
Basics of Cloud Computing – Lecture 3

Introduction to MapReduce

Satish Srirama

Some material adapted from slides by Jimmy Lin, Christophe Bisciglia, Aaron Kimball,

& Sierra Michels-Slettvet, Google Distributed Computing Seminar, 2007 (licensed

under Creation Commons Attribution 3.0 License)

Outline

• Functional programming review

• MapReduce

• Hadoop

• HDFS (Hadoop Distributed File System)• HDFS (Hadoop Distributed File System)

19.04.2011 2Satish Srirama

Economics of Cloud Providers –

Failures - Recap

• Cloud Computing providers bring a shift from
high reliability/availability servers to commodity
servers
– At least one failure per day in large datacenter

• Caveat: User software has to adapt to failures• Caveat: User software has to adapt to failures

• Solution: Replicate data and computation
– MapReduce & Distributed File System

• MapReduce = functional programming meets
distributed processing on steroids
– Not a new idea… dates back to the 50’s (or even 30’s)

19.04.2011 3/30 Satish Srirama

Functional programming

• What is functional programming?

– Computation as application of functions

– Theoretical foundation provided by lambda calculus

• How is it different?• How is it different?

– Traditional notions of “data” and “instructions” are

not applicable

– Data flows are implicit in program design

– Different orders of execution are possible

• Exemplified by LISP and ML

19.04.2011 4Satish Srirama

Functional Programming Review

• Lists are primitive data types

• Functions = lambda expressions bound to
variables

– f = lambda x : 2 * x– f = lambda x : 2 * x

print f(2)

• Higher-order functions

– Functions that take other functions as arguments

• Recursion is your friend

19.04.2011 5Satish Srirama

Functional Programming - features

• Functional operations do not modify data
structures: They always create new ones

• Original data still exists in unmodified form

• Data flows are implicit in program design• Data flows are implicit in program design

• Order of operations does not matter

19.04.2011 6Satish Srirama

FP features - continued

• fun foo(l: int list) =

sum(l) + mul(l) + length(l)
– Order of sum() and mul(), etc does not matter – they do not

modify l

• Functional Updates Do Not Modify Structures
– fun append(x, lst) = – fun append(x, lst) =

let lst' = reverse lst in

reverse (x :: lst')

– The append() function reverses a list, adds a new element to the
front, and returns all of that, reversed, which appends an item.

– But it never modifies lst!

• Functions Can Be Used As Arguments
– fun DoDouble(f, x) = f (f x)

19.04.2011 Satish Srirama 7

Functional Programming ->

MapReduce

• Two important concepts in functional

programming

– Map: do something to everything in a list

– Fold: combine results of a list in some way– Fold: combine results of a list in some way

19.04.2011 Satish Srirama 8

Map

• Map is a higher-order function

• How map works:
– Function is applied to every element in a list

– Result is a new list

• map f lst: (’a->’b) -> (’a list) -> (’b list)• map f lst: (’a->’b) -> (’a list) -> (’b list)
– Creates a new list by applying f to each element of the

input list; returns output in order.

19.04.2011 Satish Srirama 9

f f f f f f

Fold

• Fold is also a higher-order function

• How fold works:
– Accumulator set to initial value

– Function applied to list element and the accumulator

– Result stored in the accumulator– Result stored in the accumulator

– Repeated for every item in the list

– Result is the final value in the accumulator

19.04.2011 Satish Srirama 10

Map/Fold in Action

• Simple map example:

• Fold examples:

(map (lambda (x) (* x x))

'(1 2 3 4 5))

→ '(1 4 9 16 25)

• Fold examples:

• Sum of squares:

(fold + 0 '(1 2 3 4 5)) → 15

(fold * 1 '(1 2 3 4 5)) → 120

(define (sum-of-squares v)

(fold + 0 (map (lambda (x) (* x x)) v)))

(sum-of-squares '(1 2 3 4 5)) → 55

19.04.2011 11Satish Srirama

Implicit Parallelism In map

• In a purely functional setting, elements of a list being computed by
map cannot see the effects of the computations on other elements

• If order of application of f to elements in list is commutative, we can
reorder or parallelize execution

• Let’s assume a long list of records: imagine if...
– We can parallelize map operations

– We have a mechanism for bringing map results back together in the – We have a mechanism for bringing map results back together in the
fold operation

