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Sissejuhatus

Nii firmade kui ka tavainimeste elus mängivad suurt rolli ajas toimuvad ning teatud ju-
huslikkuse komponenti sisaldavad sündmused, mille efekt on sageli väljendatav erinevatele
ajahetkedele vastavate numbrite jadadena ehk aegridadena. Näitena võib tuua sissetulekud
ja väljaminekud, toodete läbimüügi maht, päevaste ja kuiste sademete hulk jms. Sellistes
valdkondades juhuslikkus toob kaasa riske, mille haldamiseks on väga tähtis osata juhus-
likkuse iseloomu kindlaks teha, mineviku andmete põhjal võimalikkult täpseid prognoose
leida ning mõningatel juhtudel ka ebasoovitavate tendentside ilmnemisel õigeaegselt sek-
kuda. Kõike seda võimaldab aegridade teooria.
Ajalooliselt on praktikute poolt kasutusele võetud mitmeid meetodeid aegridadega seo-
tud ülesannete (nt. trendi leidmine, tulevikuväärtuste prognoosimine jms) lahendamiseks.
Meetodi all mõistame siin kursuses arvutuseeskirja, mille rakendamine peaks andma soo-
vitud tulemuse. Meetodid tuginevad enamasti nn tervel mõistusel ja intuitsioonil ning neid
võib rakendada suvalisele ajas järjestatud andmete kogumile, kuid lahtiseks jääb küsimus
tulemuste tegelikkusele vastavuse ja usaldusväärsuse osas.
Selleks, et olla (piisavalt) kindel selles, et arvutatud tulemused kajastavad reaalsust ning
on kasutatavad ka tuleviku prognoosimisel, tuleb lähtuda aegrea matemaatilistest mude-
litest. Mudel on matemaatiline kirjeldus selle kohta, kuidas juhuslikkus mõjutab aegreale
vastavate andmete tekkimist. Mudelist lähtuvalt on võimalik kontrollida selle sobivust
konkreetse aegrea kirjeldamiseks ning tuletada teoreetiliselt põhjendatud arvutuseeskir-
jad vaadeldavale mudelile vastava aegrea erinevate komponentide leidmiseks ning tuleviku
prognoosimiseks koos konkreetsete usalduspiiridega leitavate hinnangute jaoks. Aegridade
teooria seisneb mudelite kirjeldamises ja nendele vastavate arvutuseeskirjade ning veahin-
nangute tuletamises.
Teooria rakendamine koosneb mitmetest etappidest, milleks on

1. Sobiva matemaatilise mudeli valik. Nagu me kursuse jooksul näeme, on võimalike
mudelite hulk väga lai ning äärmiselt tähtis on leida võimalikult lihtne mudel, mis
võimaldaks tegelikkust adekvaatselt kirjeldada.

2. Leitud mudeli kalibreerimine olemasolevate andmetega ning saadud konkreetse mu-
deli kirjeldusvõime kontroll. Kui selgub, et kirjeldusvõime on liiga madal, siis tuleb
minna tagasi mudeli valiku juurde.

3. Kalibreeritud mudeli kasutamine tuleviku ennustamiseks, ennustuste veapiiride kind-
lakstegemine, vajadusel sobivate juhtimismehhanismide valik soovitud tulemusest
tekkinud kõrvalekallete vähendamiseks.

Kõiki neid küsimusi (välja arvatud juhtimismehhanismide valik) vaadeldakse käesoleva kur-
suse raames. Samas tuleb silmas pidada, et tegemist on sissejuhatava kursusega aegridade
teooriast ning küllalt palju olulisi mudeleid ning tehnilisi vahendeid jääb selle kursuse raa-
mes käsitlemata. Aegridade teooria aktuaalsusest annab aga tunnistust näiteks see fakt, et
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Peatükk 1

Tähistused ja mõisted. Aegrea
komponendid

Mitteformaalselt on aegrida mingi ajas muutuva ja juhuslikest teguritest sõltuva suuruse
erinevatele järjestatud ajavahemikele vastavate väärtuste kogum. Selleks võib olla näiteks
teatud ajavahemike tagant mõõdetud konkreetse inimese kaal, aktsiahind, firma aasta-
ne kasum, kindlustusfirmale laekuvate kahjunõuete kogusumma päevade kaupa vms. Kui
mõõtmised toimuvad pidevalt, siis on tegemist pideva ajaga aegreaga, vastasel korral öel-
dakse, et aegrida on diskreetse ajaga. Käesolevas kursuses käsitleme ainult selliseid disk-
reetseid aegridasid, kus väärtused vastavad võrdsete ajavahemike tagant tehtud mõõtmis-
tele. Olgu selle ajavahemiku pikkus h, seega eeldame, et huvipakkuva suuruse Z väärtusi
mõõdetakse ajamomentidel τi = τ0 + i h, kus i ∈ IN või i ∈ ZZ. Selleks, et hoida tähistusi
võimalikult lihtsana ning olla kooskõlas aegridade alase kirjanduse tavadega, tähistame
ajamomendile τt vastavat juhuslikku suurust Z kujul Zt ning selle teadaolevat väärtust
kujul zt, kus t on täisarvuline (või naturaalarvuline) indeks.

1.1 Aegrea komponendid

Aegreaga kirjedatud juhusliku suuruse muutumisel ajas võib olla mitmeid erinevaid põhju-
seid:

• Ümbritseva (majandus)keskkonna, firma juhtimiskultuuri vms tegurite pikaajaline
mõju, mida nimetatakse trendiks.

• Kellaajast, nädalapäevast, kalendrikuust vms sõltuvad kindla perioodiga muutused.
Kui perioodiks on aasta, siis nimetatakse selliseid muutusi sesoonseteks muutus-
teks.

• Jooksva aasta kalendrist sõltuvad muutused. Osade vaadeldavate suuruste väärtused
sõltuvad näiteks töö- või kalendripäevade arvust kuus või kvartalis.

• Ebaregulaarsed, lühikeste ajavahemike järel toimuvad muutused.

Majandusest rääkides eristatakse sageli veel pikaajalist kindla suunaga muutumist ning
nn majandustsüklist sõltuvaid ebaregulaarse pikkusega küllaltki pikaajalisi tõuse ja lan-
gusi, kuid andmete põhjal on neid muutumise tüüpe praktiliselt võimatu eristada. Aegrea
osadeks jaotamisel nimetatakse seetõttu sageli suhteliselt aeglaselt toimuvat muutumist
trend-tsükliks (inglise keeles trend-cycle).
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Vaatlema näidetena kahte kuude kaupa defineeritud Eesti Statistikaameti veebilehelt alla-
laaditud aegrida - tarbijahinna indeksit ning majutatud turistide arvu. Tarbijahinna indeks
on kujutatud joonisel 1.1. Joonise põhjal paistab, et tarbijahinna indeksil on selgelt kas-
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Joonis 1.1: Tarbijahinna indeks 01.1998-07.2011(Statistikaameti andmed [1])

vav trend ning silmaga nähtavaid sesoonseid muutuseid ei paista. Samas aga majutatud
turistide arvu aegreal paistab olema nii kasvav trend kui ka selge sesoonne komponent
(vt. joonis 1.2. Järgnevalt vaatleme põgusalt mõningaid võimalusi, kuidas aegrida jaotada
erinevat tüüpi osadeks.

1.1.1 Trendi leidmise meetodid

Trendi puhul eristatakse nn globaalset, ajas muutumatu iseloomuga trendi ja lokaalset
trendi, mis võib ajas pikkamööda muutuda.

Globaalse trendi eraldamine

Mõnikord on otstarbekas eeldada, et vaadeldava juhusliku suuruse pikaajalist käitumist
ajas iseloomustab mingi küllalt lihtsal kujul olev funktsioon (lineaarne, ruutfutnktsioon,
trigonomeetriline funktsioon, eksponentfuntsioon), mille ümber toimub võnkumine ebare-
gulaarsete häirituste ning perioodilise mõjutegurite tõttu. Vaatleme lihtsuse mõttes ainult
juhtu, kus perioodilist komponenti ei ole; sel juhul tehakse sageli oletus, et aegrea andmed
on kujul

zt = f(β, t) + vt,

kus f on mingi teadaolev parameetritest β = (β1, . . . , βp)
′ sõltuv funktsioon ning vt on

juhuslik kõrvalekalle. Sageli kasutatavaks meetodiks parameetrite β leidmiseks on vähim-
ruutude meetod, mille korral leitakse β avaldise∑

t

(f(β, t)− zt)2,

minimiseerimise teel. Summeerimine toimub siinjuures üle kõikide teadaolevate andmete.
Sageli loetakse heaks suvalist funktsiooni f , mille korral saavutatakse vaadeldava summa
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Joonis 1.2: Majutatud turistide arv kuude lõikes 01.1996-07.2011 (Statistikaameti andmed
[2])

piisavalt väike väärtus ning kasutatakse seda funktsiooni (trendi) tuleviku ennustamiseks.
Selline lähenemine on aga sageli põhjendamatu, sest eriti aegridade puhul ei pruugi mi-
neviku andmetega hästi sobiv funktsioon tuleviku ennustamiseks üldse sobida. Selleks, et
veendunud olla vaadeldava meetodi sobivuses konkreetse andmestiku jaoks, tuleb lähtuda
aegrea mudelist, mille korral vastav meetod annab mõistliku tulemuse. Selliseks mudeliks
on

Zt = f(β, t) + εt,

kus εt on sõltumatud sama jaotusega juhuslikud suurused (tegelikult piisab ka mittekor-
releeritusest ja konstantsest dispersioonist). Juhul, kui funktsioon f sõltub kordajatest β
lineaarselt, nimetatakse sellist lähememist statistikas ka lineaarseks regressiooniks; mit-
telinaarse sõltuvuse korral on tegemist mittelineaarse regressiooniga. Seega võime lugeda
tulemusi usaldatavateks siis, kui pärast parameetrite leidmist järgi jäävad vead võib lugeda
sõltumatute juhuslike suuruste väärtustele vastavaks; aegridade puhul juhtub seda harva.
Vaatleme näitena lineaarse, ruut- ja kuupfunktsiooni sobitamist eelnevalt vaadeldud tar-
bijahinna indeksi andmetele. Näiteks lineaarse trendi sobitamise korral on funktsiooni f
kujuks

f(β, t) = β1 + β2 t

ning vähimruutude metodil saame parimaks lineaarseks lähendiks

f(β̂, t) = 100, 6 + 0, 4849 t,

kus t on väljendatud kuudes alates 1998-nda aasta algusest (st 1998 jaanuar vastab väär-
tusele t = 1). Joonisel 1.3 näeme tarbijahinna indeksi väärtuseid koos lineaarsele, ruut -ja
kuuptrendile vastavate kõveratega. Kasutades nende kõverate sobitamiseks mingit statisti-
katarkvara, võib kogenematul statistika rakendajal jääda mulje, et nad kõik on väga head
tarbijahinna indeksi käitumise kirjeldamiseks (kõikidel juhtudel on kõik mudeli kordajad
olulised väga madala olulisusnivoo korral ja determinatsioonikordajad on vägagi läheda-
sed ühele). Samas on aga selge, et üldine majanduskeskkond on muutuv ning seetõttu on
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Joonis 1.3: Tarbijahinna indeksi globaalse trendi hinnangud

globaalse trendi olemasolu vägagi kaheldav; konkreetsel juhul ei rahulda vaadeldud juhtu-
del andmed regressioonanalüüsi eelduseid (jääkide sõltumatus!) ja seetõttu tarkvara poolt
väljastatud head sobivusnäitajad ei oma mõtet. Kokkuvõtteks: globaalse trendi olemas-
olu eeldus on praktilises andmeanalüüsis väga harva õigustatud ning lihtsa regressiooni
abil sobitatud trendikõverate kasutamisel tuleviku ennustamiseks tuleb olla väga ettevaat-
lik. Konkreetseid meetodeid selle kindlakstegemiseks, et vaadeldud trendimudelid ei sobi
käesoleval juhul tuleviku ennustamiseks, vaatleme hilisemates alapunktides.

Lokaalse trendi eraldamine

Kuna globaalse trendi olemasolu on väga harva põhjendatav, siis mõistetakse trendikõvera
all enamasti aegrea suhteliselt aeglaselt muutuvat, ”siledat“ osa. Kahjuks ei ole aga olemas
üldiselt aktsepteeritavat lokaalse trendi definitsiooni, mistõttu ei ole tegemist matemaa-
tilise mõistega ning seetõttu on trendist rääkides vaja alati täpsustada, mida konkreetsel
juhul selle all mõistetakse.
Lokaalse trendi leidmiseks tuleb aegreast eemaldada juhuslikest häiritustest tekitatud mü-
ra, seda protsessi nimetatakse silumiseks või filtreerimiseks. Väga sageli seisneb silumine
uue aegrea tekitamises nn silutud keskmise leidmise abil.

Definitsioon 1 Rea (zt) teisendust kujul

yt =
r∑

i=−q
wizt−i, (1.1)

kus wi ≥ 0 ja
∑r

i=−q wi = 1, nimetatakse libiseva keskmise leidmiseks. Juhul kui q = r ja
w−i = wi, i ≤ q, nimetatakse sellist teisendust sümmeetriliseks libisevaks keskmiseks
ning kui kõik kaalud wi on võrdsed, on tegemist lihtsa libiseva keskmisega.

Mõningad näited:
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• Lihtne sümmeetriline libisev keskmine:

yt =
1

2q + 1

q∑
i=−q

zt−i.

• Paarisarvulise perioodiga perioodilise komponendi olemasolu korral kasutatav lihtsa
sümmeetrilise keskmistamise modifikatsioon:

yt =
1

2q

1

2
(z−q + zq) +

q−1∑
i=−q+1

zt−i

 , (1.2)

kus perioodi pikkuseks on 2q.

• Eksponentsiaalne silumine:

yt = α
∞∑
i=0

(1− α)izt−i,

kus α ∈ (0, 1) on mingi positiivne number. Praktilistes arvutustes kasutatakse eks-
ponetsilumise omadust

yt = αzt + (1− α)yt−1,

mis võimaldab lihtsalt siluda lõplikku aegrida. Kui α läheneb ühele, siis silumist
praktiliselt ei toimu ning mida väiksem on α, seda tugevam on silumine.
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Joonis 1.4: Lihtsa 9-kuulise libiseva keskmise ning eksponentsiaalse silumise (α = 0, 2) abil
teisendatud tarbijahinna indeks
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Joonisel 1.4 on toodud näited tarbijahinna indeksi silumisel saadud kõveratest.
Igasugune silumine peaks vähendama müra (eriti kuna müra kohta eeldame, et see on kesk-
miselt null). Samuti võib argumenteerida, et perioodilise komponendi puudumisel peaks
silutud rida olema lähedane trendile, kuna müra on vähenenud ja aeglaselt muutuva trendi
korral on selle väärtuste keskmine (vähemalt juhul, kui keskmist arvutatakse üle suhteliselt
lühikese perioodi) lähedane tema hetkeväärtusega. Ideaalne oleks aga juht, kus vähemalt
lihtsamate trendide korral saaksime müra puudumisel trendikõvera täpselt leida. Osutub,
et see on võimalik.

