £ = s — 1 avaldub Z;_j kujul

Zpsy1 = Ap—sy1 — 01 A1—s — O1 A1 2541 + 01014425,
seega

010,
1+ 62 4+ 02+ 6{0%

Vs—1 = 01010%, ps—1=
Analoogiliselt leiame
61(1+67)
1+ 67 + 61 + 6167’
0101
1467 4+ 0% + 6167

Vs = (=01 — 0701)07%, ps =

2
Vo1 = 01©10%, psy1 =

Koik iilejddnud autokorrelatsioonid on nullid. Seega vaadeldava mudeli tunnuseks on iiks
madalat jarku nullist erinev autokorrelatsioon ning kolm nullist erinevat autokorrelatsiooni
nihke s timbruses, kusjuures perioodile s eelnev ja jargnev autokorrelatsioon on teoreeti-
liselt vordsed.

Harjutus 28 Leida ARIMA(0,0,2)x(0,0,1)s mudeli autokorrelatsioonikordajad juhul s >
5

Harjutus 29 Leida ARIMA(0,0,1)x(1,0,0)s mudeli autokorrelatsioonikordajad juhul s =
6.
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Peatukk 5

Mitmemootmelised mudelid

Siiani vaatlesime aegrea tulevikuvddrtuste prognoosimist juhul, kus kasutada oli ainult
vaadeldava aegrea minevikuvairtused. Sageli aga on voimalik prognoose tunduvalt tap-
sustada, kui kasutada lisaks vaadeldava aegrea minevikuvaértustele veel teisi andmeid,
néiteks teiste juhuslike suuruste minevikuvaartuseid. Naiteks on loomulik arvata, et ma-
janduse iildseisundi néitajate minevikuvadrtused mojutavad oluliselt siseturismiga seotud
suuruseid. Kéesolevas peatiikis vaatleme moningaid mooduseid, kuidas selliseid soltuvusi
matemaatiliselt modelleerida ning kuidas vastavaid mudeleid praktikas kasutada.

5.1 Mitmene lineaarne regresioon ARIMA tiilipi vigadega

Olgu Z; meid huvitava tunnuse vdartus ajal ¢ ning (X1(¢),..., X (¢)) argumenttunnuste
vektor, mida saab kasutada suuruse Z; prognoosimiseks. Mitmese lineaarse regressiooni
mudeliks on mudel kujul

Zi=Bo+ Y BiXit) + e,
i=1

kus vead £; on sama jaotusega, soltumatud ja tsentreeritud, kordajate hinnangute vigade
tuletamisel eeldatakse ka vigade normaaljaotusele vastavust. Aegridade puhul enamasti
selline mudel (eriti vigade soltumatuse eeldus) ei kehti, mistottu standardsete lineaarse
regressiooni vahendite kasutamine ning saadud mudeli pohjal prognoosimine voib viia va-
gagi valedele tulemustele. Sageli aga sobivad aegridade puhul andmetega mudelid, kus
vead &; vastavad mingile ARIMA tiiiipi protsessile, sel juhul rasigitakse lineaarsest regres-
sioonist ARIMA tiiiipi vigadega ehk ARIMAX mudelist. Mudeli sobitamise protseduur on
kaheetapiline: koigepealt sobitame tavalise regressiooni abil andmetele mitmese regressioo-
nimudeli ja analiilisime vigade kiitumist. Vigade kditumise pohjal valime ARIMA mudeli
kuju suuruste €; jaoks ning seejérel leiame valitud ARIMAX tiiiipi mudeli parameetrid
(nii B-d kui ARIMA kordajad) néiteks suurima toepara meetodil voi siis tinglike prog-
noosivigade ruutude summa minimiseerimise teel. Leitud mudeli headuse kriteeriumiks on
prognoosivigade soltumatus, mida testitakse autokorrelatsioonide soltumatute juhuslike
suuruste vadrtustele vastavuse testimise abil.

5.2 Ulekandefunktsiooni mudelid

Inglise keeles transfer function models. Vaatleme juhtu, kus meil on kaks protsessi Z;
ja Xy, millele vastavate aegridade vadrtused on meil olemas. Lihtsuse mottes eeldame, et
molemad protsessid on statsionaarsed ning tsentreeritud (vastasel juhul voib proovida leida
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molemast sobivat jarku diferentsid ja maha lahutade nende keskmised, et saada soovitud
omadustega ridu). Meie eesmérgiks on kindlaks teha, milliseid X minevikuvéartuseid (ja
voib-olla ka Z minevikuviartuseid) regressoritena kasutada nii, et saada voimalikult héid
ennustusi protsessi Z jaoks. Tépsemalt, vaatleme ARIMAX mudelit kujul

o)
Zi=Po+ Y BiXii+er, (5.1)
i=b

kus b > 1 ja suurused ¢; vastavad mingile ARM A protsessile
¢(B)€t = H(B)At,

kusjuures eeldame, et suurused A; on soltumatud ka protsessi X; véartustest. Sel juhul
on ka suurused &; soltumatud suurustest X;. Selleks, et parameetreid oleks 16plik arv ning
et ennustamiseks kasutataks ainult X; minevikuvaartuseid, otsime sobivat mudelit selliste
hulgast, kus funktsioon