• This is the “secret” that MapReduce exploits

• Observations:
– No limit to map parallelization since maps are independent

– We can reorder folding if the fold function is commutative and
associative

19.04.2011 Satish Srirama 12

Typical Large-Data Problem

• Iterate over a large number of records

• Extract something of interest from each

• Shuffle and sort intermediate results

• Aggregate intermediate results• Aggregate intermediate results

• Generate final output
Key idea: provide a functional abstraction for

these two operations – MapReduce

19.04.2011 13Satish Srirama

MapReduce

• Programmers specify two functions:

map (k, v) → <k’, v’>*

reduce (k’, v’) → <k’, v’>*

– All values with the same key are sent to the same – All values with the same key are sent to the same
reducer

• The execution framework handles everything
else…

19.04.2011 14Satish Srirama

mapmap map map

k1 k2 k3 k4 k5 k6v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

MapReduce

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

ba 1 2 c c3 6 a c5 2 b c7 8

a 1 5 b 2 7 c 2 3 6 8

r1 s1 r2 s2 r3 s3

19.04.2011 15Satish Srirama

MapReduce

• Programmers specify two functions:

map (k, v) → <k’, v’>*

reduce (k’, v’) → <k’, v’>*

– All values with the same key are sent to the same – All values with the same key are sent to the same
reducer

• The execution framework handles everything
else…

What’s “everything else”?

19.04.2011 16Satish Srirama

MapReduce “Runtime”
• Handles scheduling

– Assigns workers to map and reduce tasks

• Handles “data distribution”
– Moves processes to data

• Handles synchronization
Gathers, sorts, and shuffles intermediate data– Gathers, sorts, and shuffles intermediate data

• Handles errors and faults
– Detects worker failures and automatically restarts

• Handles speculative execution
– Detects “slow” workers and re-executes work

• Everything happens on top of a distributed FS
(later)

Sounds simple, but many challenges!
19.04.2011 17Satish Srirama

MapReduce - extended

• Programmers specify two functions:
map (k, v) → <k’, v’>*
reduce (k’, v’) → <k’, v’>*
– All values with the same key are reduced together

• The execution framework handles everything else…
• Not quite…usually, programmers also specify:• Not quite…usually, programmers also specify:

partition (k’, number of partitions) → partition for k’
– Often a simple hash of the key, e.g., hash(k’) mod n
– Divides up key space for parallel reduce operations
combine (k’, v’) → <k’, v’>*
– Mini-reducers that run in memory after the map phase
– Used as an optimization to reduce network traffic

19.04.2011 18Satish Srirama

combinecombine combine combine

ba 1 2 c 9 a c5 2 b c7 8

mapmap map map

k1 k2 k3 k4 k5 k6
v1 v2 v3 v4 v5 v6

ba 1 2 c c3 6 a c5 2 b c7 8

ba 1 2 c 9 a c5 2 b c7 8

partition partition partition partition

Shuffle and Sort: aggregate values by keys

reduce reduce reduce

a 1 5 b 2 7 c 2 9 8

r1 s1 r2 s2 r3 s3

c 2 3 6 8

19.04.2011 19Satish Srirama

Two more details…

• Barrier between map and reduce phases

– But we can begin copying intermediate data

earlier

• Keys arrive at each reducer in sorted order• Keys arrive at each reducer in sorted order

– No enforced ordering across reducers

19.04.2011 20Satish Srirama

split 0

worker

Master

User

Program

output

(1) submit

(2) schedule map (2) schedule reduce

MapReduce Overall Architecture

split 0

split 1

split 2

split 3

split 4

worker

worker

worker

worker

output

file 0

output

file 1

(3) read
(4) local write

(5) remote read (6) write

Input

files

Map

phase

Intermediate files

(on local disk)

Reduce

phase

Output

files

Adapted from (Dean and Ghemawat, OSDI 2004)

19.04.2011 21Satish Srirama

“Hello World” Example: Word Count

Map(String docid, String text):

for each word w in text:

Emit(w, 1);

Reduce(String term, Iterator<Int> values):

int sum = 0;

for each v in values:

sum += v;

Emit(term, sum);

19.04.2011 22Satish Srirama

MapReduce can refer to…

• The programming model

• The execution framework (aka “runtime”)

• The specific implementation

Usage is usually clear from context!

19.04.2011 23Satish Srirama

MapReduce Implementations

• Google has a proprietary implementation in C++

– Bindings in Java, Python

• Hadoop is an open-source implementation in Java

– Development led by Yahoo, used in production– Development led by Yahoo, used in production

– Now an Apache project

– Rapidly expanding software ecosystem, but still lots of

room for improvement (e.g., OSDI 2008, Nexus)

• Lots of custom research implementations

– For GPUs, cell processors, etc.