Harjutus 1 Näidata, et kui aegrea väärtused on antud lineaarse funtktsiooni f(t) = a+b t
poolt (st zt = f(t)), siis sümmeetrilise libiseva keskmise kasutamisel kehtib yt = f(t).

Sümmeetrilist keskmistamist ei ole aga alati võimalik rakendada. Näiteks aegrea lõpu-
osas puuduvad meil vajalikud tulevikuväärtused ning seetõttu on tuleviku prognoosimisel
võimalik kasutada ainult ühepoolseid keskmisi, näiteks eksponentsiaalset keskmistamist.
Sel juhul aga ei pruugi keskmistamisel leitud trendikõver isegi müra puudumisel langeda
kokku õige trendiga.

Harjutus 2 Olgu aegrea väärtused on antud lineaarse funtktsiooni f(t) = a + b t poolt
(st zt = f(t)). Näidata, et sel juhul eksponentsiaalsel keskmistamisel saadav funktsioon on
samuti lineaarne, leida selle kordajad. (Näpunäide: tekkiva lõpmatu summa leidmisel on
võimalik kasutada geomeetrilise jaotusega juhusliku suuruse keskväärtuse valemit)

Mittelineaarsete trendikõverate olemasolul ei anna ka sümmeetriline keskmistamine täpset
tulemust, kuid on küllalt lihtne näidata, et juhul, kui andmeid on mõõdetud väikese inter-
valliga (ehk, ekvivalentselt, kui trendikõver muutub piisavalt aeglaselt), on sümmeetrilise
keskmistamise tulemus müra puudumisel vähemalt piisavalt väikese ajaintervalli korral
väga lähedane tegelikule trenddikõverale.

Harjutus 3 (*) (lisapunktide saamiseks esitamise tähtaeg 26.09.2011) Olgu yt =
∑r

i=−q wizt−i
selline libiseva keskmise valem, mis jätab kõik lineaarsed funktsioonid paika (st linaarsele
funktsiooni vastava rea zt korral yt = zt ∀t) ning millel on vähemalt kaks nullist erinevat
kaalu. Näidata, et sel juhul yt 6= zt ∀t iga ruutfunktsiooniga antud rea zt = a+b·t+c·t2, c 6=
0 korral.

Kui perioodilist komponenti sisaldava (sesoonse) rea trendi soovitakse silumise teel eral-
dada, siis peab silmas pidama, et keskmistamisel on sel juhul kaks eesmärki - juhuslike
häirituste eemaldamine ning perioodiliste muutuste eemaldamine. Selleks on võimalik ka-
sutada perioodi pikkusega kooskõlas oleva silumisaknaga keskmistamist, kuna üle terve
perioodi summeerimisel peaks perioodiliste muutuste summa null olema. Näitena vaatle-
me majutatud turistide arvu lihtsat silumist. Kuna periood on antud juhul paarisarvuline
(12 kuud), siis kasutame valemit 1.2. Tulemus on toodud joonisel 1.5. Nagu näha, eemal-
dab antud juhul lihtne keskmistamine aegreast perioodilised võnkumised ning tulemust
võime lugeda trendikõveraks.
Näiteme ka matemaatiliselt, et perioodilist komponenti sisaldava rea silumine eelmainitud
tüüpi keskmistamise korral aitab küllalt hästi trendi eraldada. Selleks näitame, et kui
andmed on kujul

zt = a+ b t+ g(t),

kus g on perioodiga 2q funktsioon (st g(t+2q) = g(t) ∀t), siis valemiga (1.2) saadud silutud
rida langeb kokku trendiga. Selleks, et lahutus trendiks ja perioodiliseks osaks oleks üheselt
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Joonis 1.5: Paarisarvulisele perioodile vastava lihtsa sümmeetrilise kesmistamise modifi-
katsiooni abil silutud majutatud turistide arv ajas

määratud, nõuame täiendavalt, et
∑2q

i=1 g(t− i) = 0 ∀t. Seega on meie eesmärgiks näidata,
et yt = a+ b t. Arvutame:

yt =
1

2q

1

2
(z−q + zq) +

q−1∑
i=−q+1

zt−i


=

1

2q

1

2
(a+ b (t+ q) + g(t+ q)) +

q−1∑
i=−q+1

(a+ b (t− i) + g(t− i))

+
1

2
(a+ b (t− q) + g(t− q))

)

=
1

2q

a+ b t

2
+

q−1∑
i=−q+1

(a+ b t) +
a+ b t

2


+

1

2q

b q
2
−

q−1∑
i=−q+1

(b i)− b q

2


+

1

2q

g(t+ q)

2
+

q−1∑
i=−q+1

g(t− i) +
g(t− q)

2


= a+ b t+ 0 +

1

2q

g(t+ q)

2
+

q−1∑
i=−q+1

g(t− i) +
g(t− q)

2

 .
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Nüüd kasutame g perioodilisust:

g(t+ q)

2
+

q−1∑
i=−q+1

g(t− i) +
g(t− q)

2

=
g(t− q)

2
+

0∑
i=−q+1

g(t− i− 2 q) +

q−1∑
i=1

g(t− i) +
g(t− q)

2

=

2 q∑
i=q+1

g(t− i) +

q−1∑
i=1

g(t− i) + g(t− q)

=

2 q∑
i=1

g(t− i) = 0.

Sellega oleme näidanud, et yt = a+ b t.

●

●

●

●

●

1 2 3 4 5

0.
6

0.
8

1.
0

1.
2

1.
4

1.
6

1.
8

Index

z

●

●

●
●

●

Joonis 1.6: Lokaalse regressiooni abil aegrea silumine

Üheks küllaltki populaarseks meetodiks aegridade silumisel on ka nn loess või lowess (ing-
lise keeles locally weighted scatterplot smoothing) meetod, mis silutud kõvera väärtuse leid-
miseks mingis punktis sobitab kaalutud vähimruutude meetodil madala astme polünoomi
läbi antud punktile lähedastele ajamomentidele vastavate aegrea väärtuste ning arvutades
silutud kõvera väärtuse selle polünoomi abil. Idee tutvustamiseks vaatleme juhtu, kus meil
on antud aegrida

z = (1, 0.6, 1.8, 1.2, 0.7).

Kõige lihtsamal kujul lokaalse regressiooni puhul tuleb otsustada polünoomi aste ning ka-
sutatavate naabrite arv. Vaatleme lineaarset polünoomi (ehk sirget) ning kasutame silutud
rea leidmisel kolme lähimat väärtust (st jooksvale ajahetkele vastavat väärtust ja veel ka-
hele lähimale ajahetkele vastavaid vaatluseid). Silumise protsess on kujutatud joonisel 1.6,
kus esialgse aegrea väärtused on kujutatud mustade punktidena. Silutud rea esimese väär-
tuse leidmiseks leiame vähimruutude meetodil sirge, mis lähendab esimest kolme vaatlust

12



võimalikult hästi (joonisel sinine sirge). Selle sirge väärtus ajal t = 1 ongi silutud rea
esimeseks väärtuseks (joonisel punane punkt). Silutud rea teise väärtuse leidmine toimub
sama sirge abil, kuna kasutusele tulevad samad z väärtused. Kolmanda punkti leidmisel
tuleb sobitada sirge läbi teise, kolmanda ja neljanda z väärtuse (joonisel roheline) ning
viimased kaks väärtust leitakse läbi viimase kolme z väärtuse sobitatud sirge abil (joonisel
pruun).
Praktilisel kasutamisel antakse polünoomi sobitamisel igale kasutatavale z väärtusele veel
kaal sõltuvalt selle kaugusest arvutatavast väärtusest. Täpsemalt võib nende meetodite
kohta lugeda näiteks Wikipedia artiklist [3].

1.1.2 Dekompositsioonimeetodid. Sesoonne kohandamine.

Aegridade käitumisest arusaamine ja nende tõlgendamine on majanduses väga suure täht-
susega, seetõttu on loodud mitmeid meetodeid ja töövahendeid, mis võimaldavad neid
osadeks lahutada. Ennem mõningate enim tunnustatud vahendite tutvustamist aga selgi-
tame kasutatavaid mõisteid.
Aegrea osadeks lahutamisel tuleb kõigepealt otsustada, mismoodi need osad tervikus si-
salduvad. Valdavalt vaadeldakse kahte juhtu: aditiivne dekompositsioon, mille korral
eeldatakse, et vaadeldav juhuslik suurus avaldub kujul

Zt = Tt + St + It,

kus T on trend (või trend-tsükkel), S on perioodiline (sesoonne) komponent ja I on eba-
regulaarne (juhuslik) komponent ehk müra; ning multiplikatiivne dekompositsioon,
mille korral eeldatakse käitumist

Zt = TtStIt.

Mõlemal juhul eeldatakse, et T sisaldab kogu informatsiooni keskmise taseme kohta ning S
ja I kirjeldavad kõikumist keskmise ümber, st aditiivse lahutuse korral on S ja I keskmiselt
nullid ning multiplikatiivsel juhul väljendavad nad suhet kesmisse väärtusesse (st on ise
keskmiselt võrdsed ühega). Multiplikatiivset juhtu on võimalik taandada aditiivsele juhule
esialgse aegrea logaritmimise teel.
Sageli pakub suurt huvi eriti sesoonse komponendi eemaldamine, mida nimetatakse se-
soonseks kohandamiseks (seasonal adjustment). Sesoonne kohandamine võimaldab pare-
mini võrrelda aegrea järjestikuseid väärtuseid (näiteks uurida, kas majandus on tõusuteel,
kui teise kvartali tulemus on parem esimese kvartali tulemusest).
Aegrea komponentide eraldamine on sageli iteratiivne protsess: enamasti leitakse kõi-
gepealt ligikaudselt trend (näiteks sobiva sümmeetrilise libiseva keskmise abil), seejärel
eemaldatakse reast trend ja seejärel leitakse perioodiline komponent (näiteks perioodile
vastavaid alamridasid keskmistades), seejärel eemaldatakse esialgsest reast leitud sesoon-
ne komponent ja rakendatakse saadud mitteperioodilisele reale jälle mingit keskmistamise
meetodit trendi leidmiseks jne. Kuna trendi ja perioodilise komponendi mõisted ei ole
matemaatiliselt täpselt formuleeritud, siis on aegridade osadeks lahutamine tegevus, mis
eeldab mitmesuguseid kasutajapoolseid valikuid ning seega ei ole tulemus ilma täiendavate
kokkulepeteta üheselt määratud.
Mainime tuntud meetoditest kahte. Esiteks, STL (Seasonal-Trend decomposition based on
LOESS) võimaldab jaotada aegrida aditiivseteks komponentideks, on kasutatav ka puu-
duvate väärtuste korral ning on realiseeritud näiteks tarkvarapaketis R. Teiseks, Ameerika
Ühendriikide statistikaameti (U. S. Census Bureau) poolt kasutatavad dekompositsiooni
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ja sesoonse kohandamise meetodid on realiseeritud nende poolt hallatavas ning tasuta al-
lalaaditavas tarkvarapaketis X-12-ARIMA, mis võimaldab aegreast kõrvaldada erindeid,
võtta arvesse töö- ja puhkepäevade efekte, jaotada aegrida nii aditiivseteks kui ka multip-
likatiivseteks osadeks ning arvutada ka mitmesugustel meetoditel põhinevaid prognoose
ja sooritada diagnostilisi teste. Vastav protseduur on olemas tarkvarapaketis SAS; tasuta
versioonid mitmesuguste operatsioonisüsteemide jaoks on saadaval internetis aadressil [5].
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Joonis 1.7: STL meetodil saadud majutatud turistide aegrea komponendid

Näitena aegrea osadeks jaotamisel saadavatest tulemustes on joonisel 1.7. STL kasutamise
korral saab valida mitmesuguseid parameetreid trendi ja perioodilise osa leidmise konk-
retiseerimiseks. Näiteks joonisel toodud juhul on lubatud perioodilisel komponendil ajas
küllalt kiiresti muutuda ning seetõttu on tulemus oluliselt erinev sellest, mille saaksime
muutumatut perioodilist komponenti eeldades.
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Peatükk 2

Keskmistamisel põhinevad
prognoosimeetodid. Prognoosimudeli
headuse mõõdikud

2.1 Silumisel põhinevad lihtsamad prognoosivõtted perioo-
dilist komponenti mittesisaldavate ridade jaoks

Olgu meil antud teatud kogus aegrea väärtusi zt, t = 1, 2, . . . , T . Sageli pakub huvi tu-
levikuväärtuste võimalikult täpne ennustamine, kusjuures on selge, et me saame selleks
kasutada ainult teadaolevaid väärtuseid. Tähistame kujul ẑt1|t prognoosi aja t1 jaoks, mis
on saadud, kasutades teadaolevaid väärtuseid ajani kuni ajani t ning kui t1 = t + 1, siis
kasutame prognoosi jaoks lihtsustatud tähist ẑt1 .

2.1.1 Ilma trendita aegrea prognoosimine

Kui aegrea väärtused tunduvad käituvat täiesti juhuslikult või kui trendist põhjustatud
muutlikuse osa on väga väike, siis on tuleviku jaoks küllaltki mõistlikuks ennustuseks eel-
nevate vaatluste keskmine (kuna sõltumatute sama jaotusega juhuslike suuruste korral on
parimaks ennustuseks keskväärtus). Kui on alust arvata, et vaatlused on täiesti juhuslikud
(st vastavad sõltumatute sama jaotusega juhuslike suuruste väärtustele), siis võib kasutada
kõigi teadaolevate vaatluste keskmist:

ẑt+p|t =
1

t

t∑
i=1

zi.

Harjutus 4 Hinnata juhul, kui Zt on sõltumatud, sama jaotusega ning dispersiooniga
σ2 juhuslikud suurused, tõenäosust, et eelneva valemiga ennustatud tulemus erineb Zt+1

tegelikust väärtusest rohkem kui ε, st leida hinnang tõenäosusele

P (|Zt+1 −
1

t

t∑
i=1

Zi| ≥ ε).