(o)
B(x) =) P’
i=b
on esitatav 1opliku arvu parameetrite abil kujul

V() _ b > im0 vz’
5(x) 1= 6

Sellise mudeli voib kirjutada ka kujul

r S
Zy = Z 0iZs—i + Z Vi Xy—bp—i + Nt
i=1 i=0

kus suurused 7; vastavad ARMA protsessile kujul

Funktsiooni B(z) nimetatakse iilekandefunktsiooniks, kuna ta kirjeldab, kuidas X oman-
datud vaartused mojuvad ehk kanduvad iile suuruste Z véartustele. Mudeli sobitamise
etapid on jargmised:

1. Leiame hinnangud suurustele 3;

2. Suuruste 5; hinnangute pohjal méarame kindlaks sobiva nihke b ning kasutades tead-
mist sellest, kuidas erinevate r ja s vadrtuste korral peaks suurused [ teoreetiliselt
kdituma, leiame hinnangud ka parameetritele r ja s

3. Leiame sobiva mudeli vigade €; jaoks
4. Hindame mudeli parameetreid suurima toepéra meetodil
5. Kontrollime jadkvigade soltumatust

6. arvutame prognoosid (kuni b ajaperioodi ette).

Vaatleme lahemalt moningaid nendest etappidest
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5.2.1 Suuruste ; hindamine

Téhistame kujul v, (k) ja 7., (k) protsesside X ja Z k-ndat jarku autokovaratsioone ning
defineerime ristkovariatsioonid kujul

%z(k) = COV(Xt, Zt+k)§

vastavad autokorrelatsioonid olgu pu.(k), pyy(k) ning ps.(k). Korrutades vorrandit (5.1)
suurusega X;_j ning leides keskvéirtuse (ehk arvutades vorrandi parema ja vasaku poole
kovariatsiooni suurusega X; ) saame

’sz(k) = Z Bl’Yxx(rL - k)
=0

Kui niiiid eeldada, kordajad §; on praktiliselt vordsed nulliga alates mingist jargust K, siis
saame vorrandisiisteemi suuruste v, (k), k£ =0,..., K — 1 médramiseks. Samas on nende
vorrandite lahendamisel (asendades teoreetilised auto- ja riskovariatsioonid empiirilistega)
saadud hinnangud kiillalti ebatépsed, seetottu on voimaluse korral parem kasutada nn
eelvalgendamise (inglise keeles prewhitening) tehnikat.

Eelvalgendamise tehnika on rakendatav, kui protsess X vastab mingile péoratavale ARMA
tlitipi mudelile. Oletame, et X vastab mudelile

¢I(B)Xt = ex(B)ata

kus suurused oy on soltumatud, sama jaotusega (ning soltumatud suurustest X; 1, Xy—o, . . ..
Eelnevate eelduste pohjal on nad ka soltumatud suurustest n;. Pooratavuse tottu saame

o = 0,(B) L ¢,(B) X;.

Rakendades niiiid operaatorit 6,(B) ¢, (B) vorduse (5.1) molemale poole, saame

Wi = Z/Biat—i + &,

i=b
kus
Wy = 0,(B) " ¢2(B)Zs, & = 0.(B) ' ¢(B)es.

Leides niiiid eelneva vorduse molema poole kovariatsiooni suurusega a;_j saame
(k) =028
Yow = 0Pk,

kust saame kordaja (; avaldada. Praktilise arvutuse seisukohalt on suurused «; leitavad
suuruste iithesammuliste prognooside vigadena leitud mudeli abil suuruste X; prognoosi-
misel ning suurused W; vastavad tépsel sama mudeli kasutamisel suuruste Y; ennustamisel
tekkivatele iihesammulistele prognoosivigadele.

5.2.2 Mudeli kuju parameetrite b,r ja s valik

Kui kordajad 8 on hinnatud, siis b valiku kriteeriumiks on tingimus 5; ~ 0, ¢ = 0,1,...,b—
1. Kui ainult (kiillat viike) 16plik arv kordajatest [j on nullist erinevad, siis voime votta
r =0 jas = kg— b, kus kg vastab viimase nullist erineva [;, indeksile. Muudel juhtu-
del aga saab analootiliselt ARIMA tiiiipi mudelite analiiiisiga néidata, et alates jargust
k = b+ s+ 1 rahuldavad kordajad B rekurrentset vorrandit

Br = 0iBri.
=1
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Teades selliste rekurrentsete vorrandite lahendite kditumist on voimalik piistitada hiipo-
teese sobiva r (ja ka s) vadrtuse kohta.

Harjutus 30 Ndidata, et juhul r = 1 kehtib

Br =058, Vk>b+s.
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