19.04.2011 24Satish Srirama

Cloud Computing Storage, or how do

we get data to the workers?
NAS

Compute Nodes

SAN

What’s the problem here?

19.04.2011 25Satish Srirama

Distributed File System

• Don’t move data to workers… move workers to the
data!
– Store data on the local disks of nodes in the cluster

– Start up the workers on the node that has the data local

• Why?• Why?
– Network bisection bandwidth is limited

– Not enough RAM to hold all the data in memory

– Disk access is slow, but disk throughput is reasonable

• A distributed file system is the answer
– GFS (Google File System) for Google’s MapReduce

– HDFS (Hadoop Distributed File System) for Hadoop

19.04.2011 26Satish Srirama

GFS: Assumptions

• Choose commodity hardware over “exotic” hardware

– Scale “out”, not “up”

• High component failure rates

– Inexpensive commodity components fail all the time

• “Modest” number of huge files• “Modest” number of huge files

– Multi-gigabyte files are common, if not encouraged

• Files are write-once, mostly appended to

– Perhaps concurrently

• Large streaming reads over random access

– High sustained throughput over low latency

GFS slides adapted from material by (Ghemawat et al., SOSP 2003)

19.04.2011 27Satish Srirama

GFS: Design Decisions

• Files stored as chunks

– Fixed size (64MB)

• Reliability through replication

– Each chunk replicated across 3+ chunkservers

• Single master to coordinate access, keep metadata• Single master to coordinate access, keep metadata

– Simple centralized management

• No data caching

– Little benefit due to large datasets, streaming reads

• Simplify the API

– Push some of the issues onto the client (e.g., data layout)

HDFS = GFS clone (same basic ideas implemented in Java)

19.04.2011 28Satish Srirama

From GFS to HDFS

• Terminology differences:

– GFS master = Hadoop namenode

– GFS chunkservers = Hadoop datanodes

• Functional differences:• Functional differences:

– No file appends in HDFS

– HDFS performance is (likely) slower

For the most part, we’ll use the Hadoop terminology…

19.04.2011 29Satish Srirama

(file name, block id)

(block id, block location)

HDFS namenode

File namespace
/foo/bar

block 3df2

Application

HDFS Client

HDFS Architecture

Adapted from (Ghemawat et al., SOSP 2003)

instructions to datanode

datanode state
(block id, byte range)

block data

HDFS datanode

Linux file system

…

HDFS datanode

Linux file system

…

19.04.2011 30Satish Srirama

Namenode Responsibilities

• Managing the file system namespace:

– Holds file/directory structure, metadata, file-to-block
mapping, access permissions, etc.

• Coordinating file operations:

– Directs clients to datanodes for reads and writes– Directs clients to datanodes for reads and writes

– No data is moved through the namenode

• Maintaining overall health:

– Periodic communication with the datanodes

– Block re-replication and rebalancing

– Garbage collection

19.04.2011 31Satish Srirama

Putting everything together…

namenode

namenode daemon

job submission node

jobtracker

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

datanode daemon

Linux file system

…

tasktracker

slave node

19.04.2011 32Satish Srirama

MapReduce/GFS Summary

• Simple, but powerful programming model

• Scales to handle petabyte+ workloads

– Google: six hours and two minutes to sort 1PB (10

trillion 100-byte records) on 4,000 computerstrillion 100-byte records) on 4,000 computers

– Yahoo!: 16.25 hours to sort 1PB on 3,800 computers

• Incremental performance improvement with

more nodes

• Seamlessly handles failures, but possibly with

performance penalties

19.04.2011 33Satish Srirama

Next Lectures

• Deeper look at Hadoop

• MapReduce in different domains

• Let us have a look at some algorithms

19.04.2011 Satish Srirama 34

References

• Hadoop wiki http://wiki.apache.org/hadoop/

• Cloudera – Hadoop training
http://www.cloudera.com/developers/learn-
hadoop/training/

• J. Dean and S. Ghemawat, “MapReduce: • J. Dean and S. Ghemawat, “MapReduce:
Simplified Data Processing on Large Clusters”,
OSDI'04: Sixth Symposium on Operating System
Design and Implementation, Dec, 2004.

• Todo:
– Work with SciCloud Hadoop setup and Cloudera

virtual machine

19.04.2011 Satish Srirama 35