Kui aga keskmine on ajas siiski muutuv, on parem kasutada selliseid keskmise valemeid,
mis kõige värskematele vaatlustele annavad suurema kaalu, näiteks lihtsat libisevat kesk-
mist

ẑt+p|t =
1

q

q−1∑
i=0

zt−i
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või siis eksponentsiaalset keskmistamist

ẑt+p|t = ẑt+1 = αzt + (1− α)ẑt,

kusjuures tavaliselt võetakse sellisel juhul ẑ1 = z1

2.1.2 Trendiga aegrea prognoosimine. Holti meetod

Trendiga aegridade korral on vägagi loomulik nõuda, et prognoosimudel annaks täpse en-
nustuse vähemalt sellistel juhtudel, kui aegrida vastab täpselt lineaarsele funktsioonile.
Libiseva keskmise kasutamisel tekib aga prognoosiviga: kui zt = a+ b t, siis libiseva kesk-
misega arvutatud prognoosi korral saame (arvestades, et kaalud summeeruvad üheks)

ẑt+1 = yt =

q−1∑
i=0

wizt−i =

q−1∑
i=0

wi(a+ b t− b i)

= a+ b t− b
q−1∑
i=0

wi i.

Vea parandamise üheks võimaluseks on parandada prognoosi kahekordse keskmistamise
(st kasutades prognoosimisel ka keskmistatud suuruste yt keskmist) abil. Nimelt kui me
arvutame eelneval juhul

ȳt =

q−1∑
i=0

wiyt−i = a+ b t− 2 b

q−1∑
i=0

wi i,

siis saame avaldada
a+ b · t = 2yt − ȳt, b =

yt − ȳt∑q−1
i=0 wi i

ning seega saame soovitud omadusega prognoosimeetodi kujul

ẑt+p|t = 2yt − ȳt +
yt − ȳt∑q−1
i=0 wi i

p.

Harjutus 5 Lihtsustage eelnevat avaldist lihtsa libiseva keskmise yt = 1
q

∑q−1
i=0 zt−i korral.

Üheks küllalt populaarseks meetodiks tendiga aegridade prognoosimiseks on Holti mee-
tod, mis tugineb eksponentsiaalsel keskmistamisel. Holti meetodi korral prognoosid vas-
tavad lineaarsele funktsioonile:

ẑt+p|t = at + bt p,

kus at arvustamisel kasutatakse zt väärtust ning eelnevate andmete põhjal tehtud prog-
noosi:

at = α zt + (1− α)ẑt = α zt + (1− α)(at−1 + bt−1)

ning bt arvutamisel kasutatakse eelmise väärtuse ning a muutuse keskmist:

bt = β (at − at−1) + (1− β)bt−1.

Meetodi kasutamiseks tuleb valida või andmete põhjal hinnata väärtused a1, b1, α, β. Sageli
valitakse a1 = z1, b1 = 0 või siis kasutada nendeks teatud arvu esimeste z väärtuste jaoks
leitud lineaarse regressioonikõvera vastavaid väärtusi. Parameetrite α ja β valikul võib
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kasutada näiteks mingi prognoosivea mõõdiku miniseerimist, näiteks võib minimiseerida
nende parameetrite järgi ennustusvigade ruutude summat

n∑
t=2

(ẑt − zt)2.

Harjutus 6 Näidata, et Holti meetod on sobivalt valitud a1 ja b1 korral täpne juhul, kui
aegrida vastab lineaarsele funktsioonile.

Meetodi töötamisega tutvumiseks vaatleme varasemast tuttavat näidet, kus aegrea väär-
tusteks on

z = (1, 0.6, 1.8, 1.2, 0.7).

Vaatleme prognoosimise protsessi juhul α = β = 0.5 ning valime algväärtusteks a1 =

●
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Joonis 2.1: Lokaalse regressiooni abil aegrea silumine

1, b1 = 0. Olgu meie eesmergiks prognoosida Holti meetodiga järgmised 4 väärtust z6, z7, z8, z9.
Selleks peame leidma a5 ja b5, milleks tuleb alustada valitud a1 ja b1 väärtustest ning liiku-
da mööda aegrida kuni ajani t = 5, arvutades iga ajamomendi jaoks vastavad taseme a ja
tõusu b väärtused. Protsessi on graafiliselt kujutatud joonisel 2.1. Kõigepealt lähtume ajale
t = 1 vastavast trendijoonest (sirge punktist (1, a) tõusuga b), millele vastavaks prognoo-
siks ẑ2 on 1 (joonisel kujutatud ringikesena). Ajale t = 2 vastava taseme väärtuse leiame
nüüd prognoosi ja tegeliku väärtuse keskmisena (kuna α = 0.5, siis leiame aritmeetilise
keskmise), mis on joonisel kujutatud kolmnurgaga. Uue trendi leidmiseks võtame keskmise
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kaaluga β prognoosi leidmisel kasutatud tõusust (praegu 0) ja taseme a väärtuste muudust;
leitud uus tõusukordaja b2 vastab sirgele, mis läheb eelmise trendijoone ja punktiirina ku-
jutatud a väärtusi ühendava sirge vahelt. Pärast a2 ja b2 arvutamist kordame varasemat
proteduuri: leiame prognoosi ẑ3 vastavalt trendijoonele, seejärel a3 väärtuse prognoosi ja
tegeliku väärtuse keskmisena ning lõpuks uue tõusukordaja b3 jne. Ajamomendiks t = 5
oleme leidnud

a5 = 1.065625, b5 = −0.0640625

ning seega huvipakkuvad prognoosid leiame vastavalt sirgele, mis läbib punkti (5, a5) tõu-
suga b5.

2.2 Holt-Wintersi meetod sesoonse aegrea prognoosimiseks

Järgnevalt eeldame, et aegreal on perioodiline komponent perioodiga s. Holt-Wintersi
meetodil on kaks versiooni sõltuvalt sellest, kas me eeldame, et perioodiline komponent on
korrutatud trendiga (multiplikatiivne mudel) või liidetud trendile (aditiivne mudel). Mõle-
mal juhul hinnatakse ennustamiseks jooksvat taset a, trendikõvera tõusu b ning sesoonset
(perioodilist) komponenti S ning lisaks algväärtustele tuleb valida kolm silumistegurit α, β
ja γ.

2.2.1 Multiplikatiivne Holt-Wintersi meetod

Ennustusvalemiks on sel juhul

ẑt+p|t = (at + p bt)St+p−s, p = 1, . . . , s,

kus

at = α
zt
St−s

+ (1− α)(at−1 + bt−1),

bt = β(at − at−1) + (1− β)bt−1,

St = γ
zt
at

+ (1− γ)St−s.

Meetodi kasutamiseks alates ajamomendist t = s+1 tuleb ette anda as, bs, S1, . . . , Ss ning
määrata sobivad kordajad α, β, γ. Kui kasutada erinevates tarkvarapakettides realiseeritud
Holt-Wintersi meetodit samade andmete ja automaatse parameetrivaliku korral, siis võivad
prognoosivead vähemalt alguses olla küllaltki erinevad, kuna etteantavate parameetrite
automaatne valik on realiseeritud neis erinevalt.

2.2.2 Aditiivne Holt-Wintersi meetod

Ennustusvalemiks on sel juhul

ẑt+p|t = (at + p bt) + St+p−s, p = 1, . . . , s,

kus

at = α(zt − St−s) + (1− α)(at−1 + bt−1),

bt = β(at − at−1) + (1− β)bt−1,

St = γ(zt − at) + (1− γ)St−s.
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2.3 Prognoosimudeli headuse mõõdikud

Selleks, et võrrelda konkreetse andmestiku korral omavahel erinevaid prognoosimeetodeid,
arvutatakse sageli mingit tuüpi keskmist prognoosiviga ühesammuliste prognooside jaoks.
Mõned tuntumatest on

• Keskmine absoluutne viga (mean absolute deviation):

MAD =
1

n

n∑
i=1

|zi − ẑi|

• Keskmine ruut viga (mean square error):

MSE =
1

n

n∑
i=1

(zi − ẑi)2

• Ruutkeskmine viga:

RMSE =

√√√√ 1

n

n∑
i=1

(zi − ẑi)2 =
√
MSE

• Keskmine suhteline viga (mean absolute presentage error):

MAPE =
1

n

n∑
i=1

|zi − ẑi|
zi

Mõningaid täiendavaid headuse mõõdikuid vaatleme hiljem. Vaadeldud näitajad annavad
aimu sellest, kui hästi vaadeldav aegrida mingi meetodi korral prognoositav võib olla. Sa-
mas tuleb aga suhtuda arvutatud näidikutesse ettevaatusega, seda eriti juhul, kui meetodis
kasutatavad parameetrid on leitud sama andmestiku põhjal, mille korral näidikuid arvuta-
takse (parameetrite valikuga võib saavutada hea kooskõla selleks kasutatava andmestikuga,
kuid see kooskõla ei pruugi edasi kanduda uute andmete peale, nn. ülesobitamise efekt).
Samuti tuleb uurida eenustusvigade juhuslikkust, sest kui ennustusvead ei ole omavahel
sõltumatud, siis ei ole mingit garantiid, et mineviku põhjal arvutatud näitajad tuleviku
kohta midagi ütlevad ning kindlasti on sel juhul võimalik prognoose avastatud sõltuvust
kasutades parandada. Teisalt, kui prognoosivead on sõltumatud nullkeskmisega juhusli-
kud suurused, siis mudel on vähemalt ruutkeskmise vea suhtes parim võimalik. Kahjuks
ei ole sõltumatust lõpliku aegrea baasil võimalik kindlaks teha, kuid see-eest on mitmeid
teste, mis võimaldavad sõltuvust kindlaks teha. Nii et praktikas ennustusmeetodi valikul
tuleb alati kontrollida, kas prognoosijäägid on sõltumatud. Kui tuleb välja, et ei ole, siis
on (vähemalt teoreetiliselt) kindlasti võimalik leida parem prognoosimeetod. Aegridade
analüüsimisel on üheks tähtsamaks sõltuvuse tüübiks ajaline sõltuvus, mille kindlakstege-
misest tuleb juttu järgnevas peatükis.

2.4 Aegridade mudelid

Selleks, et oleks võimalik leida veapiire arvutatud prognoosidele veapiire ning tuletada
prognoosimeetodite sobivuse kindlakstegemiseks ja omavaheliseks võrdlemiseks matemaa-
tiliselt põhjendatud protseduure, tuleb teha eeldused selle kohta, kuidas juhuslikkus mõ-
jutab vaadeldava aegrea väärtuseid, st tuleb kirjeldada aegrea mudel. Selleks, et mine-
vikuväärtuste põhjal oleks võimalik midagi öelda ka tulevikus tekkivate juhuslike häiri-
tuste kohta, peab neil häiritustel olema korduv iseloom (ideaalis on nad sõltumatud ja
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sama jaotusega juhuslikud suurused). Järgnevas eeldame, et juhuslikkus aegrea väärtus-
te z1, . . . , zn tekkimisel on tulenenud (enamasti sõltumatute ja sama jaotusega) juhuslike
suuruste A1, . . . , An väärtustest a1, . . . , an. Seega me eeldame, et andmete tekkimise taga
on juhuslik protess (Zt), kus Zt võib sõltuda varasematest Zi, i < t väärtustest ning kuni
ajani t tekkivatest juhuslikest suurustest Ai, i ≤ t; meie näeme andmetena selle protsessi
ühte võimalikku käitumist, mis vastab juhuslike suuruste Ai väärtustele ai.

Definitsioon 2 Aegrea mudelit nimetatakse olekuruumi mudeliks, kui protsess Zt esitub
kujul

Zt = w(Xt−1) + r(Xt−1)At,

Xt = f(Xt−1) + g(Xt−1)At,

kus (At) in sõltumatud, sama jaotusega ja tsentreeritud juhuslikud suurused ning Xt =
(X1,t, . . . , Xm,t) on olekuvektor. Olekuruumi mudelit nimetatakse lineaarseks, kui funkt-
sionid w() ja f() on lineaarsed funktsioonid, g() on konstantne vektor ja r(Xt−1) = 1.

Märkus 3 Eelenvalt defineeritud olekuruumimudel on tuntud kui ühe veaallikaga mudel
(Single Source of Error model). Laialdaselt on kasutatav ka mitme veaallikaga mudel (Mul-
tiple Source of Error model), mille korral igal ajasammul mõjutab nii olekuruumi kui ka
järgmist vaatlust mitmemõõtmelise juhusliku vektori A väärtus, g() ja r() on sel juhul
sobivate mõõtmetega maatriksid.

Harjutus 7 Leida Holti meetodi esitus olekuruumi mudelina eeldusel, et ühesammulise
prognoosi viga on At:

Zt = at−1 + bt−1 +At.

Definitsioon 4 Aegrea mudelit nimetatakse ARIMA tüüpi mudeliks, kui Zt avaldub lõp-
liku arvu varasemate Zi, i < t ja lõpliku arvu sõltumatute sama jaotusega häirituste
Ai, i ≤ t lineaarkombinatsioonina kujul

Zt = φ0 +

p∑
i=1

φiZt−i +At +

q∑
i=1

ψiAt−i.

Harjutus 8 Näidata, et ARIMA tüüpi mudel esitub lineaarse olekuruumi mudelina.

Osutub aga, et lineaarne olekuruumi mudel esitub samuti ARIMA tüüpi mudeli kujul.
Käesolevas kursuses keskendume põhiliselt lineaarsetele mudelitele ning lähtume peamiselt
ARIMA tüüpi esitlusest.
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Peatükk 3

Statsionaarsed aegread

3.1 Statsionaarsuse mõiste. Autokorrelatsioonifunktsioon

Selleks, et teadaolevate aegrea väärtuste põhjal saaks tulevikku ennustada ja ka prog-
noosivigu arvutada, peab tegema mingid eeldused, mis garanteerivad tulevikukäitumise ja
tulevikus tekkivate juhuslikke häiritusi iseloomustava info sisalduvuse mineviku andmetes.
Üheks aegridade teoorias sagili kasutatavaks eelduseks on nn statsionaarsuse nõue.

Definitsioon 5 Juhuslikku protsessi (Zt)t∈ZZ nimetatakse (tugevalt) statsionaarseks, kui
iga täisarvude komplekti t1, . . . , tm ja iga täisarvu p korral on juhuslikud vektorid (Zt1 , . . . , Ztm)
ning (Zt1+p, . . . , Ztm+p) sama jaotusega.Kui iga täisarvude komplekti t1, . . . , tm ja iga täis-
arvu p korral on juhuslike vektorite (Zt1 , . . . , Ztm) ning (Zt1+p, . . . , Ztm+p) kõik kuni k
järku momendid võrdsed, siis nimetatakse protsessi Zt k-järku nõrgalt statsionaarseks.

Statsionaarse protsessi näiteks on protsess, mis koosneb sõltumatutest sama jaotusega
juhuslikest suurustest. Olgu meil tegemist teist järku nõrgalt statsionaarse protsessiga,
siis juhul m = 1 järeldub definitsioonist, et

E(Zt) = µ, DZt = σ2 ∀t

mingite konstantide µ ja σ korral. Samuti järeldub, et suuruste Zt ja Zt+p kovariatsioon
ja korrelatsioon (täpsemalt autokorrelatsioon ja autokorrelatsioon, kuna tegemist on sama
protsessi eri ajamomentidele vastavate juhuslike suuruste kovaratsiooni ja korrelatsiooniga)
sõltub ainult ajamomentide vahest p, väärtuste hulkasid

γp = cov(Zt, Zt+p), ρp = cor(Zt, Zt+p) =
γp
σ2
, p ∈ ZZ

nimetatakse vastavalt protsessiZt autokovariatsioonifunktsiooniks ja autokorrelatsiooni-
funktsiooniks.

Harjutus 9 Näidata, et sõltumatute sama jaotusega juhuslike suuruste εt abil defineeritud
protsess

Z1 = ε1; Zt = Zt−1 + εt, t > 1

ei ole statsionaarne.

Harjutus 10 (*, lisapunktide saamiseks esitada 17.10.2011) Näidata, et sõltumatute stan-
dardse normaaljaotusega juhuslike suuruste εt abil defineeritud protsess

Zt =
1

2
εt +

1

4
εt−1

on statsionaarne.
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Kui meil on teada statsionaarsele protsessile vastavad aegrea väärtused ajamomentidel
t = 1, 2, . . . , N , siis arvutatakse empiiriliste autokovariatsiooni ja autokorrelatsioonifunkt-
siooni väärtused tavaliselt valemitega

µ̄ =
1

N

N∑
t=1

zt,

cp =
1

N

N−p∑
t=1

(zt − µ̄)(zt+p − µ̄), p = 0, 1, . . . , N − 1,

rp =
cp
c0
.

Harjutus 11 (*, lisapunktide saamiseks esitada 17.10.2011) Näidata, et kui statsionaarse
protsessi korral kehtib limp→∞ |γp| = 0, siis

P (|µ̄− µ| ≥ ε) →
N→∞

0

iga ε > 0 korral.

Tähtis on aru saada, et empiirilisi autokorrelatsioone ja autokovaratsioone saame me ar-
vutada suvaliste andmeridade põhjal, kuid mittestatsionaarse rea korral ei iseloomusta
saadavad numbrid mingite konkreetsete juhslike suuruste korrelatsioone ja kovaratsioone,
seega nende mõistlik tõlgendamine on väga raske.
Kui meil on tegemist sõltumatutest sama jaotusega juhuslikest suurustest koosneva prot-
sessiga, siis kõik teoreetilised korrelatsioonid ρp, p > 0 on võrdsed nulliga, kuid protsessile
vastava lõpliku pikkusega aegrea põhjal arvutatud hinnangud rp, p > 1 on üldiselt nul-
list erinevad. Seetõttu on väga oluline teada mingeid kriteeriume, mille põhjal otsustada
konkreetse aegrea empiirilise autokorrelatsioonifunktsiooni abil, kas aegrida võib vastata
täiesti juhuslikule protsessile. Selleks tutvume kahe tulemusega.
Esiteks, on teada (vt [6]), et sõltumatutele sama jaotusega juhuslikele suurustele vasta-
va aegrea korral on suurused rp, p > 1 asümptootiliselt (vaatluste arvu N kasvades)
normaaljaotusega, kusjuures keskväärtus läheneb suurusele 1

N ja standardhälve suurusele
1√
N
. Seega piisavalt suure N korral peaks iga konkreetse p > 0 korral jääma tõenäosusega

0.95 vahemikku [ 1
N −

2√
N
, 1
N + 2√

N
]. Tavaliselt statistikatarkvaras on empiirilise autokor-

relatsioonifunktsiooni graafilisel esitamisel vastavad piirid ka joonisel välja toodud.
Eelnev tulemus kehtib iga üksiku autokorrelatsioonikordaja suhtes. Samas arvutatakse
neid kordajaid tavaliselt mitu ning näiteks 20 kordaja arvutamisel on loomulik, et keskmi-
selt ühe kordaja väärtus satub väljapoole 95% veapiire. Näiteks joonisel 3.1 on kujutatud
sõltumatute juhuslike suuruste väärtuste rea põhjal arvutatud autokorrelatsioonikordajad
ning nendest r2 väärtus on väljaspool 95% veapiire. Seetõttu oleks hea teada, kas terve väl-
jaarvutatud autokorrelatsioonikordajate komplekt võib vastata sõltumatutele juhuslikele
suurustele. Selleks sobib näiteks Ljung-Box test, mis põhineb suurusel

Q = N(N + 2)
m∑
p=1

r2p
N − p

,

kus m näitab, kui mitmest esinevast autokorrelatsioonist koosnevat rühma testitakse. On
teada, et see statistik on asümptootiliselt m vabadusastmega χ2 jaotusega ning selle põh-
jals saab hinnata tõenäosust, et vaadeldavad kordajad vastavad sõltumatutele juhuslikele
suurustele.
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Joonis 3.1: Saja sõltumatu normaaljaotusega juhusliku suuruse väärtuste põhjal arvutatud
autokorrelatsioonid

3.2 Periodogramm ja spekter

Signaaliteoorias on tavaks esitada signaale erinevate sagedustega siinuste ja koosinuste
(nn harmoonikute) summana. Eeldame järgnevalt lihtsuse mõttes, et vaatluste arv N on
paaris, siis me saame aegrea väärtused zt esitada kujul

zt = a0 +

N
2∑
i=1

(
ai cos(

2πit

N
) + bi sin(

2πit

N
)

)
,

kus kordajad on arvutatud järgmiselt:

a0 =
1

N

N∑
t=1

zt,

ai =
2

N

N∑
t=1

zt cos(
2πit

N
), bi =

2

N

N∑
t=1

zt sin(
2πit

N
), i = 1, . . . ,

N

2
− 1,

aN/2 =
1

N

∑
(−1)tzt, bN/2 = 0.

Periodogrammi väärtusteks on sel juhul

I(i/N) =
N

2
(a2i + b2i ), i = 1, . . . ,

N

2
− 1, I(

1

2
) = NaN/2.

Kui ai ja bi definitsioonis asendada suurus i
N arvuga f, 0 < f ≤ 1

2 , siis aegrea spektriks
nimetatakse suurust

I(f) =
N

2
(a2f + b2f ).

Spektri suur väärtus mingi f korral näitab, et andmestikus on oluliselt esindatud perioo-
diline komponent parioodiga 1

f . Samas, kui andmed vastavad sõltumatutele juhuslikele
suurustele, siis on tegemist nn valge müraga ning spektris peaks kõik sagedused olema
üsna võrdselt esitatud. Nende omaduste baasil on loodud mitmeid teste perioodilise kom-
ponendi olemasolu kindlakstegemiseks ning samuti juhuslikkuse kindlakstegemiseks.
Vaatleme näitena joonisel 3.2 toodud aegrida. Visuaalselt on selle käitumise kohta raske
midagi öelda. Leides aga periodogrammi väärtused ning kujutades neid graafiliselt, saame
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Joonis 3.2: Aegrida spektri kasutamise näite jaoks
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Joonis 3.3: Näiteaegrea spekter

joonisel 3.3 kujutatud graafiku. Siit paistab, et andmetes on olulisel määral esindatud kaks
sagedust (üks alla 0.1 ja teine umbes 0.33). Kui uurida andmeid täpsemalt, siis vastavad
sagedused on 1

12 ja 1
3 . Kui tegemist on näiteks igakuiste andmetega, siis see vastab aastasele

perioodile ja kvartaalsele (kolmekuulisele) perioodile. Tegelikkuses oli aga vastav aegrida
genereeritud kujul

zt = 5 + 3 sin(
2πt

3
)− 2 cos(

2πt

12
) + at,

kus at vastasid standardse normaaljaotusega juhuslike suuruste väärtustele. Seega võib
öelda, et spektri uurimisega oli võimalik tuvastada andmetes peituva signaali omadusi.
Käesolevas kursuses me aga spektri ja periodogrammi kasutamist aegrea mudelite sobivuse
kindlakstegemiseks ei kasuta.
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Peatükk 4

Lineaarsed mudelid ühemõõtmelise
aegrea jaoks

Käesolevas peatükis vaatleme selliseid aegrea mudeleid, kus aegrea hetkeväärtus avaldub
lineaarse kombinatsioonina selle minevikuväärtustest ning juhusliku häirituse hetkeväärtu-
sest ja minevikuväärtustest. Selliseid mudeleid nimetatakse lineaarseteks mudeliteks. Kuna
lõpliku hulga andmete põhjal on võimalik leida ainult lõplik arv mudeli parameetreid, siis
pakuvad erilist huvi sellised protsessid, mis on kirjeldatavad lõpliku arvu parameetrite
abil.

4.1 Üldine lineaarne protsess, selle esitused, statsionaarsus
ja pööratavus

On küllalt loomulik, et enamiku huvipakkuvate juhuslike protsesside korral hetkeväärtus
sõltuv väga vähe selle protsessi kauge mineviku väärtustest ning seega võib öelda, et hetke-
väärtus on sisuliselt määratud ainult juhuslikest häiritustest, mis minevikus on toimunud.
Matemaatiliselt on kõige lihtsam uurida selliseid protsesse, kus sõltuvus häiritustest on
lineaarne. Anname sellele kirjeldusele matemaatiliselt korrektse definitsiooni.

Definitsioon 6 Üldiseks lineaarseks protsessiks nimetatakse protsesse, mis on esitatavad
kujul

Z̃t = Zt − µ = At +

∞∑
i=1

ψiAt−i, (4.1)

kus ψi on mingid reaalarvud, µ on suuruste Zt keskväärtus ning (At)t∈ZZ on vähemalt teist
järku statsionaarne tsentreeritud ning mittekorreleeritud väärtustega protsess.

Eelnevat definitsiooni motoveerib järgmine tulemus, mida nimetatakse Woldi lahutuseks.

Teoreem 7 (Woldi lahutus, vt. [7]) Iga statsionaarne protsess Zt on esitatav kujul

Zt =
∞∑
i=0

aiξt−i + ηt,

kus ξt on mittekorreleeritud protsess ning ηt on deterministlik protsess.

Nii et üldised lineaarsed protsessid on sellised statsionaarsed protsessid, mille Woldi lah-
tutuses on suurused ξt sõltumatud (või vähemalt teist järku statsionaarsed) ja mille de-
terministlik osa on konstatne.
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Käesolevas peatükis eeldame, et At on sõltumatud ja sama jaotusega juhuslikud suurused
keskväärtusega 0 ja standardhälbega σA. Selleks, et toodud lõpmatu summa defineeriks
korrektselt juhusliku suuruse, peavad kordajad ψi rahuldama mingeid tingimusi. Täpse-
malt, selleks piisab (vt [7], Teoreem 7.6.1), kui kehtib

∞∑
i=1

φ2i <∞.

Harjutus 12 (*, lisapunktide saamiseks esitada kuni 24.10.2011) Näidata, et kui protsess
At on nullkeskmisega (tsentreeritud), konstantse dispersiooniga ning mittekorreleeritud (st
E(AtAt+p) = 0 ∀p 6= 0), siis eelneva tingimuse täidetuse korral on protsess Zt nõrgalt teist
järku statsionaarne protsess.

Aegridade mudelite esitamisel ja uurimisel on kasulik tuua sisse mõned tähistused. Esiteks,
defineerime tagasi- ja edasinihke operaatorid

BZt = Zt−1, FZt = Zt+1 ∀t.

Tehniline märkus.Matemaatiliselt korrektne protseduur on järgmine: vaatleme protsessi-
de ruumi (Zt)t∈ZZ normiga ‖(Zt)t∈ZZ‖ = supt∈ZZEZ

2
t . Operaator B teisendab siis ühe selle

ruumi elemendi (protsessi) teiseks (kusjuures tegelikut oleks õige kirjutada (BZ)t = Zt−1,
st B teisendab protsessi Z uueks protsssiks, mille t-s element on esialgse protsessi väärtus
kohal t− 1) ning ‖B‖ = 1.
Paneme tähele, et F = B−1 ning BjZt = Zt−j . Seega üldine lineaarne protsess on esitatav
kujul

Z̃t = (1 +
∞∑
i=1

ψiB
i)At.

Edaspidises on meil kasulik defineerida funktsioonid operaatorist B.

Definitsioon 8 Olgu f mingi reaalarvuliste väärtustega reaalmuutuja funktsioon, mis on
esitatav punkti 0 ümbruses koonduva astmereana, st

f(x) =

∞∑
i=0

cix
i, |x| ≤ δ

mingi δ > 0. OlguM mingi pidev lineaarne operaator mingil Banachi ruumil Y . Siis f(M)
tähistab (formaalselt) operaatorit

f(M) =

∞∑
i=0

ciM
i.

Lihtne on näidata, et kui ‖M‖ ≤ δ, siis eelnevalt toodud formaalne definitsioon omab
mõtet, st see summa koondub mingiks ruumil Y tegutsevaks pidevaks lineaarseks operaa-
toriks.
Defineerime funktsiooni

ψ(x) = 1 +
∞∑
i=1

ψix
i,

siis eelneva definitsiooni kohaselt võime üldise lineaarse protsessi kirjutada kujul

Z̃t = ψ(B)At.
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Siin tekib huvitav küsimus: millal me saame protsessi Z väärtusi teades teha kindlaks,
millised häiritused A süsteemi on saabunud. Täpsemalt, defineerime mainitud omaduse
matemaatiliselt.

Definitsioon 9 Üldist lineaarset protsessi (4.1) nimetatakse pööratavaks, kui selle prot-
sessi saab esitada autoregressiivsel kujul

Z̃t =

∞∑
i=1

πiZ̃t−i +At.

Osutub, et pööratavuse jaoks saab anda üsna lihtsa piisava tingimuse.

Lemma 10 Kui ψ(x) astmerida koondub |x| ≤ 1 korral ning funktsioon π(x) = 1
ψ(x) on

esitatav astmereana, mis samuti koondub |x| ≤ 1 korral, siis on üldine lineaarne protsess
(4.1) pööratav ning kehtib võrdus

π(B)Z̃t = At,

kus Z̃t on protsess (4.1) .

Olgu funktsiooni π(x) astmereaks

π(x) = 1−
∞∑
i=1

πix
i,

siis pööratav üldine lineaarne protsess on esitatav ka kujul

Z̃t =

∞∑
i=1

πiZ̃t−i +At.

Näide 11 Vaatleme protsessi
Zt = At − θ1At−1,

kus |θ1| < 1. Sel juhul geomeetrilise rea summa valemi kohaselt

π(x) =
1

1− θ1x
=
∞∑
i=0

θi1x
i, |x| < 1

|θ1|
.

Seega kehtib võrdus

Zt = −
∞∑
i=1

θi1Zt−i +At.

Kui näiteks θ1 = −0.2, siis kahanevad suure nihkega Z väärtuste kordajad väga kiiresti
nulli ning seetõttu on lõplike andmemehtude juures praktika seisukohalt peaaegu võimatu
teha kindlaks, kas andmed vastavad mudelile

Zt = At + 0.2At−1

või hoopis mudelile
Zt = 0.2Zt−1 − 0.04Zt−2 +At.

Sellises situatsioonis eelistame tulevikus kindlasti esimest mudelit, sest selle sobitamisel
andmetega tuleb leida ainult üks tundmatu parameeter (θ1) teise mudeli kahe parameetri
asemel.

Harjutus 13 Näidata, et üldise lineaarse protsessi autokovaratsioonid on antud valemiga

γk = σ2A

∞∑
j=0

ψjψj+k.
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4.1.1 Lõpliku arvu parameetritega määratud lineaarsete protsesside
klassid

Praktiliseks kasutamiseks on väga oluline, et aegrea mudelis oleks lõplik (ja võimalikult
väike) arv parameetreid, mida andmete põhjal on vaja hinnata. Seetõttu pakuvad erilist
huvi järgmised protsesside klassid.

Definitsioon 12 Eeldame, et juhuslikud suurused At, t ∈ ZZ on tsentreeritud sõltumatud
sama jaotusega juhuslikud suurused. Olgu µ mingi reaalarv. Kasutame tähistust Z̃t = Zt−
µ. Lõpliku arvu kordajatega lineaarsete protsesside klassid on järgmised:

• Järguga p autoregressiivseteks protsessideks ehk AR(p) protsessideks nimetatakse
protsesse kujul

Z̃t =

p∑
i=1

φiZ̃t−i +At.

Kui defineerida funktsioon

φ(x) = 1−
p∑
i=1

φix
i,

siis see protsess on esitatav kujul

φ(B)Z̃t = At.

• Järku q liikuva keskmisega protsessideks ehk MA(q) protsessideks nimetatakse prot-
sesse kujul

Z̃t = At −
q∑
i=1

θiAt−i.

Kui defineerida funktsioon

θ(x) = 1−
q∑
i=1

θix
i,

siis see protsess on esitatav kujul

Z̃t = θ(B)At.

• ARMA(p,q) protsessideks nimetatakse protsesse kujul

Z̃t =

p∑
i=1

φiZ̃t−i +At −
q∑
i=1

θiAt−i.

Eelnevaid tähiseid kasutades võib sellise protsessi kirja panna kujul

φ(B)Z̃t = θ(B)At.

Saab näidata, et kui eelnevalt defineeritud protsessid on statsionaarsed, siis definitsioonis
kasutatud parameeter µ on juhuslike suuruste Zt keskväärtuseks.
Edaspidi uurime nende protsesside omadusi lähemalt.

28



4.1.2 Osaautokorrelatsioonid

Lisaks autokorrelatsioonidele on etteantud aegreale sobiva mudeli valikul suureks abiks
osaautokorrelatsioonid. Defineerime selle mõiste. Selleks aga on eelnevalt vaja veel ühte
mõistet.

Definitsioon 13 Olgu X ning Y1, . . . , Yk ningid lõpliku dispersiooniga juhuslikud suuru-
sed. Suuruse X projektsiooniks suurustega Y1, . . . , Yk määratud alamruumile nimetatakse
suurust kujul

X̄ =
k∑
i=1

ciYi,

mille korral E((X − X̄)2) on minimaalne. Operaatorit P : X → X̄ nimetatakse vähim-
ruutude projektoriks suurustega Y1, . . . , Yk määratud alamruumile.

Eelnev definitsioon kasutab Hilberti ruumide teooriast pärinevat teadmist, et selline pro-
jektsioon on üheselt defineeritud. Juhuslike suuruste kontekstis vastab eelnevalt definee-
ritud projektor juhusliku suuruse X parimale suuruste Y1, . . . , Yk lineaarkombinatsiooni
kujul avalduvale prognoosile.

Harjutus 14 Näidata, et kui X,Y1, . . . , Yk on keskväärtusega 0 ja X̄ on suuruse X vä-
himruutude projektsioon suurutega Y1, . . . , Yk määratud ruumile, siis E(X̄) = 0 ning
cov(X − X̄, Yi) = 0 ∀i.

Paneme tähele, et eelneva harjutuse põhjal saab suuruse X projektsiooni leida kordajate
ci, i = 1, . . . , k leidmise teel võrrandisüsteemist

k∑
j=1

cjcov(Yi, Yj) = cov(Yi, X), i = 1, . . . , k.

Juhul, kui sellel süsteemil on mitu lahendit, siis võib võtta suvalise nendest, kuna saab
näidata, et X̄ =

∑k
i=1 ciYi on sel juhul kõikide lahendite korral sama.

Definitsioon 14 Juhuslike suuruste X1 ja X2 osakorrelatsiooniks pärast suuruste Y1, . . . , Yk
mõju eemaldamist nimetatakse suuruste X1 − PX1 ja X2 − PX2 vahelist korrelatsiooni,
kus P on vähimruutude projektor suurustega Y1, . . . , Yk määratud alamruumile.

Tuletame meelde, et statsionaarse protsessi Z korral tähistab Z̃ vastavat tsentreeritud
protsessi, st Z̃t = Zt − EZt = Zt − µ.

Definitsioon 15 Statsionaarse protsessi Z k-ndat järku osaautokorrelatsioonikordajaks
nimetatakse suuruste Z̃t ja Z̃t−k osakorrelatsiooni pärast suuruste Z̃t−1, . . . , Z̃t−(k−1) mõju
eemaldamist.

Definitsioonis järeldub, et protsessi Z esimest järku osaautokorrelatsioon on võrdne suu-
rusega ρ1.

Harjutus 15 Leida statsionaarse protsessi teist järku osakorrelatsiooni avaldis autokor-
relatsioonide kaudu.
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4.2 Autoregressiivsed protsessid

Uurime lähemalt protsessi

Z̃t =

p∑
i=1

φiZ̃t−i +At, t ∈ ZZ (4.2)

omadusi. Nagu näeme, on selle protsessi käitumine seutud polünoomi

φ(x) = 1−
p∑
i=1

φix
i

nullkohtadega.

4.2.1 Autokorrelatsioonifunktsioon ja statsionaarsus

Oletame kõigepealt, et protsess Z̃ on statsionaarne. Korrutades võrrandi (4.2) mõlemaid
pooli suurusega Z̃t−k ning võttes keskväärtuse, saame

γk =

p∑
i=1

φiγk−i, k > 0

kust pärast suurusega γ0 läbijagamist saame võrduse

ρk =

p∑
i=1

φiρk−i, k > 0.

See tähendab, et autokorrelatsioonikordajad rahuldavad p-ndat järku lineaarset rekur-
rentset võrrandit. Selliste võrrandite kohta on teada, et mingite kordajate ci, i = 1, . . . , p
kehtib

ρk =

p∑
i=1

cidik,

kus jaldad dik, k = 1, 2, . . . on defineeritud funktsiooni φ(x) juurte abil järgmiselt: kui
xj on funktsiooni φ m-kordne nullkoht (komplekstasandil), siis m jadadest cik on kujul
k`x−kj , 0 ≤ ` ≤ m− 1. Sellest esitusest järeldub, et AR(p) protsesside korral on lõpmatult
paljud suurustest ρk nullist erinevad. Lisaks sellele, autokorrelatsioonikordajad ρ1, . . . , ρp
ei ole suvalised, vaid rahuldavad nn. Yule-Walker võrrandeid

ρ1 = φ1 + φ2ρ1 + . . .+ φpρp−1, (4.3)
ρ2 = φ1ρ1 + φ2 + . . .+ φpρp−2, (4.4)
. . . (4.5)

ρp = φ1ρp−1 + φ2ρp−2 + . . .+ φp (4.6)

mistõttu on kordajad c1, . . . , cp üheselt määratud. Samas autokorrelatsioonikordajad pea-
vad definitsiooni kohaselt olema vahemikus [−1, 1], mistõttu statsionaarsuse eeldus ei saa
olla täidetud, kui mõni polünoomi φ nullkohtadest on mooduli poolest ühest väiksem ja
vastav kordaja autokorrelatsioonide esituses nullkohtade kaudu on nullist erinev. Kui aga
polünoomi φ kõik nullkohad komplekstasandil on mooduli poolest suuremad kui 1, siis on
ψ(x) = 1

φ(x) esitatav ühikringis koonduva astmereana ning seega on ka operaator φ(B)
pööratav ja vastav protsess statsionaarne. Selle väite kehtivuses võib veenduda mitmel
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moel. Üheks võimaluseks on kasutada kompleksmuutuja funktsioonide teooriat: Cauchy
valemi kohaselt kehtib

ψ(z) =
1

2π

∮
|ξ|=r

ψ(ξ)

ξ − z
dξ, |z| < r,

kus r on ühest suurem arv, mille korral kõik φ nullkohad jäävad väljapoole kompleksta-
sandi ringri raadiusega r ning integreerimine toimub üle komplestasandi ühikringi. Siit
valemist järeldub (kuidas ?), et |ψk(0)| ≤ const. k!r−k, mistõttu vastav Taylory rida koon-
dub ringis raadiusega r, seega ka ühikringis. Teiseks võimaluseks on esitada ψ nullkohtade
abil määratud osamurdude summana:

ψ(x) =
k∑
i=1

mi∑
j=1

cij
(xi − x)j

,

kus x1, . . . , xk on polünoomi φ nullkohad (komplekstasandil) ning m1, . . . ,mk on nende
nullkohtade kordsused. Kuna

1

(xi − x)j
=

1

(j − 1)!

d

dxj−1

(
1

xi − x

)
=

1

xi (j − 1)!

d

dxj−1

(
1

1− x−1i x

)
=

1

xi (j − 1)!

d

dxj−1

( ∞∑
`=0

x−`i x`

)

=

∞∑
`=0

`!

(j − 1)!(`− j + 1)!
x−`−ji x`,

siis kõikidele osamurdudele vastavad astmeread koonduvad ühikringis ning seega ka ψ(x)
astmerida (kui koonduvate astmeridade summa) koondub ühikringis.
Viimast lähenemist saab kasutada ka autoregressiivsel kujul oleva protsessi esitamisel üldi-
se lineaarse protsessina. Selleks

1. Leiame funktsiooni ψ(x) = 1
φ(x) esituse osamurdudena (st leiame vastavad kordajad

cij .

2. Esitame iga liidetava astmerea kujul.

3. Leiame astmeridade summa. Selle summa x` kordaja on ψ` vaadeldava rea esituses
üldise lineaarse protsessina.

Samas, kui meil ei ole vaja leida kordajate ψ` üldkuju, vaid ainult fikseeritud arvu esimeste
kordajate väärtusi, siis võib leida need ka seosest

φ(x)(1 +

∞∑
i=1

ψix
i) = 1,

kirjutades välja vasaku poole erinevate x astmete kordajad ning võrdsustedes parema pool
(st praegusel juhul konstantse polünoomi 1) kordajatega. Näiteks x kordajast saame

−φ1 + ψ1 = 0,

x2 kordajast saame
−φ2 − φ1ψ1 + ψ2 = 0

jne. Neid seoseid rakendades saab lihtsalt leida suvalise lõpliku arvu kordajaid.
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Harjutus 16 Leida protsessi

Z̃t = 1.2Z̃t−1 − 0.35Z̃t−2 +At

esitus üldise lineaarse protsessi kujul (st, leida suurused ψi, i = 1, 2, . . .). Kontrollimiseks
leida esimesed neli kordajat ka alternatiivsel teel (korrutise φ(x)ψ(x) muutuja x astmete
abil saadud seoseid kasutades).

Juht, kus mõni funktsiooni φ nullkohtadest on mooduli poolest võrdne ühega, vajab eraldi
uurimist, kuid selle käsitlemine on käesoleva kursuse mahtu arvestades ebaotstarbekas.
Käesolevas kursuses kasutame teadmist, et statsionaaruse jaoks on tarvilik ja piisav, et
funktsiooni φ nullkohad on kõik mooduli poolest ühest suuremad.

4.2.2 Osaautokorrelatsioonid

AR(p) protsesside korral on sobiva mudeli kindlakstegemisel suur kasu järgmisest tulemu-
sest.

Lemma 16 Olgu Z statsionaarne AR(p) protsess. Siis tema osaautokorrelatsioonikorda-
jad on võrdsed nulliga alates järgust p+ 1.

Tõestus. Olgu k > p. Olgu P vähimruutude projektor suurustega Z̃t−1, . . . , Z̃t−k+1 määra-
tud alamruumile. Kuna At on sõltumatu suurustest Z̃t−1, . . . , Z̃t−k+1, siis on lihtne veen-
duda, et At = Z̃t − PZ̃t. Selleks näitame, et

PZ̃t =

p∑
i=1

φitildeZt−i.

P definitsiooni kohaselt peame me selleks näitama, et

E[(Z̃t −
k−1∑
i=1

ciZ̃t−i)
2] ≥ E[(Z̃t −

p∑
i=1

φiZ̃t−i)
2]

kõikide kordajate c1, c2, . . . , ck−1 korral.
Tähistame kirjapaneku lihtsusamise huvides

X =

k−1∑
i=1

ciZ̃t−i)
2, Y =

p∑
i=1

φiZ̃t−i,

siis kasutades suuruse At tsentreeritust ning sõltumatust suurustest X ja Y saame

E[(Z̃t−X)2] = E[(At−Y−X)2] = E[A2
t ]−2E[At(X+Y )]+E[(X+Y )2] = E[A2

t ]+E[(X+Y )2] ≥ E[A2
t ].

Samas
E[(Z̃t − Y )2] = E[A2

t ],

seetõttu on suurus Y tõepoolest võrdne suuruse Z̃t projektsiooniks vähimruutude mõttes.
Kasutades jällegi suuruse At sõltumatust varasematest protsessi Z väärtustest saame nüüd

covZ̃t − PZ̃t, Z̃t−k − PZ̃t−k) = cov(At, Z̃t−k − PZ̃t−k) = 0.

Osaautokorrelatsioonikordaja definitsiooni kohaselt on seega protsessi Z̃ k-ndat järku osa-
autokorrelatsioonikordaja võrdne nulliga.�
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Osaautokorrelatsioonikordaja definitsioonist lähtuvalt on võimalik näidata, et k-ndat järku
osaautokorrelatsioonikordaja φkk on teadaolevate autokorrelatsioonide põhjal leitav Yule-
Walkeri võrrandisüsteemi

φk1 + ρ1φk2 + . . .+ ρk−1φkk = ρ1,

ρ1φk1 + φk2 + . . .+ ρk−2φkk = ρ2,

. . .

ρk−1φk1 + ρk−2φk2 + . . .+ φkk = ρk,

lahendamise teel. Neid seoseid võib kasutada osaautokorrelatsioonide hindamiseks, asenda-
des võrrandites teoreetilised autokorrelatsioonid nende hinnangutega. Praktikas on samuti
kasulik teadmine (vt [8], valem 3.2.35), et AR(p) protsessi korral on osaautokorrelatsioo-
nikordajate hinnangud alates järgust k = p + 1 ligikaudu sõltumatud, keskväärtusega 0
ning standardhälbega 1√

n
.

Harjutus 17 (*, lisapunktide saamiseks esitada 13.11.2011) Näidata osaautokorrelatsioo-
ni definitsioonist lähtudes, et k-ndat järku osaautokorrelatsioon on avaldub suurusena φkk
Yule-Walker võrrandites.

4.2.3 AR(1) tüüpi mudelid

Vaatleme mudeleid kujul
Z̃t = φ1Z̃t−1 +At.

Kuna selle mudeli korral φ(x) = 1−φ1x, mille ainsaks nullkohaks on x1 = 1
φ1
, siis statsio-

naarsuse jaoks on vajalik tingimuse |φ1| < 1 täidetus. Kuna autokorrelatsioonid rahuldavad
eelneva põhjal seost

ρk = φ1ρk−1, k > 0,

siis
ρk = φk1, k = 1, 2, . . . .

Seega kahanevad autokorrelatsoonide absoluutväärtused eksponentsiaalselt, kusjuures ju-
hul φ1 > 0 on nad sama märgiga ning juhul φ1 < 0 vahelduvate märkidega. Osaautokor-
relatsioonid on alates järgust 2 võrdsed nulliga ning esimest järku osaautokorrelatsioon
on (nagu alati) võrdne ρ1-ga. Näited vastavate aegridade käitumisest koos empiiriliste
autokorrelatsioonide ja empiiriliste osaautokorrelatsioonidega juhul φ1 = 0.8 ja φ1 = −0.8
on toodud vastavalt joonistel 4.1 ja 4.2.

4.2.4 AR(2) tüüpi mudelid

Vaatleme mudeleid kujul
Z̃t = φ1Z̃t−1 + φ2Z̃t−2 +At.

Selleks, et funktsiooni φ(x) = 1− φ1x− φ2x2 nullkohad oleks väljaspool komplekstasandi
ühikringi, peavad kordajad φ1 ja φ2 rahuldama geomeetriliselt küllaltki lihtsalt kirjelda-
tavaid tingimusi.
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Joonis 4.1: AR(1) tüüpi aegrea 200 väärtust juhul φ1 = 0.8 ning autokorrelatsioonide ja
osaautokorrelatsioonide hinnangud

Harjutus 18 (*, lisapunktide saamiseks esitada 13.11.2011) Näidata, et statsionaarsuse
tingimus on samaväärne võrratustega

φ1 + φ2 < 1,

φ2 − φ1 < 1,

φ2 > −1,

st punkti (φ1, φ2) peab paiknema tippudega (0,1), (-2,-1) ja (2,-1) määratud kolmnurgas.

Autokorrelatsioonikordajad saab arvutada vastavalt rekurrentsele seosele

ρk = φ1ρk−1 + φ2ρk−2, k > 1,

lähtudes väärtustest ρ0 = 1 ja ρ1 = φ1
1−φ2 . Viimane tuleneb Yule-Walkeri esimesest võrran-

dist:
ρ1 = φ1 + φ2ρ1.
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Joonis 4.2: AR(1) tüüpi aegrea 200 väärtust juhul φ1 = −0.8 ning autokorrelatsioonide ja
osaautokorrelatsioonide hinnangud

Lahendades Yule-Walkeri võrrandid φ1 ja φ2 suhtes, saame

φ1 =
ρ1(1− ρ2)

1− ρ21
, φ2 =

ρ2 − ρ21
1− ρ21

,

mille abil on võimalik empiirilistest autokorrelatsioonidest r1 ja r2 arvutada kordajate φ1
ja φ2 hinnangud.
Teoreetilised osaautokorrelatsioonid on nullid alates järgust 3, esimest järku osaautokorre-
latsion φ11 on võrdne ρ1-ga ning teist järku osaautokorrelatsioon on võrdne kordajaga φ2
(miks?), seega on võimalik kordajaid hinnata ka oasautokorrelatsioonide hinnangute abil.

35



4.3 Liikuva keskmise protsessid

Järgnevas vaatleme MA(q) protsesside

Z̃t = At −
q∑
i=1

θiAt−i

omadusi. Varasemast teame, et sellised protsessid (sõltumatute ja sama jaotusega juhuslike
suuruste At korral) on alati statsionaarsed.

4.3.1 Autokorrelatsioonid ja pööratavuse tingimused

Arvestades, et üldise lineaarse protsessi korral

γk = σ2A

∞∑
j=0

ψjψj+k

ning et MA(q) protsessi korral

ψ0 = 1; ψi = −θi, i = 1, . . . , q;ψk = 0, k > q

saame, et MA(q) protsessi autokorrelatsioonikordajad avalduvad kujul

ρk =
−θk +

∑p−k
i=1 θiθi+k

1 +
∑q

i=1 θ
2
i

, k = 1, . . . , q

ning ρk = 0, k > q. Nagu me ka hiljem näeme, on MA(q) protsesside korral võima-
lik, et täpselt samad autokorrelatsioonid (ja seega ka osaautokorrelatsioonid) vastavad
erinevatele parameetritele θ1, . . . , θq. Osutub aga, et ainult üks parameetrite θ valik vas-
tab pööratavale protsessile ning aegrea vaatluste põhjal saame parima tuleviku prognoosi,
kasutades pööratavat mudelit.
Varasema põhjal teame, et pööratavuseks on vajalik, et polünoomi θ(x) = 1 −

∑q
i=1 θix

i

nullkohad oleks kõik mooduli poolest ühest suuremad, kuna sel juhul on funktsioon π(x) =
1

θ(x) avaldatav astmereana, mis koondub |x| ≤ 1 korral.

4.3.2 MA(1) protsessi omadused.

Vaatleme protsessi kujul
Z̃t = At − θ1At−1.

Selle protsessi korral

ρ1 = − θ1
1 + θ21

ning ρk = 0, k > 1. Kuna me saame ρ1 avaldise kirjutada (juhul ρ1 6= 0) ka kujul

ρ1 = − 1
1
θ1

+ θ1
,

siis on selge, et täpselt samasugused autokorrelatsioonid on ka protsessil

Z̃t = At −
1

θ1
At−1.
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Samas, kui |θ1| > 1, siis võime defineerida suurused Āt kujul

Āt =
∞∑
i=0

θ−i1 Z̃t−i,

mille korral kehtib
Z̃t = Āt −

1

θ1
Āt−1.

Kuna suurused Āt on tsentreeritud, mittekorreleeritud ning konstantse dispersiooniga (vt
järgnev harjutus), siis võime ilma üldsust kitsendamata eeldada, et vaadeldava protses-
si korral on kordaja θ1 absoluutväärtuselt ühest väiksem ning et tegemist on pööratava
protsessiga.

Harjutus 19 Veenduda, et juhul |θ1| > 1 defineeritud juhuslikud suurused Āt on mitte-
korreleeritud ning konstantse dispersiooniga (seega tegemist on vähemalt teist järku nõrgalt
statsionaarse protsessiga).

Harjutus 20 Näidata, et juhul |θ1| 6= 1 kehtib võrratus |ρ1| < 1
2 .

Osaautokorrelatsioonide leidmiseks paneme tähele, et vaadeldaval juhul tuleb Yule-Walker
võrrandisüsteemi kohaselt leida kolmediagonaalse võrrandisüsteemi

φk1 + ρ1φk2 = ρ1,

ρ1φk1 + φk2 + ρ1φk3 = 0,

. . .

ρ1φk,k−2 + φk,k−1 + ρ1φkk = 0,

ρ1φk,k−1 + φkk = 0

puhul suuruse φkk väärtus. Kui siit elimineerida teisest võrrandist esimese võrrandi abil
tundmatu φk1, kolmandast võrrandist saadud teise võrrandi abil φk2 jne, siis jõame kahe-
diagonaalse süsteemini

b1φk1 + ρ1φk2 = f1,

b2φk2 + ρ1φk3 = f2,

. . .

bk−1φk,k−1 + ρ1φkk = fk−1,

bkφkk = fk,

kus b1 = 1, f1 = ρ1 ning

bi+1 = 1− ρ21
bi
, fi+1 = −ρ1

bi
fi, i = 2, . . . , k.

Arvestades, et |ρ1| < 1
2 saame bi > 1

2 ∀i ning seega

|φkk| =
|fk|
bk
≤ (2ρ1)

k,

seega osaautokorrelatsioonikordajad on küll kõik nullist erinevad, kuid kahanevad ekspo-
nentsiaalselt.
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4.3.3 MA(2) protsessi omadused.

Vaatleme protsessi kujul
Z̃t = At − θ1At−1 − θ2At−2.

Selle protsessi korral

ρ1 =
−θ1 + θ1θ2
1 + θ21 + θ22

,

ρ2 =
−θ2

1 + θ21 + θ22

ning ρk = 0, k > 2. Küllalt lihtne on veenduda, et kui x1, x2 on polünoomi

θ(x) = 1− θ1x− θ2x2

nullkohad, siis täpselt samad autokorrelatsioonikordajad on kõikidel MA(2) protsessidel,
millele vastavate polünoomide nullkohad on kujul xi1, x

j
2, kus i, j ∈ {−1, 1}. Samas ai-

nult üks nendest protsessidest rahuldab pööratavuse tingimust ning jällegi võime üldsust
kitsendamata eeldada, et meid huvitav protsess rahuldab pööratavuse tingimust. Analoo-
giliselt AR(2) protsesside statsionaaruse tingimustega saame nüüd, et pööratava MA(2)
protsessi kordajad θ1 ja θ2 peavad rahuldama tingimusi

θ2 + θ1 < 1, θ2 − θ1 < 1, θ2 > −1.

4.4 ARMA(p,q) protsessid

Vaatleme protsesse kujul

Z̃t =

p∑
i=1

φiZ̃t−i +At −
q∑
i=1

θiAt−i.

See protsess on statsionaarne, kui polünoomi φ(x) = 1−
∑p

i=1 φix
i nullkohad on väljaspool

komplekstasandi ühikringi ning pööratavuse tingimus on täidetud, kui polünoomi θ(x) =
1−
∑q

i=1 θix
i nullkohad on väljaspool komplekstasandi ühikringi. Arvutates kovariatsiooni

Z̃t ja Z̃t−k vahel juhul k > q, saame

γk =

p∑
i=1

φiγk−i,

mistõttu autokorrelatsioonikordajad ρk rahuldavad rekurrentset võrrandit

ρk =

p∑
i=1

φiρk−i

alates k = q + 1.

4.5 ARMA(1,1) protsessid

Vaatleme protsesse kujul
Z̃t = φ1Z̃t−1 +At − θ1At−1.
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Leiame avaldised selle protsessi autokovariatsioonidele ja autokorrelatsioonidele. Kõige-
pealt paneme tähele, et

cov(Z̃t, At) = σ2A.

Seejärel saame leida
cov(Z̃t, At−1) = (φ1 − θ1)σ2A.

Leides nüüd kovariatsiooni Z̃t avaldise parema poole ja Z̃t vahel, saame

γ0 = φ1γ1 + (1− θ1(φ1 − θ1))σ2A

ning kovariatsioon Z̃t avaldise parema poole ja Z̃t−1 vahel annab

γ1 = φ1γ0 − θ1σ2A.

Siit saame

γ0 =
(1− 2θ1φ1 + θ21)σ2A

1− φ21
,

γ1 =
(φ1 − θ1)(1− θ1φ1)σ2A

1− φ21

ja seega

ρ1 =
(φ1 − θ1)(1− θ1φ1)

1− 2θ1φ1 + θ21
.

Kuna alates k = 2 kehtib
ρk = φ1ρk−1,

siis autokorrelatsioonid kahanevad eksponentsiaalselt alates järgust 2.

4.6 Lineaarsed mudelid mittestatsionaarsete aegridade jaoks.
Prognoosimine ja parameetrite hindamine

4.6.1 ARIMA mudelid

Sageli ei vasta aegrida statsionaarsuse nõuetele, kuna keskmine on ajas muutuv, kuid selle
rea muudud või muutude muudud käituvad kooskõlas statsinaarsuse eeldustega. Järgnevas
vaatlemegi selliste protsesside mudeleid.
Kui Zt, t ∈ R on mingi protsess, siis muutude protsessi Zt − Zt−1 võime kirjutada kujul
(1−B)Zt ning muutude muutude protsessi kujul (1−B)2Zt.

Definitsioon 17 ARIMA(p,d,q) protsessiks nimetatakse juhuslikku protsessi Zt, mille d-
ndat järku muudud (ehk diferentsid) Wt = (1−B)dZt esituvad kujul

W̃t =

p∑
i=1

φiW̃t−i +At −
q∑
i=1

θiAt−i,

kus W̃t = Wt−E(Wt), juhuslikud suurused At on sõltumatud, sama jaotusega, tsentreeritud
ning on sõltumatud ka suurustest W̃t−i, i = 1, 2, . . ..
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Vaatleme juhtu Wt = (1−B)Zt, siis

Zt = Zt−1 +Wt = Zt−2 +Wt−1 +Wt = Zt−k +
t∑

j=k+1

Wt.

Summa on aga vaadeldav tükiti konstantse funktsiooni integraalina. Üldisemalt, kui Wt =
(1−B)dZt, siis tuleb Z leidmiseks protsessistW rakendada summeerimist d korda, mis on
samastatav d-kordse integraali leidmisega. Seetõttu nimetataksegi ARIMA(p,d,q) protses-
se integreeritud ARMA protsessideks.

Harjutus 21 Olgu antud suurused ci = (1−B)iZ1, i = 0, . . . , d− 1 ning protsessi Wt =
(1−B)dZt väärtused w2, . . . , wn. Avaldada Zn väärtus zn c0, . . . , cd−1, w2, . . . , wn kaudu.

4.6.2 Aegridade prognoosimine ARIMA mudelite korral

Olgu meil antud aegrida z1, z2, . . . , zn ning oletame, et me teame, et see vastab ARI-
MA(p,d,q) tüüpi protsessile teadaolevate parameetritega µ (suuruse (1−B)dZt keskväärtus),φ1, . . . , φp
ja θ1, . . . , θq, kusjuures eeldame, et protsess on pööratav ning et kaalud φi, i = 1, . . . , p ra-
huldavad statsionaarsuse tingimust. Esituse lihtuse mõttes eeldame samuti, et (1−B)dZt
keskväärtus on null. Järgnevas uurime, kuidas sel juhul leida minimaalse ruutkeskmise
veaga prognoose suurusele Zn+p, p ≥ 1 ning prognoosivigade standardhälbeid.
Edasises kasutame oluliselt aegrea erinevaid esitusi. Pööratavusest järeldub, et me saame
vaadeldava ARIMA(p,d,q) protsessi esitada autoregressiivsel kujul

Zt =
∞∑
i=1

πiZt−1 +At,

kus kaalud πi on on määratavad võrdusest

1−
∞∑
i=1

πix
i =

φ(x)(1− x)d

θ(x)
,

kus

φ(x) = 1−
p∑
i=1

φix
i, θ(x) = 1−

q∑
i=1

θix
i.

Samuti teame, et statsionaarse protsessi saab esitada üldise lineaarse protsessi kujul, seega
leidauvad kordajad ψi, mille korral

(1−B)dZt =

( ∞∑
i=0

ψiB
i

)
At.

Kolmandaks esituseks on protsessi definitsioonis olev kuju, mis sisaldab lõpliku arvu eel-
nevaid Z ja A väärtuseid.

Harjutus 22 Esitada ARIMA(0,1,1) protsess

Zt = Zt−1 +At −
1

2
At−1

autoregressiivsel kuju.
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Autoregressiivse kuju kordajaid saab leida ka samm-sammult, võrdsustades seose

π(x)θ(x) = φ(x)

paremal ja vasakul pool x astmete ees olevaid kordajaid.

Harjutus 23 Leida protsessi

Zt = At − 0.5At−1 + 0.3At−2

autoregressiivse esituse kordaja π4.

Ruutkeskmise vea mõttes parima prognoosi leidmine

Kui juhusliku suuruse kohta ei ole mingit lisainformatsiooni, siis tema parimaks prognoo-
siks on keskväärtus.

Harjutus 24 Olgu X lõplikku dispersiooni omav keskväärtusega µ juhuslik suurus ning
olgu a prognoos selle juhusliku suuruse väärtuse jaoks. Näidata, et ennustusviga E((X −
a)2) on minimaalne juhul, kui a = µ.

Kui juhusliku suuruse ennustamisel on kasutada mingit lisainformatsiooni, siis saab näida-
ta, et parimaks ennustuseks selle informatsiooni põhjal on tinglik keskväärtus. Käesolevas
kursuses me tingliku keskväärtuse üldist definitsiooni sisse ei too, küll aga kasutame tea-
daolevaid tulemusi selle omaduste kohta.

Lemma 18 Olgu I mingi lõplik või loenduv indeksite hulk ning olgu Z ja Yi, i ∈ I ju-
huslikud suurused. Siis suuruse Z tinglik keskväärtus tingimusel, et Yi, i ∈ I on teada on
juhuslik suurus E(Z | Yi, i ∈ I), mis rahuldab järgmisi omadusi:

1. Kui Z on sõltumatu juhuslikest suurustest Yi, i ∈ I, siis

E(Z | Yi, i ∈ I) = EZ.

2. Kui Z = αZ1 + βZ2, siis

E(Z | Yi, i ∈ I) = αE(Z1 | Yi, i ∈ I) + βE(Z2 | Yi, i ∈ I).

3. Kui Z = Yi0 mingi i0 ∈ I korral, siis

E(Z | Yi, i ∈ I) = Z.

Üldisemalt, kui Z = f(Y ), kus Y = (Yi)i∈I , siis

E(Z | Yi i ∈ I) = Z.

Tingliku keskväärtuse korrektse definitsiooni ja omaduste tõestused võib leida näiteks
raamatust [9]. Vastaku protsess Z ARIMA(p,d,q) mudelile, kusjuures järgnevas eeldame,
et E((1−B)dZt) = 0 ning samuti eeldame mudeli protsessiWt = (1−B)dZt statsionaarust
ja pööratavust. Tähistame

Ẑ`|k = E(Z` | Zk−i, i = 0, 1, 2, . . .),
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siis tingliku keskväärtuse omadustest järeldub

Ẑ`|k = Z` kui ` ≤ k.

Kasutades protsessi esitust autoregressiivsel kujul ning teadmist, et E(Ak+j | Zk−i, i ≥
0) = 0, saame juhul ` ≥ 1

Ẑk+`|k =
∞∑
i=1

πiẐk+l−i|k

=

`−1∑
i=1

πiẐk+l−i|k +

∞∑
i=`

πiZk+`−i.

Pikemate prognooside arvutamisel saab seda valemit kasutada samm-sammult: kõigepealt
arvutame Ẑk+1|k ajaks k teadaolevate Z väärtuste abil, seejärel kasutame saadud tulemust
Ẑk+2|k arvutamiseks jne. Saadud tulemuse rakendamisel on aga kaks probleemi. Esiteks,
tegemist on lõpmatu summaga, mille täpne arvutamine on põhimõtteliselt raskendatud
kui mitte lausa võimatu. Teiseks, praktikas on alati teada ainult lõplik arv Z mineviku-
väärtusi, nii et lõpmatu summa tuleb igal juhul asendada lõpliku summaga ja see toob
kaasa mõningase prognoosivea. Samas aga pööratava mudeli korral kahanevad kordajad πi
eksponentsiaalselt ning seda kiiremini, mida suurem on mooduli poolest vähim polünoomi
θ(x) nullkoht. Seega enamikel juhtudel lähenevad kordajad πi kiiresti nullile ning lõpmatu
summa on väga hästi lähendatav küllalt väikese arvu liidetavatega lõpliku summaga.
Alternatiivne moodus tulevikuväärtuste ennustamiseks põhineb otseselt ARIMA(p,d,q)
mudeli kujul, mis sisaldab lõpliku arvu liidetavaid. Paneme tähele, et me võime selle mudeli
esitada kujul

φ̃(B)Zt = θ(B)At,

kus

φ̃(x) = φ(x)(1− x)d, φ(x) = 1−
p∑
i=1

φix
i, θ(x) = 1−

q∑
i=1

θix
i.

Olgu polünoomi φ̃ esituseks

φ̃(x) = 1−
p+d∑
i=1

φ̃ixi,

siis võib vaadeldava mudeli kirjutada ka kujul

Zt =

p+d∑
i=1

φ̃iZt−i +At −
q∑
i=1

θiAt−i.

Seega juhul ` ≤ q korral kehtib

Ẑk+`|k =

p+d∑
i=1

φ̃iẐk+`−i|k −
q∑
i=`

θiAk+`−i

ning juhul ` > q on prognoosid arvutatavad valemist

Ẑk+`|k =

p+d∑
i=1

φ̃iẐk+`−i|k.
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Nagu näha, määrab polünoomiga φ̃ määratud rekurrentne võrrand prognooside käitumise
alates ` > q.
Eelneva prognoosivalemi kasutamine nõuab At väärtuste teadmist k − q ≤ t ≤ k korral.
Teoreetiliselt ei valmista see probleeme, kuna pööratava mudeli korral on A-d Z-de kaudu
leitavad, kuid praktiliselt on probleemiks see, et meil on teada ainult lõplik arv Zt-de
väärtuseid ning isegi kui oleks teada kogu minevik, oleks lõpmatute summade leidmine
tülikas. Hädast päästab aga meid järnevas harjutuses toodud tulemus, mille kohaselt võime
piisavalt pika aegrea korral leida At realiseerinud väärtused vastavalt võrrandile

ãt = zt −
p+d∑
i=1

φ̃izt−i +

q∑
i=1

θiãt−i, p+ d < t ≤ k, (4.7)

kus
ãt = 0, p+ d− q + 1 ≤ t ≤ p+ d. (4.8)

Harjutus 25 Olgu zt, 1 ≤ t mingi ARIMA(p,d,q) tüüpi protsessi väärtused ning olgu
at, t ≥ 1 nendele väärtustele vastavad protsessi At väärtused. Olgu ãt vastavalt võrrandile
(4.7) ja algväärtustele (4.8) arvutatud suurused. Näidata, et

lim
n→∞

|an − ãn| = 0.

Prognoosivea standardhälbe leidmine

Defineerime θi = 0, i > q, siis võime parima prognoosi kirjutada kujul

Ẑk+`|k =

p+d∑
i=1

φ̃iẐk+`−i −
∞∑
i=`

θiAk+`−i.

Kasutades seda valemit ning ARIMA mudeli kuju (kus samuti käsitluse lihtuse mõttes
summeerime θ-dega liikmeid kuni lõpmatuseni), saab matemaatilise indukstiooni abil kül-
laltki lihtsalt näidata, et kehtib võrdus

Zk+` − Ẑk+`|k =
`−1∑
i=0

ψiAk+`−i,

kus

ψ0 = 1, ψk =

min(k,p+d)∑
i=1

φ̃iψk−i − θk, k ≥ 1.

Harjutus 26 (*) Tõestada, et prognoosiveas esinevad kaalud ψk avalduvad eelpool toodud
kujul.

Seega on prognoosivea kaalud lihtsalt arvutatavad ning nende abil avaldub `-sammulise
prognoosi vea dispersioon kujul

D(Zk+` − Ẑk+`|k) = σ2A

`−1∑
i=0

ψ2
i .
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Harjutus 27 Olgu Z protsess, mis vastab ARIMA mudelile

(1 + 0.1B + 0.4B2)(1−B)Zt = (1 + 0.2B)At,

kus B on tagasinihke operaator (BZt = Zt−1). Leidke sellel mudelil põhinevate parimate
1,2,3,4-sammuliste prognooside vigade standardhälbed eeldusel, et D(At) = 1.

Eelnevas vigade standardhälbe arvutuses läks tegelikult vaja ainult, et suurused At on
mittekorreleeritud ja konstantse dispersiooniga. Tavaliselt väljastavad programmid ka usal-
dusintervalle, mis kehtivad juhul, kui suurused At on normaaljaotusega ja sõltumatud (sest
siis on ka prognoosivead normaaljaotusega).

4.6.3 ARIMA mudeli parameetrite hindamine

Parameetrite hindamisel on mitmeid võimalikke lähenemisi. Kuna tarkvara pakub sageli
võimalust nende vahel valida, siis oleks hea teada, mille poolest nad erinevad. Parameetreid
hindame protsessile Wt = (1−B)dZt vastava aegrea andmete w1, w2, . . . , wn põhjal. Liht-
suse mõttes eeldame ka, et E(Wt) = 0.

Tingimusliku ruutude summa minimiseerimine

Oletame, et meil on teada z0, z−1, . . . , z1−p−d ning a0, a−1, . . . , a−q tegelikud väärtused;
siis saame fikseeritud parameetrite θ ja φ korral arvutada a1 = z1 − ẑ1|0, a2 = z2 −
ẑ2|1, . . . , an = zn − ẑn|n−1. Seega võime parameetreid valida näiteks nii, et minimiseerime
prognoosivigade ruutude summat

n∑
i=1

a2i .

Sama valikukriteeriumini jõuame ka siis, kui eeldame, et suurused At on sõltumatud ja
nomrmaaljaotusega ning leiame parameetrid θ ja φ nii, et maksimiseerime aegrea z1, . . . , zn
tõepära (ehk vektori (a1, . . . , an) tõepära). Siin tuleb aga aru saada, et tegemist on tingliku
tõepäraga; tingimuseks on see, et meil on teada lõigu alguses toodud z ja a eelnevad
väärtused. Seetõttu nimetatakse seda parameetrite valiku reeglit tingliku ruutude summa
minimiseerimiseks ehk tinglikuks suurima tõepära meetodiks.
Praktikas kasutatakse mitmeid erinevaid varasemate väärtuste fikseerimise mooduseid,
millest lihtsaim vastab kõikide eelnevate z ja a väärtuste võrdustamisele nulliga. Kui vaat-
lusi on väga palju, siis selline lähenemine annab praktiliselt sama tulemuse, kui suurima
tõepära meetod; suhteliselt lühikeste aegridade korral võivad tulemused olla oluliselt eri-
nevad. Käesolevas alapeatükis eeldame, et juhuslikud suurused At on sõltumatud ning
normaaljaotusega.

Suurima tõepära meetod

Kuna protsessi Wt väärtused on esitatavad sõltumatute normaaljaotusega juhuslike suu-
ruste At lineaarkombinatsioonidena, siis on vektorW1, . . . ,Wn mitmemõõtmelise normaal-
jaotusega. Mitmemõõtmelise tsentreeritud normaaljaotuse tihedusfunktsioon esitub kujul

f(x) =
1

(2π)
n
2 |Σ|

1
2

exp(−1

2
x′Σ−1x),
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kus x = (x1, x2, . . . , xn), Σ on vastava juhusliku vektori kovariatsioonimaatriks ning |Σ|
tähistab maatriksi determinanti. Kui (W1, . . . ,Wn) vastab ARMA(p,q) protsessile, siis
saab kovariatsioonimaatriksi kirjutada kujul

Σ = σ2AΩ(φ, θ),

kus Ω ei sõltu juhuslike suuruste At dispersioonist. Suurima tõepära meetodi korral mak-
simiseeritakse tavaliselt tõepära logaritmi, mis avaldub kujul

l(φ, θ, σA) = −n
2

ln(2π)− n

2
lnσ2A − ln |Ω(φ, θ)| − 1

2σ2A
w′Ω(φ, θ)−1w.

Kuna σA järgi see funktsioon saavutab maksimumi kohal

σ2A =
1

n
w′Ω(φ, θ)−1w,

siis suurima tõepära hinnangud parameetritele φ = (φ1, . . . , φp) ja θ = (θ1, . . . , θq) leid-
miseks tuleb maksimiseerida (pärast konstantse liidetava ärajätmist) avaldist

−n
2

ln(w′Ω(φ, θ)−1w)− ln |Ω(φ, θ)|.

Tingimusteta ruutude summa meetod

Inglise keelesmethod of unconditional sum of squares. Selle meetodi puhul jäetakse suurima
tõepära avaldises vaatluse alt välja determinandiga liige ning minimiseeritakse avaldist

w′Ω(φ, θ)−1w.

Arvutuslikult on see veidi lihtsam, kuid ei oma märkimisväärseid eeliseid suurima tõepära
meetodi eest.

4.7 ARIMA tüüpi mudelite valikust

Üldine lähtekoht on see, et mida vähem on mudelis parameetreid, seda parem (muidugi
tingimusel, et mudel andmetega sobib). Mudeli sobivuse üle otsustatakse prognoosivigade
sõltumatuse kontrolli põhjal; teoreetiliselt peaksid prognoosivead vastama sõltumatutele
juhuslike suuruste väärtustele. Kuna täielikku sõltumatust on väga raske kindlaks teha,
siis aegridade puhul keskendutakse autokorrelatsioonide uurimisele (mis peaks sõltumatute
vigade puhul olema teoreetiliselt nullid).
Omaette küsimus on see, kuidas teha valikut erinevate mudelite vahel, mis kõik rahulda-
vad sobivuse kriteeriume, seda eriti juhul, kui parameetrite arvud on erinevad (või mudelid
kuuluvad erinevatesse klassidesse). Naiivseks lähenemiseks on see, et kui me sobitame mu-
deleid tõepära maksimiseerides, siis sobivaima mudeli korral peaks vaadeldava aegrea tek-
kimise tõepära olema suurim. Selle lähenemise puuduseks on see, et lõpliku arvu andmete
olemasolul saame me suurema parameetrite arvuga mudelit olemasolevate andmetega alati
paremini sobitada isegi juhul, kui tegelikkuses selline mudel sobiv ei ole (nn ülesobitami-
ne). Seetõttu tuleb sobivuse võrdlemisel kindlasti arvestada ka parameetrite arvu. Üheks
selliseks sobivuse mõõdikuks, mis arvestab nii parameetrite arvu kui ka tõepära, on nn
Akaike informatsioonikriteerium, mis avaldub kujul

AIC = 2k − 2 lnL,

kus k on mudeli parameetrite arv ja L on aegrea tõepära sobitatud mudeli korral.
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4.8 Sesoonsed ARIMA mudelid

Sageli on andmetes mingi loomulik periood (näiteks aasta), mille korral aegrea järgne-
vat väärtust mõjutavad lisaks hiljutistele väärtustele ka perioodi või isegi mitme perioodi
võrra minevikus olevad väärtused. Üheks võimaluseks sellise efekti modelleerimiseks on
lihtsalt lisada perioodile vastavate nihetega autoregressiivseid ja/või liikuva keskmise liik-
meid üldisesse mudelisse, kuid sageli on tulemusi lihtsam interpreteerida, kui perioodilist
käitumist kirjeldav mudel esitada sesoonsete ja mittesesoonsete tegurite korrutise teel.
Perioodiga s multiplikatiivseteks ARIMA(p,d,q)x(P,D,Q)s tüüpi mudeliteks nimetatakse
mudeleid kujul

φ(B)Φ(Bs)(1−B)d(1−Bs)DZt = θ(B)Θ(Bs)At,

kus

φ(x) = 1−
p∑
i=1

φix
i, Φ(x) = 1−

P∑
i=1

Φix
i,

θ(x) = 1−
q∑
i=1

θix
i, Θ(x) = 1−

Q∑
i=1

Θix
i.

Siin tuleb tähele panna, et tegemist on ARIMA tüüpi mudelite alamklassiga. Saadava
mudeli puhul eeldatakse, et φ(x) ja Φ(x) rahuldavad statsionaaruse tingimusi ning et θ(x)
ja Θ(x) rahuldavad pööratavuse tingimusi; sel juhul on vastavad tingimused täidetud ka
vaadeldaval ARIMA tüüpi mudelil.
Lihtsalt mõistetavaks multiplikatiivseks sesoonseks ARIMA tüüpi mudelite erijuhuks on
ARIMA(p,d,q)x(0,1,0)s tüüpi mudelid, kus s tähistab vaatluste arvu perioodis (tavaliselt
aasta), kuna sel juhul vastavad aastased muudud ARIMA tüüpi mudelile.
Mudelite identifitseerimiseks on kasulik teada mõningatel lihtsamatel juhtudel aotokorre-
latsioonikordajate teoreetilist käitumist. Vaatleme näitena ARIMA(0,0,1)x(0,0,1)s auto-
korrelatsioonikordajate leidmist juhul s ≥ 3. Olgu

Zt = (1− θ1B)(1−Θ1B
s)At

ehk
Zt = At − θ1At−1 −Θ1At−s + θ1Θ1At−s−1.

Siit Ak, k ∈ ZZ sõltumatuse tõttu saame

γ0 = (1 + θ21 + Θ2
1 + θ11Θ2

1)σ
2
A.

Kuna Zt−1 avaldises

Zt−1 = At−1 − θ1At−2 −Θ1At−s−1 + θ1Θ1At−s−2

on Zt avaldisega võrreldes samade indeksitega At−1 ja At−s−1, siis

γ1 = cov(Zt, Zt−1) = (−θ1 − θ1Θ2
1)σ

2
A,

seega

ρ1 =
γ1
γ0

=
−θ1(1 + Θ2

1)

1 + θ21 + Θ2
1 + θ11Θ2

1

.
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Seejärel on k ≥ 2 korral Zt−k ja Zt avaldises samu liikmeid ainult siis, kui k = s −
1, s, s+ 1; muudel juhtudel on kõik liikmed erinevad ning vastavad autokovariatsioonid ja
autokorrelatsioonid võrdsed nulliga. Juhul k = s− 1 avaldub Zt−k kujul

Zt−s+1 = At−s+1 − θ1At−s −Θ1At−2s+1 + θ1Θ1At−2s,

seega

γs−1 = θ1Θ1σ
2
A, ρs−1 =

θ1Θ1

1 + θ21 + Θ2
1 + θ11Θ2

1

.

Analoogiliselt leiame

γs = (−Θ1 − θ21Θ1)σ
2
A, ρs = − Θ1(1 + θ21)

1 + θ21 + Θ2
1 + θ11Θ2

1

,

γs+1 = θ1Θ1σ
2
A, ρs+1 =

θ1Θ1

1 + θ21 + Θ2
1 + θ11Θ2

1

Kõik ülejäänud autokorrelatsioonid on nullid. Seega vaadeldava mudeli tunnuseks on üks
madalat järku nullist erinev autokorrelatsioon ning kolm nullist erinevat autokorrelatsiooni
nihke s ümbruses, kusjuures perioodile s eelnev ja järgnev autokorrelatsioon on teoreeti-
liselt võrdsed.

Harjutus 28 Leida ARIMA(0,0,2)x(0,0,1)s mudeli autokorrelatsioonikordajad juhul s ≥
5

Harjutus 29 Leida ARIMA(0,0,1)x(1,0,0)s mudeli autokorrelatsioonikordajad juhul s =
6.
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Peatükk 5

Mitmemõõtmelised mudelid

Siiani vaatlesime aegrea tulevikuväärtuste prognoosimist juhul, kus kasutada oli ainult
vaadeldava aegrea minevikuväärtused. Sageli aga on võimalik prognoose tunduvalt täp-
sustada, kui kasutada lisaks vaadeldava aegrea minevikuväärtustele veel teisi andmeid,
näiteks teiste juhuslike suuruste minevikuväärtuseid. Näiteks on loomulik arvata, et ma-
janduse üldseisundi näitajate minevikuväärtused mõjutavad oluliselt siseturismiga seotud
suuruseid. Käesolevas peatükis vaatleme mõningaid mooduseid, kuidas selliseid sõltuvusi
matemaatiliselt modelleerida ning kuidas vastavaid mudeleid praktikas kasutada.

5.1 Mitmene lineaarne regresioon ARIMA tüüpi vigadega

Olgu Zt meid huvitava tunnuse väärtus ajal t ning (X1(t), . . . , Xm(t)) argumenttunnuste
vektor, mida saab kasutada suuruse Zt prognoosimiseks. Mitmese lineaarse regressiooni
mudeliks on mudel kujul

Zt = β0 +
m∑
i=1

βiXi(t) + εt,

kus vead εt on sama jaotusega, sõltumatud ja tsentreeritud, kordajate hinnangute vigade
tuletamisel eeldatakse ka vigade normaaljaotusele vastavust. Aegridade puhul enamasti
selline mudel (eriti vigade sõltumatuse eeldus) ei kehti, mistõttu standardsete lineaarse
regressiooni vahendite kasutamine ning saadud mudeli põhjal prognoosimine võib viia vä-
gagi valedele tulemustele. Sageli aga sobivad aegridade puhul andmetega mudelid, kus
vead εt vastavad mingile ARIMA tüüpi protsessile, sel juhul räägitakse lineaarsest regres-
sioonist ARIMA tüüpi vigadega ehk ARIMAX mudelist. Mudeli sobitamise protseduur on
kaheetapiline: kõigepealt sobitame tavalise regressiooni abil andmetele mitmese regressioo-
nimudeli ja analüüsime vigade käitumist. Vigade käitumise põhjal valime ARIMA mudeli
kuju suuruste εt jaoks ning seejärel leiame valitud ARIMAX tüüpi mudeli parameetrid
(nii β-d kui ARIMA kordajad) näiteks suurima tõepära meetodil või siis tinglike prog-
noosivigade ruutude summa minimiseerimise teel. Leitud mudeli headuse kriteeriumiks on
prognoosivigade sõltumatus, mida testitakse autokorrelatsioonide sõltumatute juhuslike
suuruste väärtustele vastavuse testimise abil.

5.2 Ülekandefunktsiooni mudelid

Inglise keeles transfer function models. Vaatleme juhtu, kus meil on kaks protsessi Zt
ja Xt, millele vastavate aegridade väärtused on meil olemas. Lihtsuse mõttes eeldame, et
mõlemad protsessid on statsionaarsed ning tsentreeritud (vastasel juhul võib proovida leida
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mõlemast sobivat järku diferentsid ja maha lahutade nende keskmised, et saada soovitud
omadustega ridu). Meie eesmärgiks on kindlaks teha, milliseid X minevikuväärtuseid (ja
võib-olla ka Z minevikuväärtuseid) regressoritena kasutada nii, et saada võimalikult häid
ennustusi protsessi Z jaoks. Täpsemalt, vaatleme ARIMAX mudelit kujul

Zt = β0 +

∞∑
i=b

βiXt−i + εt, (5.1)

kus b ≥ 1 ja suurused εt vastavad mingile ARMA protsessile

φ(B)εt = θ(B)At,

kusjuures eeldame, et suurused At on sõltumatud ka protsessi Xt väärtustest. Sel juhul
on ka suurused εt sõltumatud suurustest Xt. Selleks, et parameetreid oleks lõplik arv ning
et ennustamiseks kasutataks ainult Xt minevikuväärtuseid, otsime sobivat mudelit selliste
hulgast, kus funktsioon

β(x) =
∞∑
i=b

βix
i

on esitatav lõpliku arvu parameetrite abil kujul

β(x) = xb
v(x)

δ(x)
= xb

∑s
i=0 vix

i

1−
∑r

i=1 δix
i
.

Sellise mudeli võib kirjutada ka kujul

Zt =
r∑
i=1

δiZt−i +
s∑
i=0

viXt−b−i + ηt,

kus suurused ηt vastavad ARMA protsessile kujul

φ(B)ηt = δ(B)θ(B)At.

Funktsiooni β(x) nimetatakse ülekandefunktsiooniks, kuna ta kirjeldab, kuidas X oman-
datud väärtused mõjuvad ehk kanduvad üle suuruste Z väärtustele. Mudeli sobitamise
etapid on järgmised:

1. Leiame hinnangud suurustele βi

2. Suuruste βi hinnangute põhjal määrame kindlaks sobiva nihke b ning kasutades tead-
mist sellest, kuidas erinevate r ja s väärtuste korral peaks suurused β teoreetiliselt
käituma, leiame hinnangud ka parameetritele r ja s

3. Leiame sobiva mudeli vigade εt jaoks

4. Hindame mudeli parameetreid suurima tõepära meetodil

5. Kontrollime jääkvigade sõltumatust

6. arvutame prognoosid (kuni b ajaperioodi ette).

Vaatleme lähemalt mõningaid nendest etappidest
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5.2.1 Suuruste βi hindamine

Tähistame kujul γxx(k) ja γzz(k) protsesside X ja Z k-ndat järku autokovaratsioone ning
defineerime ristkovariatsioonid kujul

γxz(k) = cov(Xt, Zt+k);

vastavad autokorrelatsioonid olgu ρxx(k), ρyy(k) ning ρxz(k). Korrutades võrrandit (5.1)
suurusega Xt−k ning leides keskväärtuse (ehk arvutades võrrandi parema ja vasaku poole
kovariatsiooni suurusega Xt−k) saame

γxz(k) =
∞∑
i=0

βiγxx(i− k).

Kui nüüd eeldada, kordajad βi on praktiliselt võrdsed nulliga alates mingist järgust K, siis
saame võrrandisüsteemi suuruste γxz(k), k = 0, . . . ,K − 1 määramiseks. Samas on nende
võrrandite lahendamisel (asendades teoreetilised auto- ja riskovariatsioonid empiirilistega)
saadud hinnangud küllalti ebatäpsed, seetõttu on võimaluse korral parem kasutada nn
eelvalgendamise (inglise keeles prewhitening) tehnikat.
Eelvalgendamise tehnika on rakendatav, kui protsess X vastab mingile pööratavale ARMA
tüüpi mudelile. Oletame, et X vastab mudelile

φx(B)Xt = θx(B)αt,

kus suurused αt on sõltumatud, sama jaotusega (ning sõltumatud suurustestXt−1, Xt−2, . . ..
Eelnevate eelduste põhjal on nad ka sõltumatud suurustest ηt. Pööratavuse tõttu saame

αt = θx(B)−1φx(B)Xt.

Rakendades nüüd operaatorit θx(B)−1φx(B) võrduse (5.1) mõlemale poole, saame

Wt =
∞∑
i=b

βiαt−i + ξt,

kus
Wt = θx(B)−1φx(B)Zt, ξt = θx(B)−1φx(B)εt.

Leides nüüd eelneva võrduse mõlema poole kovariatsiooni suurusega αt−k saame

γαw(k) = σ2αβk,

kust saame kordaja βk avaldada. Praktilise arvutuse seisukohalt on suurused αk leitavad
suuruste ühesammuliste prognooside vigadena leitud mudeli abil suuruste Xt prognoosi-
misel ning suurusedWt vastavad täpsel sama mudeli kasutamisel suuruste Yt ennustamisel
tekkivatele ühesammulistele prognoosivigadele.

5.2.2 Mudeli kuju parameetrite b,r ja s valik

Kui kordajad βk on hinnatud, siis b valiku kriteeriumiks on tingimus βi ≈ 0, i = 0, 1, . . . , b−
1. Kui ainult (küllat väike) lõplik arv kordajatest βk on nullist erinevad, siis võime võtta
r = 0 ja s = k0 − b, kus k0 vastab viimase nullist erineva βk indeksile. Muudel juhtu-
del aga saab analootiliselt ARIMA tüüpi mudelite analüüsiga näidata, et alates järgust
k = b+ s+ 1 rahuldavad kordajad βk rekurrentset võrrandit

βk =
r∑
i=1

δiβk−i.
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Teades selliste rekurrentsete võrrandite lahendite käitumist on võimalik püstitada hüpo-
teese sobiva r (ja ka s) väärtuse kohta.

Harjutus 30 Näidata, et juhul r = 1 kehtib

βk = δk−b−s1 βb+s ∀k > b+ s.
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